1
|
Gianopulos KA, Makio AO, Pritchard SM, Cunha CW, Hull MA, Nicola AV. Herpes Simplex Virus 1 Glycoprotein B from a Hyperfusogenic Virus Mediates Enhanced Cell-Cell Fusion. Viruses 2024; 16:251. [PMID: 38400027 PMCID: PMC10892784 DOI: 10.3390/v16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.
Collapse
Affiliation(s)
- Katrina A. Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Albina O. Makio
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Cristina W. Cunha
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164, USA
| | - McKenna A. Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| |
Collapse
|
2
|
Gianopulos KA, Makio AO, Pritchard SM, Cunha CW, Hull MA, Nicola AV. Membrane fusion activity of herpes simplex virus 1 glycoproteins from a hyperfusogenic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569993. [PMID: 38106075 PMCID: PMC10723375 DOI: 10.1101/2023.12.04.569993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4°C and also entered cells more efficiently at 15°C relative to wild type virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the wild type gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. Wild type gC is proposed to facilitate fusion and entry into epithelial cells by optimizing conformational changes in the fusion protein gB. ANG gC substitution or addition also had no effect on cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.
Collapse
|
3
|
Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator (HVEM) and HSV-1 gD affect reactivation but not latency levels. PLoS Pathog 2023; 19:e1011693. [PMID: 37738264 PMCID: PMC10550154 DOI: 10.1371/journal.ppat.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Nyayanit DA, Sahay RR, Sakpal GN, Shete AM, Chaubal GC, Sarkale P, Srivastava R, Mohandas S, Yadav PD. Identification and phylogenetic analysis of herpes simplex virus-1 from clinical isolates in India. Access Microbiol 2019; 1:e000047. [PMID: 32974534 PMCID: PMC7470303 DOI: 10.1099/acmi.0.000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Human herpes simplex virus (HSV)-1 infection is acquired in childhood and persists throughout a person’s lifetime. Here, we present two cases from India; one showing symptoms of postpartum haemorrhage with disseminated intravascular coagulation, and the second one showing signs of acute encephalitis syndrome. The aetiological agent in both cases was identified as HSV-1 using the PCR method. The next-generation sequencing method retrieved ~97 % of the viral genome from the isolates of the clinical samples. The phylogenetic analysis of the retrieved genomes revealed that they belong to clade II of HSV-1. This study identifies a few sequence variations in the glycoprotein region of HSV-1 during two different clinical manifestations. There are a couple of papers that analyse variations in the glycoprotein region of clinical samples. Further, this study also highlights the importance of considering HSV-1 during differential diagnosis when analysing the nosocomial infection.
Collapse
Affiliation(s)
| | - Rima R. Sahay
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Anita M. Shete
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Prasad Sarkale
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
5
|
Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. J Virol 2016; 90:5622-5635. [PMID: 27030266 DOI: 10.1128/jvi.00446-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.
Collapse
|
6
|
Koyanagi N, Imai T, Arii J, Kato A, Kawaguchi Y. Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol Immunol 2014; 58:31-7. [PMID: 24200420 DOI: 10.1111/1348-0421.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/25/2022]
Abstract
Us3 is a serine-threonine protein kinase that is encoded by herpes simplex virus 1 (HSV-1). In experimental animal models of HSV infection, peripheral and intracranial inoculations can be used to study viral pathogenicity in peripheral sites (e.g., eyes and vagina) and central nervous systems (CNSs), respectively. In addition, peripheral inoculation can be used to investigate this virus' ability to invade the CNS (neuroinvasiveness) from peripheral sites. HSV-1 Us3 has previously been shown to be critical for viral pathogenicity in both peripheral sites and CNSs of mice. However, the role of HSV-1 Us3 in viral neuroinvasiveness has not yet been elucidated. In the present study, the yields of a Us3 null mutant virus and its repaired virus in the eyes, trigeminal ganglia, and brains of mice following ocular inoculation were examined. It was found that, although the repaired virus appeared in the brains of mice 3 days after infection, peak replication occurring 7 days after infection, no viral replication of the Us3 null mutant virus was detectable. These findings indicate that HSV-1 Us3 plays a crucial role in the ability of the virus to invade the brain from the eyes. Thus, HSV-1 Us3 is a significant neuroinvasiveness factor in vivo.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology; Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
7
|
Traesel CK, Sá e Silva M, Weiss M, Spilki FR, Weiblen R, Flores EF. Genetic diversity of 3' region of glycoprotein D gene of bovine herpesvirus 1 and 5. Virus Genes 2014; 48:438-47. [PMID: 24482291 DOI: 10.1007/s11262-014-1040-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/12/2014] [Indexed: 11/28/2022]
Abstract
Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) are closely related alphaherpesviruses of cattle. While BoHV-1 is mainly associated with respiratory/genital disease and rarely associated with neurological disease, BoHV-5 is the primary agent of meningoencephalitis in cattle. The envelope glycoprotein D of alphaherpesviruses (BoHV-1/gD1 and BoHV-5/gD5) is involved in the early steps of virus infection and may influence virus tropism and neuropathogenesis. This study performed a sequence analysis of the 3' region of gD gene (gD3') of BoHV-1 isolates recovered from respiratory/genital disease (n = 6 and reference strain Cooper) or from neurological disease (n = 7); and from seven typical neurological BoHV-5 isolates. After PCR amplification, nucleotide (nt) sequencing, and aminoacid (aa) sequence prediction; gD3' sequences were compared, identity levels were calculated, and selective pressure was analyzed. The phylogenetic reconstruction based on nt and aa sequences allowed for a clear differentiation of BoHV-1 (n = 14) and BoHV-5 (n = 7) clusters. The seven BoHV-1 isolates from neurological disease are grouped within the BoHV-1 branch. A consistent alignment of 346 nt revealed a high similarity within each viral species (gD1 = 98.3 % nt and aa; gD5 = 97.8 % nt and 85.8 % aa) and an expected lower similarity between gD1 and gD5 (73.7 and 64.1 %, nt and aa, respectively). The analysis of molecular evolution revealed an average negative selection at gD3'. Thus, the phylogeny and similarity levels allowed for differentiation of BoHV-1 and BoHV-5 species, but not further division in subspecies. Sequence analysis did not allow for the identification of genetic differences in gD3' potentially associated with the respective clinical/pathological phenotypes, yet revealed a lower level of gD3' conservation than previously reported.
Collapse
Affiliation(s)
- Carolina Kist Traesel
- Laboratoire des Maladies Infectieuses Virales Vétérinaires (LMIVV), Département de Pathologie et Microbiologie, Faculté de Médicine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint Hyacinthe, QC, J2S 7C6, Canada,
| | | | | | | | | | | |
Collapse
|
8
|
Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase, Us3, dictates viral pathogenicity in the central nervous system but not at the periphery. J Virol 2013; 88:2775-85. [PMID: 24352467 DOI: 10.1128/jvi.03300-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.
Collapse
|
9
|
Zhang SY, Abel L, Casanova JL. Mendelian predisposition to herpes simplex encephalitis. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:1091-7. [PMID: 23622315 DOI: 10.1016/b978-0-444-52910-7.00027-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis in the Western world. The pathogenesis of HSE, which affects a small minority of HSV-1-infected individuals, has long remained elusive. Mendelian defects in the TLR3-interferon (IFN) and IFN-responsive pathways were recently shown to predispose to HSE, at least in some children. Autosomal recessive STAT-1 deficiency and X-linked NEMO deficiency were found in children with both mycobacterial disease and HSE. Autosomal recessive UNC-93B deficiency and autosomal dominant TLR3 deficiency were then described in children with isolated HSE. These discoveries provided proof-of-principle that HSE may result from a novel group of single-gene inborn errors of interferon (IFN)-mediated immunity. The TLR3-UNC-93B-dependent production of IFN-α/β and IFN-λ is essential to confer protective immunity to HSV-1 in the central nervous system during the course of primary infection in childhood.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France; Université Paris René Descartes, Necker Medical School, Paris, France
| | | | | |
Collapse
|
10
|
Mott KR, Wechsler SL, Ghiasi H. Ocular infection of mice with an avirulent recombinant HSV-1 expressing IL-4 and an attenuated HSV-1 strain generates virulent recombinants in vivo. Mol Vis 2010; 16:2153-62. [PMID: 21139679 PMCID: PMC2994333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/14/2010] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To assess the relative impact of overexpression of interleukin 2 (IL-2), interleukin 4 (IL-4), and interferon gamma (IFN-γ) expressing recombinant herpes simplex virus type 1 (HSV-1) on altering immune responses in ocularly infected mice. METHODS BALB/c mice were co-infected ocularly with avirulent HSV-1 strain KOS and avirulent recombinant HSV-1 expressing murine IL-4 (HSV-IL-4). Controls mice were co-infected with KOS+HSV-IL-2 or KOS+HSV-IFNγ. Following ocular infection, virus replication in the eye, corneal scarring (CS), and survival were determined. We also isolated recombinant viruses from eye and trigeminal ganglia of KOS+HSV-IL-4 infected mice. RESULTS In this study we found that ocular infection of BALB/c mice with a mixture of HSV-IL-4 and KOS resulted in increased death and increased eye disease. In contrast, when mice were infected in one eye with KOS and the other eye with HSV-IL-4 no death or eye disease was seen. Intraperitoneal co-infection of mice with KOS and HSV-IL-4 also did not result in HSV-1 induced death. Interestingly, ocular infection of mice with a mixture of HSV-IL-2 and KOS did not have any effect on severity of the disease in infected mice. We isolated recombinant viruses from KOS+HSV-IL-4 infected mice eye and trigeminal ganglia. Some of the isolated viruses were more neurovirulent then either parental virus. Infection of macrophages with IL-4 expressing virus down-regulated IL-12 production by macrophages. CONCLUSIONS These results suggest a role for IL-4 in suppression of immune response and generation of virulent viruses in vivo.
Collapse
Affiliation(s)
- Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Ophthalmology Research Laboratories, CSMC Burns & Allen Research Institute, Los Angeles, CA
| | - Steven L. Wechsler
- Virology Research, The Gavin S. Herbert Eye Institute, University of California Irvine, Irvine, CA,Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA,The Center for Virus Research, University of California Irvine, Irvine, CA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research Laboratories, CSMC Burns & Allen Research Institute, Los Angeles, CA
| |
Collapse
|
11
|
Roller DG, Dollery SJ, Doyle JL, Nicola AV. Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity. Virology 2008; 382:207-16. [PMID: 18950828 DOI: 10.1016/j.virol.2008.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with its ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.
Collapse
Affiliation(s)
- Devin G Roller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
12
|
Bustamante J, Zhang SY, von Bernuth H, Abel L, Casanova JL. From infectious diseases to primary immunodeficiencies. Immunol Allergy Clin North Am 2008; 28:235-58, vii. [PMID: 18424331 DOI: 10.1016/j.iac.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The field of primary immunodeficiencies has expanded, thanks to the exploration of novel clinical phenotypes and their connection with morbid genotypes, and the subsequent exploration of new patients who have known primary immunodeficiency-defining clinical phenotypes and their connection with novel morbid genotypes. This two-way process is becoming increasingly active, particularly for patients who have infectious diseases in whom the underlying immunologic and genetic causes remain mostly unexplained. The authors review how the exploration of children who have clinical infectious diseases caused by mycobacteria, pneumococcus, and herpes simplex virus recently led to the description of three new groups of primary immunodeficiencies. These three examples justify the continuation of the genetic exploration of novel infectious phenotypes and novel patients who have infections. This challenging process will eventually reap its rewards, to the benefit of patients and their families.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Institut Nationale de la Santé et de la Recherche Médicale, INSERM U550, 75015 Paris, France
| | | | | | | | | |
Collapse
|
13
|
Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J 2006; 3:105. [PMID: 17192179 PMCID: PMC1779275 DOI: 10.1186/1743-422x-3-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/27/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known. We used the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor usage, membrane fusion, and selection of entry pathway. RESULTS Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions, nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM. The kinetics of ANG path entry was rapid (t1/2 of 5-10 min) regardless of entry route. However, HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO. CONCLUSION HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular receptors, one or more viral determinants is important for the selection of entry pathway. HSV-induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane. Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may have different roles in triggering viral membrane fusion.
Collapse
|
14
|
Osorio Y, Ghiasi H. Recombinant herpes simplex virus type 1 (HSV-1) codelivering interleukin-12p35 as a molecular adjuvant enhances the protective immune response against ocular HSV-1 challenge. J Virol 2005; 79:3297-308. [PMID: 15731224 PMCID: PMC1075685 DOI: 10.1128/jvi.79.6.3297-3308.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important aspect of ocular herpes simplex virus type 1 (HSV-1) vaccine development is identification of an appropriate adjuvant capable of significantly reducing both virus replication in the eye and explant reactivation in trigeminal ganglia. We showed recently that a recombinant HSV-1 vaccine expressing interleukin-4 (IL-4) is more efficacious against ocular HSV-1 challenge than recombinant viruses expressing IL-2 or gamma interferon (IFN-gamma) (Y. Osorio and H. Ghiasi, J. Virol. 77:5774-5783, 2003). We have now constructed and compared recombinant HSV-1 viruses expressing IL-12p35 or IL-12p40 molecule with IL-4-expressing HSV-1 recombinant virus. BALB/c mice were immunized intraperitoneally with IL-12p35-, IL-12p40-, IL-12p35+IL-12p40-, or IL-4-expressing recombinant HSV-1 viruses. Controls included mice immunized with parental virus and mice immunized with the avirulent strain KOS. The efficacy of each vaccine in protecting against ocular challenge with HSV-1 was assessed in terms of survival, eye disease, virus replication in the eye, and explant reactivation. Neutralizing antibody titers, T-cell responses, and expression of 32 cytokines and chemokines were also evaluated. Mice immunized with recombinant HSV-1 expressing IL-12p35 exhibited the lowest virus replication in the eye, the most rapid virus clearance, and the lowest level of explant reactivation. The higher efficacy against ocular virus replication and explant reactivation correlated with higher neutralizing antibody titers, cytotoxic-T-lymphocyte activities, and IFN-gamma expression in recombinant HSV-1 expressing IL-12p35 compared to other vaccines. Mice immunized with both IL-12p35 and IL-12p40 had lower neutralizing antibody responses than mice immunized with IL-12p35 alone. Our results confirm that recombinant virus vaccines expressing cytokine genes can enhance the overall protection against infection, with the IL-12p35 vaccine being the most efficacious of those tested. Collectively, the results support the potential use of IL-12p35 as a vaccine adjuvant, without the toxicity-associated concerns of IL-12.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Viral/blood
- Chemokines/analysis
- Cytokines/analysis
- Disease Models, Animal
- Female
- Herpes Simplex Virus Vaccines/immunology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Interleukin-12 Subunit p35
- Interleukin-12 Subunit p40
- Interleukin-4/genetics
- Interleukin-4/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/prevention & control
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Protein Subunits/genetics
- Protein Subunits/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Trigeminal Ganglion
- Vaccination
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Plaque Assay
- Virus Replication
Collapse
Affiliation(s)
- Yanira Osorio
- Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center Burns and Allen Research Institute, D2024, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | |
Collapse
|
15
|
Ishida Y, Okabe T, Azukizawa Y, Isono T, Seto A. Pathogenic potentials of glycoprotein C-negative syncytial mutants from rabbit T cells infected persistently with herpes simplex virus type 1. J Med Virol 2005; 76:89-97. [PMID: 15779044 DOI: 10.1002/jmv.20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human T cell lymphotropic virus type I (HTLV-I)-transformed T cells of rabbits were infected persistently with Herpes simplex virus type 1 (HSV-1) strain KOS. These infected cells yielded syncytial mutants, either glycoprotein C (gC)-negative or -positive, which predominated over and replaced the wild-type virus in a long-term culture for 2 years. An alignment of nucleotide sequences showed multiple mutations in glycoprotein B (gB) and gC genes of these mutants, which are or may be responsible for the mutant phenotypes. One of four mutants analyzed produced extensively large syncytia and possessed point mutations within the cytoplasmic domain of gB. All four mutants possessed multiple point mutations in gC and two possessed single insertions which resulted in a frame shift, leading to the premature termination of the gC polypeptide chain. The supernatant of the 2-year culture of cells infected persistently, containing only gC-negative syncytial mutants, induced encephalitic symptoms in B/Jas inbred rabbits, when injected intravenously. One gC-negative syncytial isolate from an encephalitic lesion, together with those from the culture supernatant, were examined for pathogenic potential in vitro and in vivo. All these mutants were more cytotoxic and more susceptible to complement inactivation than the parental virus, and could infect and replicate in adrenal glands when injected intravenously into rabbits. Invasion into the central nervous system appeared to be blocked at the portal of entry, the adrenal gland, i.e., none exhibited neuroinvasive potential by itself. Syncytial gC-negative mutants could thus be pathogenic in rabbits.
Collapse
Affiliation(s)
- Yoshimasa Ishida
- Department of Microbiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
16
|
Ben-Hur T, Itzik A, Barak O, Asher Y, Becker Y, Yirmiya R, Weidenfeld J. Immunization with a nonpathogenic HSV-1 strain prevents clinical and neuroendocrine changes of experimental HSV-1 encephalitis. J Neuroimmunol 2004; 152:5-10. [PMID: 15223232 DOI: 10.1016/j.jneuroim.2004.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
We examined whether immunization with the nonpathogenic strain R-15 of herpes simplex virus-1 (HSV-1) may prevent the clinical and neuroendocrine changes induced by the pathogenic HSV-1 strain Syn17+. Inoculation of strain Syn17+ to control rats induced fever, marked motor hyperactivity and aggressive behavior, and increased serum ACTH, corticosterone (CS) and brain prostaglandin-E2 production. Mortality was 100%. Immunization with strain R-15 prior to challenge with Syn17+ induced the production of neutralizing antibodies to HSV-1 Syn17+, and abolished the above clinical and neuroendocrine changes. Mortality was completely prevented. These results indicate that immunization with HSV-1 strain R-15 protects rats from lethal HSV-1 encephalitis and prevents its clinical and neurochemical manifestations.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, P.O. Box 12,000, Jerusalem 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
Garner JA. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev 2003; 55:1497-513. [PMID: 14597143 DOI: 10.1016/j.addr.2003.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alphaherpesviruses, membrane-enveloped DNA viruses that are responsible for a host of human ailments, bind to, enter and are directly targeted to specific intracellular domains within their mammalian host cells. This review emphasizes recent work on the best studied of the alphaherpesviruses, Herpes simplex virus type 1 (HSV1). One area of focus is on recent work that has identified viral glycoproteins that are important in binding and internalization of the virus to the host cell. Complementary work on the receptors for those viral glycoproteins that reside on the host cell surface is also presented, with some discussion of how receptor variety might lead to the tissue tropism demonstrated by alphaherpes viruses. An additional area of focus in this review is how HSV uses the host cell transport systems to achieve intracellular targeting of the incoming virion toward the cell nucleus, and, after production of newly synthesized and assembled viral progeny, targeting them toward the plasma membrane for release.
Collapse
Affiliation(s)
- Judy A Garner
- Department of Cell and Neurobiology, BMT 401, Keck School of Medicine at USC, 1333 San Pablo St., Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Connolly SA, Landsburg DJ, Carfi A, Wiley DC, Cohen GH, Eisenberg RJ. Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface. J Virol 2003; 77:8127-40. [PMID: 12829851 PMCID: PMC161942 DOI: 10.1128/jvi.77.14.8127-8140.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) entry into cells requires the binding of glycoprotein D (gD) to one of several cell surface receptors. The crystal structure of gD bound to one of these receptors, HveA/HVEM, reveals that the core of gD comprises an immunoglobulin fold flanked by a long C-terminal extension and an N-terminal hairpin loop. HveA is a member of the tumor necrosis factor receptor family and contains four cysteine-rich domains (CRDs) characteristic of this family. Fourteen amino acids within the gD N-terminal loop comprise the entire binding site for HveA. To determine the contribution of each gD contact residue to virus entry, we constructed gD molecules mutated in these amino acids. We determined the abilities of the gD mutants to bind receptors, facilitate virus entry, and mediate cell-cell fusion. Seven of the gD mutants exhibited wild-type levels of receptor binding and gD function. Results from the other seven gD mutants revealed three critical regions at the gD-HveA interface. (i) Several gD residues that participate in an intermolecular beta-sheet with HveA were found to be crucial for HveA binding and entry into HveA-expressing cells. (ii) Two gD residues that contact HveA-Y23 contributed to HveA binding but were not required for mediating entry into cells. HveA-Y23 fits into a crevice on the surface of gD and was previously shown to be essential for gD binding. (iii) CRD2 was previously shown to contribute to gD binding, and this study shows that one gD residue that contacts CRD2 contributes to HveA binding. None of the gD mutations prevented interaction with nectin-1, another gD receptor. However, when cotransfected with the other glycoproteins required for fusion, two gD mutants gained the ability to mediate fusion of cells expressing nectin-2, a gD receptor that interacts with several laboratory-derived gD mutants but not with wild-type gD. Thus, results from this panel of gD mutants as well as those of previous studies (A. Carfi, S. H. Willis, J. C. Whitbeck, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and D. C. Wiley, Mol. Cell 8:169-179, 2001, and S. A. Connolly, D. J. Landsburg, A. Carfi, D. C. Wiley, R. J. Eisenberg, and G. H. Cohen, J. Virol. 76:10894-10904, 2002) provide a detailed picture of the gD-HveA interface and the contacts required for functional interaction. The results demonstrate that of the 35 gD and HveA contact residues that comprise the gD-HveA interface, only a handful are critical for complex formation.
Collapse
Affiliation(s)
- Sarah A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mao H, Rosenthal KS. Strain-dependent structural variants of herpes simplex virus type 1 ICP34.5 determine viral plaque size, efficiency of glycoprotein processing, and viral release and neuroinvasive disease potential. J Virol 2003; 77:3409-17. [PMID: 12610116 PMCID: PMC149531 DOI: 10.1128/jvi.77.6.3409-3417.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of certain strains of herpes simplex virus type 1 (HSV-1) to cause encephalitis or neuroinvasive disease in the mouse upon peripheral infection is dependent on a combination of activities of specific forms of viral proteins. The importance of specific variants of ICP34.5 to neuroinvasive disease potential and its correlation with small-plaque production, inefficient glycoprotein processing, and virus release were suggested by comparison of ICP34.5 from the SP7 virus, originally obtained from the brain of a neonate with disseminated disease, and the tissue culture-passaged progeny of SP7 (SLP5 and SLP10) and the KOS321 virus. SLP5, SLP10, and KOS321 are attenuated and exhibit a large-plaque phenotype, including efficient glycoprotein processing and viral release. We show that expression of the KOS321 ICP34.5 protein in cells infected with SP7 or ICP34.5 deletion mutants promotes large plaque formation and efficient viral glycoprotein processing, while expression of the SP7 ICP34.5 protein decreases efficiency of viral glycoprotein processing. In addition, a recombinant virus, 4hS1, with the SP7 ICP34.5 gene replacing the KOS321-like ICP34.5 gene in the SLP10a background, rescues the small-plaque phenotype and neuroinvasive disease. The major difference in the ICP34.5 gene product is the number of Pro-Ala-Thr repeats in the middle region of the protein, with 18 for SP7 and 3 for KOS321. Strain-dependent differences in the ICP34.5 protein can therefore alter the tissue culture behavior and the virulence of HSV-1.
Collapse
Affiliation(s)
- Hanwen Mao
- Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
20
|
Mann MA, Tyler KL, Knipe DM, Fields BN. Type 3 reovirus neuroinvasion after intramuscular inoculation: viral genetic determinants of lethality and spinal cord infection. Virology 2002; 303:213-21. [PMID: 12490384 DOI: 10.1006/viro.2002.1698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the mechanisms by which neurotropic viruses invade peripheral nerve pathways and produce CNS disease, we defined the type 3 (T3) reovirus genes that are determinants of the capacity of reovirus T3 strain Dearing (T3D) and T3 clone 9 (C9) to infect the spinal cord and kill mice after hindlimb injection. T3D and C9 viruses are both highly virulent (LD(50) < 10(1) PFU) after intracranial injection of neonatal mice. However, C9 is significantly more lethal than T3D after either intramuscular injection (LD(50) < 10(1) vs LD(50) 10(4) PFU) or peroral injection (LD(50) 10(3.4) vs LD(50) > 10(8.3) PFU). Using reassortant viruses containing different combinations of genes derived from T3D and C9, we found that the S1 gene, encoding the cell attachment protein sigma 1 and the nonstructural protein sigma 1s, and the L3 gene, encoding the core shell protein lambda 1 were the primary determinants of lethality after intramuscular injection. The L3 gene and the L2 gene encoding spike protein, lambda 2, determined differences in spinal cord titer after intramuscular injection. A C9 x T3D mono-reassortant containing all T3D genes except for the C9-derived L3 was lethal after peroral injection. These studies indicate that the S1, L2, and L3 genes all play a potential role in neuroinvasiveness and provide the first identification of a role in pathogenesis for the L3 gene.
Collapse
Affiliation(s)
- Mary Anne Mann
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
21
|
Potel C, Kaelin K, Gautier I, Lebon P, Coppey J, Rozenberg F. Incorporation of green fluorescent protein into the essential envelope glycoprotein B of herpes simplex virus type 1. J Virol Methods 2002; 105:13-23. [PMID: 12176138 DOI: 10.1016/s0166-0934(02)00027-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is a major virion component, essential for various steps of virus replication in cells, such as entry and maturation, and cell fusion. In addition, gB is a strong inducer of the immune response in humans and has been involved in neuropathogenesis. To analyze gB during infection, a recombinant HSV-1 was generated containing gB fused to the green fluorescent protein (GFP). The GFP-gB fusion protein was incorporated into fully infectious viral particles. In cells infected with the recombinant KGFP-gB, the spontaneous fluorescence emitted by the fusion protein was observed as early as 5 h post infection, and its transport through cell compartments was followed during an entire viral replication cycle. The results show that GFP can be inserted into an essential viral envelope component of HSV-1 such as gB while preserving the infectivity of the resulting recombinant. This virus allows the investigation of several events of the viral life cycle involving gB, and provides the basis for the development of new diagnostic assays.
Collapse
Affiliation(s)
- Corinne Potel
- Laboratoire de Virologie, Faculté de Médecine Cochin Port-Royal Saint-Vincent-de-Paul, Université Paris V, 75014, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Ben-Hur T, Cialic R, Itzik A, Barak O, Yirmiya R, Weidenfeld J. A novel permissive role for glucocorticoids in induction of febrile and behavioral signs of experimental herpes simplex virus encephalitis. Neuroscience 2002; 108:119-27. [PMID: 11738136 DOI: 10.1016/s0306-4522(01)00404-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) encephalitis may present with fever and behavioral changes, to the extent of a psychotic state and psychomotor agitation. We developed a clinically relevant experimental model of HSV-1 encephalitis and investigated host brain responses associated with its clinical signs and whether these responses depend on the presence of circulating glucocorticoids. Intracerebral inoculation of HSV-1 in rats induced fever, motor hyperactivity and aggressive behavior. In adrenalectomized rats HSV-1 failed to induce these signs, although mortality rate was identical to sham-operated rats. Hypophysectomy or blocking glucocorticoid receptors also prevented HSV-1-induced fever. Dexamethasone replacement therapy to adrenalectomized rats restored the HSV-1-induced fever and behavioral abnormalities. HSV-1 inoculation produced hyperproduction of prostaglandin E(2) by brain slices. This effect was abolished in adrenalectomized rats and was restored by dexamethasone treatment. In intact rats HSV-1 induced brain interleukin-1beta (IL-1beta) gene expression. Adrenalectomy alone caused brain IL-1beta expression, which did not increase after HSV-1 infection. Similarly, HSV-1 induced IL-1beta expression in astrocyte cultures. Removal of cortisol from the culture medium caused basal IL-1beta mRNA expression which was not increased by infection. In conclusion, fever, motor hyperactivity and aggressive behavior during experimental HSV-1 encephalitis are dependent on brain responses, including prostaglandin E(2) and IL-1beta synthesis. Circulating glucocorticoids play an essential permissive role in the induction of these host brain responses.
Collapse
Affiliation(s)
- T Ben-Hur
- Department of Neurology, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Noisakran S, Härle P, Carr DJ. ICAM-1 is required for resistance to herpes simplex virus type 1 but not interferon-alpha1 transgene efficacy. Virology 2001; 283:69-77. [PMID: 11312663 DOI: 10.1006/viro.2001.0858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the role of ICAM-1 in ocular herpes simplex virus type 1 (HSV-1) infection. Wild-type and ICAM-1 knockout mice were assessed for resistance to ocular HSV-1 infection in the presence of naked DNA plasmid vector or plasmid DNA encoding interferon-alpha1 topically applied to the cornea of the mice. Wild-type mice showed greater resistance to HSV-1 infection compared to ICAM-1 knockout mice as measured by cumulative survival. The absence of ICAM-1 did not affect the efficacy of the interferon-alpha1 transgene against ocular HSV-1. Both ICAM-1 and wild-type mice treated with the transgene showed a reduction in viral load and antigen expression in the trigeminal ganglion compared to the plasmid vector-treated counterparts. In contrast, the presence of the transgene reduced the number of infiltrating cells into the cornea in comparison to plasmid vector DNA controls in the wild-type mice but not in the ICAM-1 knockout mice. Collectively, these results suggest that the IFN-alpha1 transgene can restore resistance against HSV-1 infection in ICAM-1-deficient mice.
Collapse
Affiliation(s)
- S Noisakran
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
24
|
Gebhardt BM. Evidence for antigenic cross-reactivity between herpesvirus and the acetylcholine receptor. J Neuroimmunol 2000; 105:145-53. [PMID: 10742556 DOI: 10.1016/s0165-5728(00)00204-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus (HSV) is neurotropic and can pass from neuron to neuron at nerve terminals. During the long evolutionary relationship between HSV and vertebrates, this virus may have evolved surface ligands that mimic nerve cell receptors. The present study was undertaken to determine if herpes simplex virus type 1 (HSV-1) has an antigenic relationship with the acetylcholine receptor (AChR). Mice immunized with HSV-1 antigens or an AChR-expressing cell line were tested for antibodies directed against the AChR. By flow cytometry and ELISA, mouse anti-HSV-1 sera were found to contain antibodies that would bind to an epitope on the plasma membrane of AChR-expressing cells. Mice immunized with the AChR-expressing cells were tested for their resistance to HSV-1 infection. Statistically significantly more of the animals immunized with AChR-expressing cells resisted infection and fatal encephalitis, compared to control animals immunized with a cell line not expressing the AChR. Sera from AChR-immunized mice were tested for anti-HSV antibody by ELISA and were found to contain antibodies cross-reactive with HSV-1 antigens. These sera also neutralized virus in a plaque inhibition assay. The results indicate that there are one or more antigenic epitopes shared by herpesvirus and the AChR. Studies are in progress to define the pathogenetic significance of this molecular mimicry.
Collapse
Affiliation(s)
- B M Gebhardt
- Lions Eye Research Laboratories, LSU Eye Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite B, New Orleans, LA 70112-2234, USA.
| |
Collapse
|
25
|
Bower JR, Mao H, Durishin C, Rozenbom E, Detwiler M, Rempinski D, Karban TL, Rosenthal KS. Intrastrain variants of herpes simplex virus type 1 isolated from a neonate with fatal disseminated infection differ in the ICP34.5 gene, glycoprotein processing, and neuroinvasiveness. J Virol 1999; 73:3843-53. [PMID: 10196279 PMCID: PMC104162 DOI: 10.1128/jvi.73.5.3843-3853.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two intrastrain variants of herpes simplex virus type 1 (HSV-1) were isolated from a newborn with fatal disseminated infection. A small-plaque-producing variant (SP7) was the predominant virus (>99%) in the brain, and a large-plaque-producing variant (LP5) was the predominant virus (>99%) in the lung and gastrointestinal tract. EcoRI and BamHI restriction fragment patterns indicated that SP7 and LP5 are related strains. The large-plaque variants produced plaques similar in size to those produced by HSV-1 KOS. Unlike LP5 or KOS, SP7 was highly cell associated and processing of glycoprotein C and glycoprotein D was limited to precursor forms in infected Vero cells. The large-plaque phenotype from KOS could be transferred into SP7 by cotransfection of plasmids containing the EK or JK EcoRI fragment or a 3-kb plasmid with the UL34.5 gene of HSV-1 KOS together with SP7 DNA. PCR analysis using primers from within the ICP34.5 gene indicated differences for SP7, LP5, and KOS. Sequencing data indicated two sets of deletions in the UL34.5 gene that distinguish SP7 from LP5. Both SP7 and LP5 variants were neurovirulent (lethal following intracranial inoculation of young BALB/c mice); however, the LP5 variant was much less able to cause lethal neuroinvasive disease (footpad inoculation) whereas KOS caused no disease. Passage of SP7 selected for viruses (SLP-5 and SLP-10) which were attenuated for lethal neuroinvasive disease, were not cell-associated, and differed in the UL34.5 gene. UL34.5 from SLP-5 or SLP-10 resembled that of KOS. These findings support a role for UL34.5 in promoting virus egress and for neuroinvasive disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA, Viral
- Deoxyribonuclease BamHI
- Deoxyribonuclease EcoRI
- Disease Models, Animal
- Genes, Viral
- Genetic Variation
- Glycoproteins/metabolism
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/isolation & purification
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Polymorphism, Restriction Fragment Length
- Protein Processing, Post-Translational
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Viral Envelope Proteins/analysis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- J R Bower
- Department of Microbiology and Immunology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rødahl E, Pedersen PH, Bjerkvig R, Haarr L. Infection of rat brain cell aggregates with neurovirulent and nonneurovirulent strains of herpes simplex virus type 1. Exp Cell Res 1999; 248:306-13. [PMID: 10094836 DOI: 10.1006/excr.1998.4348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat brain cell aggregates represent a three-dimensional tissue culture system of brain tissue in the form of small, multicellular spheroids. In the present work, we have infected these "minibrains" with neurovirulent, nonneurovirulent, and nonreplicating strains of HSV-1. The neurovirulent strains 17(+) and KOS(M) spread rapidly through the aggregates, while the nonreplicating ICP4 deletion mutant KD6 infected cells only at the periphery of the aggregates. Spread and replication of the nonneurovirulent strains RE6 and tk-7, and to some extent also of R13/1, were restricted. The interaction between different strains of HSV-1 and the rat brain cell aggregates is thus comparable to that seen in the brain, suggesting that the aggregates represent a useful tool for studying HSV-1 infection of brain tissue in vitro.
Collapse
Affiliation(s)
- E Rødahl
- Centre for Research in Virology, University of Bergen, Bergen, N-5020, USA.
| | | | | | | |
Collapse
|
27
|
Enquist LW, Husak PJ, Banfield BW, Smith GA. Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 1999; 51:237-347. [PMID: 9891589 DOI: 10.1016/s0065-3527(08)60787-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- L W Enquist
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
28
|
Miller CS, Danaher RJ, Jacob RJ. Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:541-62. [PMID: 9825226 DOI: 10.1177/10454411980090040901] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of molecular biology in the study of the pathogenesis of herpes simplex virus type 1 (HSV-1) has led to significant advances in our understanding of mechanisms that regulate virus behavior in sensory neurons and epithelial tissue. Such study has provided insight into the relationship of host and viral factors that regulate latency, reactivation, and recurrent disease. This review attempts to distill decades of information involving human, animal, and cell culture studies of HSV-1 with the goal of correlating molecular events with the clinical and laboratory behavior of the virus during latency, reactivation, and recurrent disease. The purpose of such an attempt is to acquaint the clinician/scientist with the current thinking in the field, and to provide key references upon which current opinions rest.
Collapse
Affiliation(s)
- C S Miller
- Department of Oral Health Science, University of Kentucky Colleges of Dentistry and Medicine, Lexington 40536-0084, USA
| | | | | |
Collapse
|
29
|
Krummenacher C, Nicola AV, Whitbeck JC, Lou H, Hou W, Lambris JD, Geraghty RJ, Spear PG, Cohen GH, Eisenberg RJ. Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 1998; 72:7064-74. [PMID: 9696799 PMCID: PMC109927 DOI: 10.1128/jvi.72.9.7064-7074.1998] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1998] [Accepted: 05/20/1998] [Indexed: 11/20/2022] Open
Abstract
Several cell membrane proteins have been identified as herpes simplex virus (HSV) entry mediators (Hve). HveA (formerly HVEM) is a member of the tumor necrosis factor receptor family, whereas the poliovirus receptor-related proteins 1 and 2 (PRR1 and PRR2, renamed HveC and HveB) belong to the immunoglobulin superfamily. Here we show that a truncated form of HveC directly binds to HSV glycoprotein D (gD) in solution and at the surface of virions. This interaction is dependent on the native conformation of gD but independent of its N-linked glycosylation. Complex formation between soluble gD and HveC appears to involve one or two gD molecules for one HveC protein. Since HveA also mediates HSV entry by interacting with gD, we compared both structurally unrelated receptors for their binding to gD. Analyses of several gD variants indicated that structure and accessibility of the N-terminal domain of gD, essential for HveA binding, was not necessary for HveC interaction. Mutations in functional regions II, III, and IV of gD had similar effects on binding to either HveC or HveA. Competition assays with neutralizing anti-gD monoclonal antibodies (MAbs) showed that MAbs from group Ib prevented HveC and HveA binding to virions. However, group Ia MAbs blocked HveC but not HveA binding, and conversely, group VII MAbs blocked HveA but not HveC binding. Thus, we propose that HSV entry can be mediated by two structurally unrelated gD receptors through related but not identical binding with gD.
Collapse
Affiliation(s)
- C Krummenacher
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sawtell NM, Poon DK, Tansky CS, Thompson RL. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 1998; 72:5343-50. [PMID: 9620987 PMCID: PMC110155 DOI: 10.1128/jvi.72.7.5343-5350.1998] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Accepted: 03/12/1998] [Indexed: 02/07/2023] Open
Abstract
The viral genetic elements that determine the in vivo reactivation efficiencies of fully replication competent wild-type herpes simplex virus (HSV) strains have not been identified. Among the common laboratory strains, KOS reactivates in vivo at a lower efficiency than either strain 17syn+ or strain McKrae. An important first step in understanding the molecular basis for this observation is to distinguish between viral genetic factors that regulate the establishment of latency from those that directly regulate reactivation. Reported here are experiments performed to determine whether the reduced reactivation of KOS was associated with a reduced ability to establish or maintain latent infections. For comparative purposes, latent infections were quantified by (i) quantitative PCR on DNA extracted from whole ganglia, (ii) the number of latency-associated transcript (LAT) promoter-positive neurons, using KOS and 17syn+ LAT promoter-beta-galactosidase reporter mutants, and (iii) contextual analysis of DNA. Mice latently infected with 17syn+-based strains contained more HSV type 1 (HSV-1) DNA in their ganglia than those infected with KOS strains, but this difference was not statistically significant. The number of latently infected neurons also did not differ significantly between ganglia latently infected with either the low- or high-reactivator strains. In addition to the number of latent sites, the number of viral genome copies within the individual latently infected neurons has recently been demonstrated to be variable. Interestingly, neurons latently infected with KOS contained significantly fewer viral genome copies than those infected with either 17syn+ or McKrae. Thus, the HSV-1 genome copy number profile is viral strain specific and positively correlates with the ability to reactivate in vivo. This is the first demonstration that the number of HSV genome copies within individual latently infected neurons is regulated by viral genetic factors. These findings suggest that the latent genome copy number may be an important parameter for subsequent induced reactivation in vivo.
Collapse
Affiliation(s)
- N M Sawtell
- Division of Infectious Diseases, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
31
|
Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, Ponce de Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 1997; 71:6083-93. [PMID: 9223502 PMCID: PMC191868 DOI: 10.1128/jvi.71.8.6083-6093.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.
Collapse
Affiliation(s)
- J C Whitbeck
- School of Dental Medicine, Center for Oral Health Research, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The clinical manifestations of herpes simplex virus infection generally involve a mild and localized primary infection followed by asymptomatic (latent) infection interrupted sporadically by periods of recrudescence (reactivation) where virus replication and associated cytopathologic findings are manifest at the site of initial infection. During the latent phase of infection, viral genomes, but not infectious virus itself, can be detected in sensory and autonomic neurons. The process of latent infection and reactivation has been subject to continuing investigation in animal models and, more recently, in cultured cells. The initiation and maintenance of latent infection in neurons are apparently passive phenomena in that no virus gene products need be expressed or are required. Despite this, a single latency-associated transcript (LAT) encoded by DNA encompassing about 6% of the viral genome is expressed during latent infection in a minority of neurons containing viral DNA. This transcript is spliced, and the intron derived from this splicing is stably maintained in the nucleus of neurons expressing it. Reactivation, which can be induced by stress and assayed in several animal models, is facilitated by the expression of LAT. Although the mechanism of action of LAT-mediated facilitation of reactivation is not clear, all available evidence argues against its involving the expression of a protein. Rather, the most consistent models of action involve LAT expression playing a cis-acting role in a very early stage of the reactivation process.
Collapse
Affiliation(s)
- E K Wagner
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA.
| | | |
Collapse
|
33
|
Nicola AV, Peng C, Lou H, Cohen GH, Eisenberg RJ. Antigenic structure of soluble herpes simplex virus (HSV) glycoprotein D correlates with inhibition of HSV infection. J Virol 1997; 71:2940-6. [PMID: 9060653 PMCID: PMC191422 DOI: 10.1128/jvi.71.4.2940-2946.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus.
Collapse
Affiliation(s)
- A V Nicola
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
34
|
Engel JP, Madigan TC, Peterson GM. The transneuronal spread phenotype of herpes simplex virus type 1 infection of the mouse hind footpad. J Virol 1997; 71:2425-35. [PMID: 9032380 PMCID: PMC191353 DOI: 10.1128/jvi.71.3.2425-2435.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mouse hind footpad inoculation model has served as a standard laboratory system for the study of the neuropathogenesis of herpes simplex virus type 1 (HSV-1) infection. The temporal and spatial distribution of viral antigen, known as the transneuronal spread phenotype, has not previously been described; nor is it understood why mice develop paralysis in an infection that involves sensory nerves. The HSV-as-transneuronal-tracer experimental paradigm was used to define the transneuronal spread of HSV-1 in this model. A new decalcification technique and standard immunocytochemical staining of HSV-1 antigens enabled a detailed analysis of the time-space distribution of HSV-1 in the intact spinal column. Mice were examined on days 3, 4, 5, and 6 postinoculation (p.i.) of a lethal dose of wild-type HSV-1 strain 17 syn+. Viral antigen was traced retrograde into first-order neurons in dorsal root ganglia on day 3 p.i., to the dorsal spinal roots on days 4 and 5 p.i., and to second- and third-order neurons within sensory regions of the spinal cord on days 5 and 6 p.i. HSV-1 antigen distribution was localized to the somatotopic representation of the footpad dermatome within the dorsal root ganglia and spinal cord. Antigen was found in the spinal cord gray and white matter sensory neuronal circuits of nociception (the spinothalamic tract) and proprioception (the dorsal spinocerebellar tract and gracile fasciculus). Within the brain stems and brains of three paralyzed animals examined late in infection (days 5 and 6 p.i.), HSV antigen was restricted to the nucleus subcoeruleus region bilaterally. Since motor neurons were not directly involved, we postulate that hindlimb paralysis may have resulted from intense involvement of the posterior column (gracile fasciculus) in the thoracolumbar spinal cord, a region known to contain the corticospinal tract in rodents.
Collapse
Affiliation(s)
- J P Engel
- Department of Medicine, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA.
| | | | | |
Collapse
|
35
|
Nicola AV, Willis SH, Naidoo NN, Eisenberg RJ, Cohen GH. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. J Virol 1996; 70:3815-22. [PMID: 8648717 PMCID: PMC190258 DOI: 10.1128/jvi.70.6.3815-3822.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycoprotein D (gD) of herpes simplex virus (HSV) is essential for virus entry. Truncated forms of gD lacking the transmembrane and cytoplasmic tail regions have been shown to bind to cells and block plaque formation. Using complementation analysis and a panel of gD mutants, we previously identified four regions of gD (regions I to IV) which are important for virus entry. Here, we used baculovirus vectors to overexpress truncated forms of wild-type gD from HSV type 1 (HSV-1) [gD-1(306t)] and HSV-2 [gD-2(306t)] and four mutants, gD-1(inverted delta 34t), gD-1(inverted delta 126t), gD-1(inverted delta 243t), and gD-1(delta 290-299t), each having a mutation in one of the four functional regions. We used an enzyme-linked immunosorbent assay and circular dichroism to analyze the structure of these proteins, and we used functional assays to study the role of gD in binding, penetration, and cell-to-cell spread. gD-1 and gD-2 are similar in antigenic structure and thermal stability but vary in secondary structure. Mutant proteins with insertions in region I or II were most altered in structure and stability, while mutants with insertions in region III or IV were less altered. gD-1(306t) and gD-2(306t) inhibited both plaque formation and cell-to-cell transmission of HSV-1. In spite of obvious structural differences, all of the mutant proteins bound to cells, confirming that binding is not the only function of gD. The region I mutant did not inhibit HSV plaque formation or cell-to-cell spread, suggesting that this region is necessary for the function of gD in these processes. Surprisingly, the other three mutant proteins functioned in all of the in vitro assays, indicating that the ability of gD to bind to cells and inhibit infection does not correlate with its ability to initiate infection as measured by the complementation assay. The region IV mutant, gD-1(delta 290-299t), had an unexpected enhanced inhibitory effect on HSV infection. Taken together, the results argue against a single functional domain in gD. It is likely that different gD structural elements are involved in successive steps of infection.
Collapse
Affiliation(s)
- A V Nicola
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
36
|
Ling JY, Kienzle TE, Stroop WG. An improved rapid method for purification of herpes simplex virus DNA using cesium trifluoroacetate. J Virol Methods 1996; 58:193-8. [PMID: 8783165 DOI: 10.1016/0166-0934(95)01985-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A method for purification of herpes simplex virus DNA from cell culture is described which yields highly purified viral DNA within 8 h. The method involves the freezing and thawing of virus-infected cells followed by isopycnic centrifugation of the lysate supernatant in cesium trifluoroacetate. It was found that this method recovered DNA from most of the cell-associated virus particles in such sufficient purity that the DNA was digestible with restriction enzymes and could be used to transfect cells without the need for additional purification steps. Purification of viral DNA from cells that were not subjected to freezing and thawing was less efficient due to the amount of viral DNA that remained cell-associated.
Collapse
Affiliation(s)
- J Y Ling
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
37
|
Yamamoto M, Kurachi R, Morishima T, Kito J, Nishiyama Y. Immunohistochemical studies on the transneuronal spread of virulent herpes simplex virus type 2 and its US3 protein kinase-deficient mutant after ocular inoculation. Microbiol Immunol 1996; 40:289-94. [PMID: 8709864 DOI: 10.1111/j.1348-0421.1996.tb03348.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transneuronal spread of a virulent wild-type herpes simplex virus type 2 (HSV-2) and its US3 protein kinase-deficient (US3 PK-) mutant was immunohistochemically studied in mice after inoculations into the cornea, anterior chamber, tongue, and masseter muscle. After corneal inoculation, the wild-type virus was demonstrated in various brain stem areas including the trigeminal tract and nucleus, the reticular formation, and cerebellar nucleus group. Viral antigen-positive neurons were strictly confined to the ipsilateral spinal trigeminal nucleus in mice corneally infected with the US3 PK- mutant. No viral antigens were detected in the central nervous system (CNS) after inoculation with the mutant into the tongue and masseter muscle. However, when mice were immunosuppressed by treatment with cyclophosphamide, both the corneally infected mutant and wild-type virus could invade the CNS. The results suggest that the US3 PK- mutant principally retains the capacity to spread in the CNS.
Collapse
Affiliation(s)
- M Yamamoto
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nugoya University School of Medicine, Aichi, Japan
| | | | | | | | | |
Collapse
|
38
|
Lingen M, Seck T, Weise K, Falke D. Two mutations in gB-1 and gD-1 of herpes simplex virus type 1 are involved in the "fusion from without" phenotype in different cell types. Virus Genes 1996; 13:221-8. [PMID: 9035366 DOI: 10.1007/bf00366982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies have shown that certain strains of herpes simplex viruses type 1 (HSV-1) are able to induce "fusion from without" (FFWO) which means no transcription or translation of the viral genome happens. The main determinants for FFWO in BHK cells are mutations in the C-terminal part of gB-1. But single mutations in this part of the genome are not sufficient to transfer the FFWO phenotype also to Vero cells. Here, we report that FFWO of HSV strains indeed need additional mutations in the N-terminal part of gD in order to produce the FFWO phenotype in BHK and Vero cells. By marker transfer we are able to show that loss of mutations in the N-terminal part of gD influences the ability to induce FFWO in Vero cells but not in BHK cells. We assume that a mutated gD allows the entrance of a multiple number of virus particles into the cell and enhances therefore the fusion activity of the mutated gB. Mutations in gD alone are not sufficient for fusion activity of HSV.
Collapse
Affiliation(s)
- M Lingen
- Institut für Virologie J. Gutenburg Universität Mainz, Germany
| | | | | | | |
Collapse
|
39
|
Dick JW, Rosenthal KS. A block in glycoprotein processing correlates with small plaque morphology and virion targetting to cell-cell junctions for an oral and an anal strain of herpes simplex virus type-1. Arch Virol 1995; 140:2163-81. [PMID: 8572939 DOI: 10.1007/bf01323238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The characteristics of two clinical isolates of HSV-1 obtained from an oral (424) and an anal (490) lesion were compared with the highly passaged KOS strain. In contrast to KOS, the clinical isolates produced small plaques, were more cell-associated and the predominant viral glycoprotein species for gC and gD in infected cell lysates was the precursor, high mannose glycoform. Total virus production in Vero cells was equivalent for the three virus strains in one-step growths. Pulse-chase studies of glycoprotein C processing showed a reduction in rate at 7.5 h post infection and a significant block in processing at 10.5 h post infection for 424 and 490 but not KOS. Similar results were obtained for gD. The significant reduction in glycoprotein processing for 424 and 490 suggests a block in transport of viral glycoproteins or virions to and through the Golgi apparatus. Extracellular virions and the cell surface, prior to cell lysis, contained the processed gC glycoform suggesting a competent cellular glycan processing system. Upon co-infection of 424 or 490 with KOS or a gC- KOS strain, gC was processed to levels equivalent to KOS indicating that 424 and 490 are not inhibitory but that an activity(s) encoded by KOS facilitates maturation of gC from 424 and 490. Unlike KOS infected Vero cells, virion-containing vacuoles were observed in the cytoplasm at 12 h p.i. and extracellular virions were concentrated at cell-cell junctions of 424 or 490 infected cells but not in the perinuclear region. These results suggest that intracellular transport of viral glycoproteins and virions in 424 and 490 infected cells is different from KOS infected cells. The reduced level of viral glycoprotein maturation, virus release, cell surface presence and presence of virions at cell-cell junctions are consistent with small plaque production in tissue culture cells.
Collapse
Affiliation(s)
- J W Dick
- Northeastern Ohio Universities College of Medicine, Rootstown, USA
| | | |
Collapse
|
40
|
Dean HJ, Warner MS, Terhune SS, Johnson RM, Spear PG. Viral determinants of the variable sensitivity of herpes simplex virus strains to gD-mediated interference. J Virol 1995; 69:5171-6. [PMID: 7609090 PMCID: PMC189341 DOI: 10.1128/jvi.69.8.5171-5176.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cells that express glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) resist infection by HSV-1 and HSV-2 because of interference with viral penetration. The results presented here show that both HSV-1 and HSV-2 gD can mediate interference and that various HSV-1 and HSV-2 strains differ in sensitivity to this interference. The relative degree of sensitivity was not necessarily dependent on whether the cell expressed the heterologous or homologous form of gD but rather on the properties of the virus. Marker transfer experiments revealed that the allele of gD expressed by the virus was a major determinant of sensitivity to interference. Amino acid substitutions in the most distal part of the gD ectodomain had a major effect, but substitutions solely in the cytoplasmic domain also influenced sensitivity to interference. In addition, evidence was obtained that another viral gene(s) in addition to the one encoding gD can influence sensitivity to interference. The results indicate that HSV-1 and HSV-2 gD share determinants required to mediate interference with infection by HSV of either serotype and that the pathway of HSV entry that is blocked by expression of cell-associated gD can be cleared or bypassed through subtle alterations in virion-associated proteins, particularly gD.
Collapse
Affiliation(s)
- H J Dean
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
41
|
Norkin LC. Virus receptors: implications for pathogenesis and the design of antiviral agents. Clin Microbiol Rev 1995; 8:293-315. [PMID: 7621403 PMCID: PMC172860 DOI: 10.1128/cmr.8.2.293] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A virus initiates infection by attaching to its specific receptor on the surface of a susceptible host cell. This prepares the way for the virus to enter the cell. Consequently, the expression of the receptor on specific cells and tissues of the host is a major determinant of the route of entry of the virus into the host and of the patterns of virus spread and pathogenesis in the host. This review emphasizes the virus-receptor interactions of human immunodeficiency virus, the rhinoviruses, the herpesviruses, and the coronaviruses. These interactions are often found to be complex and dynamic, involving multiple sites or factors on both the virus and the host cell. Also, the receptor may play an important role in virus entry per se in addition to its role in virus binding. In the cases of human immunodeficiency virus and the rhinoviruses, ingenious approaches to therapeutic strategies based on inhibiting virus attachment and entry are under development and in clinical trials.
Collapse
Affiliation(s)
- L C Norkin
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
42
|
Kintner RL, Allan RW, Brandt CR. Recombinants are isolated at high frequency following in vivo mixed ocular infection with two avirulent herpes simplex virus type 1 strains. Arch Virol 1995; 140:231-44. [PMID: 7710352 DOI: 10.1007/bf01309859] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mixed infections with different strains of herpes simplex virus type 1 (HSV-1) may result in more severe disease than infection with either strain alone. This phenomenon is important because it may facilitate the identification of virulence genes through the transfer of virulence determinants between complementing strains, and it may pose a problem in the use of attenuated HSV strains for vaccines and gene delivery vectors. In this study, we have compared the percentage of recombinants present after mixed infection with HSV-1 strains OD4 and 994 in vitro and in vivo. After corneal inoculation, we found that 74% of randomly picked isolates from the trigeminal ganglia were recombinants, compared with 59% from the cornea. Twenty-six percent of randomly picked isolates were recombinant following mixed infection of Vero cells in vitro. Seventeen recombinant strains isolated from the in vivo mixed infections were assayed for ocular virulence, and they were found to exhibit a wide range of virulence phenotypes. The presence of virulent recombinants suggests that recombination plays a role in the increased disease observed in this mixed infection, and the broad range of virulence indicates that there may be multiple genetic factors involved in the increased virulence observed after mixed infection with these two strains. The recombinants were also tested for their ability to grow in NIH 3T3 fibroblasts, and though some correlation was observed between growth in vitro and ability to cause ocular disease, improved growth in murine cells does not sufficiently explain the increased virulence observed in some recombinants.
Collapse
Affiliation(s)
- R L Kintner
- Department of Medical Microbiology, University of Wisconsin-Madison Medical School, USA
| | | | | |
Collapse
|
43
|
Abdelmagid OY, Minocha HC, Collins JK, Chowdhury SI. Fine mapping of bovine herpesvirus-1 (BHV-1) glycoprotein D (gD) neutralizing epitopes by type-specific monoclonal antibodies and sequence comparison with BHV-5 gD. Virology 1995; 206:242-53. [PMID: 7530392 DOI: 10.1016/s0042-6822(95)80039-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Overlapping fragments of the bovine herpesvirus-1 (BHV-1) glycoprotein (gD) ORF were expressed as trpE-gD fusion proteins in Escherichia coli to map linear neutralizing epitopes defined by BHV-1-specific MAbs. The MAbs 3402 and R54 reacted with the expressed fragments on Western blots that located the epitopes between the amino acids 52-126 and 165-216, respectively, of gD. Bovine covalescent sera with high neutralizing antibody titers against BHV-1 reacted with these bacterially expressed proteins containing both of the epitopes. Alignment of these sequences from BHV-1 with the corresponding region of the BHV-5 gD ORF sequences (reported here) identified several amino acid mismatches. Since the MAbs 3402 and R54 neutralize the BHV-1 and not BHV-5, it was presumed that these were important amino acids in defining the epitope. To further localize the neutralizing epitopes, synthetic peptides corresponding to these regions in the BHV-1 gD ORF were tested for their capacity to block monoclonal antibody neutralization of BHV-1 infectivity. The peptides encompassing amino acids 92-106 (3402 epitope) and amino acids 202-213 (R54 epitope) of the BHV-1 gD competed with BHV-1 for the binding by MAbs 3402 and R54, respectively, in a dose-dependent manner. Antisera produced in rabbits to these peptides conjugated to a carrier reacted strongly with a 30-kDa protein by Western blotting and had neutralizing antibody titers against BHV-1.
Collapse
Affiliation(s)
- O Y Abdelmagid
- Department of Pathology and Microbiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506
| | | | | | | |
Collapse
|
44
|
Schuchman EH, Ioannou YA, Rattazzi MC, Desnick RJ. Neural gene therapy for inherited diseases with mental retardation: Principles and prospects. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Haanes EJ, Nelson CM, Soule CL, Goodman JL. The UL45 gene product is required for herpes simplex virus type 1 glycoprotein B-induced fusion. J Virol 1994; 68:5825-34. [PMID: 8057463 PMCID: PMC236987 DOI: 10.1128/jvi.68.9.5825-5834.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) syncytial (syn) mutants cause formation of giant polykaryocytes and have been utilized to identify genes promoting or suppressing cell fusion. We previously described an HSV-1 recombinant, F1 (J.L. Goodman, M. L. Cook, F. Sederati, K. Izumi, and J. G. Stevens, J. Virol. 63:1153-1161, 1989), which has unique virulence properties and a syn mutation in the carboxy terminus of glycoprotein B (gB). We attempted to replace this single-base-pair syn mutation through cotransfection with a 379-bp PCR-generated fragment of wild-type gB. The nonsyncytial viruses isolated were shown by DNA sequencing not to have acquired the expected wild-type gB sequence. Instead, they had lost their cell-cell fusion properties because of alterations mapping to the UL45 gene. The mutant UL45 gene is one nonsyncytial derivative of F1, A4B, was found to have a deletion of a C at UL45 nucleotide 230, resulting in a predicted frame shift and termination at 92 rather than 172 amino acids. Northern (RNA) analysis showed that the mutant UL45 gene was normally transcribed. However, Western immunoblotting showed no detectable UL45 gene product from A4B or from another similarly isolated nonsyncytial F1 derivative, A61B, while another such virus, 1ACSS, expressed reduced amounts of UL45. When A4B was cotransfected with the wild-type UL45 gene, restoration of UL45 expression correlated with restoration of syncytium formation. Conversely, cloned DNA fragments containing the mutant A4B UL45 gene transferred the loss of cell-cell fusion to other gB syn mutants, rendering them UL45 negative and nonsyncytial. We conclude that normal UL45 expression is required to allow cell fusion induced by gB syn mutants and that the nonessential UL45 protein may play an important role as a mediator of fusion events during HSV-1 infection.
Collapse
Affiliation(s)
- E J Haanes
- Department of Medicine, University of Minnesota, Minneapolis 55455
| | | | | | | |
Collapse
|
46
|
Bloom DC, Stevens JG. Neuron-specific restriction of a herpes simplex virus recombinant maps to the UL5 gene. J Virol 1994; 68:3761-72. [PMID: 8189514 PMCID: PMC236881 DOI: 10.1128/jvi.68.6.3761-3772.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have previously shown that, when compared with either parent, a herpes simplex virus type 1/herpes simplex virus type 2 intertypic recombinant (R13-1) is attenuated by 10,000-fold with respect to neurovirulence in mice. Despite this, after intracranial inoculation, R13-1 replicated to titers of 10(5) PFU per brain. We present evidence that the restriction is specific for replication in neurons and have taken a three-step approach in determining the basis of the attenuation by (i) characterizing cellular tropism of the virus in both central and peripheral nervous systems, (ii) defining where in the viral replication cycle the restriction is manifest, and (iii) identifying the genetic basis of the restriction through marker rescue analysis. Following inoculation into the animal, R13-1 viral antigens predominate in nonneuronal cells, and the block to replication in neurons was found to be beyond the level of adsorption and penetration. Despite the restricted replication within neurons, the virus established a latent infection in spinal ganglia and could be reactivated by in vitro cocultivation of the ganglia. In studies carried out in cell culture, R13-1 was found to replicate normally in mouse embryo fibroblasts and primary mouse glial cells but was restricted by 1,000-fold in primary mouse neurons and PC12 cells. R13-1 appeared to produce normal levels of early RNA in these cells, but production of DNA and late RNA was less than that of the wild type. Marker rescue analysis localized the fragment responsible for restoring neurovirulence to UL5, a component of the origin-binding complex implicated in replication of the viral genome. Our results with this virus, with a cell-specific restriction, suggest that a neuron-specific component is involved in viral replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Chromosome Mapping
- DNA, Viral/genetics
- Ganglia, Spinal/microbiology
- Genes, Viral
- Herpes Simplex/etiology
- Herpes Simplex/microbiology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Mice
- Molecular Sequence Data
- Neurons, Afferent/microbiology
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Virulence/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- D C Bloom
- Department of Microbiology and Immunology, University of California, School of Medicine, Los Angeles 90024
| | | |
Collapse
|
47
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|
48
|
Chiang HY, Cohen GH, Eisenberg RJ. Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. J Virol 1994; 68:2529-43. [PMID: 7511173 PMCID: PMC236731 DOI: 10.1128/jvi.68.4.2529-2543.1994] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glycoprotein gD is a component of the herpes simplex virus (HSV) envelope essential for virus entry into susceptible cells. Previous studies using deletion and point mutations identified a functional domain of HSV-1 gD (gD-1) from residues 231 to 244. However, many of the deletion mutations had global effects on gD-1 structure, thus precluding assessment of the functional role of large portions of the protein. In this study, we constructed a large panel of linker-insertion mutants in the genes for gD-1 and HSV-2 gD (gD-2). The object was to create mutations which would have only localized effects on protein structure but might have profound effects on gD function. The mutant proteins were expressed in transiently transfected L cells. Monoclonal antibodies (MAbs) were used as probes of gD structure. We also examined protein aggregation and appearance of the mutant glycoproteins on the transfected cell surface. A complementation assay measured the ability of the mutant proteins to rescue the infectivity of the gD-null virus, FgD beta, in trans. Most of the mutants were recognized by one or more MAbs to discontinuous epitopes, were transported to the transfected cell surface, and rescued FgD beta virus infectivity. However, some mutants which retained structure were unable to complement FgD beta. These mutants were clustered in four regions of gD. Region III (amino acids 222 to 246) overlaps the region previously defined by gD-1 deletion mutants. The others, from 27 through 43 (region I), from 125 through 161 (region II), and from 277 to 310 (region IV), are newly described. Region IV, immediately upstream of the transmembrane anchor sequence, was previously postulated to be part of a putative stalk structure. However, residues 277 to 300 are directly involved in gD function. The linker-insertion mutants were useful for mapping MAb AP7, a previously ungrouped neutralizing MAb, and provided further information concerning other discontinuous epitopes. The mapping data suggest that regions I through IV are physically near each other in the folded structure of gD and may form a single functional domain.
Collapse
Affiliation(s)
- H Y Chiang
- School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
49
|
Carr MA, de Mattos CC, de Mattos CA, Osburn BI. Association of bluetongue virus gene segment 5 with neuroinvasiveness. J Virol 1994; 68:1255-7. [PMID: 8289361 PMCID: PMC236572 DOI: 10.1128/jvi.68.2.1255-1257.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two strains (UC-2 and UC-8) of bluetongue virus were used to determine genetic factors influencing neuroinvasiveness. Reassortants were produced in vitro, and the parental origins of their genes were determined by polyacrylamide gel electrophoresis profiles and restriction endonuclease digestion. Gene segment 5 of UC-8 correlated with neuroinvasiveness of reassortants when inoculated subcutaneously into newborn mice.
Collapse
Affiliation(s)
- M A Carr
- Department of Veterinary Pathology, University of California, Davis 95616
| | | | | | | |
Collapse
|
50
|
Structure and Function of Glycoprotein D of Herpes Simplex Virus. PATHOGENICITY OF HUMAN HERPESVIRUSES DUE TO SPECIFIC PATHOGENICITY GENES 1994. [DOI: 10.1007/978-3-642-85004-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|