1
|
Liu G, He X, Zhao G, Lu Z. Complement regulation in tumor immune evasion. Semin Immunol 2024; 76:101912. [PMID: 39579520 DOI: 10.1016/j.smim.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The complement system plays crucial roles in both innate and adaptive immune responses, facilitating the elimination of pathogens such as microorganisms and damaged cells, including cancer cells. It is tightly regulated and integrated with cell-mediated immunity. In the tumor microenvironment, the complement system performs both immune and nonimmune functions in tumor and immune cells through pathways that depend on or are independent of complement activation, thereby promoting immune evasion and tumor progression.
Collapse
Affiliation(s)
- Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Xuxiao He
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
2
|
Hallam TM, Andreadi A, Sharp SJ, Brocklebank V, Gardenal E, Dreismann A, Lotery AJ, Marchbank KJ, Harris CL, Jones AV, Kavanagh D. Comprehensive functional characterization of complement factor I rare variant genotypes identified in the SCOPE geographic atrophy cohort. J Biol Chem 2024; 300:107452. [PMID: 38852887 PMCID: PMC11277764 DOI: 10.1016/j.jbc.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.
Collapse
Affiliation(s)
- Thomas M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK.
| | - Anneliza Andreadi
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Scott J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - Vicky Brocklebank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - Anna Dreismann
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, University of Southampton, Southampton, UK
| | - Kevin J Marchbank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Claire L Harris
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy V Jones
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Rathi S, Hasan R, Ueffing M, Clark SJ. Therapeutic targeting of the complement system in ocular disease. Drug Discov Today 2023; 28:103757. [PMID: 37657753 DOI: 10.1016/j.drudis.2023.103757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The complement system is involved in the pathogenesis of several ocular diseases, providing a rationale for the investigation of complement-targeting therapeutics for these conditions. Dry age-related macular degeneration, as characterised by geographic atrophy (GA), is currently the most active area of research for complement-targeting therapeutics, with a complement C3 inhibitor approved in the United States earlier this year marking the first approved therapy for GA. This review discusses the role of complement in ocular disease, provides an overview of the complement-targeting agents currently under development for ocular conditions, and reflects on the lessons that can be learned from the preclinical investigations and clinical trials conducted in this field to date.
Collapse
Affiliation(s)
- Sonika Rathi
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Hardy MP, Mansour M, Rowe T, Wymann S. The Molecular Mechanisms of Complement Receptor 1-It Is Complicated. Biomolecules 2023; 13:1522. [PMID: 37892204 PMCID: PMC10605242 DOI: 10.3390/biom13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Human complement receptor 1 (CR1) is a membrane-bound regulator of complement that has been the subject of recent attempts to generate soluble therapeutic compounds comprising different fragments of its extracellular domain. This review will focus on the extracellular domain of CR1 and detail how its highly duplicated domains work both separately and together to mediate binding to its main ligands C3b and C4b, and to inhibit the classical, lectin, and alternative pathways of the complement cascade via the mechanisms of decay acceleration activity (DAA) and co-factor activity (CFA). Understanding the molecular basis of CR1 activity is made more complicated by the presence not only of multiple ligand binding domains within CR1 but also the fact that C3b and C4b can interact with CR1 as both monomers, dimers, and heterodimers. Evidence for the interaction of CR1 with additional ligands such as C1q will also be reviewed. Finally, we will bring the mechanistic understanding of CR1 activity together to provide an explanation for the differential complement pathway inhibition recently observed with CSL040, a soluble CR1-based therapeutic candidate in pre-clinical development.
Collapse
Affiliation(s)
| | | | - Tony Rowe
- CSL, Bio21 Institute, Melbourne, VIC 3052, Australia
| | - Sandra Wymann
- CSL, CSL Biologics Research Centre, 1066 Bern, Switzerland
| |
Collapse
|
5
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Hallam TM, Sharp SJ, Andreadi A, Kavanagh D. Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology 2023; 228:152410. [PMID: 37478687 DOI: 10.1016/j.imbio.2023.152410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Complement factor I (FI) is the nexus for classical, lectin and alternative pathway complement regulation. FI is an 88 kDa plasma protein that circulates in an inactive configuration until it forms a trimolecular complex with its cofactor and substrate whereupon a structural reorganization allows the catalytic triad to cleave its substrates, C3b and C4b. In keeping with its role as the master complement regulatory enzyme, deficiency has been linked to immunopathology. In the setting of complete FI deficiency, a consumptive C3 deficiency results in recurrent infections with encapsulated microorganisms. Aseptic cerebral inflammation and vasculitic presentations are also less commonly observed. Heterozygous mutations in the factor I gene (CFI) have been demonstrated to be enriched in atypical haemolytic uraemic syndrome, albeit with a very low penetrance. Haploinsufficiency of CFI has also been associated with decreased retinal thickness and is a strong risk factor for the development of age-related macular degeneration. Supplementation of FI using plasma purified or recombinant protein has long been postulated, however, technical difficulties prevented progression into clinical trials. It is only using gene therapy that CFI supplementation has reached the clinic with GT005 in phase I/II clinical trials for geographic atrophy.
Collapse
Affiliation(s)
- T M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - S J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK
| | - A Andreadi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - D Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK; NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
7
|
Fang Y, Qian J, Xu L, Wei W, Bu W, Zhang S, Lv Y, Li L, Zhao C, Gao X, Gu Y, Wang L, Chen Z, Wang X, Zhang R, Xu Y, Yang Y, Lu J, Yan Z, Wang M, Tang L, Yuan N, Wang J. Short-term intensive fasting enhances the immune function of red blood cells in humans. Immun Ageing 2023; 20:44. [PMID: 37649035 PMCID: PMC10469874 DOI: 10.1186/s12979-023-00359-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.
Collapse
Affiliation(s)
- Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Li Xu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Wenwen Bu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Yaqi Lv
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Yue Gu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Li Wang
- Department of Community Nursing, Soochow University, Suzhou, China
| | - Zixing Chen
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Xiao Wang
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Ruizhi Zhang
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Youjia Xu
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Yanjun Yang
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | - Jie Lu
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | - Zhanjun Yan
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | | | | | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China.
| |
Collapse
|
8
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
9
|
Holers VM, Frank RM, Clauw A, Seifert J, Zuscik M, Asokan S, Striebich C, Clay MR, Moreland LW, Banda NK. Potential causal role of synovial complement system activation in the development of post-traumatic osteoarthritis after anterior cruciate ligament injury or meniscus tear. Front Immunol 2023; 14:1146563. [PMID: 37207197 PMCID: PMC10189880 DOI: 10.3389/fimmu.2023.1146563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Anterior cruciate ligament (ACL) injury and meniscal tear (MT) are major causal factors for developing post-traumatic osteoarthritis (PTOA), but the biological mechanism(s) are uncertain. After these structural damages, the synovium could be affected by complement activation that normally occurs in response to tissue injury. We explored the presence of complement proteins, activation products, and immune cells, in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy and from patients with OA. Multiplexed immunohistochemistry (MIHC) was used to determine the presence of complement proteins, receptors and immune cells from ACL, MT, OA synovial tissue vs. uninjured controls. Examination of synovium from uninjured control tissues did not reveal the presence of complement or immune cells. However, DSST from patients undergoing ACL and MT repair demonstrated increases in both features. In ACL DSST, a significantly higher percentage of C4d+, CFH+, CFHR4+ and C5b-9+ synovial cells were present compared with MT DSST, but no major differences were seen between ACL and OA DSST. Increased cells expressing C3aR1 and C5aR1, and a significant increase in mast cells and macrophages, were found in ACL as compared to MT synovium. Conversely, the percentage of monocytes was increased in the MT synovium. Our data demonstrate that complement is activated in the synovium and is associated with immune cell infiltration, with a more pronounced effect following ACL as compared to MT injury. Complement activation, associated with an increase in mast cells and macrophages after ACL injury and/or MT, may contribute to the development of PTOA.
Collapse
Affiliation(s)
- V. Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel M. Frank
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Clauw
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer Seifert
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael Zuscik
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sakthi Asokan
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher Striebich
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael R. Clay
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Larry W. Moreland
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Jones AV, MacGregor S, Han X, Francis J, Harris C, Kavanagh D, Lotery A, Waheed N. Evaluating a Causal Relationship between Complement Factor I Protein Level and Advanced Age-Related Macular Degeneration Using Mendelian Randomization. OPHTHALMOLOGY SCIENCE 2022; 2:100146. [PMID: 35693873 PMCID: PMC9186402 DOI: 10.1016/j.xops.2022.100146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023]
Abstract
Importance Risk of advanced age-related macular degeneration (AAMD) is associated with rare genetic variants in the gene encoding Complement factor I (CFI), which is associated with lower circulating CFI protein levels, but the nature of the relationship is unclear. Objective Can genetic factors be used to infer whether low circulating CFI is associated with AAMD risk? Design Two-sample inverse variance weighted Mendelian Randomisation (MR) was used to evaluate evidence for a relationship between CFI levels and AAMD risk, comparing CFI levels from genetically predefined subsets in AAMD and control cohorts. Setting Published genetic and proteomic data was combined with data from cohorts of Geographic Atrophy (GA) patients in a series of MR analyses. Participants We derived genetic instruments for systemic CFI level in 3,301 healthy European participants in the INTERVAL study. To evaluate a genetic causal odds ratio (OR) for the effect of CFI levels on AAMD risk, we used results from a genome-wide association study of 12,711 AAMD cases and 14,590 European controls from the International AMD Genomics Consortium (IAMDGC), and CFI levels from patients entered into the research studies SCOPE and SIGHT. Results We identified one common CFI variant rs7439493 which was strongly associated with low CFI level, explaining 4.8% of phenotypic variance. Using rs7439493 our MR analysis estimated that AAMD odds increased per standard deviation (SD) decrease in CFI level; OR 1.47 (95% confidence interval (CI) 1.30-1.65, P=2.1×10-10). We identified one rare variant (rs141853578 encoding p.Gly119Arg) which was genome-wide significantly associated with CFI levels after imputation; based on this, a 1 SD decrease in CFI leads to increased AAMD odds of 1.79 (95% CI 1.46-2.19, P=1.9×10-8). The rare variant rs141853578 explained a further 1.7% of phenotypic variance. To benchmark the effect of low CFI levels on AAMD odds using a CFI-specific proteomic assay, we estimated the effect using CFI levels from 24 rs141853578 positive GA patients; each 1 SD (3.5μg/mL) reduction in CFI was associated with 1.67 fold increased odds of AAMD (95% CI 1.40-2.00, P=1.85×10-8). Conclusion and relevance Excellent concordance in direction and effect size derived from rare and common variant calculations provide good genetic evidence for a potentially causal role of lower CFI level increasing AAMD risk.
Collapse
Affiliation(s)
- Amy V. Jones
- Gyroscope Therapeutics Ltd., London, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Xikun Han
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | | | - Claire Harris
- Gyroscope Therapeutics Ltd., London, United Kingdom
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew Lotery
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nadia Waheed
- Gyroscope Therapeutics Ltd., London, United Kingdom
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Sialylation-dependent pharmacokinetics and differential complement pathway inhibition are hallmarks of CR1 activity in vivo. Biochem J 2022; 479:1007-1030. [PMID: 35470373 DOI: 10.1042/bcj20220054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood. We demonstrated a relationship between the asialo-N-glycan levels of CSL040 and its PK/PD properties in rats and non-human primates (NHPs), using recombinant CSL040 preparations with varying asialo-N-glycan levels. The clearance mechanism likely involves the asialoglycoprotein receptor (ASGR), as clearance of CSL040 with a high proportion of asialo-N-glycans was attenuated in vivo by co-administration of rats with asialofetuin, which saturates the ASGR. Biodistribution studies also showed CSL040 localisation to the liver following systemic administration. Our studies uncovered differential PD effects by CSL040 on complement pathways, with extended inhibition in both rats and NHPs of the alternative pathway compared to the classical and lectin pathways that were not correlated with its PK profile. Further studies showed that this effect was dose dependent and observed with both CSL040 and the full-length extracellular domain of HuCR1. Taken together, our data suggests that sialylation optimization is an important consideration for developing HuCR1-based therapeutic candidates such as CSL040 with improved PK properties and shows that CSL040 has superior PK/PD responses compared to full-length soluble HuCR1.
Collapse
|
12
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Jones AV, Curtiss D, Harris C, Southerington T, Hautalahti M, Wihuri P, Mäkelä J, Kallionpää RE, Makkonen E, Knopp T, Mannermaa A, Mäkinen E, Moilanen AM, Tezel TH, Waheed NK. An assessment of prevalence of Type 1 CFI rare variants in European AMD, and why lack of broader genetic data hinders development of new treatments and healthcare access. PLoS One 2022; 17:e0272260. [PMID: 36067162 PMCID: PMC9447915 DOI: 10.1371/journal.pone.0272260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Advanced age-related macular degeneration (AAMD) risk is associated with rare complement Factor I (FI) genetic variants associated with low FI protein levels (termed 'Type 1'), but it is unclear how variant prevalences differ between AMD patients from different ethnicities. METHODS Collective prevalence of Type 1 CFI rare variant genotypes were examined in four European AAMD datasets. Collective minor allele frequencies (MAFs) were sourced from the natural history study SCOPE, the UK Biobank, the International AMD Genomics Consortium (IAMDGC), and the Finnish Biobank Cooperative (FINBB), and compared to paired control MAFs or background population prevalence rates from the Genome Aggregation Database (gnomAD). Due to a lack of available genetic data in non-European AAMD, power calculations were undertaken to estimate the AAMD population sizes required to identify statistically significant association between Type 1 CFI rare variants and disease risk in different ethnicities, using gnomAD populations as controls. RESULTS Type 1 CFI rare variants were enriched in all European AAMD cohorts, with odds ratios (ORs) ranging between 3.1 and 7.8, and a greater enrichment was observed in dry AMD from FINBB (OR 8.9, 95% CI 1.49-53.31). The lack of available non-European AAMD datasets prevented us exploring this relationship more globally, however a statistical association may be detectable by future sequencing studies that sample approximately 2,000 AAMD individuals from Ashkenazi Jewish and Latino/Admixed American ethnicities. CONCLUSIONS The relationship between Type 1 CFI rare variants increasing odds of AAMD are well established in Europeans, however the lack of broader genetic data in AAMD has adverse implications for clinical development and future commercialisation strategies of targeted FI therapies in AAMD. These findings emphasise the importance of generating more diverse genetic data in AAMD to improve equity of access to new treatments and address the bias in health care.
Collapse
Affiliation(s)
- Amy V. Jones
- Gyroscope Therapeutics Limited, London, United Kingdom
| | - Darin Curtiss
- Gyroscope Therapeutics Limited, London, United Kingdom
| | - Claire Harris
- Gyroscope Therapeutics Limited, London, United Kingdom
| | - Tom Southerington
- Finnish Biobank Cooperative–FINBB, Turku, Finland
- University of Turku, Turku, Finland
| | | | - Pauli Wihuri
- Finnish Biobank Cooperative–FINBB, Turku, Finland
| | | | - Roosa E. Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Theresa Knopp
- Helsinki Biobank, HUS, Helsinki University Hospital, Helsinki, Finland
| | | | - Erna Mäkinen
- Biobank of Central Finland, Hospital Nova of Central Finland, Jyväskylä, Finland
| | - Anne-Mari Moilanen
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
| | - Tongalp H. Tezel
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States of America
| | | | - Nadia K. Waheed
- Gyroscope Therapeutics Limited, London, United Kingdom
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zheng C, Sleiman MM, Yang X, He S, Atkinson C, Tomlinson S. Increasing the efficacy and safety of a human complement inhibitor for treating post-transplant cardiac ischemia reperfusion injury by targeting to a graft-specific neoepitope. J Heart Lung Transplant 2021; 40:1112-1121. [PMID: 34334299 PMCID: PMC10587835 DOI: 10.1016/j.healun.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Post-transplant ischemia reperfusion injury (IRI) is a recognized risk factor for subsequent organ dysfunction, alloresponsiveness, and rejection. The complement system is known to play a role in IRI and represents a therapeutic target. Complement is activated in transplanted grafts when circulating IgM antibodies bind to exposed ischemia-induced neoepitopes upon reperfusion, and we investigated the targeting of a human complement inhibitor, CR1, to a post-transplant ischemia-induced neoepitope. METHODS A fragment of human CR1 was linked to a single chain antibody construct (C2 scFv) recognizing an injury-specific neoepitope to yield C2-CR1. This construct, along with a soluble untargeted counterpart, was characterized in a cardiac allograft transplantation model of IRI in terms of efficacy and safety. RESULTS CR1 was similarly effective against mouse and human complement. C2-CR1 provided effective protection against cardiac IRI at a lower dose than untargeted CR1. The increased efficacy of C2-CR1 relative to CR1 correlated with decreased C3 deposition, and C2-CR1, but not CR1, targeted to cardiac allografts. At a dose necessary to reduce IRI, C2-CR1 had minimal impact on serum complement activity, in contrast to CR1 which resulted in a high level of systemic inhibition. The circulatory half-life of CR1 was markedly longer than that of C2-CR1, and whereas a minimum therapeutic dose of CR1 severely impaired host susceptibility to infection, C2-CR1 had no impact. CONCLUSION We show the translational potential of a human complement inhibitor targeted to a universal ischemia-induced graft-specific epitope, and demonstrate advantages compared to an untargeted counterpart in terms of efficacy and safety.
Collapse
Affiliation(s)
- Chaowen Zheng
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mohamad Mahdi Sleiman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- The Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Transplant Surgery, Medical University of South Carolina, Department of Surgery, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Pulmonary Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
15
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
16
|
Hallam TM, Marchbank KJ, Harris CL, Osmond C, Shuttleworth VG, Griffiths H, Cree AJ, Kavanagh D, Lotery AJ. Rare Genetic Variants in Complement Factor I Lead to Low FI Plasma Levels Resulting in Increased Risk of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:18. [PMID: 32516404 PMCID: PMC7415286 DOI: 10.1167/iovs.61.6.18] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Rare genetic variants in complement factor I (CFI) that cause low systemic levels of the protein (FI) have been reported as a strong risk factor for advanced age-related macular degeneration (AMD). This study set out to replicate these findings. Methods FI levels were measured by sandwich ELISA in an independent cohort of 276 patients with AMD and 205 elderly controls. Single-nucleotide polymorphism genotyping and Sanger sequencing were used to assess genetic variability. Results The median FI level was significantly lower in those individuals with AMD and a rare CFI variant (28.3 µg/mL) compared to those with AMD without a rare CFI variant (38.8 µg/mL, P = 0.004) or the control population with (41.7 µg/mL, P = 0.0085) or without (41.5 µg/mL, P < 0.0001) a rare CFI variant. Thirty-six percent of patients with AMD with a rare CFI variant had levels below the fifth percentile, compared to 6% in controls with CFI variants. Multiple regression analyses revealed a decreased FI level associated with a rare CFI variant was a risk factor for AMD (early or late AMD: odds ratio [OR] 12.05, P = 0.03; early AMD: OR 30.3, P = 0.02; late AMD: OR 10.64, P < 0.01). Additionally, measurement of FI in aqueous humor revealed a large FI concentration gradient between systemic circulation and the eye (∼286-fold). Conclusions Rare genetic variants in CFI causing low systemic FI levels are strongly associated with AMD. The impermeability of the Bruch's membrane to FI will have implications for therapeutic replacement of FI in individuals with CFI variants and low FI levels at risk of AMD.
Collapse
|
17
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
18
|
Fischinger S, Fallon JK, Michell AR, Broge T, Suscovich TJ, Streeck H, Alter G. A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activation. J Immunol Methods 2019; 473:112630. [PMID: 31301278 PMCID: PMC6722412 DOI: 10.1016/j.jim.2019.07.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
The complement system plays a critical role in innate immune defense against pathogens, both via non-specific direct pathogen recognition and killing or via antigen-specific indirect recruitment by complement fixing antibodies. While various assays for measuring complement activation have been developed, few provide a high-throughput, sample-sparing approach to interrogate the qualitative differences in the ability of antibodies to drive complement activation. Here we present a high-throughput, sample-sparing, bead-based assay to evaluate antigen-specific antibody-dependent complement activation against nearly any antigen. Optimization of buffer composition, kinetics of immune complex formation, as well as complement source all contribute critically to the development of a robust, highly flexible and high-throughput approach to analyze antibody-dependent complement deposition (ADCD). Thus, the optimized bead-based, antigen-specific assay represents a simple, highly adaptable platform to profile antibody-dependent complement activation across pathogens and diseases.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA; University of Duisburg-Essen, Essen 47057, Germany
| | | | | | - Thomas Broge
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA.
| |
Collapse
|
19
|
Ekdahl KN, Mohlin C, Adler A, Åman A, Manivel VA, Sandholm K, Huber-Lang M, Fromell K, Nilsson B. Is generation of C3(H 2O) necessary for activation of the alternative pathway in real life? Mol Immunol 2019; 114:353-361. [PMID: 31446306 DOI: 10.1016/j.molimm.2019.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023]
Abstract
In the alternative pathway (AP) an amplification loop is formed, which is strictly controlled by various fluid-phase and cell-bound regulators resulting in a state of homeostasis. Generation of the "C3b-like" C3(H2O) has been described as essential for AP activation, since it conveniently explains how the initial fluid-phase AP convertase of the amplification loop is generated. Also, the AP has a status of being an unspecific pathway despite thorough regulation at different surfaces. During complement attack in pathological conditions and inflammation, large amounts of C3b are formed by the classical/lectin pathway (CP/LP) convertases. After the discovery of LP´s recognition molecules and its tight interaction with the AP, it is increasingly likely that the AP acts in vivo mainly as a powerful amplification mechanism of complement activation that is triggered by previously generated C3b molecules initiated by the binding of specific recognition molecules. Also in many pathological conditions caused by a dysregulated AP amplification loop such as paroxysmal nocturnal hemoglobulinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), C3b is available due to minute LP and CP activation and/or generated by non-complement proteases. Therefore, C3(H2O) generation in vivo may be less important for AP activation during specific attack or dysregulated homeostasis, but may be an important ligand for C3 receptors in cell-cell interactions and a source of C3 for the intracellular complement reservoir.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden; Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anna Adler
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Amanda Åman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Vivek Anand Manivel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Kerstin Sandholm
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
20
|
Ali YM, Sim RB, Schwaeble W, Shaaban MI. Enterococcus faecalis Escapes Complement-Mediated Killing via Recruitment of Complement Factor H. J Infect Dis 2019; 220:1061-1070. [PMID: 31058287 DOI: 10.1093/infdis/jiz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecalis is considered to be the most important species of enterococci responsible for blood stream infections in critically ill patients. In blood, the complement system is activated via the classical pathway (CP), the lectin pathway (LP), or the alternative pathway (AP), and it plays a critical role in opsonophagocytosis of bacteria including E faecalis. METHODS In a mouse model of enterococcus peritonitis, BALB-C mice were challenged with a high dose of E faecalis 12 hours after intraperitoneal administration of anti-Factor H (FH) antibodies or isotype control. Four hours later, control mice developed higher bacterial burden in blood and organs compared with mice treated with anti-FH antibodies. RESULTS We demonstrate that complement recognition molecules C1q, CL-11, and murine ficolin-A bind the enterococcus and drive the CP and the LP in human and mouse. We further describe that E faecalis evades the AP by recruitment of FH on its surface. Our results show a strong C3b deposition on E faecalis via both the CP and the LP but not through the AP. CONCLUSIONS These findings indicate that E faecalis avoids the complement phagocytosis by the AP via sequestering complement FH from the host blood.
Collapse
Affiliation(s)
- Youssif M Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, Oxford University, United Kingdom
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, United Kingdom
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
21
|
Paiano J, Harland M, Strainic MG, Nedrud J, Hussain W, Medof ME. Follicular B2 Cell Activation and Class Switch Recombination Depend on Autocrine C3ar1/C5ar1 Signaling in B2 Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:379-388. [PMID: 31217324 DOI: 10.4049/jimmunol.1900276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/07/2019] [Indexed: 01/19/2023]
Abstract
The involvement of complement in B2 cell responses has been regarded as occurring strictly via complement components in plasma. In this study, we show that Ab production and class switch recombination (CSR) depend on autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in B2 cells. CD40 upregulation, IL-6 production, growth in response to BAFF or APRIL, and AID/Bcl-6 expression, as well as follicular CD4+ cell CD21 production, all depended on this signal transduction. OVA immunization of C3ar1-/-C5ar1-/- mice elicited IgM Ab but no other isotypes, whereas decay accelerating factor (Daf1)-/- mice elicited more robust Ab production and CSR than wild-type (WT) mice. Comparable differences occurred in OVA-immunized μMT recipients of WT, C3ar1-/-C5ar1-/- , and Daf1-/- B2 cells and in hen egg lysozyme-immunized μMT recipients of MD4 B2 cells on each genetic background. B2 cells produced factor I and C3 and autophosphorylated CD19. Immunized C3-/-C5-/- recipients of WT MD4 bone marrow efficiently produced Ab. Thus, B2 cell-produced complement participates in B2 cell activation.
Collapse
Affiliation(s)
- Jacob Paiano
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Micah Harland
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Michael G Strainic
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - John Nedrud
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Wasim Hussain
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
22
|
Lachmann PJ. The story of complement factor I. Immunobiology 2019; 224:511-517. [PMID: 31109748 DOI: 10.1016/j.imbio.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022]
Abstract
Factor I was first discovered in 1966. Its importance became apparent with the description of the original Factor I deficient patient in Boston in 1967. This patient presented with a hyperactive alternative complement pathway resulting in secondary complement deficiency due to continuous complement consumption. On the basis of these findings, the mechanism of the alternative pathway was worked out. In 1975, the surprise finding was made that elevating levels of Factor I in plasma down-regulated the alternative pathway. Attempts to exploit this finding for clinical use had a long and frustrating history and it was not until 2019 that the first patient was treated with the gene therapy vector for age related macular degeneration by Professor Sir Robert MacLaren in Oxford. This review follows the long and contorted course from initial observations to clinical use of complement Factor I.
Collapse
Affiliation(s)
- Peter J Lachmann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom.
| |
Collapse
|
23
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|
24
|
Rasmussen KJ, Skjoedt MO, Vitved L, Skjoedt K, Palarasah Y. A novel antihuman C3d monoclonal antibody with specificity to the C3d complement split product. J Immunol Methods 2017; 444:51-55. [PMID: 28174050 DOI: 10.1016/j.jim.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d. The antibody can therefore only bind to C3d when it manifests itself as the final end product of cleaved C3. We believe that this specificity is it first of its kind, and predicts that it can be used as a detection tool in several immunological methods with great value in diagnostics.
Collapse
Affiliation(s)
- Karina Juhl Rasmussen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel-Ole Skjoedt
- Department of Clinical Immunology, University Hospital of Copenhagen, Rigshospitalet, Denmark
| | - Lars Vitved
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Institute of Public Health, University of Southern Denmark, Esbjerg, Denmark.
| |
Collapse
|
25
|
de Carvalho Lins CE, Pereira Crott LS, Teixeira JE, Barbosa JE. Reduced erythrocyte complement receptor type 1 in systemic lupus erythematosus is related to a disease activity index and not to the presence or severity of renal disease. Lupus 2016; 13:517-21. [PMID: 15352423 DOI: 10.1191/0961203304lu1053oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study investigated the expression of the complement receptor type 1 (CR1) on the membrane of erythrocytes (CR1/E) of patients with systemic lupus erythematosus (SLE) by flow cytometry. We found a significant reduction in CR1/E numbers in SLE patients (n 1/4 52), compared to controls (512 + 171 and 689 + 146, respectively, P 1/4 0.0001). Reduction was more pronounced in active disease patients. The mean CR1/E number observed in patients with inactive disease was 546 + 163 CR1/E, while active SLE patients presented a mean of 385 + 133 CR1/E(P 1/4 0.001). Patients with SLE with similar activity indexes tend to have similar CR1/E numbers, irrespective of disease severity. We also observed a trend to CR1/E reduction in severe nephritis patients. A small group of SLE patients with chronic renal failure and inactive disease showed CR1/E numbers nearly identical to controls (689 + 146 versus 686 + 123, respectively, P 1/4 0.95). This was the only group of SLE patients with normal CR1/E numbers. These results confirm the CR1/E reduction in SLE patients as previously described, and also suggest that this reduction is related to disease activity and not to disease severity.
Collapse
|
26
|
Ueda Y, Gullipalli D, Song WC. Modeling complement-driven diseases in transgenic mice: Values and limitations. Immunobiology 2016; 221:1080-90. [PMID: 27371974 DOI: 10.1016/j.imbio.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Remarkable advances have been made over past decades in understanding the pathogenesis of complement-mediated diseases. This has led to development of new therapies for, and in some cases re-classification of, complement-driven diseases. This success is due to not only insight from human patients but also studies using transgenic animal models. Animal models that mimic human diseases are useful tools to understand the mechanism of disease and develop new therapies but there are also limitations due to species differences in their complement systems. This review provides a summary of transgenic animal models for three human diseases that are at the forefront of anti-complement therapy, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). They are discussed here as examples to highlight the values and limitations of animal modeling in complement-driven diseases.
Collapse
Affiliation(s)
- Yoshiyasu Ueda
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
27
|
Zewde N, Gorham RD, Dorado A, Morikis D. Quantitative Modeling of the Alternative Pathway of the Complement System. PLoS One 2016; 11:e0152337. [PMID: 27031863 PMCID: PMC4816337 DOI: 10.1371/journal.pone.0152337] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/11/2016] [Indexed: 12/26/2022] Open
Abstract
The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection.
Collapse
Affiliation(s)
- Nehemiah Zewde
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Ronald D. Gorham
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Angel Dorado
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Dimitrios Morikis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mamidi S, Höne S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology 2015; 222:45-54. [PMID: 26686908 DOI: 10.1016/j.imbio.2015.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Constituting a part of the innate immune system, the complement system consists of over 50 proteins either acting as part of a 3-branch activation cascade, a well-differentiated regulatory system in fluid phase or on each tissue, or as receptors translating the activation signal to multiple cellular effector functions. Complement serves as first line of defence against infections from bacteria, viruses and parasites by orchestrating the immune response through opsonisation, recruitment of immune cells to the site of infection and direct cell lysis. Complement is generally recognised as a protective mechanism against the formation of tumours in humans, but is often limited by various resistance mechanisms interfering with its cytotoxic action, now considered as a great barrier of successful antibody-based immunotherapy. However, recent studies also indicate a pro-tumourigenic potential of complement in certain cancers and under certain conditions. In this review, we present recent findings on the possible dual role of complement in destroying cancer, especially if resistance mechanisms are blocked, but also under certain inflammatory conditions-promoting tumour development.
Collapse
Affiliation(s)
| | - Simon Höne
- Institute for Immunology, University of Heidelberg, Germany
| | | |
Collapse
|
29
|
Java A, Liszewski MK, Hourcade DE, Zhang F, Atkinson JP. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney. Mol Immunol 2015; 67:584-95. [PMID: 26260209 DOI: 10.1016/j.molimm.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney.
Collapse
Affiliation(s)
- Anuja Java
- Washington University School of Medicine, Department of Internal Medicine, Division of Nephrology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - M Kathryn Liszewski
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - Dennis E Hourcade
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - Fan Zhang
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - John P Atkinson
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| |
Collapse
|
30
|
Salvadori M, Bertoni E. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations. World J Nephrol 2013. [PMID: 24255888 DOI: 10.5527/wjn.v2.i3.56)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both "traditional therapy" (including plasma therapy, kidney and kidney-liver transplantation) and "new therapies". The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody "eculizumab". Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Maurizio Salvadori, Elisabetta Bertoni, Renal Unit, Careggi Hospital, Careggi University, Florence 50139, Italy
| | | |
Collapse
|
31
|
Salvadori M, Bertoni E. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations. World J Nephrol 2013; 2:56-76. [PMID: 24255888 PMCID: PMC3832913 DOI: 10.5527/wjn.v2.i3.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy.
Collapse
|
32
|
Karpman D, Tati R. Complement activation in thrombotic microangiopathy. Hamostaseologie 2013; 33:96-104. [PMID: 23411690 DOI: 10.5482/hamo-12-12-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
The endothelium lining the vascular lumen is continuously exposed to complement from the circulation. When erroneously activated on host cells, complement may generate a deleterious effect on the vascular wall leading to endothelial injury, exposure of the subendothelial matrix and platelet activation. In this review the contribution of complement activation to formation and maintenance of the pathological lesion termed thrombotic microangiopathy (TMA) is discussed. TMA is defined by vessel wall thickening affecting mainly arterioles and capillaries, detachment of the endothelial cell from the basement membrane and intraluminal thrombosis resulting in occlusion of the vessel lumen. The TMA lesion occurs in haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). HUS is further sub-classified as associated with Shiga toxin-producing Escherichia coli (STEC-HUS) or with complement dysregulation (atypical HUS) as well as other less common forms. The contribution of dysregulated complement activation to endothelial injury and platelet aggregation is reviewed as well as specific complement involvement in the development of HUS and TTP.
Collapse
Affiliation(s)
- D Karpman
- Department of Paediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | | |
Collapse
|
33
|
Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:55-81. [PMID: 23402019 DOI: 10.1007/978-1-4614-4118-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE.
Collapse
|
34
|
Nydegger UE, Hauser SP. Use of Intravenous Immunoglobulins in Haematological Disorders. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
The complement system has vital protective functions as a humoral component of the innate immune system and also through interactions with the adaptive immune system; however, when inappropriately activated or regulated, complement can cause inflammation and organ damage, and such processes are involved in the pathogenesis of many inflammatory conditions, not least rheumatic diseases. Furthermore, states of complement deficiency can predispose not only to infections, but also to autoimmune disorders, including rheumatic diseases such as systemic lupus erythematosus. In this Review, the mechanisms behind the pathogenic activities of complement in rheumatic diseases are discussed. Potential approaches to therapeutic intervention that focus on regulating complement activities in these disorders are also considered.
Collapse
|
36
|
Zhang M, Wu YH, Zhou XQ, Zhou HN. The effects of endosulfan on the growth and erythrocyte immune function of Mongolian gerbils (Meriones unguiculatus). Immunopharmacol Immunotoxicol 2012; 34:754-62. [DOI: 10.3109/08923973.2011.653647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Kavanagh D, Pappworth IY, Anderson H, Hayes CM, Moore I, Hunze EM, Bennaceur K, Roversi P, Lea S, Strain L, Ward R, Plant N, Nailescu C, Goodship THJ, Marchbank KJ. Factor I autoantibodies in patients with atypical hemolytic uremic syndrome: disease-associated or an epiphenomenon? Clin J Am Soc Nephrol 2012; 7:417-26. [PMID: 22223611 DOI: 10.2215/cjn.05750611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Atypical hemolytic uremic syndrome is a disease associated with mutations in the genes encoding the complement regulators factors H and I. In addition, factor H autoantibodies have been reported in ∼10% of patients with atypical hemolytic uremic syndrome. This study searched for the presence of factor I autoantibodies in atypical hemolytic uremic syndrome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study screened 175 atypical hemolytic uremic syndrome patients for factor I autoantibodies using ELISA with confirmatory Western blotting. Functional studies using purified immunoglobulin from one patient were subsequently undertaken. RESULTS Factor I autoantibodies were detected in three patients. In one patient with a high titer of autoantibody, the titer was tracked over time and was found to have no association with disease activity. This study found evidence of an immune complex of antibody and factor I in this patient, but purified IgG, isolated from current serum samples, had only a minor effect on fluid phase and cell surface complement regulation. Genetic analysis of the three patients with factor I autoantibodies revealed that they had two copies of the genes encoding factor H-related proteins 1 and 3 and therefore, did not have a deletion commonly associated with factor H autoantibodies in atypical hemolytic uremic syndrome. Two patients, however, had functionally significant mutations in complement factor H. CONCLUSIONS These findings reinforce the concept of multiple concurrent risk factors being associated with atypical hemolytic uremic syndrome but question whether autoantibodies per se predispose to atypical hemolytic uremic syndrome.
Collapse
Affiliation(s)
- David Kavanagh
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Odera M, Otieno W, Adhiambo C, Stoute JA. Dual role of erythrocyte complement receptor type 1 in immune complex-mediated macrophage stimulation: implications for the pathogenesis of Plasmodium falciparum malaria. Clin Exp Immunol 2011; 166:201-7. [PMID: 21985366 DOI: 10.1111/j.1365-2249.2011.04459.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Given the ability of erythrocytes to bind immune complexes (ICs), we postulated that they can serve a dual role during inflammatory or infectious processes. Erythrocytes could restrict stimulation of macrophages by free ICs by binding C3b-opsonized ICs via their complement receptor 1 (CR1). Conversely, IC-loaded erythrocytes could stimulate macrophages to produce proinflammatory cytokines such as tumour necrosis factor (TNF)-α. To test our hypothesis we selected 72 individuals with low, medium or high red cell CR1 expression and determined their IC binding capacity. We tested the in vitro ability of red cells to inhibit IC-mediated stimulation of TNF-α production by macrophages or to stimulate TNF-α production when loaded with ICs. Plain erythrocytes inhibited IC-induced TNF-α production by macrophages and low CR1 expressors showed the lowest inhibitory capacity. IC-loaded erythrocytes stimulated macrophages to release TNF-α, but the effect was not proportional to the CR1 level. These data support our hypothesis that erythrocytes can serve a dual role in regulation of cytokine responses in a setting of IC formation. Our findings suggest that individuals with low CR1 expression are ill-equipped to clear ICs and prevent IC-mediated stimulation of macrophages. In addition, IC-loaded red cells in areas of sluggish circulation such as in the spleen or in brain capillaries blocked by sequestered malaria-infected red cells may induce inflammation by stimulating monocytes and macrophages, the latter leading to the development of cerebral malaria.
Collapse
Affiliation(s)
- M Odera
- The US Army Medical Research Unit and the Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | |
Collapse
|
39
|
|
40
|
Brekke OL, Hellerud BC, Christiansen D, Fure H, Castellheim A, Nielsen EW, Pharo A, Lindstad JK, Bergseth G, Leslie G, Lambris JD, Brandtzaeg P, Mollnes TE. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood. Mol Immunol 2011; 48:2159-69. [PMID: 21839519 DOI: 10.1016/j.molimm.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 01/06/2023]
Abstract
The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had no effect on these processes since similar results were obtained using an LPS-deficient N. meningitidis mutant. In vivo experiments in a pig model of sepsis showed limited binding of bacteria to erythrocytes, consistent with the facts that erythrocyte CR1 receptors are absent in non-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood.
Collapse
Affiliation(s)
- Ole-Lars Brekke
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway; Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood 2011; 118:1923-33. [PMID: 21685372 DOI: 10.1182/blood-2011-03-341305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum adhesin PfRh4 binds to complement receptor type-1 (CR1) on human erythrocytes and mediates a glycophorin-independent invasion pathway. CR1 is a complement regulator and immune-adherence receptor on erythrocytes required for shuttling of C3b/C4b-opsonized particles to liver and spleen for phagocytosis. Using recombinant CR1 constructs, we mapped the recognition site for PfRh4 to complement control protein modules 1 to 3 (CCP1-3) at the membrane-distal amino terminus of CR1. This region of CR1 binds to C4b and C3b and accelerates decay of both classic pathway and alternative pathway C3 and C5 convertases. CCP1-3 competed for PfRh4 binding to erythroid CR1 and inhibited the PfRh4-CR1 invasion pathways across a wide range of P falciparum strains. PfRh4 did not bind significantly to other CR1 constructs, including CCP15-17, which is 85% identical to CCP1-3. PfRh4 binding to CR1 did not affect its C3b/C4b binding capability, and we show evidence for a ternary complex between CCP1-3, C4b, and PfRh4. PfRh4 binding specifically inhibited CR1's convertase decay-accelerating activity, whereas there was no effect on factor H-mediated decay-accelerating activity. These results increase our understanding of the functional implications of CR1 engagement with PfRh4 and highlight the interplay between complement regulation and infection.
Collapse
|
42
|
Complement and non-complement activating functions of C1q: A prototypical innate immune molecule. Innate Immun 2011; 18:350-63. [DOI: 10.1177/1753425910396252] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
C1q is a versatile innate immune molecule that serves as the initiation subcomponent of the classical complement pathway. In addition, it is also a potent pattern recognition molecule, the versatility of which has fuelled its functional flexibility. C1q recognises an array of self, non-self and altered-self ligands. The broad-spectrum ligand-binding potential of C1q is facilitated by the modular organisation of the heterotrimeric globular head region, its ability to change its conformation in a very subtle way, and the manner in which this ancient molecule appears to have evolved to deal with the different types of ligands. Over recent years, molecules that resemble C1q have been put together to form the C1q family. In this review, we briefly summarise complement-dependent and complement-independent functions of C1q, its cognate receptors and key members of the rapidly growing C1q family.
Collapse
|
43
|
Abstract
Central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS) is over-activation of the alternative pathway of complement. Following the initial discovery of mutations in the complement regulatory protein, factor H, mutations have been described in factor I, membrane cofactor protein and thrombomodulin, which also result in decreased complement regulation. Autoantibodies to factor H have also been reported to impair complement regulation in aHUS. More recently, gain of function mutations in the complement components C3 and Factor B have been seen. This review focuses on the genetic causes of aHUS, their functional consequences, and clinical effect.
Collapse
|
44
|
Alexander JJ, Hack BK, Jacob A, Chang A, Haas M, Finberg RW, Quigg RJ. Abnormal immune complex processing and spontaneous glomerulonephritis in complement factor H-deficient mice with human complement receptor 1 on erythrocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3759-67. [PMID: 20702729 DOI: 10.4049/jimmunol.1000683] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor 1 (CR1) on human erythrocytes (Es) and complement factor H (CFH) on rodent platelets perform immune adherence, which is a function that allows the processing of immune complexes (ICs) bearing C3 by the mononuclear phagocyte system. Similar immune adherence occurs in the glomerular podocyte by CR1 in humans and CFH in rodents. As a model for human IC processing, we studied transgenic mice lacking CFH systemically but with human CR1 on Es. These CR1(hu)Tg/CFH(-/-) mice spontaneously developed proliferative glomerulonephritis, which was accelerated in a chronic serum sickness model by active immunization with heterologous apoferritin. ICs containing Ag, IgG and C3 bound to Es in CR1(hu)Tg/CFH(-/-) mice. In this setting, there was increased IC deposition in glomeruli, attributable to the presence of CR1 on Es, together with the absence of CFH on platelets and podocytes. In the absence of plasma CFH, the accumulated ICs activated complement, which led to spontaneous and chronic serum sickness-induced proliferative glomerulonephritis. These findings illustrate the complexities of complement-dependent IC processing by blood cells and in the glomerulus, and the importance of CFH as a plasma complement regulator.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Miyagawa S, Yamamoto A, Matsunami K, Wang D, Takama Y, Ueno T, Okabe M, Nagashima H, Fukuzawa M. Complement regulation in the GalT KO era. Xenotransplantation 2010; 17:11-25. [DOI: 10.1111/j.1399-3089.2010.00569.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Shmagel KV, Chereshnev VA. Molecular bases of immune complex pathology. BIOCHEMISTRY (MOSCOW) 2009; 74:469-79. [PMID: 19538120 DOI: 10.1134/s0006297909050010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The binding of antigens with antibodies forms immune complexes in the body. Usually these complexes are eliminated by the system of mononuclear phagocytes without development of pathological changes. This review highlights principal mechanisms responsible for safe removal of immune complexes in primates and humans. Special attention is given to diseases known as "immune complex diseases", when antigen-antibody complexes induce inflammatory reactions. The review considers key experimental works that significantly contributed to current knowledge of etiology and pathogenesis of type III hypersensitivity. Some factors of the development of immune complex syndrome such as level of humoral immune response to antigen, isotype and affinity of forming antibodies, the amount of immune complexes, and the consequences of their interaction with the complement system and Fc-receptors are analyzed based on the molecular mechanisms involved. The review contains a retrospective analysis of the most significant scientific achievements in immune complex pathology investigation within the last 100 years.
Collapse
Affiliation(s)
- K V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, Perm, 614081, Russia.
| | | |
Collapse
|
47
|
Abstract
Perturbation of the serum complement system in glomerulonephritis can be the result of classical pathway activation by immune complexes or of C3 activation by the C3-C5 convertase stabilized by the C3 nephritic factor. Low C3 levels can also be the result of diminished C3 synthesis and possibly, in certain circumstances, of C3 convertases deposited on capillary walls. In glomerulonephritis the complement profile is helpful in diagnosis, in following the course of therapy and in providing insights into pathogenesis. Complement profiles must be interpreted recognizing that a pattern resembling classical pathway activation can be produced by idiopathic nephrotic syndrome, that hypogammaglobulinemia can reduce Clq levels, and that a primary deficiency of factor H or I or both, will secondarily produce subnormal levels of C3 and factor B. With these caveats, the complement profiles typical of systemic lupus erythematosus, membranoproliferative glomerulonephritis, acute glomerulonephritis, acquired Cl inhibitor deficiency, and hypocomplementemic vasculitis syndrome are described.
Collapse
|
48
|
Antibody to the type 3 capsule facilitates immune adherence of pneumococci to erythrocytes and augments their transfer to macrophages. Infect Immun 2008; 77:464-71. [PMID: 19001076 DOI: 10.1128/iai.00892-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae has been shown to bind to erythrocytes via a process called immune adherence. This adherence and the subsequent transfer of pneumococci from erythrocytes to macrophages are both dependent on complement C3 deposition onto the pneumococcal surface. The observation that anti-capsule antibody increases C3 deposition on the pneumococcal capsule indicated that anti-capsule antibody may also facilitate the clearance of pneumococci through immune adherence. Using pneumococcal strain WU2 (capsule type 3) and its nonencapsulated mutant JD908, we found that monoclonal antibody (MAb) to type 3 capsule increases complement C3, C1q, and C4 deposition on WU2 and enhanced the immune adherence of WU2 to erythrocytes. The MAb to type 3 capsule also enhanced the transfer of WU2 from erythrocytes to macrophages. Moreover, the transfer reaction was inhibited by preincubating macrophages with anti-CR3 or anti-Fc gammaRIII/II MAb, indicating that CR3 and Fc gammaRIII/II on macrophages mediate this process. The transfer reactions of JD908 (opsonized with complement) and WU2 (opsonized with complement plus MAb to type 3 capsule) were similarly inhibited by anti-CR3 MAb, but only the latter was inhibited by anti-Fc gammaRIII/II MAb. This finding indicates that although complement and the macrophage receptor CR3 are essential for the transfer reaction, if antibody is present it can further enhance the transfer reaction through a process dependent on Fc gammaRIII/II. Using pre- and postvaccination sera of people immunized with the 23-valent pneumococcal polysaccharide vaccine, we confirmed that human anti-capsule antibodies are also able to increase the immune adherence of pneumococci and their transfer to macrophages.
Collapse
|
49
|
Ligation of erythrocyte CR1 induces its clustering in complex with scaffolding protein FAP-1. Blood 2008; 112:3465-73. [PMID: 18684861 DOI: 10.1182/blood-2008-04-151845] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary identified function of complement receptor 1 (CR1/CD35) on primate erythrocytes is to bind complement-tagged inflammatory particles including microbes and immune complexes. When erythrocytes circulate through liver and spleen, sinusoidal phagocytes remove CR1-adherent particles and erythrocytes return to the circulation. This process of immune adherence clearance is important for host defense and prevention of autoimmunity. CR1 was previously described as clustered in the human erythrocyte membrane, which was thought to be necessary for binding complement-opsonized particles. In contrast, we demonstrate that on erythrocytes CR1 is not clustered, but dispersed, and able to bind complement-tagged particles. When fresh erythrocytes are solubilized by nonionic detergent, CR1 partitions to the cytoskeleton fraction. Using a PDZ-peptide array, CR1's cytoplasmic tail, which contains 2 PDZ-motifs, binds PDZ domains 2, 3, and 5 of Fas-associated phosphatase 1 (FAP-1), a scaffolding protein. We show that FAP-1, not previously recognized as an erythroid protein, is expressed on circulating erythrocytes. CR1 and FAP-1 coimmunoprecipitate, which confirms their molecular association. Disperse CR1 on erythrocytes may be advantageous for capturing immune-complexes, while ligation-induced CR1 clustering may prevent ingestion of the erythrocyte during the immune-complex transfer to the macrophages by keeping the opsonic stimulus localized thus preventing phagocyosis.
Collapse
|
50
|
Yan J, Allendorf DJ, Li B, Yan R, Hansen R, Donev R. The Role of Membrane Complement Regulatory Proteins in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|