1
|
Amritha J, Sumithra TG, Krupesha Sharma SR, Anusree VN, Dhanutha NR, Reynold P, George JC, Gayathri S, Ambarish PG, Gopalakrishnan A. Molecular features and expression characteristics of a novel tumour necrosis factor-α paralog from snubnose pompano (Trachinotus blochii). JOURNAL OF FISH BIOLOGY 2025. [PMID: 40395083 DOI: 10.1111/jfb.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pivotal cytokine in vertebrate immunity. Considering the increasing scientific interest for TNF-α in piscine biology, the paper detailed the characteristics of a novel tnf-α gene from a high-value mariculture species, Trachinotus blochii. The tbtnf-α complementary DNA (cDNA) of 1385 bp encoded an open reading frame of 762 bp, 3' untranslated region (3' UTR) of 484 bp and 5' UTR of 139 bp. The deduced Tbtnf-α1 showed the highest sequence identity to that of Seriola dumerili (∼83%). The comparative phylogenetics identified the protein as the TNF-α paralog 1. Tbtnf-α1 displayed all the hallmark features of other teleost TNF-α, suggesting similar immune-related functions. However, the Tbtnf-α1 was predicted to be more acidic and less thermostable. The study generated the three-dimensional (3-D) structure model of Tbtnfα-1 based on the protein sequence that can be applied in future research. The genomic organization of tbtnfα-1 contained four exons and three introns. Real-time polymerase chain reaction (PCR) analysis in healthy conditions showed the constitutive expression and wide distribution of tbtnfα-1 in a tissue-specific manner, with maximum expression in the kidney. As in silico analysis predicted the biological function of the novel TNF-α as a regulator in the defence response to bacterial infection, functional validation was done through the expression analysis following exposure to a marine pathogen (Vibrio harveyi) challenge. The results showed that the expression of tbtnf-α1 in the liver, spleen, heart, gill and kidney was significantly upregulated compared to the control fish after the challenge at differential time points post-infection. The study also demonstrated the kinetics of tbtnfα-1 expression in the liver, spleen, heart, gill and kidney at 6 to 48 h post-infection, and the results showed the peak expression at 24 h in all the tissues followed by a drop in the expression. Briefly, the present study detailed the sequence, structural and functional characteristics of tnf-α1 in the immune response of silver pompano.
Collapse
Affiliation(s)
- Jagannivasan Amritha
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Thangalazhy Gopakumar Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | | | - Velappan Nair Anusree
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | | | - Peter Reynold
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | - Joseph Chakkalakkal George
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | - Suresh Gayathri
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Purackattu Gop Ambarish
- Mariculture Division, Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - Achamveetil Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| |
Collapse
|
2
|
Nedospasov SA, Kruglov AA, Tumanov AV, Drutskaya MS, Astrakhantseva IV, Kuprash DV. Reverse Genetics Applied to Immunobiology of Tumor Necrosis Factor, a Multifunctional Cytokine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:853-861. [PMID: 38880646 DOI: 10.1134/s0006297924050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 06/18/2024]
Abstract
Tumor necrosis factor (TNF) is one of many cytokines - protein molecules responsible for communication between the cells of immune system. TNF was discovered and given its grand name because of its striking antitumor effects in experimental systems, but its main physiological functions in the context of whole organism turned out to be completely unrelated to protection against tumors. This short review discusses "man-made" mouse models generated by early genome-editing technologies, which enabled us to establish true functions of TNF in health and certain diseases as well as to unravel potential strategies for improving therapy of TNF-dependent diseases.
Collapse
Affiliation(s)
- Sergey A Nedospasov
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrei A Kruglov
- Laboratory of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, 10117, Germany
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 79229, USA
| | - Marina S Drutskaya
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Irina V Astrakhantseva
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
3
|
Liu M, Chen X, Gu Z, He H, Chen M, Kuai L, Jia Z, Li Y, Chen Y, Hong M, Xiao F. Predictive Value of CFIm25 Expression in Peripheral Blood Monocytes for Coronary Atherosclerosis. Int J Med Sci 2024; 21:562-570. [PMID: 38322593 PMCID: PMC10845263 DOI: 10.7150/ijms.91148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Background: Cleavage factor Im25 (CFIm25) regulates cell function by affecting mRNA editing processes and plays diverse roles in various diseases. Studies have found that peripheral blood monocytes are valuable in diagnosing and prognosing coronary atherosclerosis. However, no studies have examined the predictive value of CFIm25 expression in peripheral blood monocytes for coronary atherosclerosis. Methods and Results: We collected the coronary angiography results of 267 patients and calculated the Gensini score to evaluate their degree of coronary atherosclerosis. We isolated peripheral blood monocytes and detected CFIm25 RNA expression. Based on their Gensini score, we divided the patients into negative (0, n = 46), mild lesion (≤ 8, n = 71), moderate lesion (8-23, n = 76), and severe lesion (≥ 23, n = 74) groups. Results showed that CFIm25 expression correlated negatively with the Gensini score and the number of involved coronary vessels. Univariate and multivariate binary logistic regression analyses showed that CFIm25 expression in peripheral blood monocytes was a protective factor for severe lesions, ≥ 50% stenosis, and three-vessel lesions. The areas under the receiver operating characteristic curve of CFIm25 expression for predicting lesions, severe lesions, ≥50% stenosis, and three-vessel lesions were 0.743, 0.735, 0.791, and 0.736, respectively. Conclusions: CFIm25 expression in peripheral blood monocytes correlates negatively with the degree of coronary atherosclerosis and helps predict the severity and number of coronary artery lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mei Hong
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fangping Xiao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
4
|
Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, Nutt SL, Chopin M, Bouillet P. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin‐draining lymph nodes. Immunol Cell Biol 2022; 100:160-173. [PMID: 35048402 PMCID: PMC9303644 DOI: 10.1111/imcb.12521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
The role of RNA‐binding proteins of the CCCH‐containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase‐3) as a potential post‐transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c‐deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c‐deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC‐restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod‐induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome‐wide association studies. Our data suggest a role for ZC3H12C in DC‐driven skin homeostasis.
Collapse
Affiliation(s)
- Elise Clayer
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- ZAUM – Centre of Allergy and Environment Helmholtz Centre and Technical University of Munich Munich Germany
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Valentin Heim
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- Immatics Biotechnologies GmbH Munich Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
5
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Diaz-Muñoz MD, Osma-Garcia IC. The RNA regulatory programs that govern lymphocyte development and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1683. [PMID: 34327847 DOI: 10.1002/wrna.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Lymphocytes require of constant and dynamic changes in their transcriptome for timely activation and production of effector molecules to combat external pathogens. Synthesis and translation of messenger (m)RNAs into these effector proteins is controlled both quantitatively and qualitatively by RNA binding proteins (RBPs). RBP-dependent regulation of RNA editing, subcellular location, stability, and translation shapes immune cell development and immunity. Extensive evidences have now been gathered from few model RBPs, HuR, PTBP1, ZFP36, and Roquin. However, recently developed methodologies for global characterization of protein:RNA interactions suggest the existence of complex RNA regulatory networks in which RBPs co-ordinately regulate the fate of sets of RNAs controlling cellular pathways and functions. In turn, RNA can also act as scaffolding of functionally related proteins modulating their activation and function. Here we review current knowledge about how RBP-dependent regulation of RNA shapes our immune system and discuss about the existence of a hidden immune cell epitranscriptome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Hermi F, Gómez-Abellán V, Pérez-Oliva AB, García-Moreno D, López-Muñoz A, Sarropoulou E, Arizcun M, Ridha O, Mulero V, Sepulcre MP. The molecular, functional and phylogenetic characterization of PGE 2 receptors reveals their different roles in the immune response of the teleost fish gilthead seabream (Sparus aurata L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103803. [PMID: 32738336 DOI: 10.1016/j.dci.2020.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Prostaglandin E2 (PGE2) plays an important role in immune activities in teleost fish, including seabream. However, receptors involved in PGE2 signaling, as well as the pathways activated downstream, are largely unknown. In this study, one ortholog of mammalian PTGER1, PTGER3 and PTGER4, and two of PTGER2 (Ptger2a and Ptger2b) were identified and characterized in gilthead seabream. In silico analysis showed that all these receptors possessed the organization domain of G protein-coupled receptors, with the exception of Ptger2b. The corresponding in vivo studies revealed that they were expressed in all the tissues examined, the highest mRNA levels of ptger1 and ptger3 being observed in the spleen and of ptger2a and ptger4 in the blood. Bacterial infection induced higher mRNA levels of ptger2a, ptger3 and ptger4 in peritoneal exudate (the site of bacterial injection). In addition, head kidney acidophilic granulocytes and macrophages displayed different ptger1, ptger2a, ptger3 and ptger4 expression profiles. Furthermore, in macrophages the expression of the receptors was weakly affected by stimulation with bacterial DNA or with PGE2, while in acidophilic granulocytes stimulation resulted in the upregulation of ptger2a and ptger4. Taken together, these results suggest different roles for seabream PGE2 receptors in the regulation of the immune responses.
Collapse
Affiliation(s)
- Fatma Hermi
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences of Bizerte, Jarzouna - Bizerte, 7021, University of Carthage, Tunis, Tunisia; Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Victoria Gómez-Abellán
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), 30860, Murcia, Spain
| | - Oueslati Ridha
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences of Bizerte, Jarzouna - Bizerte, 7021, University of Carthage, Tunis, Tunisia
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100, Murcia, Spain.
| |
Collapse
|
8
|
Jiang S, Baba K, Okuno T, Kinoshita M, Choong CJ, Hayakawa H, Sakiyama H, Ikenaka K, Nagano S, Sasaki T, Shimamura M, Nagai Y, Hagihara K, Mochizuki H. Go-sha-jinki-Gan Alleviates Inflammation in Neurological Disorders via p38-TNF Signaling in the Central Nervous System. Neurotherapeutics 2021; 18:460-473. [PMID: 33083995 PMCID: PMC8116410 DOI: 10.1007/s13311-020-00948-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/14/2023] Open
Abstract
Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine. In clinical practice, GJG is effective against neuropathic pain and hypersensitivity induced by chemotherapy or diabetes. In our previous study using a chronic constriction injury mouse model, we showed that GJG inhibited microglia activation by suppressing the expression of tumor necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (p38 MAPK) in the peripheral nervous system. To investigate whether GJG can suppress inflammation in the central nervous system (CNS) in the context of neurological disorders, we examined the effect of GJG on the activation of resident glial cells and on p38-TNF signaling in two mouse models of neurological disorders: the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. GJG administration relieved the severity of clinical EAE symptoms and MPTP-induced inflammation by decreasing the number of microglia and the production of TNF-α in the spinal cord of EAE mice and the substantia nigra of MPTP-treated mice. Accordingly, GJG suppressed the phosphorylation of p38 in glial cells of these two mouse models. We conclude that GJG attenuates inflammation of the CNS by suppressing glial cell activation, followed by a decrease in the production of TNF-α via p38-TNF signaling.
Collapse
Affiliation(s)
- Shiying Jiang
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideki Hayakawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Sakiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Munehisa Shimamura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Jain N, Vogel V. Spatial confinement downsizes the inflammatory response of macrophages. NATURE MATERIALS 2018; 17:1134-1144. [PMID: 30349032 PMCID: PMC6615903 DOI: 10.1038/s41563-018-0190-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2018] [Indexed: 05/19/2023]
Abstract
Macrophages respond to chemical/metabolic and physical stimuli, but their effects cannot be readily decoupled in vivo during pro-inflammatory activation. Here, we show that preventing macrophage spreading by spatial confinement, as imposed by micropatterning, microporous substrates or cell crowding, suppresses late lipopolysaccharide (LPS)-activated transcriptional programs (biomarkers IL-6, CXCL9, IL-1β, and iNOS) by mechanomodulating chromatin compaction and epigenetic alterations (HDAC3 levels and H3K36-dimethylation). Mechanistically, confinement reduces actin polymerization, thereby lowers the LPS-stimulated nuclear translocation of MRTF-A. This lowers the activity of the MRTF-A-SRF complex and subsequently downregulates the inflammatory response, as confirmed by chromatin immunoprecipitation coupled with quantitative PCR and RNA sequencing analysis. Confinement thus downregulates pro-inflammatory cytokine secretion and, well before any activation processes, the phagocytic potential of macrophages. Contrarily, early events, including activation of the LPS receptor TLR4, and downstream NF-κB and IRF3 signalling and hence the expression of early LPS-responsive genes were marginally affected by confinement. These findings have broad implications in the context of mechanobiology, inflammation and immunology, as well as in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
10
|
Innate immunity to inhaled particles: A new paradigm of collective recognition. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Álvarez-Torres D, Gómez-Abellán V, Arizcun M, García-Rosado E, Béjar J, Sepulcre MP. Identification of an interferon-stimulated gene, isg15, involved in host immune defense against viral infections in gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2018; 73:220-227. [PMID: 29277364 DOI: 10.1016/j.fsi.2017.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Interferons (IFNs) play a key role in the innate immunity of vertebrates against viral infections by inducing hundreds of IFN-stimulated genes (ISGs), such as isg15. Isg15 is an ubiquitin-like protein, which can conjugate cellular and viral proteins in a process called ISGylation, although it can also act as a cytokine-like protein. Gilthead seabream (Sparus aurata L.) is an important asymptomatic carrier of viral haemorrhagic septicaemia virus (VHSV) and nodavirus, representing a threat to other co-cultivated susceptible species. In order to better understand virus-host interactions in this fish species, this study addresses the identification and molecular characterization of seabream isg15 (sb-isg15). In addition, the modulation of transcript levels of sb-isg15 was analysed in SAF-1 cells and seabream acidophilic granulocytes (AGs) stimulated in vitro with different pathogen-associated molecular patterns (PAMPs) or inoculated with VHSV and striped jack nervous necrosis virus (SJNNV). The full-length cDNA of sb-isg15 gene, encoding a predicted protein of 155 amino acids, was identified and seen to share the same characteristics as other fish and mammalian isg15 genes. Here we report the clear induction of sb-isg15 transcript levels in SAF-1 cells and AGs stimulated with toll-like receptor (TLR) ligands, such as polyinosinic:polycytidylic acid (poly I:C) or genomic DNA from Vibrio anguillarum (VaDNA), respectively. Furthermore, VHSV and SJNNV inoculation induced a significant degree of sb-isg15 transcription in SAF-1 cells and AGs. However, the relative levels of viral RNA transcription showed that SJNNV replication seems to be more efficient than VHSV in both in vitro systems. Interestingly, sb-isg15 transcript induction elicited by VaDNA was reduced in VHSV- and SJNNV-inoculated AGs, suggesting an interference prompted by the viruses against the type I IFN system. Taken together, these findings support the use of seabream AGs as a valuable experimental system to study virus-host interactions, in which sb-isg15 seems to play an important role.
Collapse
Affiliation(s)
- Daniel Álvarez-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Victoria Gómez-Abellán
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), 30860 Murcia, Spain
| | - Esther García-Rosado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Béjar
- Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
12
|
Epple HJ, Friebel J, Moos V, Troeger H, Krug SM, Allers K, Schinnerling K, Fromm A, Siegmund B, Fromm M, Schulzke JD, Schneider T. Architectural and functional alterations of the small intestinal mucosa in classical Whipple's disease. Mucosal Immunol 2017; 10:1542-1552. [PMID: 28176790 DOI: 10.1038/mi.2017.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/10/2017] [Indexed: 02/04/2023]
Abstract
Classical Whipple's disease (CWD) affects the gastrointestinal tract and rather elicits regulatory than inflammatory immune reactions. Mechanisms of malabsorption, diarrhea, and systemic immune activation are unknown. We here analyzed mucosal architecture, barrier function, and immune activation as potential diarrheal trigger in specimens from 52 CWD patients. Our data demonstrate villus atrophy and crypt hyperplasia associated with epithelial apoptosis and reduced alkaline phosphatase expression in the duodenum of CWD patients. Electrophysiological and flux experiments revealed increased duodenal permeability to small solutes and macromolecules. Duodenal architecture and permeability ameliorated upon antibiotic treatment. Structural correlates for these alterations were concordant changes of membranous claudin-1, claudin-2, claudin-3, and tricellulin expression. Tumor necrosis factor-α and interleukin-13 were identified as probable mediators of epithelial apoptosis, and altered tight junction expression. Increased serum markers of microbial translocation and their decline following treatment corroborated the biological significance of the mucosal barrier defect. Hence, mucosal immune responses in CWD elicit barrier dysfunction. Diarrhea is caused by loss of absorptive capacity and leak flux of ions and water. Downregulation of tricellulin causes increased permeability to macromolecules and subsequent microbial translocation contributes to systemic inflammation. Thus, therapeutic strategies to reconstitute the mucosal barrier and control inflammation could assist symptomatic control of CWD.
Collapse
Affiliation(s)
- H-J Epple
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J Friebel
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - V Moos
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - H Troeger
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - S M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - K Allers
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - K Schinnerling
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - A Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - B Siegmund
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - M Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J D Schulzke
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Institute of Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - T Schneider
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
13
|
Rabinovitch M. Investigational Approaches to Pulmonary Hypertension. Toxicol Pathol 2017. [DOI: 10.1177/0192623391019004-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pulmonary vascular disease (PVD) revolves around a series of switches in the smooth muscle cell (SMC) phenotype. Differentiation of SMC from precursor cells causes muscularization of normally non-muscular peripheral arteries; hypertrophy and hyperplasia of existing SMC and increased connective tissue protein synthesis cause thickening of the wall, and migration of SMC into the subendothelial space is the basis of intimal proliferation. To uncover the pathophysiologic mechanisms of these changes, we have used a variety of animal models and cell culture systems. From rats in which hypertensive PVD was induced by exposure to chronic hypoxia or following injection of the pyrrolizidine alkaloid, monocrotaline, we have identified increased pulmonary artery (PA) elastolytic activity which occurs early and which accompanies progressive rather than reversible PVD. Inhibition of elastolytic activity prevents or reduces PVD. We are cloning the gene for this new enzyme to study its regulation in PVD. To address the mechanism of SMC proliferation under conditions of high PA pressure and flow, we cultured endothelial cells on Polyvinylchloride membranes and pulsated them at high pressure. This caused reduced synthesis of heparan sulfate. The resulting decrease binding of fibroblast growth factor would lessen its mitogenic effect and modulate SMC proliferation in response to other growth factors from platelets or serum. To study SMC migration, we cultured endothelial and SMC from the ductus arteriosus (a fetal vessel which spontaneously develops intimal proliferation in late gestation). The migratory SMC phenotype is a function of increased production of fibronectin governed by a translational control mechanism, and increased endothelial hyaluronan regulated by transforming growth factor β. SMC migration is also related to impaired assembly of elastin, the result of a chondroitin sulfate-induced decrease in elastin binding proteins and the production of a novel ‘defunct’ 52 kD tropoelastin.
Collapse
|
14
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Chuang Y, Knickel BK, Leonard JN. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun 2016; 22:647-657. [PMID: 27670945 PMCID: PMC5292318 DOI: 10.1177/1753425916668243] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages are ubiquitous innate immune cells that play a central role in health and disease by adopting distinct phenotypes, which are broadly divided into classical inflammatory responses and alternative responses that promote immune suppression and wound healing. Although macrophages are attractive therapeutic targets, incomplete understanding of this functional choice limits clinical manipulation. While individual stimuli, pathways, and genes involved in macrophage functional responses have been identified, how macrophages evaluate complex in vivo milieus comprising multiple divergent stimuli remains poorly understood. Here, we used combinations of "incoherent" stimuli-those that individually promote distinct macrophage phenotypes-to elucidate how the immunosuppressive, IL-10-driven macrophage phenotype is induced, maintained, and modulated under such combinatorial stimuli. The IL-10-induced immunosuppressive phenotype was largely insensitive to co-administered IL-12, which has been reported to modulate macrophage phenotype, but maintaining the immunosuppressive phenotype required sustained exposure to IL-10. Our data implicate the intracellular protein, BCL3, as a key mediator of the IL-10-driven phenotype. Notably, co-administration of IFN-γ disrupted an IL-10-mediated positive feedback loop that may reinforce the immunosuppressive phenotype. This novel combinatorial perturbation approach thus generated new insights into macrophage decision making and local immune network function.
Collapse
Affiliation(s)
- Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Brianne K. Knickel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Feuerstein G, Neville L, Rabinovici R. Pulmonary TNFα is a critical mediator in Adult Respiratory Distress Syndrome. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199500200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of effective pharmacotherapies to combat the Adult Respiratory Distress Syndrome (ARDS) is critically dependent upon: (1) the development of clinically-relevant animal models; (2) identification of inflammatory mediators centrally involved in eliciting lung injury; (3) understanding the inter-relationships or 'cross-talk' between pro and anti-inflammatory mediators which modulate the lung inflammation; and (4) the application of molecular techniques to isolate potentially novel genes involved in the development of ARDS. In this paper, we will present evidence from a rat model of microvascular lung injury produced by interleukin-2 (IL-2), that pulmonary TNFα is a primary and pivotal mediator of lung injury and that different modes of TNFα inhibition may represent feasible strategies to prevent ARDS. Furthermore, we will describe how the application of Differential Display Reverse Transcriptase Polymerase Chain Reaction (DDRT-PCR) can allow the rapid isolation of partial fragments of potentially new genes involved in ARDS. The products of such genes could represent future target sites for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- G.Z. Feuerstein
- Department of Cardiovascular Pharmacology, SmithKline Beecham, King of Prussia, Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - L.F. Neville
- Department of Cardiovascular Pharmacology, SmithKline Beecham, King of Prussia, Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - R. Rabinovici
- Department of Cardiovascular Pharmacology, SmithKline Beecham, King of Prussia, Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
The complex cascade of cellular events governing inflammasome activation and IL-1β processing in response to inhaled particles. Part Fibre Toxicol 2016; 13:40. [PMID: 27519871 PMCID: PMC4983011 DOI: 10.1186/s12989-016-0150-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 01/05/2023] Open
Abstract
The innate immune system is the first line of defense against inhaled particles. Macrophages serve important roles in particle clearance and inflammatory reactions. Following recognition and internalization by phagocytes, particles are taken up in vesicular phagolysosomes. Intracellular phagosomal leakage, redox unbalance and ionic movements induced by toxic particles result in pro-IL-1β expression, inflammasome complex engagement, caspase-1 activation, pro-IL-1β cleavage, biologically-active IL-1β release and finally inflammatory cell death termed pyroptosis. In this review, we summarize the emerging signals and pathways involved in the expression, maturation and secretion of IL-1β during these responses to particles. We also highlight physicochemical characteristics of particles (size, surface and shape) which determine their capacity to induce inflammasome activation and IL-1β processing.
Collapse
|
18
|
Margaroli C, Oberle S, Lavanchy C, Scherer S, Rosa M, Strasser A, Pellegrini M, Zehn D, Acha-Orbea H, Ehirchiou D. Role of proapoptotic BH3-only proteins inListeria monocytogenesinfection. Eur J Immunol 2016; 46:1427-37. [DOI: 10.1002/eji.201545857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Camilla Margaroli
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Susanne Oberle
- Swiss Vaccine Research Institute; Centre des laboratoires d'Epalinges; Epalinges Switzerland
- Division of Immunology and Allergy; Department of Medicine; Lausanne University Hospital; Lausanne Switzerland
| | - Christine Lavanchy
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Stefanie Scherer
- Swiss Vaccine Research Institute; Centre des laboratoires d'Epalinges; Epalinges Switzerland
- Division of Immunology and Allergy; Department of Medicine; Lausanne University Hospital; Lausanne Switzerland
| | - Muriel Rosa
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- The Department of Medical Biology; University of Melbourne; Melbourne Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- The Department of Medical Biology; University of Melbourne; Melbourne Australia
| | - Dietmar Zehn
- Technische Universität München; Weihenstephaner Berg 3; 85354 Freising-Weihenstephan Germany
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| | - Driss Ehirchiou
- Department of Biochemistry CIIL; University of Lausanne; Epalinges Switzerland
| |
Collapse
|
19
|
Li G, Wu Y, Jia H, Tang L, Huang R, Peng Y, Zhang Y. Establishment and evaluation of a transgenic mouse model of arthritis induced by overexpressing human tumor necrosis factor alpha. Biol Open 2016; 5:418-23. [PMID: 26977076 PMCID: PMC4890665 DOI: 10.1242/bio.016279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) plays a key role in the pathogenesis of rheumatoid arthritis (RA). Blockade of TNFα by monoclonal antibody has been widely used for the therapy of RA since the 1990s; however, its mechanism of efficacy, and potential safety concerns of the treatment are still not fully understood. This study sought to establish a transgenic arthritic mouse model by overexpressing human TNFα (hTNFα) and to apply this model as a means to evaluate therapeutic consequences of TNFα inhibitors. The transgenic mouse line (TgTC) with FVB background was generated by incorporating 3′-modified hTNFα gene sequences. A progressively erosive polyarthritis developed in the TgTC mice, with many characteristics observed in human rheumatoid arthritis, including polyarticular swelling, impairment of movement, synovial hyperplasia, and cartilage and bone erosion. Gene expression analysis demonstrated that hTNFα is not only expressed in hyperplastic synovial membrane, but also in tissues without lesions, including brain, lung and kidney. Treatment of the TgTC mice with anti-hTNFα monoclonal antibodies (mAb) significantly decreased the level of hTNFα in the diseased joint and effectively prevented development of arthritis in a dose-dependent response fashion. Our results indicated that the TgTC mice represent a genetic model which can be used to comprehensively investigate the pathogenesis and therapeutics of TNFα-related diseases. Summary: We describe the establishment of a human TNFα transgenic arthritis mouse model with applications for understanding the role of TNFα in disease progression and developing therapeutic strategies.
Collapse
Affiliation(s)
- Ge Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| | - Yu'e Wu
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| | - Lu Tang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| | - Yucai Peng
- Livzon MabPharm Inc., No. 38 Chuangye North Rd., Jinwan, Zhuhai, Guangdong 519045, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong 510663, China
| |
Collapse
|
20
|
Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep 2015; 5:16037. [PMID: 26531896 PMCID: PMC4631997 DOI: 10.1038/srep16037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/08/2015] [Indexed: 01/14/2023] Open
Abstract
Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3' untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3' UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3' UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure.
Collapse
Affiliation(s)
- Yi-Fan Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - David M. Mauger
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas J. Urban
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7361, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Shelton S. Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
21
|
Gómez-Abellán V, Montero J, López-Muñoz A, Figueras A, Arizcun M, Mulero V, Sepulcre MP. Professional phagocytic granulocyte-derived PGD2 regulates the resolution of inflammation in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:182-191. [PMID: 26027798 DOI: 10.1016/j.dci.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Prostaglandins (PGs) play a key role in the development on the immune response through the regulation of both pro- and anti-inflammatory processes. PGD(2) can be either pro- or anti-inflammatory depending on the inflammatory milieu. Prostaglandin D synthase (PGDS) is the enzyme responsible for the conversion of PGH(2) to PGD(2). In mammals, two types of PGDS synthase have been described, the hematopoietic (H-PGDS) and the lipocalin (L-PGDS). In the present study we describe the existence of two orthologs of the mammalian L-PGDS (PGDS1 and PGDS2) in the gilthead seabream and characterize their gene expression profiles and biological activity. The results showed a dramatic induction of the gene coding for PGDS1 in acidophilic granulocytes (AGs), which are functionally equivalent to mammalian neutrophils, after a prolonged in vitro activation with different pathogen associated molecular patterns (PAMPs). In contrast PGDS2 was not expressed in these cells. The functional relevance of the induction of PGDS1 in AGs was confirmed by the ability of these cells to release PGD(2) upon PAMP stimulation. To gain further insight into the role of PGD(2) in the resolution of inflammation in fish, we examined the ability of PGD(2) or its cyclopentenone derivates (cyPGs) to modulate the main functional activities of AGs. It was found that both PGD(2) and cyPGs inhibited the production of reactive oxygen species and downregulated the transcript levels of the gene encoding interleukin-1β. Taken together, these results demonstrate that the use of PGD(2) and its metabolites in the resolution of inflammation was established before the divergence of fish from tetrapods more than 450 million years ago and support a critical role for granulocytes in the resolution of inflammation in vertebrates.
Collapse
Affiliation(s)
- Victoria Gómez-Abellán
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Azucena López-Muñoz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Puerto de Mazarrón, 30860 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - María P Sepulcre
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
22
|
Chaurasia MK, Palanisamy R, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK). FISH & SHELLFISH IMMUNOLOGY 2015; 45:598-607. [PMID: 25982403 DOI: 10.1016/j.fsi.2015.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied at different time points. In bacterial infected ovary tissue, the highest mRNA expression was at 24 h post-infection, whereas in viral infection, the expression was highest at 48 h post-infection. Thus we can conclude that MrBOK functions as an apoptotic protein in intracellular programmed cell-death pathway to counteract the anti-apoptotic proteins released by bacterial and viral pathogens at the time of infection. This is the first study that emphasizes the importance of BOK during bacterial and viral infection in crustacean.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
23
|
Tiedje C, Holtmann H, Gaestel M. The role of mammalian MAPK signaling in regulation of cytokine mRNA stability and translation. J Interferon Cytokine Res 2015; 34:220-32. [PMID: 24697200 DOI: 10.1089/jir.2013.0146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular-regulated kinases and p38 mitogen-activated protein kinases are activated in innate (and adaptive) immunity and signal via different routes to alter the stability and translation of various cytokine mRNAs, enabling immune cells to respond promptly. This regulation involves mRNA elements, such as AU-rich motifs, and mRNA-binding proteins, such as tristetraprolin (TTP), HuR, and hnRNPK-homology (KH) type splicing regulatory protein (KSRP). Signal-dependent phosphorylation of mRNA-binding proteins often alters their subcellular localization or RNA-binding affinity. Furthermore, it could lead to an altered interaction with other mRNA-binding proteins and altered scaffolding properties for mRNA-modifying enzymes, such as deadenylases, polyadenylases, decapping enzymes, poly(A) binding proteins, exo- or endonucleases, and proteins of the exosome machinery. In many cases, this results in unstable mRNAs being stabilized, with their translational arrest being released and cytokine production being stimulated. Hence, components of these mechanisms are potential targets for the modulation of the inflammatory response.
Collapse
Affiliation(s)
- Christopher Tiedje
- Institute of Physiological Chemistry, Hannover Medical School , Hannover, Germany
| | | | | |
Collapse
|
24
|
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus 2014; 5:508-19. [PMID: 25484187 DOI: 10.4161/nucl.36360] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.
Collapse
Key Words
- 3′ untranslated region
- 3′READS, 3′ Region Extraction and Deep Sequencing
- AD, Alzheimer disease
- APA, Alternative polyadenylation
- AREs, Au-rich elements
- BPV, bovine papilloma virus
- CAH, congenital adrenal hyperplasia
- CFIm25, Cleavage Factor Im 25 kDa
- COX-2, cyclooxygenase 2
- CPSF, Cleavage and Polyadenylation Specificity Factor
- CSTF2, cleavage stimulatory factor-64kDa
- DMKN, dermokine
- DSE, downstream sequence element
- ESC, embryonic stem cells
- FMR1, Fragil X mental retardation 1
- FOXP3, forkhead box P3
- FXPOI, fragile X-associated immature ovarian insufficiency
- FXS, Fragile X syndrome
- FXTAS, fragile X-associated tremor/ataxia syndrome
- HGRG-14, high-glucose-regulated gene
- IMP-1, Insulin-like growth factor 2 mRNA binding protein 1
- IPEX, immune dysfunction, polyendocrinopathy, enteropathy, X-linked
- LPS, lipopolysaccharide
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A) binding protein
- PAP, polyA polymerase
- PAS, polyA site
- PD, Parkinson disease
- PDXK, pyridoxal kinase
- PPIE, peptidylpropylisomerase E
- RBP, RNA-binding protein
- RNA Pol II, RNA polymerase II
- SLE, systemic lupus erythematosus
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- SNP, single nucleotide polymorphism
- StAR, steroigogenic acute regulatory
- TCF/LEF, T cell factor/lymphoid enhancer factor.
- TCF7L2, transcription factor 7-like 2
- TCR, T cell receptor
- TLI, tandem UTR length index
- TNF-α, tumor necrosis factor-α
- USE, upstream sequence element
- UTR, untranslated region
- WAS, Wiskott-Aldrich syndrome
- WASP, Wiskott-Aldrich syndrome protein
- aSyn, α-Synuclein
- aSynL, longest aSyn isoform
- alternative polyadenylation
- cell state
- disease
- gene expression
- miRNA, microRNA
- nuclear 1
- pA signal, polyA signal
- pA tail, polyA tail
- polyadenylation
- siRNAs, small interfering RNAs
- snRNPs, spliceosomal small nuclear ribonucleoproteins
- α-GalA, α-galactosidase A
- μ, IgM heavy-chain mRNA
Collapse
Affiliation(s)
- Ana Curinha
- a Gene Regulation Group; IBMC-Instituto de Biologia Molecular e Celular ; Universidade do Porto ; Porto , Portugal
| | | | | | | | | |
Collapse
|
25
|
Ma TY, Wu JY, Gao XK, Wang JY, Zhan XL, Li WS. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:448-460. [PMID: 24950416 DOI: 10.1016/j.dci.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/01/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA.
Collapse
Affiliation(s)
- Tai-yang Ma
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-ying Wu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Xiao-ke Gao
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jing-yuan Wang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xu-liang Zhan
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-sheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
26
|
Jones-Hall YL, Grisham MB. Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease. ACTA ACUST UNITED AC 2014; 21:267-88. [PMID: 24935242 DOI: 10.1016/j.pathophys.2014.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model.
Collapse
Affiliation(s)
- Yava L Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906, United States.
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
27
|
Andrade EB, Alves J, Madureira P, Oliveira L, Ribeiro A, Cordeiro-da-Silva A, Correia-Neves M, Trieu-Cuot P, Ferreira P. TLR2-Induced IL-10 Production Impairs Neutrophil Recruitment to Infected Tissues during Neonatal Bacterial Sepsis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4759-68. [DOI: 10.4049/jimmunol.1301752] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 2013; 33:3728-34. [PMID: 23897428 DOI: 10.1128/mcb.00688-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS.
Collapse
|
30
|
Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 2013; 24:227-39. [PMID: 23647915 DOI: 10.1016/j.cytogfr.2013.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|
31
|
Jiang H, Chen W, Zhu G, Zhang L, Tucker B, Hao L, Feng S, Ci H, Ma J, Wang L, Stashenko P, Li YP. RNAi-mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS One 2013; 8:e58599. [PMID: 23577057 PMCID: PMC3618217 DOI: 10.1371/journal.pone.0058599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/07/2013] [Indexed: 12/29/2022] Open
Abstract
Periodontal disease affects about 80% of adults in America, and is characterized by oral bacterial infection-induced gingival inflammation, oral bone resorption, and tooth loss. Periodontitis is also associated with other diseases such as rheumatoid arthritis, diabetes, and heart disease. Although many efforts have been made to develop effective therapies for this disease, none have been very effective and there is still an urgent need for better treatments and preventative strategies. Herein we explored for the first time the possibility that adeno-associated virus (AAV)-mediated RNAi knockdown could be used to treat periodontal disease with improved efficacy. For this purpose, we used AAV-mediated RNAi knockdown of Atp6i/TIRC7 gene expression to target bone resorption and gingival inflammation simultaneously. Mice were infected with the oral pathogen Porphyromonas gingivalis W50 (P. gingivalis) in the maxillary periodontium to induce periodontitis. We found that Atp6i depletion impaired extracellular acidification and osteoclast-mediated bone resorption. Furthermore, local injection of AAV-shRNA-Atp6i/TIRC7 into the periodontal tissues in vivo protected mice from P. gingivalis infection-stimulated bone resorption by >85% and decreased the T-cell number in periodontal tissues. Notably, AAV-mediated Atp6i/TIRC7 knockdown also reduced the expression of osteoclast marker genes and inflammation-induced cytokine genes. Atp6i(+/-) mice with haploinsufficiency were similarly protected from P. gingivalis infection-stimulated bone loss and gingival inflammation. This suggests that AAV-shRNA-Atp6i/TIRC7 therapeutic treatment may significantly improve the health of millions who suffer from P. gingivalis-mediated periodontal disease.
Collapse
Affiliation(s)
- Hongbing Jiang
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Lijie Zhang
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Byron Tucker
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- Harvard School of Dental Medicine Department of Restorative Dentistry and in Endodontics, Boston, Massachusetts, United States of America
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Shengmei Feng
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Hongliang Ci
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Junqing Ma
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Philip Stashenko
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| |
Collapse
|
32
|
Rao S, Liu X, Freedman BD, Behrens EM. Spleen tyrosine kinase (Syk)-dependent calcium signals mediate efficient CpG-induced exocytosis of tumor necrosis factor α (TNFα) in innate immune cells. J Biol Chem 2013; 288:12448-58. [PMID: 23515313 DOI: 10.1074/jbc.m113.454405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pattern recognition receptors expressed by cells of the innate immune system initiate the immune response upon recognition of microbial products. Activation of pattern recognition receptors result in the production and release of proinflammatory cytokines, including TNFα and IL-6. Because these cytokines promote disparate effector cell responses, understanding the signaling pathways involved in their regulation is critical for directing the immune response. Using macrophages and dendritic cells deficient in spleen tyrosine kinase (Syk), we identified a novel pathway by which TNFα trafficking and secretion are regulated by Syk following stimulation with CpG DNA. In the absence of PLCγ2, a Syk substrate, or the calcium-responsive kinase calcium calmodulin kinase II, CpG-induced TNFα secretion was impaired. Forced calcium mobilization rescued the TNFα secretion defect in Syk-deficient cells. In contrast to its effect on TNFα, Syk deficiency did not affect IL-6 secretion, suggesting that Syk-dependent signals participate in differential sorting of cytokines, thus tailoring the cytokine response. Our data report a novel pathway for TNFα regulation and provide insight into non-transcriptional mechanisms for shaping cytokine responses.
Collapse
Affiliation(s)
- Sheila Rao
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
33
|
Dong C, Sexton H, Gertrudes A, Akama T, Martin S, Virtucio C, Chen CW, Fan X, Wu A, Bu W, Liu L, Feng L, Jarnagin K, Freund YR. Inhibition of Toll-like receptor-mediated inflammation in vitro and in vivo by a novel benzoxaborole. J Pharmacol Exp Ther 2013; 344:436-46. [PMID: 23192653 DOI: 10.1124/jpet.112.200030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Pro-inflammatory cytokines play a critical role in the development of autoimmune and inflammatory diseases. Targeting the cytokine environment has proven efficient for averting inflammation. In this study, we reported that 6-[4-(aminomethyl)-2-chlorophenoxyl]benzo[c][1,2]oxaborol-1(3H)-ol (AN3485), a benzoxaborole analog, inhibited TLR2-, TLR3-, TLR4-, and TLR5-mediated TNF-α, IL-1β, and IL-6 release from human PBMCs and isolated monocytes with IC(50) values ranging from 18 to 580 nM, and the inhibition was mediated at the transcriptional level. Topical administration of AN3485 significantly reduced PMA-induced contact dermatitis and oxazolone-induced delayed-type hypersensitivity in mice, indicating its capability of penetrating skin and potential topical application in skin inflammation. Oral administration of AN3485 showed dose-dependent suppression of LPS-induced TNF-α and IL-6 production in mice with an ED(90) of 30 mg/kg. Oral AN3485, 35 mg/kg, twice a day, suppressed collagen-induced arthritis in mice over a 20-day period. The potent anti-inflammatory activity in in vitro and in vivo disease models makes AN3485 an attractive therapeutic lead for a variety of cutaneous and systemic inflammatory diseases.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Arthritis/drug therapy
- Arthritis/immunology
- Arthritis/metabolism
- Boron Compounds/administration & dosage
- Boron Compounds/pharmacokinetics
- Boron Compounds/therapeutic use
- Boron Compounds/toxicity
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/toxicity
- Cell Survival/drug effects
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dermatitis, Allergic Contact/drug therapy
- Dermatitis, Allergic Contact/etiology
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/metabolism
- Dose-Response Relationship, Drug
- Drug Hypersensitivity/drug therapy
- Drug Hypersensitivity/etiology
- Drug Hypersensitivity/immunology
- Drug Hypersensitivity/metabolism
- Female
- Humans
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Toll-Like Receptors/antagonists & inhibitors
Collapse
Affiliation(s)
- Chen Dong
- Anacor Pharmaceuticals, 1020 E Meadow Circle, Palo Alto, CA 94303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K, Khare A, Levy DE, Lee JS, Mallampalli R, Ray A, Ray P, Ray P. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol 2013; 6:189-99. [PMID: 22785228 PMCID: PMC3505806 DOI: 10.1038/mi.2012.62] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin (IL)-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10(-/-) mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b(+)Gr1(int)F4/80(+) cells resembling myeloid-derived suppressor cells (MDSCs) that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected signal transducer and activator of transcription 1 (STAT1)(-/-) mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia.
Collapse
Affiliation(s)
- Stephanie L. Poe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Meenakshi Arora
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Timothy B. Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Manohar Yarlagadda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anupriya Khare
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - David E. Levy
- Departments of Pathology and Microbiology, New York University, New York, New York 10016
| | - Janet S. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Rama Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | |
Collapse
|
35
|
Sipe JD. The Acute Phase Response in the Pathogenesis of Inflammatory Disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Erickson RI, Tarrant J, Cain G, Lewin-Koh SC, Dybdal N, Wong H, Blackwood E, West K, Steigerwalt R, Mamounas M, Flygare JA, Amemiya K, Dambach D, Fairbrother WJ, Diaz D. Toxicity profile of small-molecule IAP antagonist GDC-0152 is linked to TNF-α pharmacology. Toxicol Sci 2012; 131:247-58. [PMID: 22956632 DOI: 10.1093/toxsci/kfs265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inhibitor-of-apoptosis (IAP) proteins suppress apoptosis and are overexpressed in a variety of cancers. Small-molecule IAP antagonists are currently being tested in clinical trials as novel cancer therapeutics. GDC-0152 is a small-molecule drug that triggers tumor cell apoptosis by selectively antagonizing IAPs. GDC-0152 induces NF-κB transcriptional activity leading to expression of several chemokines and cytokines, of which tumor necrosis factor alpha (TNF-α) is the most important for single-agent tumor activity. TNF-α is a pleiotropic cytokine that drives a variety of cellular responses, comprising inflammation, proliferation, and cell survival or death depending on the cellular context. As malignant and normal cells produce TNF-α upon IAP antagonism, increased TNF-α could drive both efficacy and toxicity. The toxicity profile of GDC-0152 in dogs and rats was characterized after iv dose administration once every 2 weeks for four doses. Findings in both species consisted of a dose-related, acute, systemic inflammatory response, and hepatic injury. Laboratory findings included elevated plasma cytokines, an inflammatory leukogram, and increased liver transaminases with histopathological findings of inflammatory infiltrates and apoptosis/necrosis in multiple tissues; a toxicology profile consistent with TNF-α-mediated toxicity. Dogs exhibited more severe findings than rats, and humans did not exhibit these findings, at comparable exposures across species. Furthermore, elevations in blood neutrophil count, serum monocyte chemoattractant protein-1, and other markers of inflammation corresponded to GDC-0152 exposure and toxicity and thus may have utility as safety biomarkers.
Collapse
Affiliation(s)
- Rebecca I Erickson
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012; 3:255-266. [PMID: 23710261 DOI: 10.1515/bmc-2011-0057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
38
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
39
|
Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 2012; 32:913-928. [PMID: 22203041 PMCID: PMC3295194 DOI: 10.1128/mcb.05340-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022] Open
Abstract
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhi-Zhang Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Qin Shao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiang-Qi Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Zou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Gary Brewer
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai, China
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
40
|
Palanisamy V, Jakymiw A, Van Tubergen EA, D'Silva NJ, Kirkwood KL. Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J Dent Res 2012; 91:651-8. [PMID: 22302144 DOI: 10.1177/0022034512437372] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3'-untranslated regions (3'UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3'UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression.
Collapse
Affiliation(s)
- V Palanisamy
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
41
|
Maifeld SV, MacKinnon AL, Garrison JL, Sharma A, Kunkel EJ, Hegde RS, Taunton J. Secretory protein profiling reveals TNF-α inactivation by selective and promiscuous Sec61 modulators. ACTA ACUST UNITED AC 2012; 18:1082-8. [PMID: 21944747 DOI: 10.1016/j.chembiol.2011.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 05/29/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
Cotransins are cyclic heptadepsipeptides that bind the Sec61 translocon to inhibit cotranslational translocation of a subset of secreted and type I transmembrane proteins. The few known cotransin-sensitive substrates are all targeted to the translocon by a cleavable signal sequence, previously shown to be a critical determinant of cotransin sensitivity. By profiling two cotransin variants against a panel of secreted and transmembrane proteins, we demonstrate that cotransin side-chain differences profoundly affect substrate selectivity. Among the most sensitive substrates we identified is the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Like all type II transmembrane proteins, TNF-α is targeted to the translocon by its membrane-spanning domain, indicating that a cleavable signal sequence is not strictly required for cotransin sensitivity. Our results thus reveal an unanticipated breadth of translocon substrates whose expression is inhibited by Sec61 modulators.
Collapse
Affiliation(s)
- Sarah V Maifeld
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012. [PMID: 23710261 DOI: 10.1515/bmc-2011-1057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
43
|
Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 2011; 118:3290-300. [PMID: 21791428 DOI: 10.1182/blood-2011-02-336552] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although several transcription factors have been shown to be critical for the induction and maintenance of IL-17 expression by CD4 Th cells, less is known about the role of nontranscriptional mechanisms. Here we show that the p38 MAPK signaling pathway is essential for in vitro and in vivo IL-17 production by regulating IL-17 synthesis in CD4 T cells through the activation of the eukaryotic translation initiation factor 4E/MAPK-interacting kinase (eIF-4E/MNK) pathway. We also show that p38 MAPK activation is required for the development and progression of both chronic and relapsing-remitting forms of experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis. Furthermore, we show that regulation of p38 MAPK activity specifically in T cells is sufficient to modulate EAE severity. Thus, mechanisms other than the regulation of gene expression also contribute to Th17 cell effector functions and, potentially, to the pathogenesis of other Th17 cell-mediated diseases.
Collapse
|
44
|
de Lima-Salgado TM, Alba-Loureiro TC, do Nascimento CS, Nunes MT, Curi R. Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage. Cell Biochem Biophys 2011; 59:89-97. [PMID: 20809180 DOI: 10.1007/s12013-010-9117-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-α (TNF-α). TNF-α is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 μM of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-α production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-α secretion by the cells. Saturated FAs were potent inducers of TNF-α expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-α.
Collapse
Affiliation(s)
- Thais Martins de Lima-Salgado
- Laboratory of Clinical Emergency, Emergency Medicine Department, Medical School, University of São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Wang L, Trebicka E, Fu Y, Waggoner L, Akira S, Fitzgerald KA, Kagan JC, Cherayil BJ. Regulation of lipopolysaccharide-induced translation of tumor necrosis factor-alpha by the toll-like receptor 4 adaptor protein TRAM. J Innate Immun 2011; 3:437-46. [PMID: 21494017 PMCID: PMC3186711 DOI: 10.1159/000324833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/03/2011] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced production of tumor necrosis factor (TNF)-α requires the recruitment of two pairs of adaptors to the Toll-like receptor 4 cytoplasmic domain. The contribution of one pair - Toll-interleukin-1 receptor domain-containing adaptor inducing interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM) - to TNF-α expression is not well understood. To clarify this issue, we studied TRAM knockout bone marrow-derived macrophages (BMDM). LPS-stimulated TRAM-deficient BMDM had decreased TNF-α protein expression even at times when TNF-α mRNA levels were normal, suggesting impaired translation. Consistent with this idea, knockdown of TRAM in RAW264.7 macrophages decreased translation of a reporter controlled by the TNF-α 3' untranslated region, while transfection of TRAM in HEK293T cells increased translation of this reporter. Also consistent with a role for TRAM in TNF-α translation, LPS-induced activation of MK2, a kinase involved in this process, was impaired in TRAM-deficient BMDM. TRIF did not increase translation of the TNF-α 3' untranslated region reporter when expressed in HEK293T cells. However, BMDM that lacked functional TRIF produced reduced levels of TNF-α protein in response to LPS despite normal amounts of the mRNA. Unlike BMDM, LPS-stimulated TRAM-deficient peritoneal macrophages displayed equivalent reductions in TNF-α protein and mRNA. Our results indicate that TRAM- and TRIF-dependent signals have a previously unappreciated, cell type-specific role in regulating TNF-α translation.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital, Charlestown, Mass., USA
| | - Estela Trebicka
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital, Charlestown, Mass., USA
| | - Ying Fu
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital, Charlestown, Mass., USA
| | - Lisa Waggoner
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Mass., USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Mass., USA
| | - Jonathan C. Kagan
- Department of Pediatrics, Harvard Medical School, Boston, Mass., USA
- Division of Gastroenterology, Children's Hospital, Boston, Mass., USA
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital, Charlestown, Mass., USA
- Department of Pediatrics, Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
46
|
Villarino AV, Katzman SD, Gallo E, Miller O, Jiang S, McManus MT, Abbas AK. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 2011; 34:50-60. [PMID: 21236706 PMCID: PMC3955755 DOI: 10.1016/j.immuni.2010.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/21/2010] [Accepted: 11/10/2010] [Indexed: 12/20/2022]
Abstract
Self-reactive T cell clones that escape negative selection are either deleted or rendered functionally unresponsive (anergic), thus preventing them from propagating host tissue damage. By using an in vivo model, we investigated molecular mechanisms for T cell tolerance, finding that despite a characteristic inability to generate effector cytokine proteins, self-reactive T cells express large amounts of cytokine mRNAs. This disconnect between cytokine message and protein was not observed in T cells mounting productive responses to foreign antigens but, instead, was seen only in those responding to self, where the block in protein translation was shown to involve conserved AU-rich elements within cytokine 3'UTRs. These studies reveal that translation of abundant cytokine mRNAs is limited in self-reactive T cells and, thus, identify posttranscriptional silencing of antigen-driven gene expression as a key mechanism underlying the anergic phenotype of self-reactive T cells.
Collapse
Affiliation(s)
- Alejandro V. Villarino
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shoshana D. Katzman
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eugenio Gallo
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Omer Miller
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuwei Jiang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T. McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abul K. Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Whang I, Lee Y, Kim H, Jung SJ, Oh MJ, Choi CY, Lee WS, Kim SJ, Lee J. Characterization and expression analysis of the myeloid differentiation factor 88 (MyD88) in rock bream Oplegnathus fasciatus. Mol Biol Rep 2010; 38:3911-20. [PMID: 21152988 DOI: 10.1007/s11033-010-0507-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/13/2010] [Indexed: 01/16/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein able to activate nuclear factor-kappa B (NF-κB) through interactions with interleukin-1 receptor (IL-1R) and the Toll-like receptors (TLRs), with the exception of TLR3. Here, we describe the identification of MyD88 from the rock bream fish Oplegnathus fasciatus and its characterization based on GS-FLX™ sequencing. The cDNA of rock bream MyD88 was found to be composed of 1626 bp, with an 867 bp open reading frame that encodes 288 amino acids. The deduced amino acid sequence of MyD88 possessed both a conserved death domain at the amino terminus and a typical Toll-IL-1 receptor (TIR) domain at the carboxyl terminus, similar to that found in other fishes, amphibians, avians, mammals and invertebrates. The mRNA expression pattern of MyD88 in healthy and bacterially challenged rock bream were examined using quantitative real-time polymerase chain reaction (qRT-PCR). MyD88 transcripts were found to be strongly expressed in blood, gill, liver, spleen, head kidney and kidney, moderately expressed in skin, brain and intestine, and weakly expressed in muscle. Expression levels of MyD88 in blood, spleen and head kidney were dramatically up-regulated upon exposure to LPS and the Gram-negative bacteria Edwardsiella tarda, suggesting that MyD88 plays an important role in rock bream defenses against bacterial infection.
Collapse
Affiliation(s)
- Ilson Whang
- Department of Life Sciences, College of Natural Sciences, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2010; 286:1436-44. [PMID: 21062749 DOI: 10.1074/jbc.m110.145870] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) and Toll-Like Receptors 4 (TLR4)-LPS-mediated increase in TNFα production has a central role in the pathogenesis of alcoholic liver disease. Micro-RNA (miR)-125b, miR-146a, and miR-155 can regulate inflammatory responses to LPS. Here we evaluated the involvement of miRs in alcohol-induced macrophage activation. Chronic alcohol treatment in vitro resulted in a time-dependent increase in miR-155 but not miR-125b or miR-146a levels in RAW 264.7 macrophages. Furthermore, alcohol pretreatment augmented LPS-induced miR-155 expression in macrophages. We found a linear correlation between alcohol-induced increase in miR-155 and TNFα induction. In a mouse model of alcoholic liver disease, we found a significant increase in both miR-155 levels and TNFα production in isolated KCs when compared with pair-fed controls. The mechanistic role of miR-155 in TNFα regulation was indicated by decreased TNFα levels in alcohol-treated macrophages after inhibition of miR-155 and by increased TNFα production after miR-155 overexpression, respectively. We found that miR-155 affected TNFα mRNA stability because miR-155 inhibition decreased whereas miR-155 overexpression increased TNFα mRNA half-life. Using the NF-κB inhibitors, MG-132 or Bay11-7082, we demonstrated that NF-κB activation mediated the up-regulation of miR-155 by alcohol in KCs. In conclusion, our novel data demonstrate that chronic alcohol consumption increases miR-155 in macrophages via NF-κB and the increased miR-155 contributes to alcohol-induced elevation in TNFα production via increased mRNA stability.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun 2010; 79:177-84. [PMID: 20956571 DOI: 10.1128/iai.00742-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a stress-induced transcription factor that promotes expression of genes that protect mammalian cells from the lethal effects of severely elevated temperatures (>42°C). However, we recently showed that HSF1 is activated at a lower temperature (39.5°C) in T cells, suggesting that HSF1 may be important for preserving T cell function during pathogen-induced fever responses. To test this, we examined the role of HSF1 in clearance of Listeria monocytogenes, an intracellular bacterial pathogen that elicits a strong CD8(+) T cell response in mice. Using temperature transponder microchips, we showed that the core body temperature increased approximately 2°C in L. monocytogenes-infected mice and that the fever response was maintained for at least 24 h. HSF1-deficient mice cleared a low-dose infection with slightly slower kinetics than did HSF1(+/+) littermate controls but were significantly more susceptible to challenges with higher doses of bacteria. Surprisingly, HSF1-deficient mice did not show a defect in CD8(+) T cell responses following sublethal infection. However, when HSF1-deficient mice were challenged with high doses of L. monocytogenes, increased levels of serum tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) compared to those of littermate control mice were observed, and rapid death of the animals occurred within 48 to 60 h of infection. Neutralization of TNF-α enhanced the survival of HSF1-deficient mice. These results suggest that HSF1 is needed to prevent the overproduction of proinflammatory cytokines and subsequent death due to septic shock that can result following high-dose challenge with bacterial pathogens.
Collapse
|