1
|
Romagnoli P, Hudrisier D, van Meerwijk JPM. Molecular signature of recent thymic selection events on effector and regulatory CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:5751-8. [PMID: 16237066 PMCID: PMC2346488 DOI: 10.4049/jimmunol.175.9.5751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural CD4+CD25+ regulatory T lymphocytes (Treg) are key protagonists in the induction and maintenance of peripheral T cell tolerance. Their thymic origin and biased repertoire continue to raise important questions about the signals that mediate their development. We validated analysis of MHC class II capture by developing thymocytes from thymic stroma as a tool to study quantitative and qualitative aspects of the cellular interactions involved in thymic T cell development and used it to analyze Treg differentiation in wild-type mice. Our data indicate that APCs of bone marrow origin, but, surprisingly and importantly, not thymic epithelial cells, induce significant negative selection among the very autoreactive Treg precursors. This fundamental difference between thymic development of regulatory and effector T lymphocytes leads to the development of a Treg repertoire enriched in cells specific for a selected subpopulation of self-Ags, i.e., those specifically expressed by thymic epithelial cells.
Collapse
Affiliation(s)
- Paola Romagnoli
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Centre de Physiopathologie Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
2
|
Singer A, Bosselut R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv Immunol 2004; 83:91-131. [PMID: 15135629 DOI: 10.1016/s0065-2776(04)83003-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
3
|
Bosselut R, Guinter TI, Sharrow SO, Singer A. Unraveling a revealing paradox: Why major histocompatibility complex I-signaled thymocytes "paradoxically" appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J Exp Med 2003; 197:1709-19. [PMID: 12810689 PMCID: PMC2193957 DOI: 10.1084/jem.20030170] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The mechanism by which T cell receptor specificity determines the outcome of the CD4/CD8 lineage decision in the thymus is not known. An important clue is the fact that major histocompatibility complex (MHC)-I-signaled thymocytes paradoxically appear as CD4+8lo transitional cells during their differentiation into CD8+ T cells. Lineage commitment is generally thought to occur at the CD4+8+ (double positive) stage of differentiation and to result in silencing of the opposite coreceptor gene. From this perspective, the appearance of MHC-I-signaled thymocytes as CD4+8lo cells would be due to effects on CD8 surface protein expression, not CD8 gene expression. But contrary to this perspective, this study demonstrates that MHC-I-signaled thymocytes appear as CD4+8lo cells because of transient down-regulation of CD8 gene expression, not because of changes in CD8 surface protein expression or distribution. This study also demonstrates that initial cessation of CD8 gene expression in MHC-I-signaled thymocytes is not necessarily indicative of commitment to the CD4+ T cell lineage, as such thymocytes retain the potential to differentiate into CD8+ T cells. These results challenge classical concepts of lineage commitment but fulfill predictions of the kinetic signaling model.
Collapse
Affiliation(s)
- Remy Bosselut
- Laboratory of Immune Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
4
|
Wilkinson B, Kaye J. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model. Cell Immunol 2001; 211:86-95. [PMID: 11591112 DOI: 10.1006/cimm.2001.1827] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although there is general agreement that the RAS/MAPK signaling pathway is required for positive selection of CD4 T cells in the thymus, the role of this pathway in CD8 lineage commitment remains controversial. We show here that the differentiation of isolated cultured thymocytes to the CD8 as well as CD4 T cell lineage is sensitive to MEK inhibition and that both CD4 and CD8 thymocyte differentiation requires sustained MEK signaling. However, CD4 lineage commitment is promoted by a stronger stimulus for longer duration than required for CD8 lineage commitment. Interestingly, CD4 lineage commitment is not irreversibly set even after 10 h of signaling, well past early changes in gene expression. These findings are presented in the context of a model of lineage commitment in which a default pathway of CD8 lineage commitment is altered to CD4 commitment if the thymocyte achieves a threshold level of active MAPK within a certain time frame.
Collapse
Affiliation(s)
- B Wilkinson
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
5
|
Feng JM, Givogri IM, Bongarzone ER, Campagnoni C, Jacobs E, Handley VW, Schonmann V, Campagnoni AT. Thymocytes express the golli products of the myelin basic protein gene and levels of expression are stage dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5443-50. [PMID: 11067896 DOI: 10.4049/jimmunol.165.10.5443] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The golli products of the myelin basic protein gene have been shown to be expressed in mouse thymus and brain. The full repertoire of thymic cell types expressing golli products has not yet been determined, although immunoreactivity has been found in some macrophages. We have analyzed the cellular expression of golli mRNAs and proteins in the thymus. The results showed that MTS5(+) cortical/MTS10(+) medullary epithelial cells and NLDC145(+) dendritic cells did not express golli, while some macrophages did exhibit strong immunoreactivity. GOLLI: mRNAs were not detected in macrophages by in situ hybridization. Thymocytes expressed significant levels of golli mRNAs and proteins by in situ hybridization and immunohistochemistry. Interestingly, golli immunoreactivity varied with thymocyte stage of differentiation. For example, CD4(-)CD8(-) (double-negative) thymocytes expressed relatively high levels of golli. Upon further differentiation into CD4(-)CD8(-) (double-positive) thymocytes, golli protein expression declined dramatically. When thymocytes developed into CD8(-) or CD4(+) (single-positive) thymocytes, golli protein expression increased again, but it never achieved the levels found in double-negative thymocytes. Thus, the altered levels of expression of golli proteins in developing thymocytes correlated with the transitions from double-negative to double-positive and double-positive to single-positive stages. The lack of significant golli expression in thymic stromal cells may offer an alternative explanation for the mechanism of inefficient negative selection of those autoreactive thymocytes with specificity for myelin basic proteins.
Collapse
Affiliation(s)
- J M Feng
- Developmental Biology Group, Neuropsychiatric Institute, and Brain Research Institute, University of California Medical School, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhan Y, Corbett AJ, Brady JL, Sutherland RM, Lew AM. CD4 help-independent induction of cytotoxic CD8 cells to allogeneic P815 tumor cells is absolutely dependent on costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3612-9. [PMID: 11034363 DOI: 10.4049/jimmunol.165.7.3612] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mice made transgenic (Tg) for a rat anti-mouse CD4 Ab (GK mice) represent a novel CD4-deficient model. They not only lack canonical CD4 cells in the periphery, but also lack the residual aberrant Th cells that are found in CD4-/- mice and MHC class II-/- mice. To analyze the role of CD4 help and costimulation for CTL induction against alloantigens, we have assessed the surface and functional phenotype of CD8 cells in vivo (e.g., clearance of allogeneic P815 cells) and in vitro. In our CD4-deficient GK mice, CTL responses to allogeneic P815 cells were induced, albeit delayed, and were sufficient to eliminate P815 cells. Induction of CTL and elimination of allogeneic P815 cells were inhibited both in the presence and absence of CD4 cells by temporary CD40 ligand blockade. This indicated that direct interaction of CD40/CD40L between APCs and CD8 cells may be an accessory signal in CTL induction (as well as the indirect pathway via APC/CD4 interaction). Furthermore, whereas in CTLA4Ig single Tg mice P815 cells were rejected promptly, in the double Tg GK/CTLA4Ig mice CTL were not induced and allogeneic P815 cells were not rejected. These findings suggest that CD40/CD40L is involved in both CD4-dependent and CD4-independent pathways, and that B7/CD28 is pivotal in the CD4-independent pathway of CTL induction against allogeneic P815 cells.
Collapse
MESH Headings
- Abatacept
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/genetics
- Antigens, CD
- Antigens, Differentiation/genetics
- Antigens, Differentiation/therapeutic use
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD40 Ligand/immunology
- CTLA-4 Antigen
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Disease Models, Animal
- Graft Rejection/genetics
- Graft Rejection/immunology
- Immunoconjugates
- Immunosuppressive Agents/administration & dosage
- Interleukin-2/physiology
- Isoantigens/genetics
- Isoantigens/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Recombinant Fusion Proteins/immunology
- Sarcoma, Experimental/genetics
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/prevention & control
- Stem Cells/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Zhan
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Australia
| | | | | | | | | |
Collapse
|
7
|
Kurasawa K, Hashimoto Y, Kasai M, Iwamoto I. The fas antigen is involved in thymic T-cell development as a costimulatory molecule, but not in the deletion of neglected thymocytes. J Allergy Clin Immunol 2000; 106:S19-31. [PMID: 10887330 DOI: 10.1067/mai.2000.106773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether the Fas antigen (Fas) is involved in thymic T-cell development, we introduced the lymphoproliferation (lpr) mutation into a T-cell receptor-alphabeta transgenic mouse (DO10 mouse) and generated 4 genotypes of T-cell receptor transgenic mice homozygous or heterozygous for the lpr mutation with selecting or nonselecting H-2 haplotype. Unexpectedly, we found that the homozygous Fas mutation (lpr/lpr) induced a marked reduction in CD4(+)CD8(+) double-positive (DP) thymocytes in mice with nonselecting background and that the thymus showed severe cortical atrophy. We also found that the homozygous Fas mutation inhibited the activation of DP thymocytes in the process of positive selection, as indicated by the lower levels of CD5 and CD69 expressions on DP thymocytes in lpr/lpr mice with both selecting and nonselecting background than those of lpr/+ mice. Furthermore, we found a significant skewing from CD4(+) to CD8(+) single-positive thymocytes in lpr/lpr mice with nonselecting background compared with that in the corresponding lpr/+ mice. Taken together, these results indicate that Fas is involved in thymic T-cell development, DP thymocyte generation and positive selection, as a costimulatory molecule but is not involved in the deletion of neglected thymocytes.
Collapse
Affiliation(s)
- K Kurasawa
- Department of Internal Medicine II, Chiba University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Diehl NL, Enslen H, Fortner KA, Merritt C, Stetson N, Charland C, Flavell RA, Davis RJ, Rincón M. Activation of the p38 mitogen-activated protein kinase pathway arrests cell cycle progression and differentiation of immature thymocytes in vivo. J Exp Med 2000; 191:321-34. [PMID: 10637276 PMCID: PMC2195760 DOI: 10.1084/jem.191.2.321] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1999] [Accepted: 11/02/1999] [Indexed: 11/25/2022] Open
Abstract
The development of T cells in the thymus is coordinated by cell-specific gene expression programs that involve multiple transcription factors and signaling pathways. Here, we show that the p38 mitogen-activated protein (MAP) kinase signaling pathway is strictly regulated during the differentiation of CD4(-)CD8(-) thymocytes. Persistent activation of p38 MAP kinase blocks fetal thymocyte development at the CD25(+)CD44(-) stage in vivo, and results in the lack of T cells in the peripheral immune system of adult mice. Inactivation of p38 MAP kinase is required for further differentiation of these cells into CD4(+)CD8(+) thymocytes. The arrest of cell cycle in mitosis is partially responsible for the blockade of differentiation. Therefore, the p38 MAP kinase pathway is a critical regulatory element of differentiation and proliferation during the early stages of in vivo thymocyte development.
Collapse
Affiliation(s)
- Nicole L. Diehl
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Hervé Enslen
- Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School
- Howard Hughes Medical Institute, Worcester, Massachusetts 01605
| | - Karen A. Fortner
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Chris Merritt
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Nate Stetson
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Colette Charland
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Richard A. Flavell
- Section of Immunobiology, Yale University School of Medicine
- Howard Hughes Medical Institute, New Haven Connecticut 06520
| | - Roger J. Davis
- Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School
- Howard Hughes Medical Institute, Worcester, Massachusetts 01605
| | - Mercedes Rincón
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
9
|
Rooke R, Waltzinger C, Benoist C, Mathis D. Positive selection of thymocytes induced by gene transfer: MHC class II-mediated selection of CD8 lineage cells. Int Immunol 1999; 11:1595-600. [PMID: 10508177 DOI: 10.1093/intimm/11.10.1595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recombinant adenovirus vectors are powerful tools for inducing de novo gene expression in vivo. Here we have exploited them to study the specificity of CD4/CD8 lineage commitment during thymocyte positive selection, transferring MHC class II genes directly into thymi of mice deficient in both class I and II molecules. Expression of class II molecules was induced on cortical stroma, provoking the selection of a large population of mature CD4(+)CD8(-) cells, as expected, but also of a significant number of CD4(-)CD8(+) cells. The latter constituted a diverse population, containing both immature precursors and, though less frequent, cells that were mature according to several criteria. CD4(-)CD8(+) cells appeared with the same kinetics as their CD4(+)CD8(-) counterparts, but tended to be more prevalent at early times or when thymocyte reconstitution was only modest. These observations, derived from a dynamic selection system, indicate that CD4/CD8 lineage commitment is not irredeemably linked to the class of MHC molecule driving positive selection, a conclusion most compatible with selective models of commitment.
Collapse
Affiliation(s)
- R Rooke
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), 67404 Illkirch, CU de Strasbourg, France
| | | | | | | |
Collapse
|
10
|
Abstract
Combining CD5-null, MHC-deficient and lineage-specific reporter animals, we have investigated the influence of CD5 on positive selection and the choice of CD4- versus CD8-lineage commitment on broad populations of thymocytes. CD5 has no obvious quantitative effect in wild-type mice. In mice lacking MHC class II molecules, however, increased numbers of transitional, class I-selected CD4+ CD8(int) CD3(hi) cells were positively selected in the absence of CD5. Importantly, they were committed to the CD4 lineage. Our results indicate that CD5 negatively regulates the differentiation of CD4-committed cells in suboptimal conditions, thus perhaps serving to tighten the correlation between restriction of the TCR and lineage choice.
Collapse
Affiliation(s)
- S Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP) Illkirch, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Lunde E, Munthe LA, Vabø A, Sandlie I, Bogen B. Antibodies engineered with IgD specificity efficiently deliver integrated T-cell epitopes for antigen presentation by B cells. Nat Biotechnol 1999; 17:670-5. [PMID: 10404160 DOI: 10.1038/10883] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a strategy for improving the stimulation of T cells during immune responses by constructing recombinant antibodies that enhance the delivery of antigen to antigen-presenting cells, such as B cells. These antibodies have variable regions specific for surface molecules on B cells, and a constant region with an inserted antigen. In vitro, such antibodies make B cells approximately 1000-fold more efficient at presenting antigen and stimulating specific T cells. In vivo, the antibodies turn B cells of the spleen into potent stimulators of T cells. This approach may be useful for the generation of new vaccines.
Collapse
Affiliation(s)
- E Lunde
- Institute of Immunology and Rheumatology, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
12
|
Ellmeier W, Sawada S, Littman DR. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu Rev Immunol 1999; 17:523-54. [PMID: 10358767 DOI: 10.1146/annurev.immunol.17.1.523] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The two major subsets of T lymphocytes in the peripheral immune system, the helper and cytotoxic T cells, are defined by their expression of either the CD4 or the CD8 glycoproteins, respectively. Expression of these molecules, which serve as coreceptors by interacting specifically with either MHC class II or class I molecules, also defines discrete stages of T cell development within the thymus. Thus, CD4+ and CD8+ single-positive (SP) thymocytes arise from common progenitor double positive (DP) cells that express both CD4 and CD8, during a process known as positive selection. The molecular mechanisms underlying the developmental choice toward the helper or cytotoxic lineage remain poorly understood. Because regulation of coreceptor gene expression appears to be coupled to the phenotypic choice of the differentiating T cell, it is likely that shared signaling pathways direct CD4 and CD8 transcription and the development of an uncommited DP thymocyte toward either the helper or cytotoxic lineage. Therefore, an understanding of how CD4 and CD8 expression is regulated will not only provide insights into transcriptional control mechanisms in T cells, but may also result in the identification of molecular factors that are involved in lineage choices during T cell development. In this review, we summarize recent progress that has been made toward an understanding of how CD4 and CD8 gene expression is regulated.
Collapse
Affiliation(s)
- W Ellmeier
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
13
|
Abstract
The control of CD4 gene expression is believed to be linked directly to the signaling events that mediate T cell development and is directly dependent on the CD4 promoter. We have previously determined that this promoter contains four factor-binding sites important for its function. One of these sites, referred to as the P4 site, contains an Ets consensus recognition sequence. Using functional and biochemical analyses, we determine that Elf-1 binds to this site and specifically activates the CD4 promoter, indicating that Elf-1 is playing an important role in CD4 promoter function. In addition, a second nuclear factor binds to this region. Although there are consensus recognition sites for other factors, we demonstrate that none of these factors binds to the P4 site, nor do other known members of the Ets family. Thus, a novel transcription factor may bind to the CD4 promoter and help mediate its function.
Collapse
Affiliation(s)
- S Sarafova
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
14
|
Dautigny N, Le Campion A, Lucas B. Timing and Casting for Actors of Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have recently proposed a new model for the differentiation pathway of αβ TCR thymocytes, with the CD4 and CD8 coreceptors undergoing an unexpectedly complex series of expression changes. Taking into account this new insight, we reinvestigated the timing of thymic negative selection. We found that, although endogenous superantigen-driven thymic negative selection could occur at different steps during double-positive/single-positive cell transition, this event was never observed among CD4lowCD8low TCRint CD69+ thymocytes, i.e., within the first subset to be generated upon TCR-mediated activation of immature double-positive cells. We confirm a role for CD40/CD40L interaction, and the absence of involvement of CD28 costimulation, in thymic deletion in vivo. Surprisingly, we found that thymic negative selection was impaired in the absence of Fas, but not FasL, molecule expression. Finally, we show involvement in opposing directions for p59fyn and SHP-1 molecules in signaling for thymic negative selection.
Collapse
Affiliation(s)
- Nicole Dautigny
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Armelle Le Campion
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Bruno Lucas
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| |
Collapse
|
15
|
Abstract
A system to innocuously visualize T cell lineage commitment is described. Using a "knock-in" approach, we have generated mice expressing a beta-galactosidase reporter in place of CD4; expression of beta-galactosidase in these animals appears to be an accurate and early indicator of CD4 gene transcription. We have exploited this knock-in line to trace CD4/CD8 lineage commitment in the thymus, avoiding important pitfalls of past experimental approaches. Our results argue in favor of a selective model of thymocyte commitment, demonstrating a fundamentally symmetrical process: engagement of either class of major histocompatibility complex (MHC) molecule by a differentiating CD4(+)CD8(+) cell can give rise to T cell antigen receptor (TCR)hi thymocytes of either lineage. Key findings include (a) direct demonstration of a substantial number of CD4-committed, receptor/coreceptor-mismatched cells in MHC class II- deficient mice, a critical prediction of the selective model; (b) highly efficient rescue of such "mismatched" intermediates by forced expression of CD8 in a TCR transgenic line, and an explanation of why previous experiments of this nature were less successful-a major past criticism of the selective model; (c) direct demonstration of an analogous, though smaller, population of CD8-committed mismatched intermediates in class I-deficient animals. Finally, we found no evidence of a CD4 default pathway.
Collapse
Affiliation(s)
- S Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
The outcome of positive selection of T lymphocytes is that there is a close match between the lineage adopted by a particular cell (CD4+ or CD8+) and the specificity of the T-cell receptor for the class of Major Histocompatibility Complex molecule recognized. How this match is obtained has been a matter of debate. We review the evidence, from recent and older experiments, that indicates that the process follows a selective logic, rather than an instructive one.
Collapse
Affiliation(s)
- S Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP) Strasbourg, France.
| | | | | | | |
Collapse
|
17
|
Sant'Angelo DB, Lucas B, Waterbury PG, Cohen B, Brabb T, Goverman J, Germain RN, Janeway CA. A molecular map of T cell development. Immunity 1998; 9:179-86. [PMID: 9729038 DOI: 10.1016/s1074-7613(00)80600-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Using a sensitive molecular marker for positive selection, the appearance of a particular functional TCR alpha chain sequence in cells from mice bearing a transgenic beta chain, we address several aspects of intrathymic T cell development. First, by examining specific TCR prior to and after maturation, we demonstrate how a restricted TCR repertoire is positively selected from a highly diverse immature TCR repertoire. Second, since this molecular marker is enriched in cells progressing toward the CD4 lineage and depleted in cells progressing toward the CD8 lineage, a map of the developmental pathway of alphabeta thymocytes can be inferred. Third, the first cells that show clear signs of positive intrathymic selection are identified.
Collapse
Affiliation(s)
- D B Sant'Angelo
- Section of Immunology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, Connecticut 06520-8011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Akashi K, Kondo M, Weissman IL. Two distinct pathways of positive selection for thymocytes. Proc Natl Acad Sci U S A 1998; 95:2486-91. [PMID: 9482912 PMCID: PMC19384 DOI: 10.1073/pnas.95.5.2486] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most mouse thymocytes undergoing positive selection are found on one of two pathways; the c-Kit+ and the c-Kit- pathways. Here, we show that c-Kit and interleukin-7 receptor (IL-7R)-mediated signals support positive selection during the transition from the subpopulation that first expresses cell surface T cell receptor (TCR)-the TCRalpha/betaloCD4(int)/CD8(int) (DPint) c-Kit+ cells to TCRalpha/betamedc-Kit+ transitional intermediate cells (the c-Kit+ pathway). Cells that fail positive selection on the c-Kit+ pathway become TCRalpha/betaloc-Kit- (DPhi) blasts that appear to undergo alternative TCRalpha rearrangements. The rare DPhic-Kit- blast cells that thus are salvaged for positive selection by expressing a self-major histocompatibility complex selectable TCRalpha/beta up-regulate IL-7R, but not c-Kit, and are the principal progenitors on the c-Kit- pathway; this c-Kit-IL-7R+ pathway is mainly CD4 lineage committed. Cell division is a feature of the TCRlo-medc-Kit+ transition, but is not essential for CD4 lineage maturation from DPhic-Kit- blasts. In this view, positive selection on the c-Kit- path results from a salvage of cells that failed positive selection on the c-Kit+ path.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Division
- Flow Cytometry
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Genes, MHC Class I
- Genes, MHC Class II
- Haplotypes
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Proto-Oncogene Proteins c-kit/biosynthesis
- Proto-Oncogene Proteins c-kit/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin-7
- Signal Transduction
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Up-Regulation/immunology
- beta 2-Microglobulin/genetics
Collapse
Affiliation(s)
- K Akashi
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
19
|
Dembic Z, Munthe LA, Schenck K, Mueller C, Bogen B. Transient overexpression of CD4 enhances allelic exclusion of T-cell receptor (TCR) α chains and promotes positive selection of class II-restricted TCR-transgenic thymocytes. Mol Immunol 1998. [DOI: 10.1016/s0161-5890(98)80014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Takahama Y, Tokoro Y, Sugawara T, Negishi I, Nakauchi H. Pertussis toxin can replace T cell receptor signals that induce positive selection of CD8 T cells. Eur J Immunol 1997; 27:3318-31. [PMID: 9464820 DOI: 10.1002/eji.1830271231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+ helper T lymphocytes and CD8+ killer T lymphocytes are both generated in the thymus from common precursor cells expressing CD4 and CD8. The development of immature CD4 CD8+ thymocytes into mature 'single-positive' T cells requires T cell antigen-receptor (TCR)-mediated positive selection signals. Although it is known that the recognition specificity of TCR expressed by CD4+ CD8+ thymocytes determines their fate to become either CD4+ or CD8+ T cells, the molecular signals that direct precursor thymocytes to become CD4+ and CD8+ T cells are unclear. By using ZAP-70 mutant thymus organ cultures in which T cell development is arrested at the CD4+ CD8+ thymocyte stage, the present study shows that distinct biochemical treatments can selectively restore the generation of mature CD4+ and CD8+ T cells, bypassing TCR-induced positive selection signals. The combination of phorbol ester and ionomycin selectively restores the generation of CD4+ CD8- TCR(high) cells, consistent with previous results. On the other hand, we find that the generation of CD4- CD8+ TCR(high) cells is selectively induced by pertussis toxin. Interestingly, the signals generated by pertussis toxin, which increase Notch expression, can dominate the signals by phorbol ester and ionomycin, steering thymocyte development to CD8 lineage. These results indicate that distinct biochemical signals replace TCR signals that selectively induce positive selection of CD4+ and CD8+ T cells, and that biochemical treatment can manipulate the development and choice of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Y Takahama
- Department of Immunology, Institute of Basic Medical Sciences, University of Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
21
|
Ellmeier W, Sunshine MJ, Losos K, Hatam F, Littman DR. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 1997; 7:537-47. [PMID: 9354474 DOI: 10.1016/s1074-7613(00)80375-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positive selection of CD4+CD8+ T cells to the CD4+CD8- helper and CD4- CD8+ cytotoxic lineages is a multistep process that involves complex regulation of coreceptor gene expression. By analyzing expression of a reporter gene in transgenic mice, we have identified a DNA segment, located between the murine CD8beta and CD8alpha genes, that has enhancer activity restricted to CD8 lineage cells. Remarkably, this enhancer functions in thymocytes undergoing positive selection to the CD4-CD8+ phenotype but not in immature double-positive thymocytes. The enhancer also functions in gut intraepithelial lymphocytes that express CD8alpha but not CD8beta, suggesting that it is specific for CD8alpha expression. The tight correlation between activation of this enhancer and the final step in positive selection has important implications for understanding the mechanism of lineage commitment in thymocytes.
Collapse
Affiliation(s)
- W Ellmeier
- Division of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
22
|
Schmitt S, Müller KP, Kyewski BA. Two separable T cell receptor signals reconstitute positive selection of CD4 lineage T cells in vivo. Eur J Immunol 1997; 27:2139-44. [PMID: 9341751 DOI: 10.1002/eji.1830270904] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positive selection is an obligatory step during intrathymic T cell differentiation. It is associated with rescue of short-lived, self major histocompatibility complex (MHC)-restricted thymocytes from programmed cell death, CD4/CD8 T cell lineage commitment, and induction of lineage-specific differentiation programs. T cell receptor (TCR) signaling during positive selection can be closely mimicked by targeting TCR on immature thymocytes to cortical epithelial cells in situ via hybrid antibodies. We show that selection of CD4 T cell lineage cells in mice deficient for MHC class I and MHC class II expression can be reconstituted in vivo by two separable T cell receptor signaling steps, whereas a single TCR signal leads only to induction of short-lived CD4+CD8lo intermediates. These intermediates remain susceptible to a second TCR signal for 12-48 h providing an estimate for the duration of positive selection in situ. While both TCR signals induce differentiation steps, only the second one confers long-term survival on immature thymocytes. In further support of the two-step model of positive selection we provide evidence that CD4 T cell lineage cells rescued by a single hybrid antibody pulse in MHC class II-deficient mice are pre-selected by MHC class I.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Lectins, C-Type
- Mice
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction
- Thymus Gland/cytology
Collapse
Affiliation(s)
- S Schmitt
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Barthlott T, Kohler H, Pircher H, Eichmann K. Differentiation of CD4(high)CD8(low) coreceptor-skewed thymocytes into mature CD8 single-positive cells independent of MHC class I recognition. Eur J Immunol 1997; 27:2024-32. [PMID: 9295041 DOI: 10.1002/eji.1830270829] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thymocytes with a CD4(hi)CD8(lo) coreceptor-skewed (CRS) phenotype have been shown to contain precursors for CD8 single-positive (SP) thymocytes, in addition to precursors for CD4 SP cells. The selection mechanisms that stimulate CD4(hi)CD8(lo) cells to revert to the CD8 lineage are not known. Mice transgenic (tg) for the major histocompatibility complex (MHC) class I-restricted P14 T cell receptor (TCR), on the H-2bm13 background, generate a large number of CD4(hi)CD8(lo) CRS thymocytes. We analyzed the developmental potential and the differentiation requirements of the CD4(hi)CD8(lo) population of these mice. Using reaggregate thymic organ cultures (RTOC), we observed that these cells efficiently and almost exclusively differentiate into CD8 SP cells. Differentiation occurred independent of whether or not the MHC haplotype of the thymic stroma corresponds to the MHC restriction of the tg TCR. Loss of CD4 was independent of thymic stroma, up-regulation of CD8 to full levels was dependent on thymic stroma but independent of MHC haplotype. After trypsin treatment and overnight incubation, these CRS cells re-expressed CD8 but failed to re-express CD4, indicating that they are in the process of terminating CD4 synthesis. CD8 SP cells derived from the CRS cells proliferate in response to peptide-pulsed antigen-presenting cells. Our data suggest that CD4(hi)CD8(lo) CRS thymocytes bearing the P14 tg TCR have completed positive selection and differentiate autonomously into functionally competent CD8 SP cells.
Collapse
Affiliation(s)
- T Barthlott
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | | | |
Collapse
|
24
|
Lamousé-Smith E, McCarthy SA. Allospecific cytotoxic T cells generated from beta 2m-/- mice in primary MLC: analysis of activation requirements, specificity, and phenotype. Cell Immunol 1997; 179:107-15. [PMID: 9268494 DOI: 10.1006/cimm.1997.1162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been demonstrated by several investigators that beta 2m-/- knockout mice are deficient in the expression of MHC Class I molecules but can nevertheless generate CD8(+) allospecific cytotoxic T cells following vigorous in vivo priming. We demonstrate here that in vivo priming is not necessary to generate MHC Class I allospecific CTL from beta 2m-/- mice. When splenocytes from naive unprimed beta 2m-/- mice were provided exogenous cytokines in MHC Class I disparate primary MLC, allospecific cytolytic effectors were generated. beta 2m-/- MHC Class I allospecific CTL that were CD3+ and Thy1.2+ were otherwise heterogeneous in phenotype, including CD8+, CD4+, CD8-CD4-, TCR alpha beta+, and TCR gamma delta+ T cells. This phenotypic variability of beta 2m-/- CTL generated in primary MLC reveals the diversity of CTL precursors that develop in vivo in the absence of MHC Class I.
Collapse
Affiliation(s)
- E Lamousé-Smith
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | |
Collapse
|
25
|
Suzuki H, Shinkai Y, Granger LG, Alt FW, Love PE, Singer A. Commitment of immature CD4+8+ thymocytes to the CD4 lineage requires CD3 signaling but does not require expression of clonotypic T cell receptor (TCR) chains. J Exp Med 1997; 186:17-23. [PMID: 9206993 PMCID: PMC2198962 DOI: 10.1084/jem.186.1.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a consequence of positive selection in the thymus, immature CD4(+)8(+) double-positive, [DP] thymocytes selectively terminate synthesis of one coreceptor molecule and, as a result, differentiate into either CD4(+) or CD8(+) T cells. The decision by individual DP thymocytes to terminate synthesis of one or the other coreceptor molecule is referred to as lineage commitment. Previously, we reported that the intrathymic signals that induced commitment to the CD4 versus CD8 T cell lineages were markedly asymmetric. Notably, CD8 commitment appeared to require lineage-specific signals, whereas CD4 commitment appeared to occur in the absence of lineage-specific signals by default. Consequently, it was unclear whether CD4 commitment, as revealed by selective termination of CD8 coreceptor synthesis, occurred in all DP thymocytes, or whether CD4 commitment occurred only in T cell receptor (TCR)-CD3-signaled DP thymocytes. Here, we report that selective termination of CD8 coreceptor synthesis does not occur in DP thymocytes spontaneously. Rather, CD4 commitment in DP thymocytes requires signals transduced by either CD3 or zeta chains, which can signal CD4 commitment even in the absence of clonotypic TCR chains.
Collapse
Affiliation(s)
- H Suzuki
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bommhardt U, Cole MS, Tso JY, Zamoyska R. Signals through CD8 or CD4 can induce commitment to the CD4 lineage in the thymus. Eur J Immunol 1997; 27:1152-63. [PMID: 9174605 DOI: 10.1002/eji.1830270516] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Differentiation of thymocytes into mature single-positive T cells is an ordered process involving sequential interactions between T cell receptor (TCR), co-receptors (CD4 or CD8) and their appropriate major histocompatibility complex-encoded ligands. Precisely how these receptor/co-receptor engagements determine lineage commitment is still controversial, but recently it has been suggested that quantitative differences in the signal transmitted by co-ligation of CD4 versus CD8 with TCR might provide the discriminating signal. We examine this hypothesis, using bispecific F(ab')2 antibodies to mimic TCR/ co-receptor engagement during thymocyte differentiation. These bispecific antibodies lack Fc and can engage surface molecules without extensive cross-linking or targeting to Fc receptor-bearing cells. We show that TCR/CD3 co-ligation with CD4 induces efficient differentiation of mature CD4 lineage cells, irrespective of their TCR specificity. Interestingly, TCR/CD3 co-ligation with CD8 also induces maturation of CD4 T cells, although less efficiently, but not of CD8 T cells. Thus, although the signals delivered by co-ligation of TCR and CD8 appear weaker than from co-ligation of TCR and CD4, the outcome from either engagement is the same. These data suggest that differences in signal intensity alone do not determine lineage commitment in the thymus, but that distinct signals are required for CD4 and CD8 single-positive cell differentiation.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacology
- CD3 Complex/immunology
- CD4 Antigens/immunology
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/classification
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8 Antigens/immunology
- Cell Differentiation/immunology
- Crosses, Genetic
- Immunoglobulin Fab Fragments/pharmacology
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Organ Culture Techniques
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- U Bommhardt
- Division of Molecular Immunology, National Institute for Medical Research, London, GB
| | | | | | | |
Collapse
|
27
|
Sebzda E, Choi M, Fung-Leung WP, Mak TW, Ohashi PS. Peptide-induced positive selection of TCR transgenic thymocytes in a coreceptor-independent manner. Immunity 1997; 6:643-53. [PMID: 9175842 DOI: 10.1016/s1074-7613(00)80352-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell receptor (TCR) transgenic thymocytes specific for the LCMV gp peptide are normally positively selected to the CD8 lineage. Transgenic thymocyte development was substantially reduced in the absence of these CD8 coreceptors. However, efficient positive selection was restored when TCR transgenic CD8-/- fetal thymic lobes were cultured with a peptide variant of the wild-type ligand. These mature thymocytes were functional, as shown by their ability to respond against strong peptide agonists. Additional experiments demonstrated that transgenic positive selection was peptide-specific. These results prove that CD8 does not possess essential signaling properties that are necessary for T cell development. In addition, the unilateral commitment of transgenic thymocytes to mature CD4-TCR(hi) T cells expressing intracellular perforin suggests that there must be some instructive component to CD4 down-regulation and lineage commitment during thymocyte selection.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Revilla C, González AL, Conde C, López-Hoyos M, Merino J. Treatment with anti-LFA-1 alpha monoclonal antibody selectively interferes with the maturation of CD4- 8+ thymocytes. Immunology 1997; 90:550-6. [PMID: 9176108 PMCID: PMC1456685 DOI: 10.1046/j.1365-2567.1997.00183.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maturation of T lymphocytes in the thymus is driven by signals provided by soluble factors and by the direct interaction between thymocytes and stromal cells. Although the interaction between T-cell receptor (TCR) and major histocompalibility complex (MHC) molecules on stromal cells is crucial for T-cell development, other accessory molecules seem to play a role in this process. In order to better understand the role of lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) molecules in thymocyte maturation, mice were treated from birth with saturating doses of non-cytolytic-specific monoclonal antibodies. The effect of this treatment on thymocyte subpopulations and the expression of CD3 and TCR-alpha beta by these cells was investigated by flow cytometry. Our data demonstrated that the effective saturation of LFA-1 alpha chain in the thymus, but not ICAM-I or LFA-I beta chain, selectively interfered with the maturation of CD8+ T cells, as manifested by a marked reduction in the frequency of CD4-8+ thymocytes expressing high levels of CD3 and TCR-alpha beta. This selective reduction was also observed in peripheral blood mononuclear cells and spleen cells. The analysis of the frequencies of various V beta TCR showed that CD4-8+ thymocytes were globally affected by the treatment. These results underline the importance of the interaction between LFA-1 and its ligands in the maturation of CD8+ T cells and document the existence of different molecular requirements for the differentiation of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- C Revilla
- Sección de Inmunologia, Hospital Universitario Marqués de Valdecilla, Instituto Nacional de la Salud, Santander, Spain
| | | | | | | | | |
Collapse
|
29
|
Lucas B, Germain RN. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 1996; 5:461-77. [PMID: 8934573 DOI: 10.1016/s1074-7613(00)80502-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD4+ CD8+ TCRlo thymocytes are the precursors of CD4+ and CD8+ mature T cells, whose receptors show specific recognition of peptide-MHC class II and MHC class I complexes, respectively. How T cells emerge from the intrathymic differentiation process with selective expression of either CD8 molecule or CD4 molecule coordinated with the MHC class specificity of the TCR has been the subject of intense examination. Many previous studies of this question have been based on the assumption that extinction of CD4 or CD8 expression by the precursor thymocytes was a steady, uninterrupted process. Here we show that this is an incorrect assumption, with CD4 and CD8 expression undergoing an unexpectedly complex series of expression changes involving down-modulation, kinetically asymmetric up-regulation, and then selective loss. Based on these data, we propose a model for the differentiation pathway of alphabeta TCR thymocytes that explains previous, apparently contradictory findings and establishes useful parameters for future studies at the cellular and gene level.
Collapse
Affiliation(s)
- B Lucas
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-1892, USA
| | | |
Collapse
|
30
|
Iwata M, Kuwata T, Mukai M, Tozawa Y, Yokoyama M. Differential induction of helper and killer T cells from isolated CD4+CD8+ thymocytes in suspension culture. Eur J Immunol 1996; 26:2081-6. [PMID: 8814250 DOI: 10.1002/eji.1830260918] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thymocytes of T cell receptor transgenic mice with nonselecting and RAG-2 -/- backgrounds were developmentally arrested at the CD4+CD8+ stage before positive selection. These thymocytes underwent lineage commitment upon transient stimulation with a combination of ionomycin, a calcium ionophore, and phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, in suspension culture. The effective drug doses were limited within narrow ranges and much lower than those which induce proliferation of mature T cells. The doses corresponded to those which inhibit glucocorticoid-induced apoptosis in these thymocytes. CD4 lineage commitment required longer duration, higher intensity of the stimulation, or both, than CD8 lineage commitment. Functional helper T cells (Th1 and Th2) were induced from the CD4 lineage-committed cells upon secondary stimulation with a combination of ionomycin and PMA followed by lymphokine treatment. Cytotoxic T cells were induced from the CD8 lineage-committed cells upon incubation with concanavalin A and irradiated splenic dendritic cells, but not with the combination of ionomycin and PMA. These results indicate that positive selection is mimicked by the pharmacological stimulation in the absence of other cell types, but that final maturation of CD8 T cells may require a different signal.
Collapse
Affiliation(s)
- M Iwata
- Project Research Center, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Akashi K, Weissman IL. The c-kit+ maturation pathway in mouse thymic T cell development: lineages and selection. Immunity 1996; 5:147-61. [PMID: 8769478 DOI: 10.1016/s1074-7613(00)80491-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Positive selection of T cells begins with TCR alpha beta lo thymic progenitors. Here, we show that the most efficient TCRlo progenitors are c-kit+ with intermediate levels of CD4 and CD8 (DPint). Positive selection of DPint TCRlo c-kit+ cells results in TCRmed CD69+ c-kit+ transitional intermediates that show increased TCRV beta frequencies to selecting superantigen (SAg) that are committed to the CD4 or CD8 pathway. The cells on the c-kit+ maturation pathway maintain Bcl-2 expression. Most DPint c-kit+ progenitors fail positive selection, and become DPhi c-kit- cells that lose Bcl-2 expression. Some DPhi c-kit blast cells can be salvaged to produce mature single-positive (SP) cells. DPint c-kit+ maturation to SP cells can occur in <12 hr in vitro on thymic stromal monolayers.
Collapse
Affiliation(s)
- K Akashi
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
32
|
Abstract
Recent studies of T-cell development in various types of mutant mouse shed new light on the relative roles in T-cell selection of antigen versus MHC molecule recognition by T-cell receptors.
Collapse
Affiliation(s)
- B Lucas
- Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | |
Collapse
|
33
|
Abstract
Interactions between stromal cells and thymocytes play a crucial role in T cell development. The thymic stroma is complex and consists of epithelial cells derived from the pharyngeal region during development, together with macrophages and dendritic cells of bone marrow origin. In addition, fibroblasts and matrix molecules permeate the whole framework. It is now apparent that these individual stromal components play specialized roles at different stages of T cell differentiation. Thus, at the early CD4-8- stage of development, T cell precursors require fibroblast as well as epithelial cell interactions. Later, at the CD4+8+ stage, as well as providing low avidity TCR/MHC-peptide interactions, thymic epithelial cells have been shown to possess unique properties essential for positive selection. Dendritic cells, on the other hand, are probably efficient mediators of negative selection, but they may not be solely responsible for this activity. Alongside the functional roles of stromal cells, considerable progress is being made in unraveling the nature of the signaling pathways involved in T cell development. Identification of the pre-T cell receptor (pre-TCR) and associated signaling molecules marks an important advance in understanding the mechanisms that control gene rearrangement and allelic exclusion. In addition, a better understanding of the signaling pathways that lead to positive selection on the one hand and negative selection on the other is beginning to emerge. Many issues remain unresolved, and some are discussed in this review. What, for example, is the nature of the chemotactic factor(s) that attract stem cells to the thymus? What is the molecular basis of the essential interactions between early thymocytes and fibroblasts, and early thymocytes and epithelial cells? What is special about cortical epithelial cells in supporting positive selection? These and other issues are ripe for analysis and can now be approached using a combination of modern molecular and cellular techniques.
Collapse
Affiliation(s)
- G Anderson
- Department of Anatomy, Medical School, University of Birmingham, United Kingdom
| | | | | | | |
Collapse
|
34
|
Abstract
Significant progress has been made in characterizing intermediates and defining individual steps of positive selection, providing important insights into mechanisms of CD4/CD8 lineage commitment. New evidence suggests that specific recognition of peptides may be important for positive selection of CD4+ T cells. Several studies have defined signal-transduction pathways important for positive selection and have provided evidence that distinct signaling pathways may regulate positive versus negative selection.
Collapse
Affiliation(s)
- C J Guidos
- Division of Immunology & Cancer, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Benveniste P, Knowles G, Cohen A. CD8/CD4 lineage commitment occurs by an instructional/default process followed by positive selection. Eur J Immunol 1996; 26:461-71. [PMID: 8617319 DOI: 10.1002/eji.1830260229] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study, we investigated the developmental potential of purified populations of transitional CD4inCD8hi and CD4hiCD8in thymocytes that were further defined according to their differentiation stage by their levels of T cell receptor (TCR) expression into TCRlo, TCRin and TCRhi subpopulations. The differentiation potential of each of these subsets was tested in vitro in a single-cell suspension culture assay that showed that CD4inCD8hiTCRhi are precursors of CD8 single-positive cells, whereas CD4hiCD8inTCRin/hi are precursors of both CD4 and CD8 single-positive thymocytes. The analysis of transitional subsets in mutant mice for either beta 2-microglobulin or major histocompatibility complex (MHC) class II further revealed that lineage commitment to the CD8 lineage requires a TCR-MHC class I engagement, presumably at the immature double-positive stage of thymic development, while CD4 commitment does not require an MHC class II-mediated signal, but rather occurs by default. Using the addition of MHC class I- or class II-expressing cells or the addition of total thymocytes to purified sorted transitional precursors for the duration of the cultures in vitro, we identified an additional stage of differentiation for both CD4 and CD8 lineages that requires a positive selection signal. Examination of protein tyrosine phosphorylation of transitional precursors revealed that CD4inCD8hi transitional cells contain a high level of a 70-kDa phosphorylated protein consistent with a role for ZAP70 in the signal transduction during the positive selection of CD8+ cells.
Collapse
Affiliation(s)
- P Benveniste
- Division of Immunology and Cancer Research, The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|