1
|
Pacheco GA, Rao V, Yoo DK, Saghaei S, Tong P, Kumar S, Marini-Rapoport O, Allahyari Z, Moghaddam AS, Esbati R, Alirezaee A, Parnes A, Patil SU, Wesemann DR. Origins and diversity of pan-isotype human bone marrow plasma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592267. [PMID: 38766053 PMCID: PMC11100731 DOI: 10.1101/2024.05.08.592267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bone marrow plasma cells (BMPCs) produce durable, protective IgM, IgG, and IgA antibodies, and in some cases, pro-allergic IgE antibodies, but their properties and sources are unclear. We charted single BMPC transcriptional and clonal heterogeneity in food-allergic and non-allergic individuals across CD19 protein expression given its inverse correlation to BMPC longevity. Transcriptional and clonal diversity revealed distinct functional profiles. Additionally, distribution of somatic hypermutation and intraclonal antibody sequence variance suggest that CD19low and CD19high BMPCs arise from recalled memory and germinal center B cells, respectively. Most IgE BMPCs were from peanut-allergic individuals; two out of 32 from independent donors bound peanut antigens in vitro and in vivo. These findings shed light on BMPC origins and highlight the bone marrow as a source of pathogenic IgE in peanut allergy.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Vishal Rao
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Duck Kyun Yoo
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Shahab Saghaei
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Pei Tong
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Sachin Kumar
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Orlee Marini-Rapoport
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital; Boston, MA 02115, USA
| | - Zahra Allahyari
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Ali S. Moghaddam
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Romina Esbati
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Aida Alirezaee
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Aric Parnes
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Sarita U. Patil
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital; Boston, MA 02115, USA
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| |
Collapse
|
2
|
Moore EM, Maestas DR, Cherry CC, Garcia JA, Comeau HY, Davenport Huyer L, Kelly SH, Peña AN, Blosser RL, Rosson GD, Elisseeff JH. Biomaterials direct functional B cell response in a material-specific manner. SCIENCE ADVANCES 2021; 7:eabj5830. [PMID: 34851674 PMCID: PMC8635437 DOI: 10.1126/sciadv.abj5830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
Collapse
Affiliation(s)
- Erika M. Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris C. Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan A. Garcia
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah Y. Comeau
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gedge D. Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Sasanuma H, Ozawa M, Yoshida N. RNA-binding protein Ptbp1 is essential for BCR-mediated antibody production. Int Immunol 2020; 31:157-166. [PMID: 30476084 PMCID: PMC6400050 DOI: 10.1093/intimm/dxy077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022] Open
Abstract
The RNA-binding protein polypyrimidine tract-binding protein-1 (Ptbp1) binds to the pyrimidine-rich sequence of target RNA and controls gene expression via post-transcriptional regulation such as alternative splicing. Although Ptbp1 is highly expressed in B lymphocytes, its role to date is largely unknown. To clarify the role of Ptbp1 in B-cell development and function, we generated B-cell-specific Ptbp1-deficient (P1BKO) mice. B-cell development in the bone marrow, spleen and peritoneal cavity of the P1BKO mice was nearly normal. However, the P1BKO mice had significantly lower levels of natural antibodies in serum compared with those of the control mice. To investigate the effect of Ptbp1 deficiency on the immune response in vivo, we immunized the P1BKO mice with T-cell-independent type-2 (TI-2) antigen NP-Ficoll and T-cell-dependent (TD) antigen NP-CGG. We found that B-cell-specific Ptbp1 deficiency causes an immunodeficiency phenotype due to defective production of antibody against both TI-2 and TD antigen. This immunodeficiency was accompanied by impaired B-cell receptor (BCR)-mediated B-cell activation and plasmablast generation. These findings demonstrate that Ptbp1 is essential for the humoral immune response.
Collapse
Affiliation(s)
- Hiroki Sasanuma
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
4
|
Cole C, Byrne A, Beaudin AE, Forsberg EC, Vollmers C. Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq. Nucleic Acids Res 2019; 46:e62. [PMID: 29548006 PMCID: PMC6007450 DOI: 10.1093/nar/gky182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 01/16/2023] Open
Abstract
RNA-sequencing (RNA-seq) is a powerful technique to investigate and quantify entire transcriptomes. Recent advances in the field have made it possible to explore the transcriptomes of single cells. However, most widely used RNA-seq protocols fail to provide crucial information regarding transcription start sites. Here we present a protocol, Tn5Prime, that takes advantage of the Tn5 transposase-based Smart-seq2 protocol to create RNA-seq libraries that capture the 5' end of transcripts. The Tn5Prime method dramatically streamlines the 5' capture process and is both cost effective and reliable. By applying Tn5Prime to bulk RNA and single cell samples, we were able to define transcription start sites as well as quantify transcriptomes at high accuracy and reproducibility. Additionally, similar to 3' end-based high-throughput methods like Drop-seq and 10× Genomics Chromium, the 5' capture Tn5Prime method allows the introduction of cellular identifiers during reverse transcription, simplifying the analysis of large numbers of single cells. In contrast to 3' end-based methods, Tn5Prime also enables the assembly of the variable 5' ends of the antibody sequences present in single B-cell data. Therefore, Tn5Prime presents a robust tool for both basic and applied research into the adaptive immune system and beyond.
Collapse
Affiliation(s)
- Charles Cole
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, 95064 USA
| | - Ashley Byrne
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Cruz, CA, 95064 USA
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, CA, 95340 USA
| | - E Camilla Forsberg
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, 95064 USA.,Institute for the Biology of Stem Cells, University of California Santa Cruz, CA, 95064 USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, 95064 USA
| |
Collapse
|
5
|
Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, Barton K, Roden D, Luciani F, Giang Phan T, Junankar S, Jackson K, Goodnow CC, Smith MA, Swarbrick A. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat Commun 2019; 10:3120. [PMID: 31311926 PMCID: PMC6635368 DOI: 10.1038/s41467-019-11049-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/10/2019] [Indexed: 01/08/2023] Open
Abstract
High-throughput single-cell RNA sequencing is a powerful technique but only generates short reads from one end of a cDNA template, limiting the reconstruction of highly diverse sequences such as antigen receptors. To overcome this limitation, we combined targeted capture and long-read sequencing of T-cell-receptor (TCR) and B-cell-receptor (BCR) mRNA transcripts with short-read transcriptome profiling of barcoded single-cell libraries generated by droplet-based partitioning. We show that Repertoire and Gene Expression by Sequencing (RAGE-Seq) can generate accurate full-length antigen receptor sequences at nucleotide resolution, infer B-cell clonal evolution and identify alternatively spliced BCR transcripts. We apply RAGE-Seq to 7138 cells sampled from the primary tumor and draining lymph node of a breast cancer patient to track transcriptome profiles of expanded lymphocyte clones across tissues. Our results demonstrate that RAGE-Seq is a powerful method for tracking the clonal evolution from large numbers of lymphocytes applicable to the study of immunity, autoimmunity and cancer. Single cell RNA sequencing generates short reads from one end of a template, providing incomplete transcript coverage and limiting identification of diverse sequences such as antigen receptors. Here the authors combine long read nanopore sequencing with short read profiling of barcoded libraries to generate full-length antigen receptor sequences.
Collapse
Affiliation(s)
- Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Ghamdan Al-Eryani
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Shaun Carswell
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - James M Ferguson
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Kirston Barton
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Daniel Roden
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Fabio Luciani
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.,Kirby Institute for Infection and Immunity, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Simon Junankar
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Katherine Jackson
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.
| | - Martin A Smith
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.
| |
Collapse
|
6
|
Schaub A, Glasmacher E. Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 2018; 29:173-181. [PMID: 28498981 PMCID: PMC5890895 DOI: 10.1093/intimm/dxx026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied. In this review, we discuss some of the best-understood mechanisms, for instance the differential splicing of CD45 in T cells, as well as immunoglobulin genes in B cells. Beyond that we provide general mechanistic insights on how, when and where this process takes place and discuss the current knowledge regarding these topics in immune cells. We also highlight some of the reported links to immune-related diseases, genome-wide sequencing studies that revealed thousands of differentially spliced transcripts, as well as splicing studies on immune cells that remain mechanistically not fully understood. We thereby display potential emerging topics for future studies centered on splicing mechanisms in immune cells.
Collapse
Affiliation(s)
- Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
7
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Kikuchi H, Nakayama M, Kawai C, Kuribayashi F, Mimuro H, Imajoh-Ohmi S, Nishitoh H, Takami Y, Nakayama T. Histone acetyltransferase p300/CBP-associated factor is an effective suppressor of secretory immunoglobulin synthesis in immature B cells. Microbiol Immunol 2016; 59:243-7. [PMID: 25644304 DOI: 10.1111/1348-0421.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/25/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
Abstract
The histone acetyltransferase p300/CBP-associated factor (PCAF) catalyzes acetylation of core histones and plays important roles in epigenetics by altering the chromatin structure in vertebrates. In this study, PCAF-deficient DT40 mutants were analyzed and it was found that PCAF participates in regulation of secretory IgM heavy chain (H-chain) synthesis. Remarkably, PCAF-deficiency causes an increase in the amount of secretory IgM H-chain mRNA, but not in that of IgM light chain and membrane-bound IgM H-chain mRNAs, resulting in dramatic up-regulation of the amount of secretory IgM protein. These findings suggest that PCAF regulates soluble antibody production and is thus an effective suppressor of secretory IgM H-chain synthesis.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
10
|
Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? THE JOURNAL OF IMMUNOLOGY 2014; 193:3248-55. [PMID: 25240020 DOI: 10.4049/jimmunol.1400531] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
11
|
Abstract
B cells can be activated by cognate antigen, anti-B-cell receptor antibody, complement receptors, or polyclonal stimulators like lipopolysaccharide; the overall result is a large shift in RNA processing to the secretory-specific form of immunoglobulin (Ig) heavy chain mRNA and an upregulation of Igh mRNA amounts. Associated with this shift is the large-scale induction of Ig protein synthesis and the unfolded protein response to accommodate the massive quantity of secretory Ig that results. Stimulation to secretion also produces major structural accommodations and stress, with extensive generation of endoplasmic reticulum and Golgi as part of the cellular architecture. Reactive oxygen species can lead to either activation or apoptosis based on context and the high or low oxygen tension surrounding the cells. Transcription elongation factor ELL2 plays an important role in the induction of Ig secretory mRNA production, the unfolded protein response, and gene expression during hypoxia. After antigen stimulation, activated B cells from either the marginal zones or follicles can produce short-lived antibody secreting cells; it is not clear whether cells from both locations can become long-lived plasma cells. Autophagy is necessary for plasma cell long-term survival through the elimination of some of the accumulated damage to the ER from producing so much protein. Survival signals from the bone marrow stromal cells also contribute to plasma cell longevity, with BCMA serving a potentially unique survival role. Integrating the various information pathways converging on the plasma cell is crucial to the development of their long-lived, productive immune response.
Collapse
Affiliation(s)
- Ian Bayles
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
12
|
Ngaotepprutaram T, Kaplan BLF, Carney S, Crawford R, Kaminski NE. Suppression by Δ(9)-tetrahydrocannabinol of the primary immunoglobulin M response by human peripheral blood B cells is associated with impaired STAT3 activation. Toxicology 2013; 310:84-91. [PMID: 23727458 DOI: 10.1016/j.tox.2013.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 01/28/2023]
Abstract
This study was undertaken to gain insights into the mechanism for Δ(9)-tetrahydrocannabinol (Δ(9)-THC)-mediated suppression of primary immunoglobulin M (IgM) responses in humans. An in vitro activation model, which employs cell surface-expressed CD40 ligand (CD40L) and recombinant cytokines (interleukin (IL)-2, -6, and -10), was used to differentiate human peripheral blood (HPB) naïve B cells into IgM secreting cells. Pretreatment with Δ(9)-THC significantly decreased the number of IgM secreting cells as determined by ELISPOT. The attenuation of IgM secretion by Δ(9)-THC involved, at least in part, the impairment of plasma cell differentiation as evidenced by suppression of immunoglobulin joining chain (IgJ) mRNA expression. The analysis at each of two different stages critically involved in plasma cell differentiation indicates that Δ(9)-THC impaired both the primary activation stage and proliferation of B cells. Interestingly, Δ(9)-THC selectively suppressed the surface expression of CD80, but not other measured B-cell activation markers (CD69, CD86, and ICAM1). Furthermore, pretreatment with Δ(9)-THC was accompanied by a robust decrease of STAT3 phosphorylation, whereas the phosphorylation of the p65 NFκB subunit was not affected. Collectively, these data provide new insights into the mechanisms for impaired B cell function by Δ(9)-THC.
Collapse
|
13
|
Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells. Proc Natl Acad Sci U S A 2012; 109:16252-7. [PMID: 22991471 DOI: 10.1073/pnas.1214414109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
B cells and plasma cells possess distinct RNA processing environments that respectively promote the expression of membrane-associated Ig by B cells versus the secretion of Ig by plasma cells. Through a combination of transcriptional profiling and screening using a lentiviral short-hairpin RNA interference library, we show that both the splicing factor hnRNPLL and the transcription elongation factor ELL2 modulate the ratio of secreted versus membrane-encoding Ighg2b transcripts in MPC11 plasmacytoma cell lines. hnRNPLL and ELL2 are both highly expressed in primary plasma cells relative to B cells, but hnRNPLL binds Ighg2b mRNA transcripts and promotes an increase in levels of the membrane-encoding Ighg2b isoform at the expense of the secreted Ighg2b isoform, whereas ELL2 counteracts this effect and drives Ig secretion by increasing the frequency of the secreted Ighg2b isoform. As in T cells, hnRNPLL also alters the splicing pattern of mRNA encoding the adhesion receptor CD44, promoting exon inclusion, and decreasing the overall level of CD44 expression. Further characterization of ELL2-dependent transcription by RNA-Seq revealed that ∼12% of transcripts expressed by plasma cells were differentially processed because of the activities of ELL2, including B-cell maturation antigen BCMA, a receptor with a defined role in plasma cell survival. Taken together, our data identify hnRNPLL and ELL2 as regulators of pre-mRNA processing in plasma cells.
Collapse
|
14
|
Peterson ML. Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 2007; 37:33-46. [PMID: 17496345 DOI: 10.1007/bf02686094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
The immunoglobulin gene which encodes both membrane-associated and secreted proteins through alternative RNA processing reactions has been a model system used for over 25 yr to better understand the regulatory mechanisms governing alternative RNA processing. This gene contains competing cleavage-polyadenylation and RNA splicing reactions and the relative use of the two pathways is differentially regulated between B cells and plasma cells. General cleavage-polyadenylation and RNA splicing reactions are both altered during B cell maturation to affect immunoglobulin expression. However, the specific factors involved in this regulation have yet to be identified clearly. As transcriptional regulators stimulate the developmental RNA processing switch, microarray analysis is a promising approach to identify candidate regulators of this complex RNA processing mechanism.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
15
|
Ma J, Gunderson SI, Phillips C. Non-snRNP U1A levels decrease during mammalian B-cell differentiation and release the IgM secretory poly(A) site from repression. RNA (NEW YORK, N.Y.) 2006; 12:122-32. [PMID: 16373497 PMCID: PMC1370892 DOI: 10.1261/rna.2159506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A regulated shift from the production of membrane to secretory forms of Immunoglobulin M (IgM) mRNA occurs during B cell differentiation due to the activation of an upstream secretory poly(A) site. U1A plays a key role in inhibiting the expression of the secretory poly(A) site by inhibiting both cleavage at the poly(A) site and subsequent poly(A) tail addition. However, how the inhibitory effect of U1A is alleviated in differentiated cells, which express the secretory poly(A) site, is not known. Using B cell lines representing different stages of B cell differentiation, we show that the amount of U1A available to inhibit the secretory poly(A) site is reduced in differentiated cells. Undifferentiated B cells have more total U1A than differentiated cells and a greater proportion of this is not associated with the U1snRNP. We show that this is available to inhibit poly(A) addition at the secretory poly(A) site using cold competitor RNA oligos to de-repress poly(A) addition in nuclear extracts from the respective cell lines. In addition, endogenous non-snRNP associated U1A-immunopurified from the different cell lines-inhibits poly(A) polymerase activity proportional to U1A recovered, suggesting that available U1A level alone is responsible for changes in its inhibitory effect at the secretory IgM poly (A) site.
Collapse
Affiliation(s)
- Jianglin Ma
- Rutgers University, Department of Molecular Biology and Biochemistry, Nelson Laboratories, Room A322, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
16
|
Cho SJ, Kang CJ. A Stat5-overlapping site is critical for the IgJ enhancer activity in the plasma cells and bound by a ubiquitous protein. Biochem Biophys Res Commun 2005; 338:1897-905. [PMID: 16288984 DOI: 10.1016/j.bbrc.2005.10.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Although the IgJ enhancer chromatin is induced open by an IL-2/Stat5 signaling during terminal B cell differentiation, the opened chromatin of IgJ enhancer is then maintained in the absence of IL-2/Stat5 signaling. Nevertheless, the sequence overlapping the Stat5 site was shown still to be essential for the function of IgJ enhancer in the plasma cells. An in vivo footprint was identified over the Stat5-overlapping site, indicating that the site should be bound by a certain other protein than Stat5. In EMSA using the Stat5-overlapping sequence as a probe, its specific binding protein was identified. The specific binding protein corresponded neither to any of other Stat family proteins, nor to any of potential candidate proteins as tested in EMSA using their corresponding oligo DNA competitors and antibodies. Although its identity remains to be found by its purification, the protein binding specifically to the Stat5-overlapping site was shown to be expressed rather ubiquitously in B and non-B cells, and its molecular weight appeared to be below 52 kDa as determined in the UV-crosslinking-coupled SDS-PAGE.
Collapse
Affiliation(s)
- Sun-Jung Cho
- Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1 Seocheon-ri, Giheung, Yongin, Gyeonggi-do 449-701, Republic of Korea
| | | |
Collapse
|
17
|
Phillips C, Pachikara N, Gunderson SI. U1A inhibits cleavage at the immunoglobulin M heavy-chain secretory poly(A) site by binding between the two downstream GU-rich regions. Mol Cell Biol 2004; 24:6162-71. [PMID: 15226420 PMCID: PMC434241 DOI: 10.1128/mcb.24.14.6162-6171.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin M heavy-chain locus contains two poly(A) sites which are alternatively expressed during B-cell differentiation. Despite its promoter proximal location, the secretory poly(A) site is not expressed in undifferentiated cells. Crucial to the activation of the secretory poly(A) site during B-cell differentiation are changes in the binding of cleavage stimulatory factor 64K to GU-rich elements downstream of the poly(A) site. What regulates this change is not understood. The secretory poly(A) site contains two downstream GU-rich regions separated by a 29-nucleotide sequence. Both GU-rich regions are necessary for binding of the specific cleavage-polyadenylation complex. We demonstrate here that U1A binds two (AUGCN(1-3)C) motifs within the 29-nucleotide sequence and inhibits the binding of cleavage stimulatory factor 64K and cleavage at the secretory poly(A) site.
Collapse
Affiliation(s)
- Catherine Phillips
- Molecular Biology and Biochemistry, Rutgers University, Nelson Labs, Room A322, 604 Allison Rd., Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
18
|
Linderson Y, Eberhard D, Malin S, Johansson A, Busslinger M, Pettersson S. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 2004; 5:291-6. [PMID: 14993928 PMCID: PMC1299001 DOI: 10.1038/sj.embor.7400089] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 11/20/2003] [Accepted: 12/11/2003] [Indexed: 12/31/2022] Open
Abstract
PU.1 and Pax5 are important regulators of immunoglobulin heavy-chain (IgH) gene expression in B lineage cells. We have previously shown that PU.1 can potentiate the transcription of an IgH HS1,2 enhancer-linked reporter gene, and that Pax5 represses the same enhancer in transient transfection assays. Here we report that PU.1, like Pax5, can recruit and physically interact with a member of the Groucho family of co-repressors, Grg4. As a consequence, PU.1 in conjunction with Pax5 represses enhancer function in a position-dependent manner when Grg4 is recruited. Interestingly, Grg4 levels decrease following B-cell activation, suggesting temporal regulation of Grg4. Moreover, the joining-chain promoter, with an activity pattern and architecture resembling HS1,2 can also be repressed by the combinatorial action of Pax5/PU.1/Grg4. These data indicate that Pax5 depends on PU.1, acting in cis, for stable recruitment of Grg co-repressors to B-cell-specific genes.
Collapse
Affiliation(s)
- Ylva Linderson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dirk Eberhard
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
- Present address: Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Stephen Malin
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annica Johansson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Sven Pettersson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Tel: +46 8 524 866 86; Fax: +46 8 33 15 47; E-mail:
| |
Collapse
|
19
|
Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:9-28. [PMID: 12962979 DOI: 10.1016/s0145-305x(03)00103-4] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
Collapse
Affiliation(s)
- S H Lam
- Department of Biological Sciences, The National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | | | | | | | |
Collapse
|
20
|
Tsapogas P, Breslin T, Bilke S, Lagergren A, Månsson R, Liberg D, Peterson C, Sigvardsson M. RNA analysis of B cell lines arrested at defined stages of differentiation allows for an approximation of gene expression patterns during B cell development. J Leukoc Biol 2003; 74:102-10. [PMID: 12832448 DOI: 10.1189/jlb.0103008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development of a mature B lymphocyte from a bone marrow stem cell is a highly ordered process involving stages with defined features and gene expression patterns. To obtain a deeper understanding of the molecular genetics of this process, we have performed RNA expression analysis of a set of mouse B lineage cell lines representing defined stages of B cell development using Affymetrix microarrays. The cells were grouped based on their previously defined phenotypic features, and a gene expression pattern for each group of cell lines was established. The data indicated that the cell lines representing a defined stage generally presented a high similarity in overall expression profiles. Numerous genes could be identified as expressed with a restricted pattern using dCHIP-based, quantitative comparisons or presence/absence-based, probabilistic state analysis. These experiments provide a model for gene expression during B cell development, and the correctly identified expression patterns of a number of control genes suggest that a series of cell lines can be useful tools in the elucidation of the molecular genetics of a complex differentiation process.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Laboratory for Cellular Differentiation, Department for Stemcell Biology, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Phillips C, Gunderson S. Sequences adjacent to the 5' splice site control U1A binding upstream of the IgM heavy chain secretory poly(A) site. J Biol Chem 2003; 278:22102-11. [PMID: 12670951 DOI: 10.1074/jbc.m301349200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the stability of the alternatively expressed immunoglobulin M heavy chain secretory mRNA is developmentally regulated by U1A. U1A binds novel non-consensus sites upstream of the secretory poly(A) site and inhibits poly(A) tail addition in undifferentiated cells. U1A's dependence for binding and function upon a stem-loop structure has been extensively characterized for the consensus sites. We therefore probed the structure surrounding the novel U1A binding sites. We show that two of the three novel binding sites represent the major single-stranded regions upstream of the secretory poly(A) site, consistent with a major role at this site. The strength of binding and ability of U1A to inhibit poly(A) polymerase correlate with the accessibility of the novel sites. However, long range interactions are responsible for maintaining them in an open configuration. Mutation of an RNase V1-sensitive site 102 nucleotides upstream, directly adjacent to the competing 5' splice site, changes the structure of one the U1A binding sites and thus abolishes the binding of the second U1A molecule and the ability of U1A ability to inhibit poly(A) polymerase activity at this site. These sites bind U1A via its N-terminal domain but with a 10-fold lower affinity than U1 small nuclear RNA. This lower binding affinity is more conducive to U1A's regulation of poly(A) tail addition to heterologous mRNA.
Collapse
Affiliation(s)
- Catherine Phillips
- Nelson Laboratories, Rutgers University, Room 322, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
22
|
Gass JN, Gifford NM, Brewer JW. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 2002; 277:49047-54. [PMID: 12374812 DOI: 10.1074/jbc.m205011200] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The unfolded protein response pathway (UPR) is believed to detect and compensate for excessive protein accumulation in the endoplasmic reticulum (ER). The UPR can be induced by pharmacological agents that perturb ER functions, but may also occur during cellular developmental processes such as the transition of B-lymphocytes into antibody-secreting plasma cells. Here we show that major UPR components are activated in B cells stimulated to secrete antibody. Increased expression of UPR targets including the ER chaperones BiP and GRP94 and the transcription factor XBP-1 initiates early in the differentiation program prior to up-regulated synthesis of Ig chains. Furthermore, these same kinetics are observed during differentiation for cleavage of the ER-localized ATF6alpha protein and splicing of XBP-1 mRNA to generate p50ATF6alpha and p54XBP-1, the two known UPR transcriptional activators. All of these UPR events reach maximal levels once Ig synthesis and secretion are markedly induced. Interestingly, these events are not accompanied by expression of CHOP, a transcription factor induced by ER stress agents commonly used to investigate the UPR. These results suggest that a physiological UPR elicited during differentiation of B-lymphocytes into high-rate secretory cells may be distinct from the UPR defined by agents that disrupt protein maturation in the ER.
Collapse
Affiliation(s)
- Jennifer N Gass
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
23
|
Abstract
Plasma cell differentiation is induced in vitro by lipopolysaccharide (LPS) stimulation but can be blocked by including anti-CD40 antibodies. Using subtractive cDNA hybridization we have identified the cell surface protein Ly6C as differentially expressed on B cells stimulated with LPS only. Ly6C has been shown to be expressed on certain T cell subsets and on subsets of macrophages and NK cells, but not on resting B cells. We show that Ly6C is up-regulated upon LPS stimulation of B cells in vitro and that this up-regulation is blocked by anti-CD40 or anti-Ig antibodies. Furthermore, ELISPOT analysis of cells sorted by magnetic-activated cell sorting show that Ly6C is expressed on ex vivo plasma cells from the spleen and bone marrow. Flow cytometric analysis showed that Ly6C is expressed on splenic plasma cells as well as on lamina propria plasma cells. Finally, Ly6C cross-linking positively up-regulated the amount of immunoglobulin produced by LPS-stimulated splenic B cells in vitro.
Collapse
Affiliation(s)
- Jens Wrammert
- Section for Immunology, Department of Cell and Molecular Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
24
|
Phillips C, Jung S, Gunderson SI. Regulation of nuclear poly(A) addition controls the expression of immunoglobulin M secretory mRNA. EMBO J 2001; 20:6443-52. [PMID: 11707415 PMCID: PMC125739 DOI: 10.1093/emboj/20.22.6443] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B-cell differentiation is accompanied by a dramatic increase in cytoplasmic accumulation and stability of the IgM heavy chain (mu) secretory mRNA. Despite considerable effort, the mechanism is unknown. We have identified three short motifs upstream of the secretory poly(A) site, which, when mutated in the mu heavy chain gene, significantly increase the accumulation of the secretory form of poly(A)(+) mRNA relative to the membrane form and regulate the expression of the secretory poly(A) site in a developmental manner. We show that these motifs bind U1A and inhibit polyadenylation in vitro and in vivo. Overexpression of U1A in vivo results in the selective inhibition of the secretory form. Thus, this novel mechanism selectively controls post-cleavage expression of the mu secretory mRNA. We present evidence that this mechanism is used to regulate alternative expression of other genes.
Collapse
Affiliation(s)
- C Phillips
- Rutgers University, Nelson Labs Room A322, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
25
|
Xiang SD, Benson EM, Dunn IS. Tracking membrane and secretory immunoglobulin alpha heavy chain mRNA variation during B-cell differentiation by real-time quantitative polymerase chain reaction. Immunol Cell Biol 2001; 79:472-81. [PMID: 11564155 DOI: 10.1046/j.1440-1711.2001.01033.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary transcripts for all Ig heavy chain isotypes are alternatively processed to encode either secreted or membrane forms of the same antibody and, in plasma cells, a shift towards the secreted form occurs. In principle, measuring the relative quantities of secreted and membrane forms for a particular isotype could monitor B-cell plasmacytoid differentiation. Ratios of alpha heavy chain mRNA secreted (alphas) to membrane (alpham) form were assessed by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR; TaqMan) using an IgA plasma cell line (NCI-H929), a surface IgA+ line (Dakiki) and human tonsillar B cells. While NCI-H929 cells showed the highest alphas: alpham ratio as expected, alphas mRNA predominated for all unstimulated B cells and Dakiki cells. Treatment of B cells and Dakiki cells with IL-2 and IL-10 resulted in a further progression towards the alphas form, correlating with increased human plasma cell antigen-1 (HPC1) mRNA levels. However, alpha mRNA processing and HPC1 expression were independently regulated, as IFN-gamma treatment suppressed HPC1 levels while increasing alphas: alpham ratios. Cytokine-mediated increases in the alphas: alpham ratio resulted from strongly enhanced levels of alphas with relatively constant alpham values. Differentiation-related changes in mRNA processing can thus be tracked by automated quantitative PCR.
Collapse
MESH Headings
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation
- Cell Separation
- Flow Cytometry
- Gene Expression
- Humans
- Immunoglobulin A/chemistry
- Immunoglobulin A/genetics
- Immunoglobulin A/metabolism
- Immunoglobulin A, Secretory/chemistry
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Interferon-gamma/pharmacology
- Interleukin-10/pharmacology
- Interleukin-2/pharmacology
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S D Xiang
- The Institute for Immunology and Allergy Research, Westmead Hospital, New South Wales, Australia
| | | | | |
Collapse
|
26
|
Tunyaplin C, Shapiro MA, Calame KL. Characterization of the B lymphocyte-induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. Nucleic Acids Res 2000; 28:4846-55. [PMID: 11121475 PMCID: PMC115243 DOI: 10.1093/nar/28.24.4846] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blimp-1 is a transcriptional repressor that is both required and sufficient to trigger terminal differentiation of B lymphocytes and monocyte/macrophages. Here we report the organization of the mouse Blimp-1 gene, an analysis of Blimp-1 homologs in different species, the characterization of Blimp-1 mRNA isoforms and initial studies on the transcription of Blimp-1. The murine Blimp-1 gene covers approximately 23 kb and contains eight exons. There are Blimp-1 homologs in species evolutionarily distant from mouse (Caenorhabditis elegans and Drosophila melanogaster) but no homolog was found in the unicellular yeast Saccharomyces cerevisiae. The three major Blimp-1 mRNA isoforms result from the use of different polyadenylation sites and do not encode different proteins. Run-on transcription analyses were used to show that the developmentally regulated expression of Blimp-1 mRNA in B cells is determined by transcription initiation. Multiple Blimp-1 transcription initiates sites were mapped near an initiator element and a region conferring basal promoter activity has been identified.
Collapse
Affiliation(s)
- C Tunyaplin
- Department of Microbiology and Integrated Program in Biophysical, Cellular and Molecular Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
27
|
Coyle JH, Lebman DA. Correct immunoglobulin alpha mRNA processing depends on specific sequence in the C alpha 3-alpha M intron. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3659-65. [PMID: 10725723 DOI: 10.4049/jimmunol.164.7.3659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The maturation of IgM-expressing B cells to IgM-secreting plasma cells is associated with both an increase in mu mRNA and the ratio of secreted to membrane forms of mu mRNA which differ at the 3' termini. In contrast, both in vitro and in vivo the secreted form of alpha mRNA is predominant at all stages in the development of a secretory IgA response. Previous studies demonstrated that preferential usage of the alpha s poly(A) site does not result from transcription termination and is independent of either the poly(A) sites or the 3' splice site associated with the exon encoding the membrane exon of IgA (alpha M). The present study demonstrates that a 349-bp region located 774 bp 3' to the alpha s poly(A) site is required for the preferential usage of the alpha s terminus. This region, which is the first isotype-specific cis-acting regulatory sequence not immediately adjacent to a secretory poly(A) site to be identified, contains regulatory elements that increase the efficiency of polyadenylation/cleavage. A ubiquitous, approximately 58-kDa RNA-binding protein interacts specifically with this regulatory region. These studies support the premise that cis-acting elements unique to each CH gene can impinge upon a common mechanism regulating Ig mRNA processing.
Collapse
MESH Headings
- Base Sequence
- Burkitt Lymphoma
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Constant Regions/biosynthesis
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Constant Regions/metabolism
- Immunoglobulin alpha-Chains/biosynthesis
- Immunoglobulin alpha-Chains/genetics
- Immunoglobulin alpha-Chains/metabolism
- Introns/genetics
- Molecular Weight
- Poly A/genetics
- Poly A/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/immunology
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J H Coyle
- Department of Microbiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
28
|
Lebman DA, Edmiston JS. The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes. Microbes Infect 1999; 1:1297-304. [PMID: 10611758 DOI: 10.1016/s1286-4579(99)00254-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta (TGF-beta) affects B cells at all stages in development. It appears to be involved in lymphopoiesis and is required for the development of plasma cells secreting all secondary isotypes. Its ability to inhibit proliferation and stimulate apoptosis suggest that it may be involved both in germinal center development and regulation of B-cell proliferation at sites of high antigen load such as the gastrointestinal tract. Although TGF-beta appears to be required for the generation of B cells secreting secondary isotypes, it inhibits secretion of IgM and IgA from cells expressing those isotypes. In this regard, TGF-beta may alter the level of RNA processing factors either directly or indirectly by inhibiting progression through the cell cycle. One of the best characterized effects of TGF-beta is its ability to stimulate isotype switching to IgA in both mouse and man. There is some controversy concerning its mechanism of action in this process, but its critical role is without question. The controversy may stem in part from an inability to separate the effects of endogenous and exogenous TGF-beta in the multiple models of isotype switching. The influence of endogenous TGF-beta is perhaps best exemplified by analysis of production of the different classes of IgG in mouse strains producing different levels of TGF-beta.
Collapse
Affiliation(s)
- D A Lebman
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
29
|
Lebman DA, Coyle JH. Developmental regulation of immunoglobulin mRNA processing and the IgA response: establishing a paradigm. Immunol Res 1999; 20:43-53. [PMID: 10467982 DOI: 10.1007/bf02786506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
IgA, which is protective at mucosal sites, is derived from memory B cells that develop in the organized lymphoid tissue of the gastrointestinal tract and subsequently mature to plasma cells in the lamina propria. Similarly to B cells expressing other isotypes, the maturation of IgA-expressing B cells is associated with both an increase in the steady-state level of immunoglobulin mRNA and the ratio of secreted to membrane forms of mRNA, which differ in 3' terminus. In contrast to B cells expressing other isotypes, at all stages in the development of an IgA response, the secreted form of alpha mRNA predominates. In this article, studies on the general features of IgA B cell development, mechanisms regulating 3' terminus usage of Ig mRNAs, and isotype-specific regulation of 3' terminus usage particularly in regard to alpha mRNA are discussed.
Collapse
Affiliation(s)
- D A Lebman
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA.
| | | |
Collapse
|
30
|
Abstract
Erythropoietin (EPO) and its receptor (EPOR) are required for the development of mature erythrocytes. After binding of ligand, the EPOR activates a variety of signaling pathways that ultimately control cellular proliferation, survival, and specific gene expression. Although erythroid progenitors appear to be the principal EPO-responsive cell type in vivo due to the restricted expression of the EPOR, many growth factor–dependent cell lines expressing the EPOR can respond to EPO by activating many or all of these pathways. In the present study, we have identified a cellular context (the interleukin-2 [IL-2]–dependent HT-2 line) in which the EPO stimulation of the EPOR fails to support cellular proliferation, STAT-5 induction, or MAPK activation, despite efficient phosphorylation of the EPOR and JAK2 and inhibition of apoptosis after withdrawal of IL-2. Interestingly, when we fused HT-2 cells expressing the EPOR with Ba/F3 cells in a complementation assay, the resulting hybridomas proliferated and potently activated STAT-5 and MAPK in response to EPO. These data indicate that an unidentified cellular factor is needed to mediate signaling by the EPOR. Moreover, Ba/F3 cells apparently express this factor(s) and somatic fusions can, therefore, confer EPO-responsiveness to HT-2 cells that lack this factor.
Collapse
|
31
|
Takagaki Y, Manley JL. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 1998; 2:761-71. [PMID: 9885564 DOI: 10.1016/s1097-2765(00)80291-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cleavage stimulation factor (CstF) is one of the multiple factors required for mRNA polyadenylation. The concentration of one CstF subunit (CstF-64) increases during activation of B cells, and this is sufficient to switch IgM heavy chain mRNA expression from membrane-bound form to secreted form. To extend this observation, we disrupted the endogenous CstF-64 gene in the B cell line DT40 and replaced it with a regulatable transgene. Strikingly, a 10-fold decrease in CstF-64 concentration did not markedly affect cell growth but specifically and dramatically reduced accumulation of IgM heavy chain mRNA. Further reduction caused reversible cell cycle arrest in G0/G1 phase, while depletion resulted in apoptotic cell death. Our results indicate that CstF-64 plays unexpected roles in regulating gene expression and cell growth in B cells.
Collapse
Affiliation(s)
- Y Takagaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
32
|
Hughey CT, Brewer JW, Colosia AD, Rosse WF, Corley RB. Production of IgM Hexamers by Normal and Autoimmune B Cells: Implications for the Physiologic Role of Hexameric IgM. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Secreted IgM is predominantly found as pentameric molecules, but IgM can also be secreted as hexamers by B cell lines. Murine hexamers activate the complement cascade more efficiently than pentamers, but the physiologic significance of hexameric IgM remains unknown. Here, we report that IgM hexamers and pentamers are cleared from the circulation with similar kinetics, suggesting that the predominance of pentameric IgM in vivo reflects the regulation of polymer assembly and secretion in responding B cells. Normal IgM-secreting B cells, particularly those from the peritoneal cavity, are capable of secreting abundant hexameric IgM in vitro. The disparity between the ability of B cells to secrete IgM hexamers in vitro and the paucity of this polymer in vivo suggest that IgM hexamers might be deleterious. In support of this, we demonstrate that the autoantibodies from a number of patients with cold agglutinin (CA) disease include both IgM hexamers and pentamers. The CA IgM hexamers lyse human erythrocytes in the presence of human complement more efficiently than CA IgM pentamers, suggesting a potential role for hexameric IgM in the pathogenesis of this autoimmune syndrome.
Collapse
Affiliation(s)
| | - Joseph W. Brewer
- *Department of Microbiology, Boston University School of Medicine, Boston, MA 02118; and Departments of
- †Immunology and
| | | | | | - Ronald B. Corley
- *Department of Microbiology, Boston University School of Medicine, Boston, MA 02118; and Departments of
| |
Collapse
|
33
|
Speck RF, Penn ML, Wimmer J, Esser U, Hague BF, Kindt TJ, Atchison RE, Goldsmith MA. Rabbit cells expressing human CD4 and human CCR5 are highly permissive for human immunodeficiency virus type 1 infection. J Virol 1998; 72:5728-34. [PMID: 9621031 PMCID: PMC110246 DOI: 10.1128/jvi.72.7.5728-5734.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.
Collapse
Affiliation(s)
- R F Speck
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Randall TD, Heath AW, Santos-Argumedo L, Howard MC, Weissman IL, Lund FE. Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 1998; 8:733-42. [PMID: 9655487 DOI: 10.1016/s1074-7613(00)80578-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite extensive research, the role of CD40 signaling in B cell terminal differentiation remains controversial. Here we show that CD40 engagement arrests B cell differentiation prior to plasma cell formation. This arrest is manifested at a molecular level as a reduction in mRNA levels of secretory immunoglobulin gene products such as mu(s) and J chain as well as the loss of the transcriptional regulator BLIMP-1. Furthermore, the inhibition of B cell differentiation by CD40 engagement could not be overcome by either mitogens or cytokines, but could be reversed by antibodies that interfere with the CD40/gp39 interaction. These data suggest that secretory immunoglobulin is not produced by B cells that are actively engaged by gp39-expressing T cells.
Collapse
Affiliation(s)
- T D Randall
- Trudeau Institute, Saranac Lake, New York 12983, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wallin JJ, Gackstetter ER, Koshland ME. Dependence of BSAP repressor and activator functions on BSAP concentration. Science 1998; 279:1961-4. [PMID: 9506950 DOI: 10.1126/science.279.5358.1961] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During a B cell immune response, the transcription factor BSAP maintains its activator functions but is relieved of its repressor functions. This selective targeting of BSAP activities was shown to be regulated by a concentration-dependent mechanism whereby activator motifs for BSAP had a 20-fold higher binding affinity than repressor motifs. An exchange of activator and repressor motifs, however, showed that the context of the motif, rather than the affinity, determined whether BSAP operated as an activator or repressor.
Collapse
Affiliation(s)
- J J Wallin
- Immunology Division, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
36
|
Kang CJ, Sheridan C, Koshland ME. A stage-specific enhancer of immunoglobulin J chain gene is induced by interleukin-2 in a presecretor B cell stage. Immunity 1998; 8:285-95. [PMID: 9529146 DOI: 10.1016/s1074-7613(00)80534-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-2 (IL-2)-induced transcription of the J chain gene was used as a model for analyzing cytokine regulation during B cell development. To determine whether IL-2 signals are targeted to a J chain gene enhancer as well as to its promoter, the sequences flanking the J chain gene were first examined for DNase I hypersensitivity. Of six sites identified, two strong ones, 7.5 kb upstream of the J chain gene, were found to be associated with an enhancer that is active only during the antigen-driven stages of B cell development. Further analyses of the enhancer in the IL-2-responsive presecretor BCL1 cells showed that the enhancer is activated at this stage by an IL-2 signal that functions by opening the enhancer chromatin and stimulating STAT5 to bind to a STAT5 element critical for the enhancer induction. Moreover, after this early induction stage, the enhancer was shown to be constitutively open and active in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- C J Kang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | | | |
Collapse
|
37
|
Axcrona K, Akerblad P, Leanderson T. Phenotypic convergence and divergence of surface immunoglobulin and CD40 signals. Scand J Immunol 1998; 47:210-7. [PMID: 9519858 DOI: 10.1046/j.1365-3083.1998.00295.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both anti-CD40 antibodies and anti-immunoglobulin (Ig) coupled to Sepharose induced proliferation of resting B cells and suppressed lipopolysaccharide (LPS)-induced B-cell differentiation to immunoglobulin secretion at comparable levels determined with the plaque-forming assay and Ig RNA steady state levels. Anti-CD40 antibodies also increased the proliferation of B cells stimulated by T helper cells in vitro while suppressing their differentiation to Ig secretion. Further, B cells preactivated by anti-Ig, anti-CD40 or a combination of the two mitogens could be restimulated by anti-CD40 but not by anti-Ig antibodies. Phenotypic divergence of Ig and CD40 signals regarding surface expression of activation markers was observed. Restimulation of anti-Ig- or anti-CD40-prestimulated cells with anti-Ig induced apoptosis whereas apoptosis could be inhibited when cells were recultivated with anti-CD40.
Collapse
Affiliation(s)
- K Axcrona
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | |
Collapse
|
38
|
Seipelt RL, Spear BT, Snow EC, Peterson ML. A nonimmunoglobulin transgene and the endogenous immunoglobulin mu gene are coordinately regulated by alternative RNA processing during B-cell maturation. Mol Cell Biol 1998; 18:1042-8. [PMID: 9448001 PMCID: PMC108816 DOI: 10.1128/mcb.18.2.1042] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The immunoglobulin (Ig) genes have been extensively studied as model systems for developmentally regulated alternative RNA processing. Transcripts from these genes are alternatively processed at their 3' ends to yield a transcript that is either cleaved and polyadenylated at a site within an intron or spliced to remove the poly(A) site and subsequently cleaved and polyadenylated at a downstream site. Results obtained from expressing modified genes in established tissue culture cell lines that represent different stages of B-lymphocyte maturation have suggested that the only requirement for regulation is that a pre-mRNA contain competing cleavage-polyadenylation and splice reactions whose efficiencies are balanced. Since several non-Ig genes modified to have an Ig gene-like structure are regulated in cell lines, Ig-specific sequences are not essential for this control. This strongly implies that changes in the amounts or activities of general RNA processing components mediate the processing regulation. Despite numerous studies in cell lines, this model of Ig gene regulation has never been tested in vivo during normal lymphocyte maturation. We have now introduced a non-Ig gene with an Ig gene-like structure into the mouse germ line and demonstrate that RNA from the transgene is alternatively processed and regulated in murine splenic B cells. This establishes that the balance and arrangement of competing cleavage-polyadenylation reactions are sufficient for RNA processing regulation during normal B-lymphocyte development. These experiments also validate the use of tissue culture cell lines for studies of Ig processing regulation. This is the first transgenic mouse produced to test a specific model for regulated mRNA processing.
Collapse
Affiliation(s)
- R L Seipelt
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington 40536, USA
| | | | | | | |
Collapse
|
39
|
Phillips C, Schimpl A, Dietrich-Goetz W, Clements JB, Virtanen A. Inducible nuclear factors binding the IgM heavy chain pre-mRNA secretory poly(A) site. Eur J Immunol 1996; 26:3144-52. [PMID: 8977316 DOI: 10.1002/eji.1830261247] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two alternative forms of IgM heavy-chain mRNA are produced from a common precursor mRNA as a result of competition between cleavage/poly(A) addition at the upstream (secretory) poly(A) site and cleavage/poly(A) addition at the downstream (membrane) poly(A) site coupled with splicing. The efficiency of cleavage at the secretory poly(A) site is thought to play a crucial role in this alternative processing. We therefore examined RNA binding factors recognizing the secretory poly(A) site, in the absence of the splicing option, to look for transacting factors that may play a role in cleavage/polyadenylation efficiency at this site. Purified primary B cells produce the secretory form of mu mRNA when stimulated with lipopolysaccharide (LPS) and the membrane form of mu mRNA when their antigen receptors are ligated by anti-mu antibodies. We compared RNA binding factors in nuclear extracts from cells produced by these different stimulatory conditions and show that induction of the secretory form of mu mRNA by LPS correlates with the induction of a 28-32-kDa secretory poly(A) site-specific polypeptide which is also present in the plasmacytoma cell line J558L. Visualization of the 28-32-kDa polypeptide in UV cross-linking assays depends on a GU-rich element downstream of the secretory poly(A) site. We show that this GU-rich region enhances polyadenylation efficiency in vivo by transfection of luciferase reporter constructs into the plasmacytoma J558L. We also examined nuclear extracts from B cells doubly stimulated with LPS and anti-mu antibodies in which expression of the secretory form of mu mRNA is selectively inhibited. This inhibition may be due to a down-regulation of polyadenylation at the secretory poly(A) site or an up-regulation of the competitive splicing process. This form of stimulation does not lead to the disappearance of the 28-32-kDa polypeptide, but to an enhanced binding of a 50-55-kDa factor which binds both the secretory and membrane poly(A) site. We report the first detection of changes in RNA binding factors taking place at the secretory poly(A) site which correlate with the expression of different forms of mu mRNA produced by primary B cells under different stimulation conditions.
Collapse
Affiliation(s)
- C Phillips
- Institut für Virologie und Immunologie der Universität Würzburg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 1996; 5:377-86. [PMID: 8885870 DOI: 10.1016/s1074-7613(00)80263-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokine regulation of B cell development was analyzed using interleukin-2 (IL-2)-induced transcription of the J chain gene as a model system. A nuclear target of the IL-2 signal was identified as the Pax5 transcription factor, BSAP, which recognizes a negative regulatory motif in the J chain promoter. Functional assays showed that BSAP mediates the silencing of the J chain gene during the early stages of B cell development, but repression is relieved during the antigen-driven stages in a concentration-dependent manner by an IL-2-induced down-regulation of BSAP RNA expression. At the low levels present in J chain-expressing plasma cells, BSAP repression could be overridden by positive-acting factors binding to down-stream J chain promoter elements. Overexpression of BSAP in these cells reversed the positive regulation and inhibited J chain gene transcription. Thus, IL-2 regulation of BSAP concentration may provide a mechanism for controlling both repressor and activator functions of BSAP during a B cell immune response.
Collapse
Affiliation(s)
- J L Rinkenberger
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
41
|
Gaffen SL, Lai SY, Ha M, Liu X, Hennighausen L, Greene WC, Goldsmith MA. Distinct tyrosine residues within the interleukin-2 receptor beta chain drive signal transduction specificity, redundancy, and diversity. J Biol Chem 1996; 271:21381-90. [PMID: 8702919 DOI: 10.1074/jbc.271.35.21381] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To explore the basis for interleukin (IL)-2 receptor (IL-2R) signaling specificity, the roles of tyrosine-based sequences located within the cytoplasmic tails of the beta and gammac chains were examined in the murine helper T cell line HT-2. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, cellular proliferation, and the induction of various genes were monitored. All four of the cytoplasmic tyrosine residues as well as the distal portion of the gammac proved dispensable for the entire spectrum of IL-2R signaling responses studied. Conversely, select tyrosine residues within the beta chain were essential and differentially required for various signaling events. Specifically, activation of c-fos gene expression was found to occur exclusively through the most membrane proximal tyrosine, Tyr-338, whereas proliferation and the activation of STAT-5 were induced either through Tyr-338 or through the two C-terminal tyrosine residues, Tyr-392 and Tyr-510. These tyrosine residues mediated the induction of two different STAT-5 isoforms, which were found to form heterodimers upon receptor activation. In contrast to the tyrosine dependence of c-fos and STAT-5 induction, bcl-2 gene induction proceeded independently of all IL-2Rbeta tyrosine residues. Thus, the tyrosine-based modules present within the IL-2Rbeta cytoplasmic tail play a critical role in IL-2R signaling, mediating specificity, redundancy, and multifunctionality.
Collapse
Affiliation(s)
- S L Gaffen
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Reich L, Sharir H, Ber R, Wirth T, Bergman Y, Laskov R. Coordinate suppression of myeloma-specific genes and expression of fibroblast-specific genes in myeloma X fibroblast somatic cell hybrids. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:1-20. [PMID: 8643990 DOI: 10.1007/bf02374372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In most instances, fusion of differentiated cell types with fibroblasts has resulted in the extinction of the differentiation-specific traits of the non-fibroblast parental cell. To explore the genetic basis of this phenomenon, we have studied a series of somatic cell hybrids between mouse myeloma and fibroblasts. All the hybrids were adherent having a fibroblast-like phenotype. Molecular analysis revealed that plasma cell specific genes like the productively rearranged Ig genes, the J chain gene and genes for the cell surface markers CD20 and PC1, were extinguished in the hybrids. In contrast, fibroblast specific genes like fibronectin, alpha 2(I) and III collagens, as well as the receptor for fibroblast growth factor (flg), were expressed. Extinction was not due to chromosomal loss or lack of the relevant genes. To learn about the mechanism(s) of this phenomenon we have looked for the presence of positive and negative transcription factors in our hybrids. Expression of the PU.1 transcription factor, a member of the Ets transcription factor family normally expressed in B cells and macrophages, was lost in the cell hybrids. Interestingly, we found that the B-cell-specific Oct-2 transcription factor was still expressed at somewhat variable levels in several of the hybrid cell lines. In contrast, expression of the recently identified octamer coactivator BOB.1/OBF.1 was extinguished in all cell hybrids. This supports a critical role of this transcriptional coactivator for B-cell-specific gene expression. In addition, the Id and HLH462 genes coding for proteins known to repress bHLH transcription factors by formation of heterodimers, were found to be expressed at increased levels in fibroblasts and in the hybrids, indicating that their increased levels might also contribute to the suppression of myeloma-specific genes. Our results show that in myeloma x fibroblast hybrids, the phenotype of the fibroblast is dominant. It is suggested that fibroblasts contain regulatory "master" genes that are responsible for activation of the fibroblast differentiation pathway and suppress differentiation programs of other cell types.
Collapse
Affiliation(s)
- L Reich
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Schliephake DE, Schimpl A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-mu F(ab')2-co-stimulated B lymphocytes. Eur J Immunol 1996; 26:268-71. [PMID: 8566078 DOI: 10.1002/eji.1830260142] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A combination of signals transmitted through the antigen receptor, membrane-bound cell interaction molecules and cytokine receptors induces B cell proliferation and differentiation into immunoglobulin-secreting or memory cells. It has recently been suggested by Turner et al. (Cell 1994. 77: 297) that the complex changes in gene activities accompanying high levels of immunoglobulin secretion are under the common control of a master regulator, Blimp-1 (B lymphocyte-induced maturation protein). We show here that in naive mouse B cells stimulated with lipopolysaccharide (LPS) alone (which leads to high IgM production), Blimp-1 is highly expressed, while cells co-stimulated with LPS and anti-mu F(ab')2 show low levels of Blimp-1 mRNA and no longer secrete Ig. I gamma 1 sterile transcripts are, however, up-regulated after receptor co-ligation. Addition of interleukin (IL)-2 and IL-5 to LPS + anti-mu F(ab')2-treated primary B cells led to up-regulation of Blimp-1 and IgM secretion. Transfection of a Blimp-1 expression vector also induced IgM secretion. The data indicate that Blimp-1 is an important regulator of immunoglobulin secretion by primary B cells, and suggest that its level of expression may determine the differentiation to Ig-secreting plasma cells or entrance and maintenance in the memory pool.
Collapse
Affiliation(s)
- D E Schliephake
- Institute for Virology and Immunobiology, University of Würzburg, Germany
| | | |
Collapse
|
44
|
Sun LK, Fung MS, Sun WN, Sun CR, Chang WI, Chang TW. Human IgA monoclonal antibodies specific for a major ragweed pollen antigen. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:779-86. [PMID: 9634808 DOI: 10.1038/nbt0895-779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hybridoma cell lines secreting IgG specific for the major allergen in the pollen of short ragweed, Amb a I, were established from patients who had been receiving antigen injections for immunotherapy. Recombinant Ig genes were then constructed by cloning the heavy and light chain variable region genes of the human hybridoma cell line and joining them to the human alpha or kappa constant region genes in mammalian expression vectors. Amb a I-specific IgA was expressed in two mouse myeloma cell lines, NS0 and Sp2/0. In both systems, transfected alpha and kappa chains were assembled into IgA monomers or into dimers covalently linked by the endogenous murine J chains. We propose that recombinant IgA monoclonal antibodies specific for airborne allergens may be applied to the mucosal surface of the nasal linings or of the lower airway of sensitized individuals to inhibit the entry of allergenic molecules across the mucosal epithelium and, therefore, to prevent the development of allergic responses.
Collapse
Affiliation(s)
- L K Sun
- Tanox Biosystems, Inc., Houston, Texas 77025, USA
| | | | | | | | | | | |
Collapse
|
45
|
Niles MJ, Matsuuchi L, Koshland ME. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: evidence that J chain is required for pentamer IgM synthesis. Proc Natl Acad Sci U S A 1995; 92:2884-8. [PMID: 7708742 PMCID: PMC42323 DOI: 10.1073/pnas.92.7.2884] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The requirements for IgM assembly and secretion were evaluated by introducing a constitutively expressed J-chain cDNA into lymphoid and nonlymphoid cell lines expressing the secretory form of monomer IgM. Assays of cell lysates and supernatants showed that only secretory monomer IgM is required for the synthesis and secretion of hexamer IgM, whereas J chain, as well as the secreted form of monomer, is required for the synthesis and secretion of pentamer IgM. Moreover, J chain facilitates the polymerization process so that pentamer IgM is preferentially synthesized. Other components of the polymerization process were found to be shared by all the cell lines examined, whether the cells were of lymphoid or nonlymphoid origin and had a rudimentary or developed secretory apparatus. These results identify monomer IgM and J chain as the two components that determine the B-cell-specific expression of IgM antibodies and, thus, as the appropriate targets for therapeutic regulation of IgM responses.
Collapse
Affiliation(s)
- M J Niles
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
46
|
Turner CA, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 1994; 77:297-306. [PMID: 8168136 DOI: 10.1016/0092-8674(94)90321-2] [Citation(s) in RCA: 595] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe a novel gene, Blimp-1 (for B lymphocyte-induced maturation protein), transcripts of which are rapidly induced during the differentiation of B lymphocytes into immunoglobulin secretory cells and whose expression is characteristic of late B and plasma cell lines. The 856 amino acid open reading frame contains five Krüppel-type zinc finger motifs and proline-rich and acidic regions similar to those of known transcription factors. Serological studies show an approximately 100 kd protein that localizes to the nucleus. Stable or transient transfection of Blimp-1 into B cell lymphoma lines leads to the expression of many of the phenotypic changes associated with B cell differentiation into an early plasma cell stage, including induction of J chain message and immunoglobulin secretion, up-regulation of Syndecan-1, and increased cell size and granularity. Thus, Blimp-1 appears to be a pleiotropic regulatory factor capable of at least partially driving the terminal differentiation of B cells.
Collapse
Affiliation(s)
- C A Turner
- Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5428
| | | | | |
Collapse
|
47
|
Matthes T, Kindler V, Zubler RH. Semiquantitative, nonradioactive RT-PCR detection of immunoglobulin mRNA in human B cells and plasma cells. DNA Cell Biol 1994; 13:429-36. [PMID: 8011169 DOI: 10.1089/dna.1994.13.429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Quantification of mRNA is important for studies of gene expression and gene regulation. We investigated the utility of the reverse transcriptase polymerase chain reaction (RT-PCR) approach in the quantification of mRNA from small cell numbers. To take into account the complex kinetics of the PCR amplification process and the nonlinear signal development during detection of PCR products, calibration curves were established on the basis of different, known, starting concentrations of cDNA fragments, different PCR cycle numbers, and different signal intensities. Detection of digoxigenin-labeled PCR products via an enzymatically generated chemiluminescent signal was found to give a reproducible and wider range of signal intensities compared to simple ethidium bromide staining. We applied this methodology to the quantification of immunoglobulin M (IgM) mRNA levels in human B cells. Using an in vitro culture system in which B cells differentiate into plasma cells, the kinetics of IgM mRNA expression were established during a 10-day culture period and a 180-fold mRNA increase was found.
Collapse
Affiliation(s)
- T Matthes
- Department of Medicine, University Hospital of Geneva, Switzerland
| | | | | |
Collapse
|
48
|
Sigvardsson M, Olsson L, Högbom E, Leanderson T. Characterization of the joining chain (J-chain) promoter. Scand J Immunol 1993; 38:411-6. [PMID: 8235443 DOI: 10.1111/j.1365-3083.1993.tb02581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 300 b.p. promoter from the mouse joining chain (J-chain) gene was studied with regard to functional activity and protein/DNA interactions. The promoter only stimulated expression of a chloramphenicol-acetyl-transferase (CAT) reporter gene when an enhancer was present in the construct, regardless of whether the construct was transfected into cell lines that did or did not express an endogenous J-chain. Furthermore, deletion mutants lacking the 5' portion of the promoter were transcribed at a higher rate than the intact promoter in both J-chain positive and J-chain negative B-cell lines but not in untransformed B lymphocytes stimulated by lipopolysaccharide, indicating the presence of a negative control element in the 5' portion of the J-chain promoter active in tumour cells only. The octamer element in the J-chain promoter was found to bind Oct proteins, albeit with a low affinity. The penta-deca (p.d.) element in the J-chain promoter bound proteins in extracts from untransformed B cells but not in the tested cell lines. The protein binding to the J-chain p.d. element did not compete efficiently with a p.d. element from the SP6 kappa promoter. A protein binding to the 5' portion of the J-chain was expressed in some cell lines but not in others; neither a negative nor a positive correlation to J-chain expression could be seen. It was concluded that the J-chain promoter is equivalent to a kappa promoter and that differentiation-specific J-chain expression is governed by distal, positive control elements located outside the analysed region.
Collapse
|
49
|
Braun J, Saxon A, Wall R, Morrison SL. The second century of the antibody. Molecular perspectives in regulation, pathophysiology, and therapeutic applications. West J Med 1992; 157:158-68. [PMID: 1441467 PMCID: PMC1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modern age of immunology began in 1890 with the discovery of antibodies as a major component of protective immunity. The 2nd century of the antibody begins with a focus on the molecular physiology and pathophysiology of immunoglobulin production. Numerous human variable-region antibody genes have been identified through advances in molecular cloning and anti-variable-region monoclonal antibodies. Some of these variable-region genes are now known to be involved in specific stages of B-lymphocyte differentiation and immune development. This connection has yielded new insights into the pathogenesis of immune dyscrasias and lymphoid neoplasia; common variable immunodeficiency and cryoglobulinemia are highlighted here. The molecular regulation of immunoglobulin expression suggests new targets for pathogenesis and clinical intervention. Finally, genetically engineered antibodies offer novel opportunities for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- J Braun
- Department of Pathology, UCLA School of Medicine 90024-1732
| | | | | | | |
Collapse
|
50
|
Annweiler A, Müller U, Wirth T. Functional analysis of defined mutations in the immunoglobulin heavy-chain enhancer in transgenic mice. Nucleic Acids Res 1992; 20:1503-9. [PMID: 1579442 PMCID: PMC312230 DOI: 10.1093/nar/20.7.1503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have analyzed the effect of defined mutations in the mouse immunoglobulin heavy-chain enhancer after introduction into the germline of transgenic mice. We have tested a mutation of the enhancer octamer motif, a double mutation of the octamer motif and the microB-site, and a triple mutation in the microE2, microE3 and microE4-sites. All constructs are expressed in the spleen of transgenic mice. Furthermore, expression is exclusively detectable in lymphoid organs and not in several nonlymphoid tissues. Whereas mutations in the microE-sites have a more pronounced effect on transgene activity in thymocytes as compared to bone marrow and spleen cells, the octamer/microB double mutation shows significantly reduced expression levels only in B-cells. Finally, our results demonstrate that the intronic heavy-chain enhancer element does not contribute to the increase steady state levels of heavy-chain mRNA after stimulation of spleen cells with LPS.
Collapse
Affiliation(s)
- A Annweiler
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | | | |
Collapse
|