1
|
Carrica MDC, Gorgojo JP, Alvarez-Hayes J, Valdez HA, Lamberti YA, Rodriguez ME. BPP0974 is a Bordetella parapertussis adhesin expressed in the avirulent phase, implicated in biofilm formation and intracellular survival. Microb Pathog 2024; 193:106754. [PMID: 38897361 DOI: 10.1016/j.micpath.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.
Collapse
Affiliation(s)
- Mariela Del Carmen Carrica
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez-Hayes
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Yanina Andrea Lamberti
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
2
|
Patiño P, Gallego C, Martínez N, Iregui C, Rey A. Effect of carbohydrates on the adhesion of Bordetella bronchiseptica to the respiratory epithelium in rabbits. Vet Res Commun 2024; 48:1481-1495. [PMID: 38336962 PMCID: PMC11147920 DOI: 10.1007/s11259-024-10307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
This study proposes an ecological approach for preventing respiratory tract infections caused by Bordetella bronchiseptica in mammals using a mixture of carbohydrates. In an in vivo study, 51-day-old New Zealand rabbits were treated with a solution containing 1 × 107 CFUs of B. bronchiseptica and 250 μg of one of the following carbohydrates: N acetylglucosamine (GlcNAc), N acetylgalactosamine (GalNAc), alpha methyl mannose (AmeMan), alpha methyl glucose (AmeGlc) and sialic acid (Neu5AC). Positive (B. bronchiseptica) and negative (Physiological Saline Solution (PSS)) controls were included. Animals treated with GlcNAc or AmeGlc showed no clinical signs of infection and exhibited a significant reduction (p < 0.05) in the severity of microscopic lesions evaluated in the nasal cavity and lung compared with the positive controls. Additionally, the presence of bacteria was not detected through microbiological isolation or PCR in the lungs of animals treated with these sugars. Use of a mixture of GlcNAc and AmeGlc resulted in greater inhibition of microscopic lesions, with a significant reduction (p < 0.05) in the severity of these lesions compared to the results obtained using individual sugars. Furthermore, the bacterium was not detected through microbiological isolation, Polymerase Chain Reaction (PCR) or indirect immunoperoxidase (IIP) in this group.
Collapse
Affiliation(s)
- Pilar Patiño
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Bogotá D.C., Colombia
| | - Nhora Martínez
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carlos Iregui
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Alba Rey
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia.
- Faculty of Agricultural Sciences, Veterinary Medicine Program, Fundación Universitaria Agraria de Colombia, Bogotá D.C., Colombia.
| |
Collapse
|
3
|
Golshani M, Rahman WU, Osickova A, Holubova J, Lora J, Balashova N, Sebo P, Osicka R. Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β 2 Integrin CD11b/CD18. Int J Mol Sci 2022; 23:12598. [PMID: 36293453 PMCID: PMC9604300 DOI: 10.3390/ijms232012598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/04/2024] Open
Abstract
The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the β2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the β2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.
Collapse
Affiliation(s)
- Maryam Golshani
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Waheed Ur Rahman
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jinery Lora
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104, USA
| | - Nataliya Balashova
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104, USA
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
4
|
Ricin B lectin-like proteins of the microsporidian Encephalitozoon cuniculi and Anncaliia algerae are involved in host-cell invasion. Parasitol Int 2021; 87:102518. [PMID: 34808329 DOI: 10.1016/j.parint.2021.102518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Microsporidia are obligate intracellular pathogens capable of infecting a wide variety of hosts ranging from invertebrates to vertebrates. The infection process requires a step of prior adherence of Microsporidia to the surface of host cells. A few studies demonstrated the involvement of proteins containing a ricin-B lectin (RBL) domain in parasite infection. In this study Anncalia algerae and Encephalitozoon cuniculi genomes were screened by bioinformatic analysis to identify proteins with an extracellular prediction and possessing RBL-type carbohydrate-binding domains, being both potentially relevant factors contributing to host cell adherence. Three proteins named AaRBLL-1 and AaRBLL-2 from A. algerae and EcRBLL-1 from E. cuniculi, were selected and comparative analysis of sequences suggested their belonging to a multigenic family, with a conserved structural RBL domain despite a significant amino acid sequence divergence. The production of recombinant proteins and antibodies against the three proteins allowed their subcellular localization on the spore wall and/or the polar tube. Adherence inhibition assays based on pre-treatments with recombinant proteins or antibodies highlighted the significant decrease of the proliferation of both E. cuniculi and A. algerae, strongly suggesting that these proteins are involved in the infection process.
Collapse
|
5
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Gallego C, Patiño P, Martínez N, Iregui C. The effect of carbohydrates on the adherence of Pasteurella multocida to the nasal respiratory epithelium. AN ACAD BRAS CIENC 2021; 93:e20190989. [PMID: 34259794 DOI: 10.1590/0001-3765202120190989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
Pasteurella multocida subsp. multocida is responsible for different diseases that generate great economic losses in farm animal. The effectiveness of immunization against those bacteria are variable and the use of antibiotics is questioned; for that reason, we investigated the potential inhibitory effect of different carbohydrates on the adherence in vivo of P. multocida to the rabbit respiratory epithelium as an alternative for the prevention of respiratory infections. Rabbits were intranasally and intratracheally inoculated with a solution containing 200 µl of 1x107 CFU of P. multocida that was previously mixed with 250 µg /200 µl of N-acetylglucosamine, alphamethylglucoside, alphamethylmannoside, N-acetylgalactosamine or sialic acid. The animals that received N-acetylglucosamine, alphamethylglucoside or alphamethylmannoside individually or a mixture of these three carbohydrates plus the bacterium, showed a significant decrease (P <0.05) of the clinical symptoms, microscopic and macroscopic lesions in the nasal septa and in the lungs; also, the number of adhered bacteria to the nasal epithelium were also significantly reduced. This research demonstrates for the first time that such an approach could convert into a method for prevention of P. multocida infection in rabbits that is ecologically and economically safe and effective.
Collapse
Affiliation(s)
- Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Calle 222, n 55-37, 111 Bogotá, Colombia
| | - Pilar Patiño
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Nhora Martínez
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Carlos Iregui
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| |
Collapse
|
7
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
9
|
Liu W, Zhou D, Yuan F, Liu Z, Duan Z, Yang K, Guo R, Li M, Li S, Fang L, Xiao S, Tian Y. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog 2018; 126:92-100. [PMID: 30385395 DOI: 10.1016/j.micpath.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1β and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zhengyin Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Mao Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sha Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Engel M, Endesfelder D, Schloter-Hai B, Kublik S, Granitsiotis MS, Boschetto P, Stendardo M, Barta I, Dome B, Deleuze JF, Boland A, Müller-Quernheim J, Prasse A, Welte T, Hohlfeld J, Subramanian D, Parr D, Gut IG, Greulich T, Koczulla AR, Nowinski A, Gorecka D, Singh D, Gupta S, Brightling CE, Hoffmann H, Frankenberger M, Hofer TP, Burggraf D, Heiss-Neumann M, Ziegler-Heitbrock L, Schloter M, zu Castell W. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One 2017; 12:e0180859. [PMID: 28704452 PMCID: PMC5509234 DOI: 10.1371/journal.pone.0180859] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/22/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. METHODS Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. RESULTS We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. CONCLUSION Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.
Collapse
Affiliation(s)
- Marion Engel
- Scientific Computing Research Unit, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - David Endesfelder
- Scientific Computing Research Unit, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Brigitte Schloter-Hai
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael S. Granitsiotis
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute for TB and Pulmonology, Budapest, Hungary
| | - Balazs Dome
- Department of Pathophysiology, National Koranyi Institute for TB and Pulmonology, Budapest, Hungary
| | | | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | | | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jens Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Deepak Subramanian
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - David Parr
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Ivo Glynne Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Timm Greulich
- Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg Philipps-University, Marburg, Germany
| | - Andreas Rembert Koczulla
- Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg Philipps-University, Marburg, Germany
| | - Adam Nowinski
- Second Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Dorota Gorecka
- Second Department of Respiratory Medicine, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Dave Singh
- University of Manchester, Medicines Evaluation Unit and University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - Sumit Gupta
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Christopher E. Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Harald Hoffmann
- Institute of Microbiology and Laboratory Medicine, Synlab MVZ Gauting & IML red GmbH, Gauting, Germany
| | - Marion Frankenberger
- CPC Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig-Maximilians Universität und Asklepios Klinik Gauting, Munich, Germany
| | - Thomas P. Hofer
- EvA Study Center, Helmholtz Zentrum Muenchen, Gauting, Germany
| | | | | | | | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang zu Castell
- Scientific Computing Research Unit, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| |
Collapse
|
11
|
Scheller EV, Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis 2015; 73:ftv079. [PMID: 26416077 DOI: 10.1093/femspd/ftv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines.
Collapse
Affiliation(s)
- Erich V Scheller
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
12
|
Villarino Romero R, Osicka R, Sebo P. Filamentous hemagglutinin of Bordetella pertussis: a key adhesin with immunomodulatory properties? Future Microbiol 2015; 9:1339-60. [PMID: 25517899 DOI: 10.2217/fmb.14.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The filamentous hemagglutinin of pathogenic Bordetellae is a prototype of a large two-partner-system-secreted and β-structure-rich bacterial adhesin. It exhibits several binding activities that may facilitate bacterial adherence to airway mucosa and host phagocytes in the initial phases of infection. Despite three decades of research on filamentous hemagglutinin, there remain many questions on its structure-function relationships, integrin interactions and possible immunomodulatory signaling capacity. Here we review the state of knowledge on this important virulence factor and acellular pertussis vaccine component. Specific emphasis is placed on outstanding questions that are yet to be answered.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | | | | |
Collapse
|
13
|
Inhibition of Pasteurella multocida Adhesion to Rabbit Respiratory Epithelium Using Lectins. Vet Med Int 2015; 2015:365428. [PMID: 25810949 PMCID: PMC4354970 DOI: 10.1155/2015/365428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
This study aimed to evaluate the ability of a panel of lectins to inhibit the ability of Pasteurella multocida to adhere to and affect the rabbit respiratory epithelium. Nasal septa from rabbit fetuses were cultured with various lectins before the addition of P. multocida. The percentage of bacteria adhering to the epithelium was evaluated semiquantitatively by indirect immunoperoxidase (IIP) staining. The goblet cells (GCs) were counted in semithin sections stained with toluidine blue and served as the main morphological criterion to evaluate the inhibitory effect of the lectins. The lectins PNA, WGA, RCA120, and DBA significantly inhibited the adhesion of P. multocida to the ciliated epithelium (P < 0.05) and prevented the pathogen-induced increase in the number of GCs (P < 0.05) compared with those of positive control tissues. In addition, VVA, SJA, UEA I, DSL, SBA, and ECL significantly inhibited the increase in GCs compared with that of the control tissues. The results suggest that less aggressive therapeutic strategies, such as treatment with lectins, may represent alternative approaches to control bacterial respiratory infections.
Collapse
|
14
|
Ott C, Elia N, Jeong SY, Insinna C, Sengupta P, Lippincott-Schwartz J. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia 2012; 1:3. [PMID: 23351752 PMCID: PMC3541541 DOI: 10.1186/2046-2530-1-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary cilia detect features of the extracellular space, not just as passive antennae, but also through direct physical contact. We present a model for the cycle of glycoprotein-dependent contact formation, maintenance, and termination, and discuss the implications for potential physiological functions of cilia-cilia contacts.
Collapse
Affiliation(s)
- Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893-916. [PMID: 22212072 DOI: 10.1111/j.1574-6976.2011.00322.x] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022] Open
Abstract
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure-function relationships, regulation, and the role of individual matrix molecules in niche biology.
Collapse
Affiliation(s)
- Ethan E Mann
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
16
|
Thomas RJ. Receptor mimicry as novel therapeutic treatment for biothreat agents. Bioeng Bugs 2011; 1:17-30. [PMID: 21327124 DOI: 10.4161/bbug.1.1.10049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/20/2022] Open
Abstract
The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Galβ1-4GlcNAc structure. The botulinum toxin serotypes A-F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAcβ1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAcβ1-4Gal, GalNAcβ-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy.
Collapse
|
17
|
de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR. Pertussis: a matter of immune modulation. FEMS Microbiol Rev 2011; 35:441-74. [DOI: 10.1111/j.1574-6976.2010.00257.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 2010; 75:827-42. [PMID: 20088866 PMCID: PMC2847200 DOI: 10.1111/j.1365-2958.2009.06991.x] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.
Collapse
Affiliation(s)
- Bradley R Borlee
- Department of Microbiology, University of Washington, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hag mediates adherence of Moraxella catarrhalis to ciliated human airway cells. Infect Immun 2009; 77:4597-608. [PMID: 19667048 DOI: 10.1128/iai.00212-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.
Collapse
|
20
|
Contribution of Bordetella bronchiseptica filamentous hemagglutinin and pertactin to respiratory disease in swine. Infect Immun 2009; 77:2136-46. [PMID: 19237531 DOI: 10.1128/iai.01379-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica are based on isolates derived from hosts other than pigs. Two well-studied virulence factors implicated in the adhesion process are filamentous hemagglutinin (FHA) and pertactin (PRN). We hypothesized that both FHA and PRN would serve critical roles in the adhesion process and be necessary for colonization of the swine respiratory tract. To investigate the role of FHA and PRN in Bordetella pathogenesis in swine, we constructed mutants containing an in-frame deletion of the FHA or the PRN structural gene in a virulent B. bronchiseptica swine isolate. Both mutants were compared to the wild-type swine isolate for their ability to colonize and cause disease in swine. Colonization of the FHA mutant was lower than that of the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, the PRN mutant caused similar disease severity relative to the wild type; however, colonization of the PRN mutant was reduced relative to the wild type during early and late infection and induced higher anti-Bordetella antibody titers. Together, our results indicate that despite inducing different pathologies and antibody responses, both FHA and PRN are necessary for optimal colonization of the swine respiratory tract.
Collapse
|
21
|
Hussein AH, Davis EM, Halperin SA, Lee SF. Construction and characterization of single-chain variable fragment antibodies directed against the Bordetella pertussis surface adhesins filamentous hemagglutinin and pertactin. Infect Immun 2007; 75:5476-82. [PMID: 17724067 PMCID: PMC2168280 DOI: 10.1128/iai.00494-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single-chain variable fragment (scFv) antibody library against Bordetella pertussis was constructed using M13 phage display. The library was enriched for phages surface displaying functional scFv by biopanning against B. pertussis immobilized on polystyrene plates. Two hundred eighty-eight individual clones from the enriched library were screened for binding to B. pertussis cells, filamentous hemagglutinin (FHA), and pertactin (PRN) in enzyme-linked immunosorbent assays (ELISAs). Based on the binding ability, the clones were put into eight groups. The scFv DNA inserts from the 288 clones were digested with BstOI, and 18 unique restriction patterns, named types 1 to 18, were found. Eight clones (types 1 to 7 and 18) were selected for further testing against FHA, PRN, and B. pertussis by ELISA. The results showed that types 1, 5, 7, and 18 bound strongly to B. pertussis cells as well as FHA and PRN. Type 3 bound strongly to the cells and FHA but weakly to PRN. Types 4 and 6 bound FHA only, and type 2 did not bind to the cells or antigens. The ability of the eight clones to inhibit B. pertussis from binding to HEp-2 cells was assayed. Types 1, 5, and 7, but not the remaining clones, inhibited the adherence of B. pertussis to HEp-2 cells. The scFvs were sequenced, and the deduced amino acid sequence showed that the scFvs were different antibodies. Maltose-binding protein (MBP) fusion proteins composed of three different regions of FHA (heparin-binding domain, carbohydrate recognition domain, and the RGD triplet motif) were constructed. The three fusion proteins and Mal85 (MBP-FHA type I domain) were used to map the binding sites for scFvs of types 1, 5, and 7 by ELISA. The results showed that all three scFvs bound to the heparin-binding domain fusion protein but not the other fusion proteins. BALB/c mice who received recombinant phage-treated B. pertussis had reduced bacterial counts in the nasal cavity, trachea, and lungs compared to the control groups.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/chemistry
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/therapeutic use
- Bacterial Adhesion/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacteriophage M13
- Bordetella pertussis/immunology
- Cell Line
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Library
- Protein Binding
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- Ahmad H Hussein
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University Halifax, Nova Scotia B3H 3J5, Canada
| | | | | | | |
Collapse
|
22
|
Perez Vidakovics MLA, Lamberti Y, van der Pol WL, Yantorno O, Rodriguez ME. Adenylate cyclase influences filamentous haemagglutinin-mediated attachment of Bordetella pertussis to epithelial alveolar cells. ACTA ACUST UNITED AC 2006; 48:140-7. [PMID: 16965362 DOI: 10.1111/j.1574-695x.2006.00136.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Attachment to epithelial cells in the respiratory tract is a key event in Bordetella pertussis colonization. Filamentous haemagglutinin (FHA) is an important virulence factor mediating adhesion to host cells. In this study, the relevance of the interaction between FHA and adenylate cyclase toxin (ACT) during bacterial attachment was investigated. Mutants lacking either FHA or ACT showed significantly decreased adherence to epithelial respiratory cells. The use of several ACT-specific monoclonal antibodies and antiserum showed that the decrease in attachment of strains lacking ACT expression could not be explained by the adhesin-like activity of ACT, or a change of any of the biological activities of ACT. Immunoblot analysis showed that the lack of ACT expression did not interfere with FHA localization. An heparin-inhibitable carbohydrate-binding site is crucial in the process of FHA-mediated bacterial binding to epithelial cells. In the presence of heparin attachment of wild-type B. pertussis, but not of the isogenic ACT defective mutant, to epithelial cells was significantly decreased. These results suggest that ACT enhances the adhesive functions of FHA, and modifies the performance of the FHA heparin-inhibitable carbohydrate binding site. We propose that the presence of ACT in the outer membrane of B. pertussis to play a role in the functionality of FHA.
Collapse
|
23
|
Cassan C, Piaggio E, Zappulla JP, Mars LT, Couturier N, Bucciarelli F, Desbois S, Bauer J, Gonzalez-Dunia D, Liblau RS. Pertussis Toxin Reduces the Number of Splenic Foxp3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:1552-60. [PMID: 16849462 DOI: 10.4049/jimmunol.177.3.1552] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pertussis toxin (PTx) is a bacterial toxin used to enhance the severity of experimental autoimmune diseases such as experimental autoimmune encephalomyelitis. It is known to promote permeabilization of the blood-brain barrier, maturation of APC, activation of autoreactive lymphocytes and alteration of lymphocyte migration. In this study, we show that i.v. injection of PTx in mice induces a decrease in the number of splenic CD4(+)CD25(+) regulatory T cells (Treg cells). Furthermore, PTx not only induces a depletion of the dominant CD4(+)CD25(+)Foxp3(+) subpopulation of splenic Treg cells, but also reduces to a similar extent the CD4(+)CD25(-)Foxp3(+) subpopulation. On a per cell basis, the suppressive properties of the remaining Treg cells are not modified by PTx treatment. The reduction in splenic Treg cells is associated with preferential migration of these cells to the liver. Additionally, Treg cells exhibit a high sensitivity to PTx-mediated apoptosis in vitro. Finally, in vivo depletion of Treg cells by injection of an anti-CD25 Ab, and PTx treatment, present synergistic experimental autoimmune encephalomyelitis exacerbating effects. Therefore, we identify a new effect of PTx and provide an additional illustration of the influence of microbial components on the immune system affecting the balance between tolerance, inflammation and autoimmunity.
Collapse
Affiliation(s)
- Cécile Cassan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inatsuka CS, Julio SM, Cotter PA. Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc Natl Acad Sci U S A 2005; 102:18578-83. [PMID: 16339899 PMCID: PMC1317942 DOI: 10.1073/pnas.0507910102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bordetella pertussis, the causative agent of the acute childhood respiratory disease whooping cough, is a human-adapted variant of Bordetella bronchiseptica, which displays a broad host range and typically causes chronic, asymptomatic infections. These pathogens express a similar but not identical surface-exposed and secreted protein called filamentous hemagglutinin (FHA) that has been proposed to function as both a primary adhesin and an immunomodulator. To test the hypothesis that FHA plays an important role in determining host specificity and/or the propensity to cause acute versus chronic disease, we constructed a B. bronchiseptica strain expressing FHA from B. pertussis (FHA(Bp)) and compared it with wild-type B. bronchiseptica in several natural-host infection models. FHA(Bp) was able to substitute for FHA from B. bronchiseptica (FHA(Bb)) with regard to its ability to mediate adherence to several epithelial and macrophage-like cell lines in vitro, but it was unable to substitute for FHA(Bb) in vivo. Specifically, FHA(Bb), but not FHA(Bp), allowed B. bronchiseptica to colonize the lower respiratory tracts of rats, to modulate the inflammatory response in the lungs of immunocompetent mice, resulting in decreased lung damage and increased bacterial persistence, to induce a robust anti-Bordetella antibody response in these immunocompetent mice, and to overcome innate immunity and cause a lethal infection in immunodeficient mice. These results indicate a critical role for FHA in B. bronchiseptica-mediated immunomodulation, and they suggest a role for FHA in host specificity.
Collapse
Affiliation(s)
- Carol S Inatsuka
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
25
|
Julio SM, Cotter PA. Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica. Infect Immun 2005; 73:4960-71. [PMID: 16041011 PMCID: PMC1201180 DOI: 10.1128/iai.73.8.4960-4971.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous hemagglutinin (FHA) is a large (>200 kDa), rod-shaped protein expressed by bordetellae that is both surface-associated and secreted. FHA mediates bacterial adherence to epithelial cells and macrophages in vitro and is absolutely required for tracheal colonization in vivo. The recently sequenced Bordetella bronchiseptica genome revealed the presence of a gene, fhaS, that is nearly identical to fhaB, the FHA structural gene. We show that although fhaS expression requires the BvgAS virulence control system, it is maximal only under a subset of conditions in which BvgAS is active, suggesting an additional level of regulation. We also show that, like FHA, FhaS undergoes a C-terminal proteolytic processing event and is both surface-associated and secreted and that export across the outer membrane requires the channel-forming protein FhaC. Unlike FHA, however, FhaS was unable to mediate adherence of B. bronchiseptica to epithelial cell lines in vitro and was not required for respiratory tract colonization in vivo. In a coinfection experiment, a DeltafhaS strain was out-competed by wild-type B. bronchiseptica, indicating that fhaS is expressed in vivo and that FhaS contributes to bacterial fitness in a manner revealed when the mutant must compete with wild-type bacteria. These data suggest that FHA and FhaS perform distinct functions during the Bordetella infectious cycle. A survey of various Bordetella strains revealed two distinct fhaS alleles that segregate according to pathogen host range and that B. parapertussis(hu) most likely acquired its fhaS allele from B. pertussis horizontally, suggesting fhaS may contribute to host-species specificity.
Collapse
Affiliation(s)
- Steven M Julio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
26
|
Edwards JA, Groathouse NA, Boitano S. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun 2005; 73:3618-26. [PMID: 15908391 PMCID: PMC1111863 DOI: 10.1128/iai.73.6.3618-3626.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the virulent state (Bvg+), Bordetella bronchiseptica expresses adhesins and toxins that mediate adherence to the upper airway epithelium, an essential early step in pathogenesis. In this study, we used a rabbit tracheal epithelial cell binding assay to test how specific host or pathogen factors contribute to ciliary binding. The host antimicrobial agent surfactant protein A (SP-A) effectively reduced ciliary binding by Bvg+ B. bronchiseptica. To evaluate the relative contributions of bacterial adhesins and toxins to ciliary binding, we used mutant strains of B. bronchiseptica in the binding assay. When compared to Bvg+ or Bvg- phase-locked B. bronchiseptica strains, single-knockout strains lacking one of the known adhesins (filamentous hemagglutinin, pertactin, or fimbriae) displayed an intermediate ciliary binding capacity throughout the coincubation. A B. bronchiseptica strain deficient in adenylate cyclase-hemolysin toxin also displayed an intermediate level of adherence between Bvg+ and Bvg- strains and had the lowest ciliary affinity of any of the Bvg+ phase strains tested. A B. bronchiseptica strain that was missing dermonecrotic toxin also displayed intermediate binding; however, this strain displayed ciliary binding significantly higher than most of the adhesin knockouts tested. Taken together, these findings suggest that virulent-state B. bronchiseptica expresses multiple adhesins with overlapping contributions to ciliary adhesion and that host production of SP-A can provide innate immunity by blocking bacterial adherence to the ciliated epithelium.
Collapse
Affiliation(s)
- Jessica A Edwards
- Arizona Respiratory Center, Room 2338, AHSC Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724-5030, USA
| | | | | |
Collapse
|
27
|
Poulain-Godefroy O, Menozzi FD, Alonso S, Vendeville C, Capron A, Locht C, Riveau G. Adjuvant activity of free Bordetella pertussis filamentous haemagglutinin delivered by mucosal routes. Scand J Immunol 2003; 58:503-10. [PMID: 14629622 DOI: 10.1046/j.1365-3083.2003.01336.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of safe and potent mucosal adjuvants remains a major objective in vaccinology. The potential usefulness of filamentous haemagglutinin (FHA) of Bordetella pertussis as an adjuvant was assessed in a mouse model. The glutathione-S-transferase of Schistosoma mansoni (Sm28GST) was used for intranasal administration, while the gut-resistant keyhole limpet haemocyanin (KLH) was administrated by the oral route. For both antigens, coadministration with FHA increased antigen-specific immunoglobulin titres. This adjuvant effect did not require chemical cross-linking or direct interaction between FHA and the antigen tested. FHA also behaved as an adjuvant by the subcutaneous route, indicating that its adjuvanticity is not restricted to binding to mucosal surfaces. The FHA-induced adjuvanticity was also observed in mice with high anti-FHA antibody titres as a result of antipertussis vaccination, indicating that pre-existing anti-FHA antibodies do not impair FHA adjuvanticity. No mRNA coding for proinflammatory cytokines was induced in the lungs after intranasal FHA administration. However, an increase in the levels of mRNAs coding for B7-1, transforming growth factor (TGF)-beta and major histocompatibility complex (MHC)-II was detected in the lungs after FHA administration. Although the molecular mechanisms of the FHA-induced adjuvanticity remain to be elucidated, the data presented here indicate that this adhesin, already assessed for human use as a pertussis vaccine constituent, represents a promising adjuvant to improve the humoral immune response when given by mucosal routes.
Collapse
|
28
|
Salaün L, Snyder LA, Saunders NJ. Adaptation by phase variation in pathogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:263-301. [PMID: 12964248 DOI: 10.1016/s0065-2164(03)01011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Laurence Salaün
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
29
|
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003; 35:32-40. [PMID: 12910271 DOI: 10.1038/ng1227] [Citation(s) in RCA: 737] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/23/2003] [Indexed: 11/10/2022]
Abstract
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
Collapse
Affiliation(s)
- Julian Parkhill
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Coutte L, Alonso S, Reveneau N, Willery E, Quatannens B, Locht C, Jacob-Dubuisson F. Role of adhesin release for mucosal colonization by a bacterial pathogen. J Exp Med 2003; 197:735-42. [PMID: 12629063 PMCID: PMC2193847 DOI: 10.1084/jem.20021153] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors called adhesins. To exert these functions, adhesins are typically surface-exposed, although, surprisingly, some are also released into the extracellular milieu, the relevance of which has previously not been studied. To address the role of adhesin release in pathogenesis, we used Bordetella pertussis as a model, since its major adhesin, filamentous hemagglutinin (FHA), partitions between the bacterial surface and the extracellular milieu. FHA release depends on its maturation by the specific B. pertussis protease SphB1. We constructed SphB1-deficient mutants and found that they were strongly affected in their ability to colonize the mouse respiratory tract, although they adhered even better to host cells in vitro than their wild-type parent strain. The defect in colonization could be overcome by prior nasal instillation of purified FHA or by coinfection with FHA-releasing B. pertussis strains, but not with SphB1-producing FHA-deficient strains, ruling out a nonspecific effect of SphB1. These results indicate that the release of FHA is important for colonization, as it may facilitate the dispersal of bacteria from microcolonies and the binding to new sites in the respiratory tract.
Collapse
Affiliation(s)
- Loic Coutte
- INSERM U447, Institut National de Sante et la Recherche Medical Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Except for immunization programs our warfare with bacteria has always been a frontal assault with antibiotics. In this warfare we win battles, but with every new battle the enemy gets stronger. We need other options. Recent experience suggests two alternatives. First, public health measures designed to control the spread of infectious disease are associated with the selection of less virulent strains of microorganisms. Second, the same selection pressures obtained by public health measures outside the body are brought into play when we inhibit the adherence of bacteria within the body. Two recent studies using food sugars known to inhibit bacterial adherence show long-term benefits best explained by the previously observed decreases in bacterial virulence, following chronic exposure to the respective substances. Cranberry juice selects for less uropathogenic strains of Escherichia coli and xylitol for less caries producing Streptococcus mutans. The ability of these substances to reduce bacterial adherence in the human host has been known for some time, but poorly utilized. Their in vitro ability to decrease virulence has been reported but not clinically studied.
Collapse
|
32
|
Ishibashi Y, Yoshimura K, Nishikawa A, Claus S, Laudanna C, Relman DA. Role of phosphatidylinositol 3-kinase in the binding of Bordetella pertussis to human monocytes. Cell Microbiol 2002; 4:825-33. [PMID: 12464013 DOI: 10.1046/j.1462-5822.2002.00235.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, adheres to human monocytes by means of filamentous haemagglutinin (FHA), a bacterial surface protein that is recognized by complement receptor type 3 (CR3, alphaMbeta2 integrin). Previous work has shown that an FHA Arg-Gly-Asp (RGD, residues 1097-1099) site interacts with a complex composed of leucocyte response integrin (LRI, alphavbeta3 integrin) and integrin-associated protein (IAP, CD47) on human monocytes, resulting in enhancement of CR3-mediated bacterial binding. However, the pathway that mediates alphavbeta3-alphaMbeta2 integrin signalling remains to be characterized. Here we describe the involvement of phosphatidylinositol 3-kinase (PI3-K) in this pathway. Wortmannin and LY294002, inhibitors of PI3-K, reduced alphavbeta3/IAP-upregulated, CR3-associated bacterial binding to human monocytes. B. pertussis infection of human monocytes resulted in a marked recruitment of cellular PI3-K to the sites of B. pertussis contact. In contrast, cells infected with an isogenic strain carrying a G1098A mutation at the FHA RGD site did not show any recruitment of PI3-K. We found that ligation of FHA by alphavbeta3/IAP induced RGD-dependent tyrosine phosphorylation of a 60 kDa protein, which associated with IAP and PI3-K in human monocytes. These results suggest that PI3-K and a tyrosine phosphorylated 60 kDa protein may be involved in this biologically important integrin signalling pathway.
Collapse
Affiliation(s)
- Yoshio Ishibashi
- Department of Immunobiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Alonso S, Pethe K, Mielcarek N, Raze D, Locht C. Role of ADP-ribosyltransferase activity of pertussis toxin in toxin-adhesin redundancy with filamentous hemagglutinin during Bordetella pertussis infection. Infect Immun 2001; 69:6038-43. [PMID: 11553541 PMCID: PMC98732 DOI: 10.1128/iai.69.10.6038-6043.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two major virulence factors of Bordetella pertussis. FHA is the main adhesin, whereas PT is a toxin with an A-B structure, in which the A protomer expresses ADP-ribosyltransferase activity and the B moiety is responsible for binding to the target cells. Here, we show redundancy of FHA and PT during infection. Whereas PT-deficient and FHA-deficient mutants colonized the mouse respiratory tract nearly as efficiently as did the isogenic parent strain, a mutant deficient for both factors colonized substantially less well. This was not due to redundant functions of PT and FHA as adhesins, since in vitro studies of epithelial cells and macrophages indicated that FHA, but not PT, acts as an adhesin. An FHA-deficient B. pertussis strain producing enzymatically inactive PT colonized as poorly as did the FHA-deficient, PT-deficient strain, indicating that the ADP-ribosyltransferase activity of PT is required for redundancy with FHA. Only strains producing active PT induced a local transient release of tumor necrosis factor alpha (TNF-alpha), suggesting that the pharmacological effects of PT are the basis of the redundancy with FHA, through the release of TNF-alpha. This may lead to damage of the pulmonary epithelium, allowing the bacteria to colonize even in the absence of FHA.
Collapse
Affiliation(s)
- S Alonso
- INSERM U447, IBL, Institut Pasteur de Lille, F-59019 Lille, France
| | | | | | | | | |
Collapse
|
34
|
Smith AM, Guzmán CA, Walker MJ. The virulence factors ofBordetella pertussis: a matter of control. FEMS Microbiol Rev 2001; 25:309-33. [PMID: 11348687 DOI: 10.1111/j.1574-6976.2001.tb00580.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Collapse
Affiliation(s)
- A M Smith
- Department of Biological Sciences, University of Wollongong, Wollongong. N.S.W. 2522, Australia
| | | | | |
Collapse
|
35
|
Watarai S, Inoue K, Oguma K, Naka K, Kodama H. Inhibitory effect of intestinal anti-Gb3 IgA antibody on verotoxin-induced cytotoxicity. Lett Appl Microbiol 2000; 31:449-53. [PMID: 11123554 DOI: 10.1046/j.1365-2672.2000.00836.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of intestinal IgA antibody against the receptor for verotoxin (VT), globotriaosylceramide (Gb3), on VT-mediated cytotoxicity was examined. Intestinal IgA antibodies against Gb3 were prepared by oral immunization of mice with Gb3 and adjuvant monophosphoryl lipid A (MPL)-containing liposomes composed of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylserine and cholesterol (1 : 1 : 2, molar ratio) (PS-liposome). Oral administration with Gb3 and MPL-containing PS-liposome induced significant IgA responses to Gb3 in the intestinal lavage fluid in all mice tested. Furthermore, anti-Gb3 IgA antibodies in the lavage fluid effectively inhibited the cytotoxicity of VT2 to Vero cells in a dose-dependent manner. These results suggest that anti-Gb3 IgA antibodies produced in the intestinal tract, upon oral immunization with Gb3-containing liposome, function as inhibitors against VT and also indicate the potential usefulness of oral PS-liposome vaccines containing MPL for the induction of a protective mucosal immune response against intestinal diseases.
Collapse
Affiliation(s)
- S Watarai
- Laboratory of Veterinary Immunology, Department of Veterinary Science, College of Agriculture, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | |
Collapse
|
36
|
Jacob-Dubuisson F, Kehoe B, Willery E, Reveneau N, Locht C, Relman DA. Molecular characterization of Bordetella bronchiseptica filamentous haemagglutinin and its secretion machinery. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1211-1221. [PMID: 10832649 DOI: 10.1099/00221287-146-5-1211] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two closely related pathogens, Bordetella pertussis and Bordetella bronchiseptica, share a number of virulence factors. Filamentous haemagglutinin (FHA) is widely regarded as the dominant adhesin of B. pertussis, and its multiple binding activities have been well characterized. This large protein is produced and secreted at high levels by B. pertussis and significantly lower levels by B. bronchiseptica strains. FHA secretion is mediated by a single outer-membrane accessory protein, FhaC. The genes encoding FHA and FhaC in B. bronchiseptica were characterized by sequencing and functional analyses and are highly similar to those of B. pertussis. The most distinctive feature of B. bronchiseptica FHA is additional repeats in the N-terminal portion of the predicted protein. Interestingly, a point mutation in the fhaB promoter region of the B. bronchiseptica GP1 isolate, relative to other isolates, was found to be detrimental to promoter activity and to FHA production. FhaC and the N-terminal secretion domain of FHA of B. bronchiseptica were fully functional for secretion in B. pertussis. Thus, the different levels of FHA secretion by these Bordetella species might reflect differences in physiology, composition and structure of cell envelope, or differential protein degradation. Characterization of FHA expression and function may provide clues as to the basis of host species tropism, tissue localization and receptor recognition.
Collapse
Affiliation(s)
- Françoise Jacob-Dubuisson
- INSERM U447, Institut de Biologie de Lille1 and Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille2, 1 rue Calmette, F-59019 Lille Cedex, France
| | - Bettina Kehoe
- VA Palo Alto Health Care System 154T, 3801 Miranda Avenue, Palo Alto, CA 94304, USA4
- Departments of Medicine and Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA3
| | - Eve Willery
- INSERM U447, Institut de Biologie de Lille1 and Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille2, 1 rue Calmette, F-59019 Lille Cedex, France
| | - Nathalie Reveneau
- INSERM U447, Institut de Biologie de Lille1 and Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille2, 1 rue Calmette, F-59019 Lille Cedex, France
| | - Camille Locht
- INSERM U447, Institut de Biologie de Lille1 and Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille2, 1 rue Calmette, F-59019 Lille Cedex, France
| | - David A Relman
- VA Palo Alto Health Care System 154T, 3801 Miranda Avenue, Palo Alto, CA 94304, USA4
- Departments of Medicine and Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA3
| |
Collapse
|
37
|
Erney RM, Malone WT, Skelding MB, Marcon AA, Kleman-Leyer KM, O'Ryan ML, Ruiz-Palacios G, Hilty MD, Pickering LK, Prieto PA. Variability of human milk neutral oligosaccharides in a diverse population. J Pediatr Gastroenterol Nutr 2000; 30:181-92. [PMID: 10697138 DOI: 10.1097/00005176-200002000-00016] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex array of free oligosaccharides is a distinctive compositional feature of human milk. Although these oligosaccharides have been studied for several years, their variability and distribution have not been systematically studied, and their nutritional and functional roles have not been elucidated. This report describes a study in which a large number of human milk samples were analyzed for the presence and content of nine neutral oligosaccharides. The resultant data were used to probe for distribution trends by donor groups and stage of lactation. METHODS Milk samples from 435 women residing in 10 countries were analyzed using a simple preparation procedure, gel filtration, and high-performance anion-exchange chromatography. RESULTS All samples contained structures based on lacto-N-neotetraose and lacto-N-tetraose. This contrasts with the fucosyloligosaccharides tested, none of which was detected in 100% of the samples. Unexpected distribution trends were observed. For example, 100% of the samples from Mexico (n = 156) contained 2'-fucosyllactose, whereas only 46% of the samples from the Philippines (n = 22) contained this structure. Concentration ranges for the analyzed oligosaccharides revealed quantitative and qualitative distribution trends. CONCLUSIONS The oligosaccharide composition of human milk varied among samples. The geographical origin of the donors was one of the factors that accounted for this variability. This can be explained by genetically determined traits that are not uniformly distributed. Results indicated that further systematic studies are needed to ascertain the effect of other factors, such as lactation stage or diet.
Collapse
Affiliation(s)
- R M Erney
- Ross Products Division, Abbott Laboratories, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van den Berg BM, Beekhuizen H, Willems RJ, Mooi FR, van Furth R. Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 1999; 67:1056-62. [PMID: 10024543 PMCID: PMC96429 DOI: 10.1128/iai.67.3.1056-1062.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During colonization of the respiratory tract by Bordetella pertussis, virulence factors contribute to adherence of the bacterium to the respiratory tract epithelium. In the present study, we examined the roles of the virulence factors filamentous hemagglutinin (FHA), fimbriae, pertactin (Prn), and pertussis toxin (PT) in the adherence of B. pertussis to cells of the human bronchial epithelial cell line NCI-H292 and of the laryngeal epithelial cell line HEp-2. Using B. pertussis mutant strains and purified FHA, fimbriae, Prn, and PT, we demonstrated that both fimbriae and FHA are involved in the adhesion of B. pertussis to laryngeal epithelial cells, whereas only FHA is involved in the adherence to bronchial epithelial cells. For PT and Prn, no role as adhesion factor was found. However, purified PT bound to both bronchial and laryngeal cells and as such reduced the adherence of B. pertussis to these cells. These data may imply that fimbriae play a role in infection of only the laryngeal mucosa, while FHA is the major factor in colonization of the entire respiratory tract.
Collapse
Affiliation(s)
- B M van den Berg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 1998; 66:5921-9. [PMID: 9826374 PMCID: PMC108750 DOI: 10.1128/iai.66.12.5921-5929.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adherence to ciliated respiratory epithelial cells is considered a critical early step in Bordetella pathogenesis. For Bordetella pertussis, the etiologic agent of whooping cough, several factors have been shown to mediate adherence to cells and cell lines in vitro. These putative adhesins include filamentous hemagglutinin (FHA), fimbriae, pertactin, and pertussis toxin. Determining the precise roles of each of these factors in vivo, however, has been difficult, due in part to the lack of natural-host animal models for use with B. pertussis. Using the closely related species Bordetella bronchiseptica, and by constructing both deletion mutation and ectopic expression mutants, we have shown that FHA is both necessary and sufficient for mediating adherence to a rat lung epithelial (L2) cell line. Using a rat model of respiratory infection, we have shown that FHA is absolutely required, but not sufficient, for tracheal colonization in healthy, unanesthetized animals. FHA was not required for initial tracheal colonization in anesthetized animals, however, suggesting that its role in establishment may be dedicated to overcoming the clearance action of the mucociliary escalator.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology and Immunology, UCLA School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
van den Akker WM. The filamentous hemagglutinin of Bordetella parapertussis is the major adhesin in the phase-dependent interaction with NCI-H292 human lung epithelial cells. Biochem Biophys Res Commun 1998; 252:128-33. [PMID: 9813157 DOI: 10.1006/bbrc.1998.9610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bordetella parapertussis is a Gram-negative bacterium which colonizes the human respiratory tract and can cause whooping cough or pertussis. This pathogen is subject to phase variation and expresses a series of virulence factors exclusively in the Bvg+ phase. Here, it is demonstrated for the first time that only the Bvg+ phase of B. parapertussis adheres to and invades the human lung epithelial cell line NCI-H292. A B. parapertussis mutant defective in expression of the Bvg+-regulated filamentous hemagglutinin (FHA) showed reduced binding (77% reduction) to NCI-H292 cells, as did a FHA mutant of the related Bordetella pertussis (85% reduction). In contrast to B. pertussis, binding of B. parapertussis to NCI-H292 cells was not inhibited by heparin, suggesting differences in the FHA adhesin and its host-cell receptor between these two species. Thorough understanding of the mechanism of action of the B. parapertussis virulence factors, such as FHA, is of particular interest in the development of novel strategies of pertussis vaccination.
Collapse
Affiliation(s)
- W M van den Akker
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Spemannstrasse 34, Tübingen, D-72076, Germany
| |
Collapse
|
41
|
Niang M, Rosenbusch RF, Andrews JJ, Lopez-Virella J, Kaeberle ML. Occurrence of autoantibodies to cilia in lambs with a 'coughing syndrome'. Vet Immunol Immunopathol 1998; 64:191-205. [PMID: 9730216 DOI: 10.1016/s0165-2427(98)00133-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A respiratory disease of lambs that has been termed the 'coughing syndrome' has been observed in the mid-western region of the United States of America. Mycoplasma ovipneumoniae (M. ovipneumoniae) and Mycoplasma arginini (M. arginini) were routinely isolated from the respiratory tract of lambs with this disease. A high level of antibodies reactive with ovine cilia of the upper respiratory tract was detected in the sera from many of the lambs in affected flocks but not in sera of lambs from unaffected flocks. The reactivity of these antibodies with cilia was demonstrated by ELISA and confirmed by indirect immunofluorescent staining and western immunoblotting. These antibodies were predominantly of the IgG isotype. They were distinct from cold or warm agglutinins and could be absorbed from the sera with cilia but not with antigens of common bacterial pathogens of the sheep respiratory tract including M. ovipneumoniae, M. arginini, Pasteurella haemolytica, Pasteurella multocida or Neisseria ovis. In addition, their occurrence appeared to be independent of the specific antibodies to M. ovipneumoniae and M. arginini. Western immunoblotting indicated that the antibodies were directed primarily against an antigen with apparent molecular weight of 50 kDa. In one flock from which serial serum samples were collected from the same lambs over a 10-month period, antibodies to ovine cilia developed before the onset of the clinical disease and persisted for a period of several months until most of the lambs had apparently recovered. However, colonization of the respiratory tract of the lambs by M. ovipneumoniae preceded the production of these antibodies. Sequential serum samples taken from another flock, with no known history of this coughing, showed no such antibodies throughout the sampling period. It is suggested that an immunopathologic mechanism involving production of autoantibodies directed against a ciliary antigen of the lambs could be a contributing factor to the pathogenesis of this clinical disease.
Collapse
Affiliation(s)
- M Niang
- Department of Microbiology, Immunology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
42
|
Chatenay-Rivauday C, Yamodo I, Sciotti MA, Ogier JA, Klein JP. The A and the extended V N-terminal regions of streptococcal protein I/IIf mediate the production of tumour necrosis factor alpha in the monocyte cell line THP-1. Mol Microbiol 1998; 29:39-48. [PMID: 9701801 DOI: 10.1046/j.1365-2958.1998.00881.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The induction of tumour necrosis factor (TNF)-alpha from the monocytic cell line THP-1 by the streptococcal antigen I/II from Streptococcus mutans serotype f (protein I/IIf) was studied by use of recombinant polypeptides containing the discrete domains of the protein. The derivatives carrying the N-terminal alanine-rich region (A region) and the adjacent variable region (extended V region) of the protein bound to THP-1 cell extracts in a saturable fashion, and one derivative lacking both the A and the extended V regions was not able to bind monocyte cell extracts, suggesting that the domains responsible for the binding of protein I/IIf to monocytes were the A and the extended V regions. Sodium metaperiodate pretreatment of THP-1 cell extracts, tunicamycin pretreatment of monocyte cells or competition with N-acetyl neuraminic acid (NANA) and fucose resulted in a 45-70% reduction in binding activity of the derivatives carrying the extended V region, demonstrating the lectin-like mode of recognition of the monocytic receptor by the extended V region and the role of NANA and fucose in this recognition process. Besides, the stimulation of monocytes to release TNF-alpha by the derivatives containing the A region and the extended V region was effective and was not affected by the addition of polymyxin B or vitamin D3, suggesting that CD14 does not play the role of receptor in stimulation of monocytes by protein I/IIf to release TNF-alpha.
Collapse
|
43
|
Poulain-Godefroy O, Mielcarek N, Ivanoff N, Remoué F, Schacht AM, Phillips N, Locht C, Capron A, Riveau G. Bordetella pertussis filamentous hemagglutinin enhances the immunogenicity of liposome-delivered antigen administered intranasally. Infect Immun 1998; 66:1764-7. [PMID: 9529111 PMCID: PMC108118 DOI: 10.1128/iai.66.4.1764-1767.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In an attempt to increase the immunogenicity of mucosally delivered antigens, we incorporated the Bordetella pertussis filamentous hemagglutinin (FHA) adhesin into liposomes containing the glutathione S-transferase of Schistosoma mansoni (Sm28GST) as a model antigen. Outbred mice immunized twice intranasally with liposomes containing a constant suboptimal dose of Sm28GST and increasing doses of FHA produced anti-Sm28GST antibodies in a FHA dose-dependent manner. The addition of 3 microg of FHA to the liposomes induced more than 10-fold-higher anti-Sm28GST antibody titers, compared to those induced by liposomes without FHA. The presence of FHA did not alter the nature of the humoral immune response, and the sera contained anti-Sm28GST immunoglobulin G1 (IgG1), IgG2a, and IgG2b. However, anti-Sm28GST IgA was only detected when at least 3 microg of FHA was added to the preparation. These results show a promising potential for FHA to enhance the immunogenicity of mucosally administered antigens incorporated into liposomes.
Collapse
|
44
|
Geuijen CA, Willems RJ, Bongaerts M, Top J, Gielen H, Mooi FR. Role of the Bordetella pertussis minor fimbrial subunit, FimD, in colonization of the mouse respiratory tract. Infect Immun 1997; 65:4222-8. [PMID: 9317030 PMCID: PMC175606 DOI: 10.1128/iai.65.10.4222-4228.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bordetella pertussis fimbriae are composed of a major subunit, Fim2 or Fim3, and the minor subunit FimD. Using immunoelectron microscopy, we provide evidence that FimD is located at the fimbrial tip. The role of FimD in colonization of the mouse respiratory tract was studied by using two fimbrial mutants: a mutant completely devoid of fimbriae (designated FimD-) and a mutant devoid of the major fimbrial subunits but still producing the minor subunit (designated FimD+). The ability of the two fimbrial mutants to colonize the nasopharynx, trachea, and lungs was compared with those of the wild type parental strain and a filamentous hemagglutinin (FHA) mutant. Of the three mutants studied, the FimD- mutant showed the greatest defect, colonizing less well in the nasopharynx, trachea, and lungs. The most pronounced defect in colonizing ability of the three mutants was observed in the trachea. However, the colonizing defect of the FHA and FimD+ mutants in the trachea was observed only during the first 3 days of infection. After 10 days, the colonization level was nearly restored to wild-type levels. The FHA and FimD+ mutants showed a slight colonization defect in the nasopharynx but no defect in the lungs. A maltose binding protein-FimD fusion protein and a peptide derived from FimD were able to bind to heparin, a member of a class of sulfated sugars which are ubiquitous in the respiratory tract. Recently it was shown (W. L. W. Hazenbos, C. A. W. Geuijen, B. M. van den Berg, F. R. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995) that FimD also binds to the integrin VLA-5, and our results suggest that the binding of B. pertussis to these two molecules plays an important role in colonization of the respiratory tract of the mouse.
Collapse
Affiliation(s)
- C A Geuijen
- Research Laboratory for Infectious Diseases, National Institute of Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Liu DF, Phillips E, Wizemann TM, Siegel MM, Tabei K, Cowell JL, Tuomanen E. Characterization of a recombinant fragment that contains a carbohydrate recognition domain of the filamentous hemagglutinin. Infect Immun 1997; 65:3465-8. [PMID: 9234814 PMCID: PMC175491 DOI: 10.1128/iai.65.8.3465-3468.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The filamentous hemagglutinin (FHA) of Bordetella pertussis plays an important role in establishing infection by attaching the bacteria to the ciliated respiratory epithelial cells. Expression of DNA encoding residues 1141 to 1279 of FHA in Escherichia coli yields a protein of 18,000 Da that exhibits some of the carbohydrate recognition properties of FHA (S. M. Prasad, Y. Yin, E. Rodzinski, E. I. Tuomanen, and H. R. Masure, Infect. Immun. 61:2780-2785, 1993). We have constructed an E. coli strain that expresses this protein, designated fragment A, in a soluble form at markedly elevated levels. Fragment A could be purified with high purity and yields and was immunogenic in mice. Both fragment A and anti-fragment A sera inhibited the binding of B. pertussis to asialo-GM2 and to rabbit ciliated cells. These observations demonstrate that this fragment of FHA contains a cellular binding domain capable of eliciting functional antibodies.
Collapse
Affiliation(s)
- D F Liu
- Wyeth Lederle Vaccines and Pediatrics, West Henrietta, New York 14586, USA. Dai
| | | | | | | | | | | | | |
Collapse
|
46
|
Mielcarek N, Cornette J, Schacht AM, Pierce RJ, Locht C, Capron A, Riveau G. Intranasal priming with recombinant Bordetella pertussis for the induction of a systemic immune response against a heterologous antigen. Infect Immun 1997; 65:544-50. [PMID: 9009311 PMCID: PMC176094 DOI: 10.1128/iai.65.2.544-550.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
One of the current goals in vaccine development is the noninvasive administration of protective antigens via mucosal surfaces. In this context, the gut-associated lymphoid tissues have already been extensively explored. Vaccination via the nasal route has only recently been the focus of intensive investigation, and no live vector specifically designed for the respiratory mucosa is yet available. In this study we show that intranasal administration of the recombinant Bordetella pertussis BPGR60, producing the Schistosoma mansoni 28-kDa glutathione S-transferase (Sm28GST) protective antigen fused to filamentous hemagglutinin, induces priming in mice for the production of serum antibodies. In addition to significant levels of anti-Sm28GST immunoglobulin A (IgA) antibodies, high levels of anti-Sm28GST serum antibodies were obtained after intranasal boost with the purified antigen or infection with S. mansoni following intranasal priming with BPGR60. These antibodies were of the IgG1, IgG2a, and IgG2b isotypes, suggesting a mixed immune response. No priming was observed in animals that had received nonrecombinant B. pertussis or purified Sm28GST, indicating specific priming by BPGR60. This priming was also evident in immune protection against S. mansoni challenge. Significant protection against worm burden and egg output was obtained in mice primed with BPGR60 and intranasally boosted with purified Sm28GST. A lower but still significant degree of protection against egg output was also obtained in mice infected with a single dose of BPGR60. These results indicate that intranasal administration of recombinant B. pertussis can prime for serum antibody responses against a foreign antigen and for heterologous protection.
Collapse
Affiliation(s)
- N Mielcarek
- Laboratoire des Relations Hôtes-Parasite et Stratégies Vaccinales, INSERM U167, Institut Pasteur de Lille, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- P A Cotter
- Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
48
|
Geuijen CA, Willems RJ, Mooi FR. The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars. Infect Immun 1996; 64:2657-65. [PMID: 8698492 PMCID: PMC174123 DOI: 10.1128/iai.64.7.2657-2665.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bordetella pertussis fimbriae are composed of major and minor subunits, and recently it was shown that the minor fimbrial subunit binds to Vla-5, a receptor located on monocytes (W. Hazenbos, C. Geuijen, B. van den Berg, F. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995). Here we present evidence that the major subunits bind to sulfated sugars, which are ubiquitous in the respiratory tract. Binding was observed to chondroitin sulfate, heparan sulfate, and dextran sulfate but not to dextran. Removal of the minor subunit from fimbriae did not significantly affect binding to sulfated sugars, indicating that the major subunit alone is sufficient for this binding. Fimbriae were also able to bind HEp-2 cells, which are known to display glycoconjugates on their surface. This binding was not dependent on the presence of the minor subunit. However, binding was dependent on the sulfation state of the glycoconjugates, since inhibition of the sulfation resulted in a significant reduction of fimbria binding. The specificity of fimbria binding was further characterized by using heparan sulfate-derived disaccharides in inhibition assays. Two disaccharides were highly effective inhibitors, and it was observed that both the degree of sulfation and the arrangement of the sulfate groups on the disaccharides were important for binding to fimbriae. B. pertussis bacteria also bound to sulfated sugars and HEp-2 cells, and analysis of B. pertussis mutants indicated that both filamentous hemagglutinin and fimbriae were required for this binding. A host protein present in the extracellular matrix, fibronectin, has binding activities similar to those of B. pertussis fimbriae, binding to both Vla-5 and sulfated sugars. Two regions in the major fimbrial subunit were identified which showed similarity with fibronectin peptides which bind to sulfated sugars. Thus, B. pertussis fimbriae exemplify molecular mimicry and may co-opt host processes by mimicking natural ligand-receptor interactions.
Collapse
Affiliation(s)
- C A Geuijen
- Molecular Microbiology Unit, National Institute of Health and Environmental Protection, The Netherlands
| | | | | |
Collapse
|
49
|
Ondarza MA, Sotelo F. Neutral glycolipids in adult rabbit blood and analysis of their function as specific receptors for micro-organisms. Biomed Chromatogr 1996; 10:6-10. [PMID: 8821863 DOI: 10.1002/(sici)1099-0801(199601)10:1<6::aid-bmc538>3.0.co;2-j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adherence of the human respiratory pathogen Streptococcus pneumoniae serotype 6B, to whole blood cells from an adult rabbit (strain New Zealand) was analysed. Preliminary results obtained through thin layer and high performance liquid chromatography from derivatives of both a standard mixture of neutral glycolipids and of the extracted glycolipids from the rabbit's blood led us to the isolation and separation of four perbenzoylated derivatives, two of which could be tentatively identified as galactosylceramide and lactosylceramide. Over twenty four alditol acetates could be separated by gas-liquid chromatography after hydrolysis of the extracted blood glycolipids (1 mL). Comparison of their retention times with those of the standards revealed the presence of arabinose, galactose and glucose in micromolar amounts (less than 50 ng). Observations made by phase contrast microscopy showed a high density of attached bacterial cells to the defibrinated rabbit's blood, suggesting a clear host susceptibility towards the ligands present in the pathogen cells. These separated gas-liquid and high-performance liquid chromatography derivatives may serve as biological markers in further adhesion and inhibition assays characteristics of the host-pathogen relationship.
Collapse
Affiliation(s)
- M A Ondarza
- Departamento de Bioquímica de Patógenos, Instituto Nacional de Salud Pública, Morelos, Mexico
| | | |
Collapse
|
50
|
Cotter PA, Akerley BJ, Miller JF. BvgAS Dependent Phenotypic Modulation of Bordetella Species. SIGNAL TRANSDUCTION AND BACTERIAL VIRULENCE 1995. [DOI: 10.1007/978-3-662-22406-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|