1
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
3
|
He W, Wang H, Yang G, Zhu L, Liu X. The Role of Chemokines in Obesity and Exercise-Induced Weight Loss. Biomolecules 2024; 14:1121. [PMID: 39334887 PMCID: PMC11430256 DOI: 10.3390/biom14091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.
Collapse
Affiliation(s)
- Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
4
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Dong Y, Dong Y, Zhu C, Yang L, Wang H, Li J, Zheng Z, Zhao H, Xie W, Chen M, Jie Z, Li J, Zang Y, Shi J. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun Signal 2024; 22:364. [PMID: 39014433 PMCID: PMC11253350 DOI: 10.1186/s12964-024-01746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.
Collapse
Affiliation(s)
- Yue Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengyue Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
| | - Lan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zixuan Zheng
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Hanwei Zhao
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Wanji Xie
- Department of General Medicine, Hongqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Meiting Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yi Zang
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China.
| | - Jindong Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chi HC, Lin YH, Wu YH, Chang CC, Wu CH, Yeh CT, Hsieh CC, Lin KH. CCL16 is a pro-tumor chemokine that recruits monocytes and macrophages to promote hepatocellular carcinoma progression. Am J Cancer Res 2024; 14:3600-3613. [PMID: 39113854 PMCID: PMC11301285 DOI: 10.62347/vctw6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Intricate signaling cascades involving chemokines and their cognate receptors on neoplastic and immune constituents within tumor microenvironment have garnered substantial research interest. Our investigation delineates the contribution of Chemokine (C-C motif) ligand 16 (CCL16) to the clinico-pathological features and tumorigenesis of hepatocellular carcinoma (HCC). Analysis of 237 pairs of HCC specimens unraveled a significant association between CCL16 expression and vascular invasion, early-stage clinicopathological features, and diminished recurrence-free survival among HCC patients. Immunohistochemical (IHC) assays of the clinical HCC specimens indicated elevated CCL16 in tumorous versus normal hepatic tissues. Our in vivo experiments demonstrated CCL16 overexpression fostered tumor proliferation, whereas in vitro assays elucidated that CCL16-mediated chemotactic recruitment of monocytes and M2 macrophages was orchestrated via CCR1 and CCR5. In contrast to previous claims that CCL16 is physiologically irrelevant and has minimal affinity for its receptors (CCR1, CCR2, CCR5, CCR8), our findings unravel that inhibition of CCL16/CCR1 and CCL16/CCR5 interactions through receptor-specific antagonists markedly impeded CCL16-directed chemotaxis, migration, adhesion, and leukocyte recruitment. Moreover, CCL16-overexpression in HCCs significantly augmented levels of several cytokines implicated in tumor progression, namely IL-6, IL-10 and VEGFA. IHC analysis of CCL16-overexpressing xenografts elicited greatly enhanced levels of VEGFA and IL-6, while assessments of HCC specimens confirmed a positive correlation between CCL16 expression and IL-6 and VEGFA levels. Collectively, our study highlights oncogenic role of CCL16 in hepatocarcinogenesis and provides a foundational basis for novel therapeutic interventions targeting the CCL16/CCR1/CCR5 axis.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 404, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Yuh-Harn Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan 70101, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Cheng-Heng Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial HospitalLinkou Branch, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 333, Taiwan
| |
Collapse
|
7
|
Reschke R, Enk AH, Hassel JC. Chemokines and Cytokines in Immunotherapy of Melanoma and Other Tumors: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2024; 25:6532. [PMID: 38928238 PMCID: PMC11203481 DOI: 10.3390/ijms25126532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chemokines and cytokines represent an emerging field of immunotherapy research. They are responsible for the crosstalk and chemoattraction of immune cells and tumor cells. For instance, CXCL9/10/11 chemoattract effector CD8+ T cells to the tumor microenvironment, making an argument for their promising role as biomarkers for a favorable outcome. The cytokine Interleukin-15 (IL-15) can promote the chemokine expression of CXCR3 ligands but also XCL1, contributing to an important DC-T cell interaction. Recruited cytotoxic T cells can be clonally expanded by IL-2. Delivering or inducing these chemokines and cytokines can result in tumor shrinkage and might synergize with immune checkpoint inhibition. In addition, blocking specific chemokine and cytokine receptors such as CCR2, CCR4 or Il-6R can reduce the recruitment of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) or regulatory T cells (Tregs). Efforts to target these chemokines and cytokines have the potential to personalize cancer immunotherapy further and address patients that are not yet responsive because of immune cell exclusion. Targeting cytokines such as IL-6 and IL-15 is currently being evaluated in clinical trials in combination with immune checkpoint-blocking antibodies for the treatment of metastatic melanoma. The improved overall survival of melanoma patients might outweigh potential risks such as autoimmunity. However, off-target toxicity needs to be elucidated.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
9
|
Sha K, Zhang R, Maolake A, Singh S, Chatta G, Eng KH, Nastiuk KL, Krolewski JJ. Androgen deprivation triggers a cytokine signaling switch to induce immune suppression and prostate cancer recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569685. [PMID: 38405929 PMCID: PMC10888871 DOI: 10.1101/2023.12.01.569685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Androgen deprivation therapy (ADT) is an effective but not curative treatment for advanced and recurrent prostate cancer (PC). We investigated the mechanisms controlling the response to androgen-deprivation by surgical castration in genetically-engineered mouse models (GEMM) of PC, using high frequency ultrasound imaging to rigorously measure tumor volume. Castration initially causes almost all tumors to shrink in volume, but many tumors subsequently recur within 5-10 weeks. Blockade of tumor necrosis factor (TNF) signaling a few days in advance of castration surgery, using a TNFR2 ligand trap, prevents regression in a PTEN-deficient GEMM. Following tumor regression, a basal stem cell-like population within the tumor increases along with TNF protein levels. Tumor cell lines in culture recapitulate these in vivo observations, suggesting that basal stem cells are the source of TNF. When TNF signaling blockade is administered immediately prior to castration, tumors regress but recurrence is prevented, implying that a late wave of TNF secretion within the tumor, which coincides with the expression of NFkB regulated genes, drives recurrence. The inhibition of signaling downstream of one NFkB-regulated protein, chemokine C-C motif ligand 2 (CCL2), prevents post-castration tumor recurrence, phenocopying post-castration (late) TNF signaling blockade. CCL2 was originally identified as a macrophage chemoattractant and indeed at late times after castration gene sets related to chemotaxis and migration are up-regulated. Importantly, enhanced CCL2 signaling during the tumor recurrence phase coincides with an increase in pro-tumorigenic macrophages and a decrease in CD8 T cells, suggesting that recurrence is driven at least in part by tumor immunosuppression. In summary, we demonstrate that a therapy-induced switch in TNF signaling, a consequence of the increased stem cell-like character of the residual tumor cells surviving ADT, induces an immunosuppressive tumor microenvironment and concomitant tumor recurrence.
Collapse
|
10
|
Tawarayama H, Umeki K, Inoue-Yanagimachi M, Takahashi N, Hasegawa H, Himori N, Tsuda S, Kunikata H, Akaike T, Nakazawa T. Glutathione trisulfide prevents lipopolysaccharide-induced retinal inflammation via inhibition of proinflammatory cytokine production in glial cells. Sci Rep 2023; 13:11513. [PMID: 37460786 DOI: 10.1038/s41598-023-38696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
We aimed to investigate the impact of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammation in retinal glia. Inflammatory responses in mouse-derived glial cells and Wistar rat retinas were stimulated with administration of LPS. Cell survival and proinflammatory cytokine production were examined using the Calcein-AM assay, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Retinal microglia were visualized with immunohistochemistry for Iba1. Administration of LPS (10 µg/mL) or GSSSG (less than 100 µM) did not affect survival of cultured primary Müller cells and established microglial cells (BV-2). RT-qPCR and ELISA indicated that GSSSG inhibited LPS-induced gene upregulation and protein secretion of proinflammatory cytokines in these glial cells and rat retinas. GSSSG inhibited LPS-induced activation of TGF-β-activated kinase 1 (TAK1), which is an upstream kinase of NF-κB, in BV-2 cells. Finally, in vivo experiments indicated that intravitreal administration of GSSSG but not its relative glutathione disulfide (GSSG) inhibited LPS (500 ng)-induced accumulation of Iba1-immunopositive microglia in rat retinas. Taken together, GSSSG has the potential to prevent pathogenesis of inflammation-associated ocular diseases by inhibiting proinflammatory cytokine expression in retinal glial cells.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Umeki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoki Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Hasegawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
11
|
Gschwandtner M, Gammage AN, Deligne C, Mies LFM, Domaingo A, Murdamoothoo D, Loustau T, Schwenzer A, Derler R, Carapito R, Koch M, Mörgelin M, Orend G, Kungl AJ, Midwood KS. Investigating Chemokine-Matrix Networks in Breast Cancer: Tenascin-C Sets the Tone for CCL2. Int J Mol Sci 2023; 24:8365. [PMID: 37176074 PMCID: PMC10179296 DOI: 10.3390/ijms24098365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.
Collapse
Affiliation(s)
| | - Anís N. Gammage
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Claire Deligne
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Linda F. M. Mies
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Alissa Domaingo
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Devardarssen Murdamoothoo
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Thomas Loustau
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Raphael Carapito
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, GENOMAX Platform, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, 67091 Strasbourg, France
| | - Manuel Koch
- Institute for Dental Research and Oral, Musculoskeletal Research, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Gertraud Orend
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
12
|
Szpakowski P, Ksiazek-Winiarek D, Czpakowska J, Kaluza M, Milewska-Jedrzejczak M, Glabinski A. Astrocyte-Derived Exosomes Differentially Shape T Cells' Immune Response in MS Patients. Int J Mol Sci 2023; 24:ijms24087470. [PMID: 37108633 PMCID: PMC10138532 DOI: 10.3390/ijms24087470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Astrocytes, the most abundant group of glia cells in the brain, provide support for neurons and indicate multiple various functions in the central nervous system (CNS). Growing data additionally describe their role in the regulation of immune system activity. They exert their function not only by direct contact with other cell types, but also through an indirect method, e.g., by secreting various molecules. One such structure is extracellular vesicles, which are important mediators of crosstalk between cells. In our study, we observed that the impact of exosomes derived from astrocytes with various functional phenotype differently affect the immune response of CD4+ T cells, both from healthy individuals and from patients with multiple sclerosis (MS). Astrocytes, by modulating exosome cargo, impacts the release of IFN-γ, IL-17A and CCL2 in our experimental conditions. Considering the proteins concentration in cell culture supernatants and the cellular percentage of Th phenotypes, it could be stated that human astrocytes, by the release of exosomes, are able to modify the activity of human T cells.
Collapse
Affiliation(s)
- Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Dominika Ksiazek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Mateusz Kaluza
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Marta Milewska-Jedrzejczak
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| |
Collapse
|
13
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Jin J, Liu Y, Tang Q, Yan X, Jiang M, Zhao X, Chen J, Jin C, Ou Q, Zhao J. Bioinformatics-integrated screening of systemic sclerosis-specific expressed markers to identify therapeutic targets. Front Immunol 2023; 14:1125183. [PMID: 37063926 PMCID: PMC10098096 DOI: 10.3389/fimmu.2023.1125183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare autoimmune disease characterized by extensive skin fibrosis. There are no effective treatments due to the severity, multiorgan presentation, and variable outcomes of the disease. Here, integrated bioinformatics was employed to discover tissue-specific expressed hub genes associated with SSc, determine potential competing endogenous RNAs (ceRNA) regulatory networks, and identify potential targeted drugs. Methods In this study, four datasets of SSc were acquired. To identify the genes specific to tissues or organs, the BioGPS web database was used. For differentially expressed genes (DEGs), functional and enrichment analyses were carried out, and hub genes were screened and shown in a network of protein-protein interactions (PPI). The potential lncRNA-miRNA-mRNA ceRNA network was constructed using the online databases. The specifically expressed hub genes and ceRNA network were validated in the SSc mouse and in normal mice. We also used the receiver operating characteristic (ROC) curve to determine the diagnostic values of effective biomarkers in SSc. Finally, the Drug-Gene Interaction Database (DGIdb) identified specific medicines linked to hub genes. Results The pooled datasets identified a total of 254 DEGs. The tissue/organ-specifically expressed genes involved in this analysis are commonly found in the hematologic/immune system and bone/muscle tissue. The enrichment analysis of DEGs revealed the significant terms such as regulation of actin cytoskeleton, immune-related processes, the VEGF signaling pathway, and metabolism. Cytoscape identified six gene cluster modules and 23 hub genes. And 4 hub genes were identified, including Serpine1, CCL2, IL6, and ISG15. Consistently, the expression of Serpine1, CCL2, IL6, and ISG15 was significantly higher in the SSc mouse model than in normal mice. Eventually, we found that MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1 may be promising RNA regulatory pathways in SSc. Besides, ten potential therapeutic drugs associated with the hub gene were identified. Conclusions This study revealed tissue-specific expressed genes, SERPINE1, CCL2, IL6, and ISG15, as effective biomarkers and provided new insight into the mechanisms of SSc. Potential RNA regulatory pathways, including MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1, contribute to our knowledge of SSc. Furthermore, the analysis of drug-hub gene interactions predicted TIPLASININ, CARLUMAB and BINDARIT as candidate drugs for SSc.
Collapse
Affiliation(s)
- Jiahui Jin
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Liu
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinyu Tang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Yan
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miao Jiang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xu Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Caixia Jin, ; Qingjian Ou, ; Jingjun Zhao,
| | - Qingjian Ou
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Caixia Jin, ; Qingjian Ou, ; Jingjun Zhao,
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Caixia Jin, ; Qingjian Ou, ; Jingjun Zhao,
| |
Collapse
|
15
|
Matsushima K, Shichino S, Ueha S. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:213-226. [PMID: 37518010 DOI: 10.2183/pjab.99.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Inflammation is a host defense response to various invading stimuli, but an excessive and persistent inflammatory response can cause tissue injury, which can lead to irreversible organ damage and dysfunction. Excessive inflammatory responses are believed to link to most human diseases. A specific type of leukocyte infiltration into invaded tissues is required for inflammation. Historically, the underlying molecular mechanisms of this process during inflammation were an enigma, compromising research in the fields of inflammation, immunology, and pathology. However, the pioneering discovery of chemotactic cytokines (chemokines), monocyte-derived neutrophil chemotactic factor (MDNCF; interleukin [IL]-8, CXCL8) and monocyte chemotactic and activating factor (MCAF; monocyte chemotactic factor 1 [MCP-1], CCL2) in the late 1980s finally enabled us to address this issue. In this review, we provide a historical overview of chemokine research over the last 35 years.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
16
|
The Role of MRE11 in the IL-6/STAT3 Pathway of Lung Cancer Cells. Curr Issues Mol Biol 2022; 44:6132-6144. [PMID: 36547079 PMCID: PMC9776501 DOI: 10.3390/cimb44120418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
MRE11 is a pivotal protein for ATM activation during double-strand DNA break. ATM kinase activations may act as lung cancer biomarkers. The IL-6/STAT3 pathway plays an important role in tumor metastasis, including lung cancer. However, the mechanism between MRE11 and the IL-6/STAT3 pathway is still unclear. In this study, we discovered that MRE11 can interact with STAT3 under IL-6 treatment and regulate STAT3 Tyr705 phosphorylation. After the knockdown of MRE11 in lung cancer cells, we discovered that IL-6 or the conditional medium of THP-1 cells can induce the mRNA expression of STAT3 downstream genes, including CCL2, in the control cells, but not in MRE11-knockdown lung cancer cells. Moreover, CCL2 secretion was lower in MRE11-knockdown lung cancer cells than in control cells after treatment with the conditional medium of RAW264.7 cells. In addition, MRE11 deficiency in lung cancer cells decreases their ability to recruit RAW 264.7 cells. Furthermore, MRE11 is a potential target for lung cancer therapy.
Collapse
|
17
|
Inhibition of the chemokine signal regulator FROUNT by disulfiram ameliorates crescentic glomerulonephritis. Kidney Int 2022; 102:1276-1290. [PMID: 36049642 DOI: 10.1016/j.kint.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Activated monocytes/macrophages promote glomerular injury, including crescent formation, in anti-glomerular basement membrane (GBM) glomerulonephritis. Disulfiram, an alcohol-aversion drug, inhibits monocyte/macrophage migration by inhibiting FROUNT, a cytosolic protein that enhances chemokine receptor signaling. Our study found that disulfiram at a human equivalent dose successfully blocked albuminuria and crescent formation with podocyte loss, and later stage kidney fibrotic lesions, in a rat model of anti-GBM glomerulonephritis. A disulfiram derivative, DSF-41, with more potent FROUNT inhibition activity, inhibited glomerulonephritis at a lower dose than disulfiram. Disulfiram markedly reduced the number of monocytes or macrophages at the early stage of glomerulonephritis and that of CD3+ and CD8+ lymphocytes at the established stage. Impaired pseudopodia formation was observed in the glomerular monocytes/macrophages of the disulfiram group; consistent with the in vitro observation that disulfiram blocked chemokine-dependent pseudopodia formation and chemotaxis of bone marrow-derived monocytes/macrophages. Furthermore, disulfiram suppressed macrophage activation as revealed by reduced expression of inflammatory cytokines and chemokines (TNF-α, CCL2, and CXCL9) and reduced CD86 and MHC class II expressions in monocytes/macrophages during glomerulonephritis. The dramatic reduction in monocyte/macrophage number might have resulted from disulfiram suppression of both the chemotactic response of monocytes/macrophages and their subsequent activation to produce cytokines and chemokines, which further recruit monocytes. Additionally, FROUNT was expressed in CD68+ monocytes/macrophages infiltrating the crescentic glomeruli in human anti-GBM glomerulonephritis. Thus, disulfiram can be a highly effective and safe drug for the treatment of glomerulonephritis by blocking the chemotactic responses of monocytes/macrophages and their activation status in the glomerulus.
Collapse
|
18
|
Ribatti D. A double-edged sword in tumor angiogenesis and progression. Dual roles of mast cells, macrophages, and neutrophils. Pathol Res Pract 2022; 240:154167. [DOI: 10.1016/j.prp.2022.154167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
19
|
Packard TA, Schwarzer R, Herzig E, Rao D, Luo X, Egedal JH, Hsiao F, Widera M, Hultquist JF, Grimmett ZW, Messer RJ, Krogan NJ, Deeks SG, Roan NR, Dittmer U, Hasenkrug KJ, Greene WC. CCL2: a Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022; 13:e0189122. [PMID: 36073812 PMCID: PMC9600577 DOI: 10.1128/mbio.01891-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.
Collapse
Affiliation(s)
| | - Roland Schwarzer
- J. David Gladstone Institutes, San Francisco, California, USA
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eytan Herzig
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Xiaoyu Luo
- J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Feng Hsiao
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nadia R. Roan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Ulf Dittmer
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Warner C. Greene
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer. Biomedicines 2022; 10:biomedicines10102369. [PMID: 36289628 PMCID: PMC9598117 DOI: 10.3390/biomedicines10102369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Prostate-specific antigen (PSA) is a useful prostate cancer (PC) biomarker, but some cases reported that PSA does not correlate with the Gleason score. Serum chemokine (CC motif) ligand 2 (CCL2) has been reported to be a potential complementary PSA biomarker, but it remains unclear whether it can be applied to non-metastatic castration-sensitive prostate cancer (nmCSPC) or each section of the stages. Serum CCL2′s usefulness was investigated as a prognostic nmCSPC biomarker in this study. Methods: Serum samples were collected from 379 patients who underwent prostate biopsy at Kanazawa University Hospital from 2007 to 2013. A total of 230 patients with nmCSPC were included in this study of the 255 patients with histologically diagnosed prostate cancer. The serum CCL2 efficacy as a prognostic nmCSPC biomarker was investigated retrospectively. Results: An independent significant predictor of worse OS was CCL2 ≥ 280 pg/dL and CRP ≥ 0.5 mg/dL in multivariate analysis. Gleason score ≥ 8 and CCL2 ≥ 280 pg/dL were independent significant predictors of CRPC-free survival (CFS) worsening in multivariate analysis. Serum CCL2 was a predictive biomarker for OS and CFS in nmCSPC. Furthermore, CCL2 ≥ 280 pg/mL patients had significantly worse visceral metastasis-free survival than those with CCL2 < 280 pg/mL. Conclusion: This study is the first to demonstrate serum CCL2 utility as a biomarker to predict OS and CFS in nmCSPC.
Collapse
|
22
|
CC Chemokine Ligand-2: A Promising Target for Overcoming Anticancer Drug Resistance. Cancers (Basel) 2022; 14:cancers14174251. [PMID: 36077785 PMCID: PMC9454502 DOI: 10.3390/cancers14174251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Drug resistance is an obstacle to cancer therapy, and the underlying mechanisms are still being explored. CC chemokine ligand-2 (CCL2) is one of the key proinflammatory chemokines that regulate the migration and infiltration of multiple inflammatory cells, such as monocytes and macrophages. CCL2 can be secreted by tumor cells and multiple cell types, mediating the formation of the tumor-promoting and immunosuppressive microenvironment to promote cancer development, progression, and anticancer drug resistance. Notably, CCL2 is also frequently overexpressed in drug-resistant cancer cells. Here, we review recent findings regarding the role of CCL2 in the development of resistance to multiple anticancer reagents. In addition, the possible mechanisms by which CCL2 participates in anticancer drug resistance are discussed, which may provide new therapeutic targets for reversing cancer resistance. Abstract CC chemokine ligand-2 (CCL2), a proinflammatory chemokine that mediates chemotaxis of multiple immune cells, plays a crucial role in the tumor microenvironment (TME) and promotes tumorigenesis and development. Recently, accumulating evidence has indicated that CCL2 contributes to the development of drug resistance to a broad spectrum of anticancer agents, including chemotherapy, hormone therapy, targeted therapy, and immunotherapy. It has been reported that CCL2 can reduce tumor sensitivity to drugs by inhibiting drug-induced apoptosis, antiangiogenesis, and antitumor immunity. In this review, we mainly focus on elucidating the relationship between CCL2 and resistance as well as the underlying mechanisms. A comprehensive understanding of the role and mechanism of CCL2 in anticancer drug resistance may provide new therapeutic targets for reversing cancer resistance.
Collapse
|
23
|
Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23158329. [PMID: 35955463 PMCID: PMC9368383 DOI: 10.3390/ijms23158329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Lovely Antonie
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
- Correspondence: ; Tel./Fax: +1-850-599-3306
| |
Collapse
|
24
|
Obesity and Bone Health: A Complex Relationship. Int J Mol Sci 2022; 23:ijms23158303. [PMID: 35955431 PMCID: PMC9368241 DOI: 10.3390/ijms23158303] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Recent scientific evidence has shown an increased risk of fractures in patients with obesity, especially in those with a higher visceral adipose tissue content. This contradicts the old paradigm that obese patients were more protected than those with normal weight. Specifically, in older subjects in whom there is a redistribution of fat from subcutaneous adipose tissue to visceral adipose tissue and an infiltration of other tissues such as muscle with the consequent sarcopenia, obesity can accentuate the changes characteristic of this age group that predisposes to a greater risk of falls and fractures. Other factors that determine a greater risk in older subjects with obesity are chronic proinflammatory status, altered adipokine secretion, vitamin D deficiency, insulin resistance and reduced mobility. On the other hand, diagnostic tests may be influenced by obesity and its comorbidities as well as by body composition, and risk scales may underestimate the risk of fractures in these patients. Weight loss with physical activity programs and cessation of high-fat diets may reduce the risk. Finally, more research is needed on the efficacy of anti-osteoporotic treatments in obese patients.
Collapse
|
25
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
26
|
Iwamoto H, Izumi K, Nakagawa R, Toriumi R, Aoyama S, Shimada T, Kano H, Makino T, Kadomoto S, Yaegashi H, Kawaguchi S, Nohara T, Shigehara K, Kadono Y, Mizokami A. Usefulness of serum CCL2 as prognostic biomarker in prostate cancer: a long-term follow-up study. Jpn J Clin Oncol 2022; 52:1337-1344. [PMID: 35726158 DOI: 10.1093/jjco/hyac102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Prostate-specific antigen is considered the most useful biomarker for prostate cancer, but not in all cases. In a previous study, we have shown that a risk classification combining prostate-specific antigen ≥100 ng/mL and chemokine (CC motif) ligand 2 ≥ 320 pg/mL can predict survivals. We investigated the long-term usefulness of serum chemokine (CC motif) ligand 2 as a complementary biomarker to prostate-specific antigen and developed a novel risk classification system. METHODS Serum samples were collected from 379 patients who underwent prostate biopsy at Kanazawa University Hospital between 2007 and 2013, and 255 patients with histologically diagnosed prostate cancer were included in this study. We retrospectively examined the efficacy of serum chemokine (CC motif) ligand 2 as a prognostic biomarker. RESULTS Patients with chemokine (CC motif) ligand 2 ≥ 320 pg/mL exhibited a significantly shorter overall survival, prostate cancer-specific survival and castration-resistant prostate cancer-free survival than those with chemokine (CC motif) ligand 2 < 320 pg/mL. Multivariate analysis was performed to determine whether chemokine (CC motif) ligand 2 was a useful prognostic factor. Independent significant predictors of worse overall survival were prostate-specific antigen ≥ 100 ng/mL, Gleason score ≥ 8 and chemokine (CC motif) ligand 2 ≥ 320 pg/dL. Prognostic predictors of prostate cancer-specific survival or cancer-free survival in multivariate analysis were prostate-specific antigen ≥ 100 ng/mL and Gleason score ≥ 8. A novel risk classification system was created to predict overall survival in patients based on the number of risk factors present (chemokine (CC motif) ligand 2 ≥ 320 pg/mL, prostate-specific antigen ≥ 100 ng/mL, Gleason score ≥ 8). Scores 2 or 3, 1 and 0 indicated Poor, Intermediate and Good risk groups, respectively. CONCLUSIONS This study demonstrated the utility of serum chemokine (CC motif) ligand 2 level as a predictive biomarker of long-term overall survival in prostate cancer. A novel risk classification system that predicts long-term overall survival based on the combined indications of chemokine (CC motif) ligand 2 level, prostate-specific antigen level and Gleason score may be a useful prognostic tool for prostate cancer.
Collapse
Affiliation(s)
- Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryunosuke Nakagawa
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ren Toriumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuhei Aoyama
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takafumi Shimada
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Kano
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomoyuki Makino
- Department of Urology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Yaegashi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shohei Kawaguchi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takahiro Nohara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
27
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
29
|
Georgakis MK, Bernhagen J, Heitman LH, Weber C, Dichgans M. Targeting the CCL2-CCR2 axis for atheroprotection. Eur Heart J 2022; 43:1799-1808. [PMID: 35567558 DOI: 10.1093/eurheartj/ehac094] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Decades of research have established atherosclerosis as an inflammatory disease. Only recently though, clinical trials provided proof-of-concept evidence for the efficacy of anti-inflammatory strategies with respect to cardiovascular events, thus offering a new paradigm for lowering residual vascular risk. Efforts to target the inflammasome-interleukin-1β-interleukin-6 pathway have been highly successful, but inter-individual variations in drug response, a lack of reduction in all-cause mortality, and a higher rate of infections also highlight the need for a second generation of anti-inflammatory agents targeting atherosclerosis-specific immune mechanisms while minimizing systemic side effects. CC-motif chemokine ligand 2/monocyte-chemoattractant protein-1 (CCL2/MCP-1) orchestrates inflammatory monocyte trafficking between the bone marrow, circulation, and atherosclerotic plaques by binding to its cognate receptor CCR2. Adding to a strong body of data from experimental atherosclerosis models, a coherent series of recent large-scale genetic and observational epidemiological studies along with data from human atherosclerotic plaques highlight the relevance and therapeutic potential of the CCL2-CCR2 axis in human atherosclerosis. Here, we summarize experimental and human data pinpointing the CCL2-CCR2 pathway as an emerging drug target in cardiovascular disease. Furthermore, we contextualize previous efforts to interfere with this pathway, scrutinize approaches of ligand targeting vs. receptor targeting, and discuss possible pathway-intrinsic opportunities and challenges related to pharmacological targeting of the CCL2-CCR2 axis in human atherosclerotic disease.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Center of Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christian Weber
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
30
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depends on involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4 and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokines receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
| | | | - Kalpana Pai
- Savitribai Phule Pune University, Pune, Maharashtra
| |
Collapse
|
31
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
32
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
33
|
Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer 2022; 25:515-526. [PMID: 34997450 PMCID: PMC9013333 DOI: 10.1007/s10120-021-01275-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of tumor-stroma interactions in tumor immune microenvironment (TME) is attracting attention. We have previously reported that cancer-associated fibroblasts (CAFs) contribute to the progression of peritoneal metastasis (PM) in gastric cancer (GC), and M2 macrophages and mast cells also contribute to TME of PM. To elucidate the role of CAFs in TME, we established an immunocompetent mouse PM model with fibrosis, which reflects clinical features of TME. However, the involvement of CAFs in the immunosuppressive microenvironment remains unclear. In this study, we investigated the efficacy of Tranilast at modifying this immune tolerance by suppressing CAFs. METHODS The interaction between mouse myofibroblast cell line LmcMF and mouse GC cell line YTN16 on M2 macrophage migration was investigated, and the inhibitory effect of Tranilast was examined in vitro. Using C57BL/6J mouse PM model established using YTN16 with co-inoculation of LmcMF, TME of resected PM treated with or without Tranilast was analyzed by immunohistochemistry. RESULTS The addition of YTN16 cell-conditioned medium to LmcMF cells enhanced CXCL12 expression and stimulated M2 macrophage migration, whereas Tranilast inhibited the migration ability of M2 macrophages by suppressing CXCL12 secretion from LmcMF. In PM model, Tranilast inhibited tumor growth and fibrosis, M2 macrophage, and mast cell infiltration and significantly promoted CD8 + lymphocyte infiltration into the tumor, leading to apoptosis of cancer cells by an immune response. CONCLUSION Tranilast improved the immunosuppressive microenvironment by inhibiting CAF function in a mouse PM model. Tranilast is thus a promising candidate for the treatment of PM.
Collapse
|
34
|
Zbinden JC, Mirhaidari GJM, Blum KM, Musgrave AJ, Reinhardt JW, Breuer CK, Barker JC. The lysosomal trafficking regulator is necessary for normal wound healing. Wound Repair Regen 2021; 30:82-99. [PMID: 34837653 DOI: 10.1111/wrr.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing. The lysosomal trafficking regulator protein (LYST) is an essential protein of the endolysosomal system through an indeterminate mechanism. In this study, we examine the impact of impaired LYST function both in vitro with primary LYST mutant fibroblasts as well as in vivo with an excisional wound model. The wound model shows that LYST mutant mice have impaired wound healing in the form of delayed epithelialization and collagen deposition, independent of macrophage infiltration and polarisation. We show that LYST mutation confers a deficit in MCP-1, IGF-1, and IGFBP-2 secretion in beige fibroblasts, which are critical factors in normal wound healing. Identifying the mechanism of LYST function is important for understanding normal wound biology, which may facilitate the development of strategies to address problem wound healing.
Collapse
Affiliation(s)
- Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew J Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
35
|
Zimmerman KA, Song CJ, Aloria EJG, Li Z, Zhou J, Bland SJ, Yashchenko A, Crossman DK, Mrug M, Yoder BK. Early infiltrating macrophage subtype correlates with late-stage phenotypic outcome in a mouse model of hepatorenal fibrocystic disease. J Transl Med 2021; 101:1382-1393. [PMID: 34158590 PMCID: PMC8773463 DOI: 10.1038/s41374-021-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hepatorenal fibrocystic disease (HRFCD) is a genetically inherited disorder related to primary cilia dysfunction in which patients display varying levels of fibrosis, bile duct expansion, and inflammation. In mouse models of HRFCD, the phenotype is greatly impacted by the genetic background in which the mutation is placed. Macrophages are a common factor associated with progression of HRFCD and are also strongly influenced by the genetic background. These data led us to hypothesize that macrophage subtypes that change in relation to the genetic background are responsible for the variable phenotypic outcomes in HRFCD. To test this hypothesis, we utilized a mouse model of HRFCD (Ift88Orpk mice) on the C57BL/6 and BALB/c inbred backgrounds that have well-documented differences in macrophage subtypes. Our analyses of infiltrating macrophage subtypes confirm that genetic strain influences the subtype of infiltrating macrophage present during normal postnatal liver development and in Ift88Orpk livers (Ly6clo in C57BL/6 vs Ly6chi in BALB/c). Each infiltrating macrophage subtype was similarly associated with a unique phenotypic outcome as analysis of liver tissue shows that C57BL/6 Ift88Orpk mice have increased bile duct expansion, but reduced levels of fibrosis compared to BALB/c Ift88Orpk livers. RNA sequencing data suggest that the ability to infiltrate macrophage subtypes to influence the phenotypic outcome may be due to unique ligand-receptor signaling between infiltrating macrophages and cilia dysfunctional biliary epithelium. To evaluate whether specific macrophage subtypes cause the observed phenotypic divergence, we analyzed the liver phenotype in BALB/c Ift88Orpk mice on a CCR2-/- background. Unexpectedly, the loss of Ly6chi macrophages, which were strongly enriched in BALB/c Ift88Orpk mice, did not significantly alter liver fibrosis. These data indicate that macrophage subtypes may correlate with HRFCD phenotypic outcome, but do not directly cause the pathology.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cheng J Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ernald J G Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juling Zhou
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah J Bland
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alex Yashchenko
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM, Elledge SJ. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 2021; 373:1327-1335. [PMID: 34529489 DOI: 10.1126/science.abg5784] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Carcinogenesis
- Cell Line, Tumor
- Chemokine CCL2/metabolism
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Immune Evasion/genetics
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Selection, Genetic
- Tumor Microenvironment
Collapse
Affiliation(s)
- Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rupesh S Patel
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle R Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ajinkya Patil
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony C Liang
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mamie Z Li
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Jin Y, Zhang M, Li M, Zhang H, Zhao L, Qian C, Li S, Zhang H, Gao M, Pan B, Li R, Wan X, Cao C. SIX1 Activation Is Involved in Cell Proliferation, Migration, and Anti-inflammation of Acute Ischemia/Reperfusion Injury in Mice. Front Mol Biosci 2021; 8:725319. [PMID: 34513929 PMCID: PMC8427868 DOI: 10.3389/fmolb.2021.725319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nephrogenic proteins are re-expressed after ischemia/reperfusion (I/R) injury; however, the role of these proteins is still unknown. We found that sine oculis homeobox 1 (SIX1), a developmentally regulated homeoprotein, is reactivated in tubular epithelial cells after I/R injury associated with cell proliferation/migration and anti-inflammation. We demonstrated that SIX1 promoted cell proliferation by upregulating cyclin and glycolytic genes, and might increase cell migration by upregulating the expression of matrix metalloproteinase 9 (MMP9) directly or indirectly in the cell model. Notably, SIX1 targeted the promoters of the amino-terminal enhancer of split (AES) and fused in sarcoma (FUS), which are cofactors of nuclear factor-κB (NF-κB) subunit RELA, and then inhibited the transactivation function of RELA. The expression of monocyte chemotactic protein-1 (MCP-1) was decreased by the SIX1-mediated NF-κB pathway. Our results showed that the expression of cyclin, glycolytic genes, and MMP9 were significantly increased, and the infiltration of monocytes/macrophages (Mophs) was suppressed in SIX1 overexpression kidney at 1, 2, and 3 days after reperfusion. The overexpression of SIX1 resulted in reducing kidney damage from I/R injury in mice by promoting cell proliferation and migration and by inhibiting inflammation. Our study provides evidence that SIX1 involved in cell proliferation, migration, and anti-inflammation in the I/R model, which might be a potential therapeutic target that could be used to ameliorate kidney damage.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Shensen Li
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021; 54:e13115. [PMID: 34464477 PMCID: PMC8488570 DOI: 10.1111/cpr.13115] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2-CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2- CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2-CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2-CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Petkov S, Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection. Genomics 2021; 113:3487-3500. [PMID: 34425224 DOI: 10.1016/j.ygeno.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
We analyzed the whole transcriptome characteristics of blood CD4+ T naïve (TN) cells isolated from HIV-1 infected patients starting ART at acute (early ART = EA; n = 13) or chronic (late ART = LA; n = 11) phase of infection and controls (C; n = 15). RNA sequencing revealed 389 differentially expressed genes (DEGs) in EA and 810 in LA group in relation to controls. Comparison of the two groups of patients showed 183 DEGs. We focused on DEGs involved in apoptosis, inflammation and immune response. Clustering showed a poor separation of EA from C suggesting that these two groups present a similar transcriptomic profile of CD4+ TN cells. The comparison of EA and LA patients resulted in a high cluster purity revealing that different biological dysfunctions characterize EA and LA patients. The upregulated expression of several inflammatory chemokine genes distinguished the patient groups from C; CCL2 and CCL7, however, were downregulated in EA compared to LA patients. BCL2, an anti-apoptotic factor pivotal for naïve T cell homeostasis, distinguished both EA and LA from C. The expression of several DEGs involved in different inflammatory processes (TLR4, PTGS2, RAG1, IFNA16) was lower in EA compared LA. We conclude that although the transcriptome of CD4+ TN cells isolated from patients initiating ART at acute infection reveals a more quiescent phenotype, the survival profile of these cells still appears to be affected. Our results show that the detrimental process of inflammation is under more efficient control in EA patients.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
40
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
41
|
Yager N, Cole S, Lledo Lara A, Maroof A, Penkava F, Knight JC, Bowness P, Al-Mossawi H. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann Rheum Dis 2021; 80:1559-1567. [PMID: 34226188 DOI: 10.1136/annrheumdis-2021-220280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES A number of immune populations have been implicated in psoriatic arthritis (PsA) pathogenesis. This study used mass cytometry (CyTOF) combined with transcriptomic analysis to generate a high-dimensional dataset of matched PsA synovial fluid (SF) and blood leucocytes, with the aim of identifying cytokine production ex vivo in unstimulated lymphoid and myeloid cells. METHODS Fresh SF and paired blood were either fixed or incubated with protein transport inhibitors for 6 hours. Samples were stained with two CyTOF panels: a phenotyping panel and an intracellular panel, including antibodies to both T cell and myeloid cell secreted proteins. Transcriptomic analysis by gene array of key expanded cell populations, single-cell RNA-seq, ELISA and LEGENDplex analysis of PsA SF were also performed. RESULTS We observed marked changes in the myeloid compartment of PsA SF relative to blood, with expansion of intermediate monocytes, macrophages and dendritic cell populations. Classical monocytes, intermediate monocytes and macrophages spontaneously produced significant levels of the proinflammatory mediators osteopontin and CCL2 in the absence of any in vitro stimulation. By contrast minimal spontaneous cytokine production by T cells was detected. Gene expression analysis showed the genes for osteopontin and CCL2 to be among those most highly upregulated by PsA monocytes/macrophages in SF; and both proteins were elevated in PsA SF. CONCLUSIONS Using multiomic analyses, we have generated a comprehensive cellular map of PsA SF and blood to reveal key expanded myeloid proinflammatory modules in PsA of potential pathogenic and therapeutic importance.
Collapse
Affiliation(s)
- Nicole Yager
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Alicia Lledo Lara
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Frank Penkava
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Julian C Knight
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Hussein Al-Mossawi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Bratti LDOS, do Carmo ÍAR, Vilela TF, Souza LC, Moraes ACRD, Filippin-Monteiro FB. Bariatric surgery improves clinical outcomes and adiposity biomarkers but not inflammatory cytokines SAA and MCP-1 after a six-month follow-up. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:230-236. [PMID: 33827327 DOI: 10.1080/00365513.2021.1904278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Obesity is a global health problem and is associated with a chronic low-grade inflammatory state. Surgical obesity treatment is being increasingly common due to its efficacy. From this, we evaluate the metabolic state improvement and inflammation remission in patients with obesity undergoing bariatric surgery. Methods: The clinical data and serum levels of leptin and adiponectin were assessed in patients with obesity before and one, three and six months after bariatric surgery. Also, serum amyloid A (SAA), monocyte chemoattractant protein-1 (MCP-1) levels were measured during the follow-up surgery and compared with a lean group of individuals. Results: Weight loss decreased body mass index (BMI), comorbidities percentage, drugs use and leptin levels. Adiponectin levels increased after surgery. SAA and MCP-1 showed no difference after surgery, but a trend decrease for MCP-1 and a significant decrease was observed when the patients with obesity were compared to the lean participants. Conclusion: Bariatric surgery alters metabolic status improving obesity-related comorbidities and the adiposity biomarkers leptin and adiponectin, but not inflammatory cytokines SAA and MCP-1.
Collapse
Affiliation(s)
- Letícia de Oliveira Souza Bratti
- Programa de Pós-Gaduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Ícaro Andrade Rodrigues do Carmo
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Taís Ferreira Vilela
- Departamento de Clínica Médica, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Liliete Canes Souza
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Ana Carolina Rabello de Moraes
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| |
Collapse
|
43
|
Dander E, Fallati A, Gulić T, Pagni F, Gaspari S, Silvestri D, Cricrì G, Bedini G, Portale F, Buracchi C, Starace R, Pasqualini F, D'Angiò M, Brizzolara L, Maglia O, Mantovani A, Garlanda C, Valsecchi MG, Locatelli F, Biondi A, Bottazzi B, Allavena P, D'Amico G. Monocyte-macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 193:1157-1171. [PMID: 33713428 DOI: 10.1111/bjh.17330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
B-cell acute lymphoblastic leukaemia (B-ALL) reprograms the surrounding bone marrow (BM) stroma to create a leukaemia-supportive niche. To elucidate the contribution of immune cells to the leukaemic microenvironment, we investigated the involvement of monocyte/macrophage compartments, as well as several recruitment pathways in B-ALL development. Immunohistochemistry analyses showed that CD68-expressing macrophages were increased in leukaemic BM biopsies, compared to controls and predominantly expressed the M2-like markers CD163 and CD206. Furthermore, the "non-classical" CD14+ CD16++ monocyte subset, expressing high CX3CR1 levels, was significantly increased in B-ALL patients' peripheral blood. CX3CL1 was shown to be significantly upregulated in leukaemic BM plasma, thus providing an altered migratory pathway possibly guiding NC monocyte recruitment into the BM. Additionally, the monocyte/macrophage chemoattractant chemokine ligand 2 (CCL2) strongly increased in leukaemic BM plasma, possibly because of the interaction of leukaemic cells with mesenchymal stromal cells and vascular cells and due to a stimulatory effect of leukaemia-related inflammatory mediators. C5a, a macrophage chemoattractant and M2-polarizing factor, further appeared to be upregulated in the leukaemic BM, possibly as an effect of PTX3 decrease, that could unleash complement cascade activation. Overall, deregulated monocyte/macrophage compartments are part of the extensive BM microenvironment remodelling at B-ALL diagnosis and could represent valuable targets for novel treatments to be coupled with classical chemotherapy.
Collapse
Affiliation(s)
- Erica Dander
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Tamara Gulić
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Fabio Pagni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, Rome, Italy
| | - Daniela Silvestri
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Giulia Cricrì
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Gloria Bedini
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Federica Portale
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Chiara Buracchi
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Rita Starace
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Pasqualini
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Mariella D'Angiò
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Lisa Brizzolara
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Oscar Maglia
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy
| | - Maria Grazia Valsecchi
- Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, Rome, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Barbara Bottazzi
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Paola Allavena
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| |
Collapse
|
44
|
Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol 2021; 236:6282-6296. [PMID: 33634486 DOI: 10.1002/jcp.30345] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alexander Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.,Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
45
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
O'Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:1-14. [PMID: 34286437 DOI: 10.1007/978-3-030-62658-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-C motif chemokine ligand 2 (CCL2) is a crucial mediator of immune cell recruitment during microbial infections and tissue damage. CCL2 is also frequently overexpressed in cancer cells and other cells in the tumor microenvironment, and a large body of evidence indicates that high CCL2 levels are associated with more aggressive malignancies, a higher probability of metastasis, and poorer outcomes in a wide range of cancers. CCL2 plays a role in recruiting tumor-associated macrophages (TAMs), which adopt a pro-tumorigenic phenotype and support cancer cell survival, facilitate tumor cell invasion, and promote angiogenesis. CCL2 also has direct, TAM-independent effects on tumor cells and the tumor microenvironment, including recruitment of other myeloid subsets and non-myeloid cells, maintaining an immunosuppressive environment, stimulating tumor cell growth and motility, and promoting angiogenesis. CCL2 also plays important roles in the metastatic cascade, such as creating a pre-metastatic niche in distant organs and promoting tumor cell extravasation across endothelia. Due to its many roles in tumorigenesis and metastatic processes, the CCL2-CCR2 signaling axis is currently being pursued as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
47
|
Kolahdouz-Mohammadi R, Shidfar F, Khodaverdi S, Arablou T, Heidari S, Rashidi N, Delbandi AA. Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells. J Cell Mol Med 2020; 25:1116-1127. [PMID: 33325132 PMCID: PMC7812293 DOI: 10.1111/jcmm.16178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is an inflammatory disease affecting reproductive‐aged women. Immunologic disturbance, as well as inflammation, have crucial roles in the pathogenesis of endometriosis. In this study, we evaluated the effects of resveratrol treatment on expression of monocyte chemotactic protein‐1 (MCP‐1), interleukin‐6 (IL‐6), IL‐8, and regulated upon activation, normal T cell expressed and secreted (RANTES) in endometrial stromal cells from patients with endometriosis compared with non‐endometriotic controls. Thirteen eutopic (EuESCs) and nine ectopic (EESCs) endometrial stromal cells from endometriotic patients as well as eleven endometrial stromal cells from non‐endometriotic controls (CESCs) were treated with resveratrol (100 μmol/L) or ethanol, and gene and/or protein expression of MCP‐1, IL‐6, IL‐8 and RANTES was examined at 6, 24 and 48 hours following treatment in the cells from all origins. Resveratrol treatment significantly reduced gene and protein expression of MCP‐1, IL‐6, and IL‐8 in EuESCs and EESCs compared with CESCs (P < .05‐.001, P < .05‐.001 and P < .05‐<.01, respectively), and this reduction was more noticeable in EESCs than EuESCs (P < .05‐<.001). Besides, resveratrol treatment significantly reduced RANTES protein expression in EESCs in all time intervals (P < .05). Resveratrol treatment significantly reduced the expression of MCP‐1, IL‐6, IL‐8 and RANTES in EESCs.
Collapse
Affiliation(s)
- Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Science, Tehran, Iran
| | - Tahereh Arablou
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Iwamoto H, Izumi K, Mizokami A. Is the C-C Motif Ligand 2-C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int J Mol Sci 2020; 21:ijms21239328. [PMID: 33297571 PMCID: PMC7730417 DOI: 10.3390/ijms21239328] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
C-C motif ligand 2 (CCL2) was originally reported as a chemical mediator attracting mononuclear cells to inflammatory tissue. Many studies have reported that CCL2 can directly activate cancer cells through a variety of mechanisms. CCL2 can also promote cancer progression indirectly through increasing the recruitment of tumor-associated macrophages into the tumor microenvironment. The role of CCL2 in cancer progression has gradually been understood, and various preclinical cancer models elucidate that CCL2 and its receptor C-C chemokine receptor 2 (CCR2) are attractive targets for intervention in cancer development. However, clinically available drugs that regulate the CCL2-CCR2 axis as anticancer agents are not available at this time. The complete elucidation of not only the oncological but also the physiological functions of the CCL2-CCR2 axis is required for achieving a satisfactory effect of the CCL2-CCR2 axis-targeted therapy.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
49
|
Tu MM, Abdel-Hafiz HA, Jones RT, Jean A, Hoff KJ, Duex JE, Chauca-Diaz A, Costello JC, Dancik GM, Tamburini BAJ, Czerniak B, Kaye J, Theodorescu D. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol 2020; 3:720. [PMID: 33247183 PMCID: PMC7699641 DOI: 10.1038/s42003-020-01441-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies targeting the PD-1/PD-L1 axis are now a mainstay in the clinical management of multiple cancer types, however, many tumors still fail to respond. CCL2 is highly expressed in various cancer types and has been shown to be associated with poor prognosis. Inhibition or blockade of the CCL2/CCR2 signaling axis has thus been an area of interest for cancer therapy. Here we show across multiple murine tumor and metastasis models that CCR2 antagonism in combination with anti-PD-1 therapy leads to sensitization and enhanced tumor response over anti-PD-1 monotherapy. We show that enhanced treatment response correlates with enhanced CD8+ T cell recruitment and activation and a concomitant decrease in CD4+ regulatory T cell. These results provide strong preclinical rationale for further clinical exploration of combining CCR2 antagonism with PD-1/PD-L1-directed immunotherapies across multiple tumor types especially given the availability of small molecule CCR2 inhibitors and antibodies.
Collapse
Affiliation(s)
- Megan M Tu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hany A Abdel-Hafiz
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Robert T Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annie Jean
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katelyn J Hoff
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason E Duex
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jonathan Kaye
- Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.
- Department Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
50
|
Tawarayama H, Suzuki N, Inoue-Yanagimachi M, Himori N, Tsuda S, Sato K, Ida T, Akaike T, Kunikata H, Nakazawa T. Glutathione Trisulfide Prevents Lipopolysaccharide-induced Inflammatory Gene Expression in Retinal Pigment Epithelial Cells. Ocul Immunol Inflamm 2020; 30:789-800. [PMID: 33215957 DOI: 10.1080/09273948.2020.1833224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the effects of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammatory gene expression in immortalized ARPE-19, and primary human and mouse retinal pigment epithelial (RPE) cells. Sulfane sulfur molecules were significantly increased in GSSSG-treated ARPE-19 cells. GSSSG prevented the LPS-induced upregulation of interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 2 (CCL2) in ARPE-19/primary RPE cells. Moreover, GSSSG prevented the activation of the nuclear factor-kappa B p65 subunit, and promoted the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in LPS-treated ARPE-19 cells. ERK1/2 inhibition prevented the GSSSG-mediated inhibition of LPS-induced IL-6 and CCL2 upregulation. Additionally, ERK1/2 activation prevented the upregulation of these genes in the absence of GSSSG. Knockdown of HMOX1 or NRF2, known as anti-oxidative genes, did not affect the activity of GSSSG in the context of LPS stimulation. These findings suggest that GSSSG attenuates LPS-induced inflammatory gene expression via ERK signaling hyperactivation, independently of the NRF2/HMOX1 pathway.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Suzuki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|