1
|
Le VT, Zhan ZJ, Vu TTP, Malik MS, Ou YY. ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites. J Mol Graph Model 2024; 130:108777. [PMID: 38642500 DOI: 10.1016/j.jmgm.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
This study delves into the prediction of protein-peptide interactions using advanced machine learning techniques, comparing models such as sequence-based, standard CNNs, and traditional classifiers. Leveraging pre-trained language models and multi-view window scanning CNNs, our approach yields significant improvements, with ProtTrans standing out based on 2.1 billion protein sequences and 393 billion amino acids. The integrated model demonstrates remarkable performance, achieving an AUC of 0.856 and 0.823 on the PepBCL Set_1 and Set_2 datasets, respectively. Additionally, it attains a Precision of 0.564 in PepBCL Set 1 and 0.527 in PepBCL Set 2, surpassing the performance of previous methods. Beyond this, we explore the application of this model in cancer therapy, particularly in identifying peptide interactions for selective targeting of cancer cells, and other fields. The findings of this study contribute to bioinformatics, providing valuable insights for drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Van-The Le
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Zi-Jun Zhan
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Thi-Thu-Phuong Vu
- Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Muhammad-Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Department of Computer Science and Engineering, Karakoram International University, Pakistan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
2
|
Romero‐Castillo L, Li T, Do N, Sareila O, Xu B, Hennings V, Xu Z, Svensson C, Oliveira‐Coelho A, Sener Z, Urbonaviciute V, Ekwall O, Burkhardt H, Holmdahl R. Human MHC Class II and Invariant Chain Knock-in Mice Mimic Rheumatoid Arthritis with Allele Restriction in Immune Response and Arthritis Association. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401513. [PMID: 38602454 PMCID: PMC11187888 DOI: 10.1002/advs.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Transgenic mice expressing human major histocompatibility complex class II (MHCII) risk alleles are widely used in autoimmune disease research, but limitations arise due to non-physiologic expression. To address this, physiologically relevant mouse models are established via knock-in technology to explore the role of MHCII in diseases like rheumatoid arthritis. The gene sequences encoding the ectodomains are replaced with the human DRB1*04:01 and 04:02 alleles, DRA, and CD74 (invariant chain) in C57BL/6N mice. The collagen type II (Col2a1) gene is modified to mimic human COL2. Importantly, DRB1*04:01 knock-in mice display physiologic expression of human MHCII also on thymic epithelial cells, in contrast to DRB1*04:01 transgenic mice. Humanization of the invariant chain enhances MHCII expression on thymic epithelial cells, increases mature B cell numbers in spleen, and improves antigen presentation. To validate its functionality, the collagen-induced arthritis (CIA) model is used, where DRB1*04:01 expression led to a higher susceptibility to arthritis, as compared with mice expressing DRB1*04:02. In addition, the humanized T cell epitope on COL2 allows autoreactive T cell-mediated arthritis development. In conclusion, the humanized knock-in mouse faithfully expresses MHCII, confirming the DRB1*04:01 alleles role in rheumatoid arthritis and being also useful for studying MHCII-associated diseases.
Collapse
MESH Headings
- Animals
- Mice
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Humans
- Disease Models, Animal
- Mice, Inbred C57BL
- Mice, Transgenic
- Gene Knock-In Techniques/methods
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Alleles
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- HLA-DRB1 Chains/genetics
- HLA-DRB1 Chains/immunology
- Collagen Type II/genetics
- Collagen Type II/immunology
Collapse
Affiliation(s)
- Laura Romero‐Castillo
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Taotao Li
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Nhu‐Nguyen Do
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFraunhofer Cluster of Excellence for Immune‐Mediated Diseases CIMDTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Outi Sareila
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Medical Inflammation ResearchMediCity Research LaboratoryUniversity of TurkuTurkuFI‐20520Finland
| | - Bingze Xu
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Viktoria Hennings
- Department of PediatricsInstitute of Clinical Sciences and Department of Rheumatology and Inflammation ResearchInstitute of MedicineThe Sahlgrenska AcademyUniversity of GothenburgGothenburg41345Sweden
| | - Zhongwei Xu
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Carolin Svensson
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Ana Oliveira‐Coelho
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Zeynep Sener
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Olov Ekwall
- Department of PediatricsInstitute of Clinical Sciences and Department of Rheumatology and Inflammation ResearchInstitute of MedicineThe Sahlgrenska AcademyUniversity of GothenburgGothenburg41345Sweden
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFraunhofer Cluster of Excellence for Immune‐Mediated Diseases CIMDTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
- Division of RheumatologyUniversity Hospital FrankfurtGoethe University60590Frankfurt am MainGermany
| | - Rikard Holmdahl
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Medical Inflammation ResearchMediCity Research LaboratoryUniversity of TurkuTurkuFI‐20520Finland
| |
Collapse
|
3
|
Bian S, Guo X, Yang X, Wei Y, Yang Z, Cheng S, Yan J, Chen Y, Chen GB, Du X, Francis SS, Shu Y, Liu S. Genetic determinants of IgG antibody response to COVID-19 vaccination. Am J Hum Genet 2024; 111:181-199. [PMID: 38181733 PMCID: PMC10806743 DOI: 10.1016/j.ajhg.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRβ1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.
Collapse
Affiliation(s)
- Shengzhe Bian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xilai Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zijing Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shiyao Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jiaqi Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Guo-Bo Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310059, Zhejiang, P.R. China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310063, Zhejiang, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China.
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
4
|
Nakazawa M, Nakajima R, Oshima A, Yamazaki A, Okano M, Miyamae J, Katakura F, Edamura K, Moritomo T, Watari T. Role of DLA-DRB1 amino acids outside the shared epitope in dachshund susceptibility to immune-mediated polyarthritis. Vet Immunol Immunopathol 2024; 267:110690. [PMID: 38096644 DOI: 10.1016/j.vetimm.2023.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Canine immune-mediated polyarthritis (IMPA) is an idiopathic disorder encompassing both erosive and non-erosive forms of rheumatoid arthritis (RA), with a clinical picture similar to human RA. Resemblance in major histocompatibility complex (MHC)-associated risk between the two was first noted within the specific amino acid motif known as the shared epitope (SE) on human leukocyte antigen DRB1. Following further identification of amino acids conferring risk for human RA outside the SE, this study was designed to examine amino acids both within and outside the classic SE in dachshunds, a breed with reported susceptibility to IMPA in Japan. Genome-wide association studies have linked positions 11, 13 and 71 with strong risk for human RA and important roles in antigen presentation to T cells. Sequence based genotyping of 16 case and 64 control dachshunds revealed strong associations comparable to human RA between IMPA risk and valine at position 11 (Val-11), phenylalanine at 13 (Phe-13), and arginine at 71 (Arg-71) on the dog leukocyte antigen (DLA)-DRB1 molecule (OR 2.89, 95%CI 1.3-6.4, p = 0.009), while association with the classic SE was significant only regarding homozygote frequency of the QRRAA haplotype-also carrying Val 11 and Phe 13 outside the SE (p = 0.04). Moreover, limited range in possible combinations of amino acids at positions 11, 13 and 71 starting with Val-11 among all DLA-DRB1 alleles registered with the GenBank and IPD-MHC canine databases, suggested potential of further single-breed analyses in dachshunds to clarify the disorder in terms of diagnosis, treatment, and epigenetic control, while clinical and immunopathogenetic similarities between human and dachshund RA also suggested the possibility of gaining insight into RA per se through study of canine IMPA as a spontaneous model of human RA.
Collapse
Affiliation(s)
- Meg Nakazawa
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ryuichi Nakajima
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ayaka Oshima
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Atsushi Yamazaki
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8310, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Kazuya Edamura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshihiro Watari
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
5
|
Wang SS, Lewis MJ, Pitzalis C. DNA Methylation Signatures of Response to Conventional Synthetic and Biologic Disease-Modifying Antirheumatic Drugs (DMARDs) in Rheumatoid Arthritis. Biomedicines 2023; 11:1987. [PMID: 37509625 PMCID: PMC10377185 DOI: 10.3390/biomedicines11071987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex condition that displays heterogeneity in disease severity and response to standard treatments between patients. Failure rates for conventional, target synthetic, and biologic disease-modifying rheumatic drugs (DMARDs) are significant. Although there are models for predicting patient response, they have limited accuracy, require replication/validation, or for samples to be obtained through a synovial biopsy. Thus, currently, there are no prediction methods approved for routine clinical use. Previous research has shown that genetics and environmental factors alone cannot explain the differences in response between patients. Recent studies have demonstrated that deoxyribonucleic acid (DNA) methylation plays an important role in the pathogenesis and disease progression of RA. Importantly, specific DNA methylation profiles associated with response to conventional, target synthetic, and biologic DMARDs have been found in the blood of RA patients and could potentially function as predictive biomarkers. This review will summarize and evaluate the evidence for DNA methylation signatures in treatment response mainly in blood but also learn from the progress made in the diseased tissue in cancer in comparison to RA and autoimmune diseases. We will discuss the benefits and challenges of using DNA methylation signatures as predictive markers and the potential for future progress in this area.
Collapse
Affiliation(s)
- Susan Siyu Wang
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
7
|
Yang J, Liu H, Pan W, Song M, Lu Y, Wang-Ngai Chow F, Hang-Mei Leung P, Deng Y, Hori M, He N, Li S. Recent Advances of Human Leukocyte Antigen (HLA) Typing Technology Based on High-Throughput Sequencing. J Biomed Nanotechnol 2022; 18:617-639. [PMID: 35715925 DOI: 10.1166/jbn.2022.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major histocompatibility complex (MHC) in humans is a genetic region consisting of cell surface proteins located on the short arm of chromosome 6. This is also known as the human leukocyte antigen (HLA) region. The HLA region consists of genes that exhibit complex genetic polymorphisms, and are extensively involved in immune responses. Each individual has a unique set of HLAs. Donor-recipient HLA allele matching is an important factor for organ transplantation. Therefore, an established rapid and accurate HLA typing technology is instrumental to preventing graft-verses-host disease (GVHD) in organ recipients. As of recent, high-throughput sequencing has allowed for an increase read length and higher accuracy and throughput, thus achieving complete and high-resolution full-length typing. With more advanced nanotechnology used in high-throughput sequencing, HLA typing is more widely used in third-generation single-molecule sequencing. This review article summarizes some of the most widely used sequencing typing platforms and evaluates the latest developments in HLA typing kits and their clinical applications.
Collapse
Affiliation(s)
- Jin Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Mengru Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yutong Lu
- School of Electrical and Information Engineering, Hunan University, Changsha 410012, Hunan, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Masahi Hori
- 2-16-5 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
8
|
Kaabinejadian S, Barra C, Alvarez B, Yari H, Hildebrand WH, Nielsen M. Accurate MHC Motif Deconvolution of Immunopeptidomics Data Reveals a Significant Contribution of DRB3, 4 and 5 to the Total DR Immunopeptidome. Front Immunol 2022; 13:835454. [PMID: 35154160 PMCID: PMC8826445 DOI: 10.3389/fimmu.2022.835454] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology, next-generation vaccine development and protein-drug immunogenicity assessment. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that deal with these challenges effectively and guide the analysis and interpretation of this complex type of data is currently a major bottleneck for the large-scale application of this technique. To resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA molecule, allowing to identify and characterize HLA binding motifs while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.
Collapse
Affiliation(s)
- Saghar Kaabinejadian
- Pure MHC, LLC., Oklahoma City, OK, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Bruno Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
9
|
Lim JJ, Jones CM, Loh TJ, Ting YT, Zareie P, Loh KL, Felix NJ, Suri A, McKinnon M, Stevenaert F, Sharma RK, Klareskog L, Malmström V, Baker DG, Purcell AW, Reid HH, La Gruta NL, Rossjohn J. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Sci Immunol 2021; 6:6/58/eabe0896. [PMID: 33863750 DOI: 10.1126/sciimmunol.abe0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Individuals expressing HLA-DR4 bearing the shared susceptibility epitope (SE) have an increased risk of developing rheumatoid arthritis (RA). Posttranslational modification of self-proteins via citrullination leads to the formation of neoantigens that can be presented by HLA-DR4 SE allomorphs. However, in T cell-mediated autoimmunity, the interplay between the HLA molecule, posttranslationally modified epitope(s), and the responding T cell repertoire remains unclear. In HLA-DR4 transgenic mice, we show that immunization with a Fibβ-74cit69-81 peptide led to a population of HLA-DR4Fibβ-74cit69-81 tetramer+ T cells that exhibited biased T cell receptor (TCR) β chain usage, which was attributable to selective clonal expansion from the preimmune repertoire. Crystal structures of pre- and postimmune TCRs showed that the SE of HLA-DR4 represented a main TCR contact zone. Immunization with a double citrullinated epitope (Fibβ-72,74cit69-81) altered the responding HLA-DR4 tetramer+ T cell repertoire, which was due to the P2-citrulline residue interacting with the TCR itself. We show that the SE of HLA-DR4 has dual functionality, namely, presentation and a direct TCR recognition determinant. Analogous biased TCR β chain usage toward the Fibβ-74cit69-81 peptide was observed in healthy HLA-DR4+ individuals and patients with HLA-DR4+ RA, thereby suggesting a link to human RA.
Collapse
Affiliation(s)
- Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yi Tian Ting
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pirooz Zareie
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Khai L Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nathan J Felix
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | - Anish Suri
- Janssen Research & Development, Turnhoutseweg 30, BE-2340, Beerse, Belgium
| | - Murray McKinnon
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | | | - Ravi K Sharma
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Daniel G Baker
- Janssen Research & Development LLC, Horsham, Philadelphia, PA, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction. Nat Commun 2020; 11:4414. [PMID: 32887877 PMCID: PMC7473865 DOI: 10.1038/s41467-020-18204-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 02/03/2023] Open
Abstract
CD4+ helper T cells contribute important functions to the immune response during pathogen infection and tumor formation by recognizing antigenic peptides presented by class II major histocompatibility complexes (MHC-II). While many computational algorithms for predicting peptide binding to MHC-II proteins have been reported, their performance varies greatly. Here we present a yeast-display-based platform that allows the identification of over an order of magnitude more unique MHC-II binders than comparable approaches. These peptides contain previously identified motifs, but also reveal new motifs that are validated by in vitro binding assays. Training of prediction algorithms with yeast-display library data improves the prediction of peptide-binding affinity and the identification of pathogen-associated and tumor-associated peptides. In summary, our yeast-display-based platform yields high-quality MHC-II-binding peptide datasets that can be used to improve the accuracy of MHC-II binding prediction algorithms, and potentially enhance our understanding of CD4+ T cell recognition. Identifying peptides that can bind major histocompatibility complex II (MHC-II) is important for our understanding of T cell immunity and specificity. Here the authors present a yeast-display library screening approach that identifies more potential binders than various reported algorithms to help expand our understanding for antigen presentation.
Collapse
|
11
|
van Drongelen V, Ali WH, Holoshitz J. Uncovering a Shared Epitope-Activated Protein Citrullination Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:579-586. [PMID: 32591395 DOI: 10.4049/jimmunol.1901108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is closely associated with shared epitope (SE)-coding HLA-DRB1 alleles and circulating anticitrullinated protein Abs (ACPA), but neither the respective pathogenic roles of SE and ACPA in RA nor the mechanisms underlying their coassociation are known. It was recently shown that the SE functions as a signal transduction ligand that activates a cell surface calreticulin-mediated, proarthritogenic, bone erosive pathway in an experimental model of RA. In this study, we demonstrate that stimulation of murine macrophages with LPS or DTT facilitated cell surface translocation of calreticulin, which in turn enabled increased SE-activated calcium signaling and activation of peptidylarginine deiminase with the resultant increased cellular abundance of citrullinated proteins. The i.p. administration of LPS to transgenic mice carrying a human SE-coding HLA-DRB1 allele lead to increased serum levels of TNF-α and anticitrullinated cyclic peptide Abs, along with terminal phalanx bone destruction. These data uncover a previously unknown signal transduction pathway by which the SE facilitates protein citrullination, ACPA production, and bone destruction.
Collapse
Affiliation(s)
- Vincent van Drongelen
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Wahida H Ali
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Sepúlveda-Delgado J, Rizo-Pinto A, Granados-Arriola J, Mena-Vela BA, Cetina-Díaz JH, García-Silva R, Hernández-Doño S, Cruz-Salvatierra MA, Pérez-Tirado JM, Vázquez-Guzmán C, Dominguez-Arrevillaga S, Trujillo-Vizuet MG, Sanchez-González RA, Zamudio-Castellanos F, Vera-Lastra OL, Jara-Quezada LJ. Role of HLA-DRB1*04 in the susceptibility and HLA-DRB1*08 in the protection for development of rheumatoid arthritis in a population of Southern Mexico: brief report. Clin Rheumatol 2020; 39:2875-2879. [PMID: 32240434 DOI: 10.1007/s10067-020-05060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease with an increased prevalence in Mexico. Although its etiology is unknown, its development can be influenced by environmental factors such as smoking and viral infections. But among the factors influencing susceptibility, it is the genetic factors that predominate, mainly the HLA-DRB1 genes, and specifically the alleles that have the shared epitope (SE). A transversal study was performed, in which 31 patients (28 women and 3 men) with RA, treated at the autoimmunity clinic of the High Specialty Hospital Ciudad Salud in Tapachula, Chiapas, southern México, were enrolled. Clinical, biochemical, and demographic data were analyzed; ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), RF (rheumatoid factor), and ACPA (anticitrullinated peptide antibody) were recorded. All patients had at least one positive RA biological marker. For HLA alleles frequencies comparison, we enrolled ethnically matched healthy controls in a ratio of 3:1 for 25 cases and 4:1 for 6 cases in order to guarantee the balance between groups regarding the mean of age and proportion of gender (males vs females). HLA-DRB1*04 was found to be significantly increased in patients compared with ethnically matched healthy controls (p 0.0007, OR: 2.8, 95% CI 1.5-5.1); contrarily, DRB1*08 showed a protective effect (p 0.005, OR 0.1). This paper confirmed the involvement of HLA genes on risk determination for RA in a population of Mexican Mestizos from Tapachula, Chiapas. Key Points • HLA-DRB1*04 confirms the increased risk of rheumatoid arthritis. • HLA-DRB1*08 showed a more definite protective effect in southern Mexicans mestizos, a population with more Amerindian ancestry.
Collapse
Affiliation(s)
- J Sepúlveda-Delgado
- Research and Diagnosis Division, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico.
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, Tapachula, Chiapas, Mexico.
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico.
| | - A Rizo-Pinto
- Autoimmunity Clinic, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
- Centro Universitario Cultural del Soconusco, Tapachula, Chiapas, Mexico
| | - J Granados-Arriola
- División de Inmunogénetica, Departamento de Trasplante, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - B A Mena-Vela
- Autoimmunity Clinic, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - J H Cetina-Díaz
- Autoimmunity Clinic, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - R García-Silva
- División de Inmunogénetica, Departamento de Trasplante, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - S Hernández-Doño
- División de Inmunogénetica, Departamento de Trasplante, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - M A Cruz-Salvatierra
- Autoimmunity Clinic, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - J M Pérez-Tirado
- Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - C Vázquez-Guzmán
- Autoimmunity Clinic, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | | | - M G Trujillo-Vizuet
- Research Laboratory, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - R A Sanchez-González
- Research Laboratory, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - F Zamudio-Castellanos
- Research Laboratory, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | - O L Vera-Lastra
- Hospital de Especialidades, Centro Médico la Raza, Ciudad de México, Mexico
| | - L J Jara-Quezada
- Hospital de Especialidades, Centro Médico la Raza, Ciudad de México, Mexico
| |
Collapse
|
13
|
Abstract
Rheumatoid arthritis is a heterogeneous disease, which can be, based on data combining genetic risk factors and autoantibodies, sub-classified into ACPA-positive and -negative RA. Presence of ACPA and RF as well as rising CRP-levels in some patients years before onset of clinical symptoms indicate that relevant immune responses for RA development are initiated very early. ACPA are highly specific for RA, whereas RF can also be found among healthy (elderly) individuals and patients with other autoimmune diseases or infection. The most important genetic risk factor for RA development, the shared epitope alleles, resides in the MHC class II region. Shared epitope alleles, however, only predispose to the development of ACPA-positive RA. Smoking is thus far the most important environmental risk factor associated with the development of RA. Studies on synovitis have shown the importance not only of adaptive but also of innate immune responses. In summary of the various results from immunological changes in blood and synovial tissue, the extension of the immune response from a diffuse myeloid to a lympho-myeloid inflammation appears to be associated with a more successful therapeutic response to biologics. With respect to advances in synovitis research, new targets for treatment against pathological subsets of immune cells or fibroblasts are already on the horizon. However, alternative strategies involving the microbiome may play an important role as well and research in this field is growing rapidly.
Collapse
|
14
|
Hossain MU, Omar TM, Oany AR, Kibria KMK, Shibly AZ, Moniruzzaman M, Ali SR, Islam MM. Design of peptide-based epitope vaccine and further binding site scrutiny led to groundswell in drug discovery against Lassa virus. 3 Biotech 2018; 8:81. [PMID: 29430345 DOI: 10.1007/s13205-018-1106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022] Open
Abstract
Lassa virus (LASV) is responsible for an acute viral hemorrhagic fever known as Lassa fever. Sequence analyses of LASV proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus. To induce both humoral and cell-mediated immunity peptide sequence SSNLYKGVY, conserved region 41-49 amino acids were found as the most potential B-cell and T-cell epitopes, respectively. The peptide sequence might intermingle with 17 HLA-I and 16 HLA-II molecules, also cover 49.15-96.82% population coverage within the common people of different countries where Lassa virus is endemic. To ensure the binding affinity to both HLA-I and HLA-II molecules were employed in docking simulation with suggested epitope sequence. Further the predicted 3D structure of the most immunogenic protein was analyzed to reveal out the binding site for the drug design against Lassa Virus. Herein, sequence analyses of proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus.
Collapse
|
15
|
Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands-Relation to Rheumatoid Arthritis. Int J Mol Sci 2018; 19:ijms19010317. [PMID: 29361739 PMCID: PMC5796260 DOI: 10.3390/ijms19010317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex.
Collapse
|
16
|
Misra MK, Damotte V, Hollenbach JA. Structure-based selection of human metabolite binding P4 pocket of DRB1*15:01 and DRB1*15:03, with implications for multiple sclerosis. Genes Immun 2018; 20:46-55. [PMID: 29362509 PMCID: PMC6054566 DOI: 10.1038/s41435-017-0009-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022]
Abstract
Binding of small molecules in the human leukocyte antigen (HLA) peptide-binding groove may result in conformational changes of bound peptide and an altered immune response, but previous studies have not considered a potential role for endogenous metabolites. We performed virtual screening of the complete Human Metabolite Database (HMDB) for docking to the multiple sclerosis (MS) susceptible DRB1*15:01 allele and compared the results to the closely related yet non-susceptible DRB1*15:03 allele; and assessed the potential impact on binding of human myelin basic peptide (MBP). We observed higher energy scores for metabolite binding to DRB1*15:01 than DRB1*15:03. Structural comparison of docked metabolites with DRB1*15:01 and DRB1*15:03 complexed with MBP revealed that PhenylalanineMBP92 allows binding of metabolites in the P4 pocket of DRB1*15:01 but ValineMBP89 abrogates metabolite binding in the P1 pocket. We observed differences in the energy scores for binding of metabolites in the P4 pockets of DRB1*15:01 vs. DRB1*15:03 suggesting stronger binding to DRB1*15:01. Our study confirmed that specific, disease-associated human metabolites bind effectively with the most polymorphic P4 pocket of DRB1*15:01, the primary MS susceptible allele in most populations. Our results suggest that endogenous human metabolites bound in specific pockets of HLA may be immunomodulatory and implicated in autoimmune disease.
Collapse
Affiliation(s)
- Maneesh K Misra
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Vincent Damotte
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
17
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
18
|
Van Drongelen V, Holoshitz J. A reciprocal HLA-Disease Association in Rheumatoid Arthritis and Pemphigus Vulgaris. Front Biosci (Landmark Ed) 2017; 22:909-919. [PMID: 27814654 DOI: 10.2741/4524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human leukocyte antigens (HLA) have been extensively studied as being antigen presenting receptors, but many aspects of their function remain elusive, especially their association with various autoimmune diseases. Here we discuss an illustrative case of the reciprocal relationship between certain HLA-DRB1 alleles and two diseases, rheumatoid arthritis (RA) and pemphigus vulgaris (PV). RA is strongly associated with HLA-DRB1 alleles that encode a five amino acid sequence motif in the 70-74 region of the DR beta chain, called the shared epitope (SE), while PV is associated with the HLA-DRB1*04:02 allele that encodes a different sequence motif in the same region. Interestingly, while HLA-DRB1*04:02 confers susceptibility to PV, this and other alleles that encode the same sequence motif in the 70-74 region of the DR beta chain are protective against RA. Currently, no convincing explanation for this antagonistic effect is present. Here we briefly review the immunology and immunogenetics of both diseases, identify remaining gaps in our understanding of their association with HLA, and propose the possibility that the 70-74 DR beta epitope may contribute to disease risk by mechanisms other than antigen presentation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- University of Michigan, 5520D MSRB1, SPC 5680, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5680,
| |
Collapse
|
19
|
Fine-mapping the human leukocyte antigen locus in rheumatoid arthritis and other rheumatic diseases: identifying causal amino acid variants? Curr Opin Rheumatol 2015; 27:256-61. [PMID: 25760279 DOI: 10.1097/bor.0000000000000165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To provide an update on and the context of the recent findings obtained with novel statistical methods on the association of the human leukocyte antigen (HLA) locus with rheumatic diseases. RECENT FINDINGS Novel single nucleotide polymorphism fine-mapping data obtained for the HLA locus have indicated the strongest association with amino acid positions 11 and 13 of HLA-DRB1 molecule for several rheumatic diseases. On the basis of these data, a dominant role for position 11/13 in driving the association with these diseases is proposed and the identification of causal variants in the HLA region in relation to disease susceptibility implicated. SUMMARY The HLA class II locus is the most important risk factor for several rheumatic diseases. Recently, new statistical approaches have identified previously unrecognized amino acid positions in the HLA-DR molecule that associate with anticitrullinated protein antibody-negative and anticitrullinated protein antibody-positive rheumatoid arthritis. Likewise, similar findings have been made for other rheumatic conditions such as giant-cell arteritis and systemic lupus erythematosus. Interestingly, all these studies point toward an association with the same amino acid positions: amino acid positions 11 and 13 of the HLA-DR β chain. As both these positions influence peptide binding by HLA-DR and have been implicated in antigen presentation, the novel fine-mapping approach is proposed to map causal variants in the HLA region relevant to rheumatoid arthritis and several rheumatic diseases. If these interpretations are correct, they would direct the biological research aiming to address the explanation for the HLA-disease association. Here, we provide an overview of the recent findings and evidence from literature that, although relevant new insights have been obtained on HLA-disease associations, the interpretation of the biological role of these amino acids as causal variants explaining that such associations should be taken with caution.
Collapse
|
20
|
Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis. Mol Immunol 2015; 68:465-75. [PMID: 26476978 DOI: 10.1016/j.molimm.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/23/2023]
Abstract
Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed.
Collapse
|
21
|
Wenzlau JM, Fain PR, Gardner TJ, Frisch LM, Annibale B, Hutton JC. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study. Diabetes Care 2015; 38 Suppl 2:S29-36. [PMID: 26405069 PMCID: PMC4582907 DOI: 10.2337/dcs15-2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2.
Collapse
Affiliation(s)
- Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Pamela R Fain
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Thomas J Gardner
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Lisa M Frisch
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Bruno Annibale
- Digestive and Liver Disease Unit, University "La Sapienza," Sant'Andrea Hospital, Rome, Italy
| | - John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
22
|
Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. J Hum Genet 2015; 60:697-702. [PMID: 26290149 DOI: 10.1038/jhg.2015.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/24/2022]
Abstract
The mechanism of genetic associations between human leukocyte antigen (HLA) and susceptibility to autoimmune disorders has remained elusive for most of the diseases, including rheumatoid arthritis (RA) and type 1 diabetes (T1D), for which both the genetic associations and pathogenic mechanisms have been extensively analyzed. In this review, we summarize what are currently known about the mechanisms of HLA associations with RA and T1D, and elucidate the potential mechanistic basis of the HLA-autoimmunity associations. In RA, the established association between the shared epitope (SE) and RA risk has been explained, at least in part, by the involvement of SE in the presentation of citrullinated peptides, as confirmed by the structural analysis of DR4-citrullinated peptide complex. Self-peptide(s) that might explain the predispositions of variants at 11β and 13β in DRB1 to RA risk have not currently been identified. Regarding the mechanism of T1D, pancreatic self-peptides that are presented weakly on the susceptible HLA allele products are recognized by self-reactive T cells. Other studies have revealed that DQ proteins encoded by the T1D susceptible DQ haplotypes are intrinsically unstable. These findings indicate that the T1D susceptible DQ haplotypes might confer risk for T1D by facilitating the formation of unstable HLA-self-peptide complex. The studies of RA and T1D reveal the two distinct mechanistic basis that might operate in the HLA-autoimmunity associations. Combination of these mechanisms, together with other functional variations among the DR and DQ alleles, may generate the complex patterns of DR-DQ haplotype associations with autoimmunity.
Collapse
|
23
|
Büyüktimkin B, Kiptoo P, Siahaan TJ. Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5:1000273. [PMID: 26251760 PMCID: PMC4524745 DOI: 10.4172/2155-9899.1000273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study is to evaluate the efficacy and potential mechanism of action of type-II collagen bifunctional peptide inhibitor (CII-BPI) molecules in suppressing rheumatoid arthritis in the collagen-induced arthritis (CIA) mouse model. CII-BPI molecules (CII-BPI-1, CII-BPI-2, and CII-BPI-3) were formed through conjugation between an antigenic peptide derived from type-II collagen and a cell adhesion peptide LABL (CD11a237-246) from the I-domain of LFA-1 via a linker molecule. The hypothesis is that the CII-BPI molecules simultaneously bind to MHC-II and ICAM-1 on the surface of APC and block maturation of the immunological synapse. As a result, the differentiation of naïve T cells is altered from inflammatory to regulatory and/or suppressor T cells. The efficacies of CII-BPI molecules were evaluated upon intravenous injections in CIA mice. Results showed that CII-BPI-1 and CIIBPI-2 suppressed the joint inflammations in CIA mice in a dose-dependent manner and were more potent than the respective antigenic peptides alone. CII-BPI-3 was not as efficacious as CII-BPI-1 and CII-BPI-2. Significantly less joint damage was observed in CII-BPI-2 and CII-2 treated mice than in the control. The production of IL-6 was significantly lower at the peak of disease in mice treated with CII-BPI-2 compared to those treated with CII-2 and control. In conclusion, this is the first proof-of-concept study showing that BPI molecules can be used to suppress RA and may be a potential therapeutic strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
24
|
Law SC, Benham H, Reid HH, Rossjohn J, Thomas R. Identification of Self-antigen–specific T Cells Reflecting Loss of Tolerance in Autoimmune Disease Underpins Preventative Immunotherapeutic Strategies in Rheumatoid Arthritis. Rheum Dis Clin North Am 2014; 40:735-52. [DOI: 10.1016/j.rdc.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Jones MR, Cheviron ZA, Carling MD. Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis). Immunogenetics 2014; 66:693-704. [DOI: 10.1007/s00251-014-0800-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
|
26
|
Sayad A, Akbari MT, Mehdizadeh M, Movafagh A, Hajifathali A. The association of HLA-class I and class II with Hodgkin's lymphoma in Iranian patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:231236. [PMID: 24963477 PMCID: PMC4055297 DOI: 10.1155/2014/231236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 11/18/2022]
Abstract
The Hodgkin's lymphoma disease (HD) is a common malignant neoplasm with germinal centre B-cell origin. It has been suggested that the HLA class I and class II regions have susceptibility effects on HD. In different ethnic groups, different HLA class I and class II alleles affect HD. As a result, there is no consensus which of the different HLA alleles confers susceptibility to HD. In this study, we aimed to ascertain the role of HLA class I and class II alleles in association with Hodgkin's lymphoma in Iranian patients. We performed a case-control genotyping study in 85 Iranian HD patients which were selected from the Bone Marrow Transplantation Department of Taleghani Hospital and 150 controls using the SSP-PCR. Our results demonstrated that the HLA-A*68, HLA-B*51, and HLA-DRB1*15 alleles were significantly more frequent in HD patients in comparison to controls (P = 0.026; OR = 6.188, P = 0.00008; OR = 2.86, P = 0.00006; OR = 5.315, resp.) and they have significant susceptibility effects on HD in Iranian population. There are reports of other populations with regard to consistency and inconsistency to our results. Further studies with large sample size or the meta-analysis are needed to explain the exact associations of HLA gene with HD.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Taleghani Bone Marrow Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Abbas Hajifathali
- Taleghani Bone Marrow Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
27
|
The Clinical Significance of Posttranslational Modification of Autoantigens. Clin Rev Allergy Immunol 2014; 47:73-90. [DOI: 10.1007/s12016-014-8424-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Hasan MA, Hossain M, Alam MJ. A computational assay to design an epitope-based Peptide vaccine against saint louis encephalitis virus. Bioinform Biol Insights 2013; 7:347-55. [PMID: 24324329 PMCID: PMC3855041 DOI: 10.4137/bbi.s13402] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Saint Louis encephalitis virus, a member of the flaviviridae subgroup, is a culex mosquito-borne pathogen. Despite severe epidemic outbreaks on several occasions, not much progress has been made with regard to an epitope-based vaccine designed for Saint Louis encephalitis virus. The envelope proteins were collected from a protein database and analyzed with an in silico tool to identify the most immunogenic protein. The protein was then verified through several parameters to predict the T-cell and B-cell epitopes. Both T-cell and B-cell immunity were assessed to determine that the protein can induce humoral as well as cell-mediated immunity. The peptide sequence from 330-336 amino acids and the sequence REYCYEATL from the position 57 were found as the most potential B-cell and T-cell epitopes, respectively. Furthermore, as an RNA virus, one important thing was to establish the epitope as a conserved one; this was also done by in silico tools, showing 63.51% conservancy. The epitope was further tested for binding against the HLA molecule by computational docking techniques to verify the binding cleft epitope interaction. However, this is a preliminary study of designing an epitope-based peptide vaccine against Saint Louis encephalitis virus; the results awaits validation by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md Anayet Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | | | | |
Collapse
|
29
|
Design of peptide immunotherapies for MHC Class-II-associated autoimmune disorders. Clin Dev Immunol 2013; 2013:826191. [PMID: 24324511 PMCID: PMC3845387 DOI: 10.1155/2013/826191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/05/2013] [Indexed: 12/24/2022]
Abstract
Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC) is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL), or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA) is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS) patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP) peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders.
Collapse
|
30
|
Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SBG, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 210:2569-82. [PMID: 24190431 PMCID: PMC3832918 DOI: 10.1084/jem.20131241] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)-DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLA-DRB1*04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLA-DRB1*04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01(+) individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4(+) T cells in the peripheral blood of HLA-DRB1*04:01(+) RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA.
Collapse
Affiliation(s)
- Stephen W Scally
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsai S, Santamaria P. MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Front Immunol 2013; 4:321. [PMID: 24133494 PMCID: PMC3794362 DOI: 10.3389/fimmu.2013.00321] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023] Open
Abstract
Major histocompatibility complex (MHC) genes, also known as human leukocyte antigen genes (HLA) in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D), multiple sclerosis, and rheumatoid arthritis, among others (1–3). Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T-cell repertoires of the host toward autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development toward a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development toward non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T-cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T-cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.
Collapse
Affiliation(s)
- Sue Tsai
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | | |
Collapse
|
32
|
Chen S, Li Y, Depontieu FR, McMiller TL, English AM, Shabanowitz J, Kos F, Sidney J, Sette A, Rosenberg SA, Hunt DF, Mariuzza RA, Topalian SL. Structure-based design of altered MHC class II-restricted peptide ligands with heterogeneous immunogenicity. THE JOURNAL OF IMMUNOLOGY 2013; 191:5097-106. [PMID: 24108701 DOI: 10.4049/jimmunol.1300467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insights gained from characterizing MHC-peptide-TCR interactions have held the promise that directed structural modifications can have predictable functional consequences. The ability to manipulate T cell reactivity synthetically or through genetic engineering might thus be translated into new therapies for common diseases such as cancer and autoimmune disorders. In the current study, we determined the crystal structure of HLA-DR4 in complex with the nonmutated dominant gp100 epitope gp10044-59, associated with many melanomas. Altered peptide ligands (APLs) were designed to enhance MHC binding and hence T cell recognition of gp100 in HLA-DR4(+) melanoma patients. Increased MHC binding of several APLs was observed, validating this approach biochemically. Nevertheless, heterogeneous preferences of CD4(+) T cells from several HLA-DR4(+) melanoma patients for different gp100 APLs suggested highly variable TCR usage, even among six patients who had been vaccinated against the wild-type gp100 peptide. This heterogeneity prevented the selection of an APL candidate for developing an improved generic gp100 vaccine in melanoma. Our results are consistent with the idea that even conservative changes in MHC anchor residues may result in subtle, yet crucial, effects on peptide contacts with the TCR or on peptide dynamics, such that alterations intended to enhance immunogenicity may be unpredictable or counterproductive. They also underscore a critical knowledge gap that needs to be filled before structural and in vitro observations can be used reliably to devise new immunotherapies for cancer and other disorders.
Collapse
Affiliation(s)
- Shuming Chen
- Department of Surgery, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One 2013; 8:e71043. [PMID: 23923050 PMCID: PMC3726620 DOI: 10.1371/journal.pone.0071043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022] Open
Abstract
High-throughput screening for interactions of peptides with a variety of antibody targets could greatly facilitate proteomic analysis for epitope mapping, enzyme profiling, drug discovery and biomarker identification. Peptide microarrays are suited for such undertaking because of their high-throughput capability. However, existing peptide microarrays lack the sensitivity needed for detecting low abundance proteins or low affinity peptide-protein interactions. This work presents a new peptide microarray platform constructed on nanostructured plasmonic gold substrates capable of metal enhanced NIR fluorescence enhancement (NIR-FE) by hundreds of folds for screening peptide-antibody interactions with ultrahigh sensitivity. Further, an integrated histone peptide and whole antigen array is developed on the same plasmonic gold chip for profiling human antibodies in the sera of systemic lupus erythematosus (SLE) patients, revealing that collectively a panel of biomarkers against unmodified and post-translationally modified histone peptides and several whole antigens allow more accurate differentiation of SLE patients from healthy individuals than profiling biomarkers against peptides or whole antigens alone.
Collapse
|
34
|
Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 2013; 250:32-48. [PMID: 23046121 DOI: 10.1111/imr.12002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell receptors (TCRs) recognize peptides presented by major histocompatibility complex molecules (pMHC) to discriminate between foreign and self-antigens. Whereas T-cell recognition of foreign peptides is essential for protection against microbial pathogens, recognition of self-peptides by T cells that have escaped negative selection in the thymus can lead to autoimmune disease. Structural studies of autoimmune TCR-pMHC complexes have provided insights into the mechanisms underlying self-recognition and escape from thymic deletion. Two broad categories of self-reactive TCRs can be clearly distinguished: (i) TCRs with altered binding topologies to self-pMHC and (ii) TCRs that bind self-pMHC in the canonical diagonal orientation, but where there are structural defects or suboptimal anchors in the self-ligand. For both categories, however, the overall stability of the autoimmune TCR-pMHC complex is markedly reduced compared to anti-microbial complexes, allowing the autoreactive T cells to evade negative selection, yet retain the ability to be activated by self-antigens in target organs. Additionally, the structures provide insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-pMHC recognition. Efforts are now underway to understand the impact of structural alterations in autoimmune TCR-pMHC complexes on higher order assemblies involved in TCR signaling, as well as on immunological synapse formation.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
35
|
Marrack P, Kappler JW. Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases? Cold Spring Harb Perspect Med 2012; 2:a007765. [PMID: 22951444 PMCID: PMC3426820 DOI: 10.1101/cshperspect.a007765] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The strong association between particular MHCII alleles and type 1 diabetes is not fully understood. Two ideas that have been considered for many years are that autoimmunity is driven by (1) low-affinity CD4(+) T cells that escape thymic negative selection and respond to certain autoantigen peptides that are particularly well presented by particular MHCII molecules, or (2) CD4(+) T cells responding to neoantigens that are absent in the thymus, but uniquely created in the target tissue in the periphery and presented by particular MHCII alleles. Here we discuss the recent structural data in favor of the second idea. We review studies suggesting that peptide antigens recognized by autoimmune T cells are uniquely proteolytically processed and/or posttranslationally modified in the target tissue, thus allowing these T cells to escape deletion in the thymus during T-cell development. We postulate that an encounter with these tissue-specific neoantigenic peptides presented by the particular susceptible MHCII alleles in the peripheral tissues when accompanied by the appropriate inflammatory milieu activates these T-cell escapees leading to the onset of autoimmune disease.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, University of Colorado Denver, School of Medicine, Denver, CO 80206, USA
| | | |
Collapse
|
36
|
Zimic M, Gutiérrez AH, Gilman RH, López C, Quiliano M, Evangelista W, Gonzales A, García HH, Sheen P. Immunoinformatics prediction of linear epitopes from Taenia solium TSOL18. Bioinformation 2011; 6:271-4. [PMID: 21738328 PMCID: PMC3124692 DOI: 10.6026/97320630006271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Cysticercosis is a public health problem in several developing countries. The oncosphere protein TSOL18 is the most immunogenic and protective antigen ever reported against porcine cysticercosis, although no specific epitope has been identified to account for these properties. Recent evidence suggests that protection might be associated with conformational epitopes. Linear epitopes from TSOL18 were computationally predicted and evaluated for immunogenicity and protection against porcine cysticercosis. A synthetic peptide was designed based on predicted linear B cell and T cell epitopes that are exposed on the surface of the theoretically modeled structure of TSOL18. Three surface epitopes from TSOL18 were predicted as immunogenic. A peptide comprising a linear arrangement of these epitopes was chemically synthesized. The capacity of the synthetic peptide to protect pigs against an oral challenge with Taenia solium proglottids was tested in a vaccine trial. The synthetic peptide was able to produce IgG antibodies in pigs and was associated to a reduction of the number of cysts, although was not able to provide complete protection, defined as the complete absence of cysts in necropsy. This study demonstrated that B cell and T cell predicted epitopes from TSOL18 were not able to completely protect pigs against an oral challenge with Taenia solium proglottids. Therefore, other linear epitopes or eventually conformational epitopes may be responsible for the protection conferred by TSOL18.
Collapse
Affiliation(s)
- Mirko Zimic
- Unidad de Bioinformática. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| | - Andrés Hazaet Gutiérrez
- Unidad de Bioinformática. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| | - Robert Hugh Gilman
- Laboratorio de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
- Department of International Health. Bloomberg School of Public Health, Johns Hopkins University
| | - César López
- Unidad de Bioinformática. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| | - Miguel Quiliano
- Unidad de Bioinformática. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| | - Wilfredo Evangelista
- Unidad de Bioinformática. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| | - Armando Gonzales
- Facultad de Veterinaria, Universidad Nacional Mayor de San Marcos, Perú
| | - Héctor Hugo García
- Laboratorio de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
- Cysticercosis Unit, Instituto de Ciencias Neurológicas, Perú
| | - Patricia Sheen
- Laboratorio de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia
| |
Collapse
|
37
|
Wucherpfennig KW, Sethi D. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Semin Immunol 2011; 23:84-91. [PMID: 21306912 DOI: 10.1016/j.smim.2011.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The major histocompatibility complex (MHC) on human chromosome 6 represents the most important genetic locus for a number of common human autoimmune diseases. Specific alleles that differ from closely related alleles by only one or a few amino acids in the peptide binding groove are frequently strongly associated with disease susceptibility, raising the important question of which peptide presentation events are critical in disease initiation and progression. This review will cover a number of topics pertinent to this fundamental question, including MHC linked disease susceptibility to autoimmune diseases, molecular mechanisms for the role of MHC molecules in autoimmune diseases as well as the recognition of self and microbial peptides by self-reactive T cell receptors (TCRs).
Collapse
Affiliation(s)
- Kai W Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
38
|
Bratland E, Husebye ES. Cellular immunity and immunopathology in autoimmune Addison's disease. Mol Cell Endocrinol 2011; 336:180-90. [PMID: 21167251 DOI: 10.1016/j.mce.2010.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/27/2022]
Abstract
Autoimmune adrenocortical failure, or Addison's disease, is a prototypical organ-specific autoimmune disorder. In common with related autoimmune endocrinopathies, Addison's disease is only manageable to a certain extent with replacement therapy being the only treatment option. Unfortunately, the available therapy does not restore the physiological hormone levels and biorhythm. The key to progress in treating and preventing autoimmune Addison's disease lies in improving our understanding of the predisposing factors, the mechanisms responsible for the progression of the disease, and the interactions between adrenal antigens and effector cells and molecules of the immune system. The aim of the present review is to summarize the current knowledge on the role of T cells and cellular immunity in the pathogenesis of autoimmune Addison's disease.
Collapse
Affiliation(s)
- Eirik Bratland
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | |
Collapse
|
39
|
Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J 2011; 30:1137-48. [PMID: 21297580 DOI: 10.1038/emboj.2011.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022] Open
Abstract
The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3β conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.
Collapse
Affiliation(s)
- Yiyuan Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, WM Keck Laboratory for Structural Biology, Rockville, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Varney MD, Valdes AM, Carlson JA, Noble JA, Tait BD, Bonella P, Lavant E, Fear AL, Louey A, Moonsamy P, Mychaleckyj JC, Erlich H. HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the type 1 diabetes genetics consortium families. Diabetes 2010; 59:2055-62. [PMID: 20424227 PMCID: PMC2911060 DOI: 10.2337/db09-0680] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the relative risk associated with DPA1 and DPB1 alleles and haplotypes in type 1 diabetes. RESEARCH DESIGN AND METHODS The frequency of DPA1 and DPB1 alleles and haplotypes in type 1 diabetic patients was compared to the family based control frequency in 1,771 families directly and conditional on HLA (B)-DRB1-DQA1-DQB1 linkage disequilibrium. A relative predispositional analysis (RPA) was performed in the presence or absence of the primary HLA DR-DQ associations and the contribution of DP haplotype to individual DR-DQ haplotype risks examined. RESULTS Eight DPA1 and thirty-eight DPB1 alleles forming seventy-four DPA1-DPB1 haplotypes were observed; nineteen DPB1 alleles were associated with multiple DPA1 alleles. Following both analyses, type 1 diabetes susceptibility was significantly associated with DPB1*0301 (DPA1*0103-DPB1*0301) and protection with DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 but not DPA1*0201-DPB1*0101. In addition, DPB1*0202 (DPA1*0103-DPB1*0202) and DPB1*0201 (DPA1*0103-DPB1*0201) were significantly associated with susceptibility in the presence of the high risk and protective DR-DQ haplotypes. Three associations (DPB1*0301, *0402, and *0202) remained statistically significant when only the extended HLA-A1-B8-DR3 haplotype was considered, suggesting that DPB1 alone may delineate the risk associated with this otherwise conserved haplotype. CONCLUSIONS HLA DP allelic and haplotypic diversity contributes significantly to the risk for type 1 diabetes; DPB1*0301 (DPA1*0103-DPB1*0301) is associated with susceptibility and DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 with protection. Additional evidence is presented for the susceptibility association of DPB1*0202 (DPA1*0103-DPB1*0202) and for a contributory role of individual amino acids and DPA1 or a gene in linkage disequilibrium in DR3-DPB1*0101 positive haplotypes.
Collapse
Affiliation(s)
- Michael D Varney
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Modeling the ternary complex TCR-Vbeta/CollagenII(261-273)/HLA-DR4 associated with rheumatoid arthritis. PLoS One 2010; 5:e11550. [PMID: 20644721 PMCID: PMC2904365 DOI: 10.1371/journal.pone.0011550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background It is known that genetic predisposition to rheumatoid arthritis (RA) is associated with the MHC class II allele HLA-DR4 and that residues 261–273 of type II collagen (huCollp261) represent an immunodominant T cell epitope restricted by the DR4 molecule. Despite recent advances in characterization of MHC and T cell receptor (TCR) contacts to this epitope, the atomic details of TCR/huCollp261/HLA-DR4 ternary complex are not known. Methodology/Principal Findings Here we have used computational modeling to get insight into this interaction. A three-dimensional model of the TCR Vβ domain from a DR4+ patient affected by RA has been derived by homology modeling techniques. Subsequently, the structure of the TCR Vβ domain in complex with huCollp261/HLA-DR4 was obtained from a docking approach in conjunction with a filtering procedure based on biochemical information. The best complex from the docking experiments was then refined by 20 ns of molecular dynamics simulation in explicit water. The predicted model is consistent with available experimental data. Our results indicate that residues 97–101 of CDR3β are critical for recognition of huCollp261/HLA-DR4 by TCR. We also show that TCR contacts on p/MHC surface affect the conformation of the shared epitope expressed by DR alleles associated with RA susceptibility. Conclusions/Significance This work presents a three-dimensional model for the ternary complex TCR-Vβ/collagenII(261–273)/HLA-DR4 associated with rheumatoid arthritis that can provide insights into the molecular mechanisms of self reactivity.
Collapse
|
42
|
Trembleau S, Hoffmann M, Meyer B, Nell V, Radner H, Zauner W, Hammer J, Aichinger G, Fischer G, Smolen J, Steiner G. Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur J Immunol 2010; 40:1795-808. [PMID: 20232340 DOI: 10.1002/eji.200939482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A2 (hnRNP-A2) has been described as an important autoantigen in rheumatoid arthritis (RA) since it is targeted by autoantibodies, autoreactive T cells, and is aberrantly expressed in synovial cells in patients. To identify hnRNP-A2-specific T-cell epitopes possibly associated with pathogenicity, we used an innovative approach. We first scanned 280 overlapping hnRNP-A2 peptides for binding to the RA-associated class II molecules HLA-DR4 and HLA-DR1, leading to a comprehensive selection of binders. The selected peptides were tested in IFN-gamma-specific ELISPOT assay: PBMC from 18% of RA patients showed a significant IFN-gamma response to hnRNP-A2 peptides, 15% to the overlapping sequences 117-133 and/or 120-133, whereas PBMC from healthy individuals tested negative. We measured proliferative responses to these two peptides in another cohort of patients with RA or osteoarthritis: positive responses were found in 28% of RA, but also in 11% of osteoarthritis patients and these responses could be blocked by anti-MHC class II Ab. Remarkably, the presence of 117/120-133-specific T cells was significantly associated with active disease in RA patients, and bone erosion appeared to be more common in T-cell positive patients. These data suggest involvement of hnRNP-A2 specific cellular autoimmune responses in RA pathogenesis.
Collapse
Affiliation(s)
- Sylvie Trembleau
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Unal EB, Gursoy A, Erman B. VitAL: Viterbi algorithm for de novo peptide design. PLoS One 2010; 5:e10926. [PMID: 20532195 PMCID: PMC2880006 DOI: 10.1371/journal.pone.0010926] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/07/2010] [Indexed: 01/18/2023] Open
Abstract
Background Drug design against proteins to cure various diseases has been studied for several years. Numerous design techniques were discovered for small organic molecules for specific protein targets. The specificity, toxicity and selectivity of small molecules are hard problems to solve. The use of peptide drugs enables a partial solution to the toxicity problem. There has been a wide interest in peptide design, but the design techniques of a specific and selective peptide inhibitor against a protein target have not yet been established. Methodology/Principal Findings A novel de novo peptide design approach is developed to block activities of disease related protein targets. No prior training, based on known peptides, is necessary. The method sequentially generates the peptide by docking its residues pair by pair along a chosen path on a protein. The binding site on the protein is determined via the coarse grained Gaussian Network Model. A binding path is determined. The best fitting peptide is constructed by generating all possible peptide pairs at each point along the path and determining the binding energies between these pairs and the specific location on the protein using AutoDock. The Markov based partition function for all possible choices of the peptides along the path is generated by a matrix multiplication scheme. The best fitting peptide for the given surface is obtained by a Hidden Markov model using Viterbi decoding. The suitability of the conformations of the peptides that result upon binding on the surface are included in the algorithm by considering the intrinsic Ramachandran potentials. Conclusions/Significance The model is tested on known protein-peptide inhibitor complexes. The present algorithm predicts peptides that have better binding energies than those of the existing ones. Finally, a heptapeptide is designed for a protein that has excellent binding affinity according to AutoDock results.
Collapse
Affiliation(s)
- E. Besray Unal
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Burak Erman
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
44
|
Iliopoulou BP, Guerau-de-Arellano M, Huber BT. HLA-DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis. ACTA ACUST UNITED AC 2010; 60:3831-40. [PMID: 19950279 DOI: 10.1002/art.25005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Arthritis is a prominent manifestation of Lyme disease, which is caused by infection with Borrelia burgdorferi (Bb). Chronic Lyme arthritis persisting even after antibiotic treatment is linked to HLA-DRB1*0401 (DR4) and related alleles. In contrast, patients whose Lyme arthritis resolves within 3 months postinfection show an increased frequency of HLA-DRB1*1101 (DR11). The aim of this study was to analyze the underlying mechanism by which HLA-DR alleles confer genetic susceptibility or resistance to antibiotic-refractory Lyme arthritis. METHODS We generated DR11-transgenic (DR11-Tg) mice on a murine MHCII-/- background and compared their immune response to Bb antigens with the response of DR4-Tg mice after immunization with Bb outer surface protein A (OspA) or infection with live Bb. RESULTS T cells from OspA-immunized and Bb-infected DR11-Tg mice had defective production of interferon-gamma as compared with those from DR4-Tg mice. In contrast, DR11-Tg mice developed higher titers of anti-OspA and anti-Bb antibodies, respectively, than did DR4-Tg mice. Consistent with this observation, we found that the Bb-infected DR11-Tg mice had a decreased spirochetal burden as compared with the DR4-Tg mice, as measured by quantitative polymerase chain reaction. CONCLUSION This study provides direct evidence that in the presence of HLA-DR11, the immune response against Bb antigens is directed toward a protective antibody response. In contrast, an inflammatory Th1 response is induced in the presence of DR4. These observations offer an explanation for the differential genetic susceptibility of DR4+ and DR11+ individuals to the development of chronic Lyme arthritis and, eventually, the progression to antibiotic-refractory Lyme arthritis.
Collapse
|
45
|
Yeturu K, Utriainen T, Kemp GJL, Chandra N. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. BMC Bioinformatics 2010; 11 Suppl 1:S55. [PMID: 20122230 PMCID: PMC3009528 DOI: 10.1186/1471-2105-11-s1-s55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch13. Conclusion The systematic framework for understanding structural variations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Collapse
Affiliation(s)
- Kalidas Yeturu
- Bioinformatics Centre, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
46
|
Bratland E, Skinningsrud B, Undlien DE, Mozes E, Husebye ES. T cell responses to steroid cytochrome P450 21-hydroxylase in patients with autoimmune primary adrenal insufficiency. J Clin Endocrinol Metab 2009; 94:5117-24. [PMID: 19890026 DOI: 10.1210/jc.2009-1115] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Autoimmune Addison's disease is thought to result from T cell mediated autoimmunity. Autoantibodies against the steroidogenic cytochrome P450 enzyme 21-hydroxylase (21OH) are found in most patients, and 21OH is therefore a likely target for antigen-specific T cells. OBJECTIVE The aim was to study cellular immunity to 21OH and its associations with 21OH autoantibodies and human leukocyte antigen alleles in autoimmune Addison's disease. DESIGN/PATIENTS Peripheral blood mononuclear cells were collected from 33 patients with autoimmune Addison's disease and 21 controls. Cellular proliferation and production of cytokines in response to stimulation with 21OH or 21OH-derived peptides were tested. RESULTS Cellular proliferation (P = 0.0009) and secretion of interferon-gamma (P < 0.0001) in response to 21OH was significantly higher in patients compared to healthy controls and associated with the presence of 21OH autoantibodies (P = 0.0052). Furthermore, the 21OH-specific production of interferon-gamma was enhanced in the presence of 21OH autoantibodies. This effect was partially inhibited by antibodies against the Fc receptor for IgG, CD32. Moreover, mature dendritic cells proved superior to the other antigen-presenting cells in invoking cellular responses to 21OH. An association between cellular immunity to 21OH and the high-risk HLA genotype for Addison's disease, DRB1*0301-DQ2/DRB1*0404-DQ8, was observed (P = 0.0089). Finally, a significant association between the DRB1*0404-DQ8 haplotype and cellular responses to a 21OH-derived peptide predicted to bind to DRB1*0404 was detected (P = 0.0055). CONCLUSION Patients with autoimmune Addison's disease have circulating 21OH-specific T cells, with amino acids 342-361 of 21OH possibly constituting a disease-specific epitope presented by HLA-DRB1*0404.
Collapse
Affiliation(s)
- Eirik Bratland
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | | | | | | | |
Collapse
|
47
|
Jacobson EM, Yang H, Menconi F, Wang R, Osman R, Skrabanek L, Li CW, Fadlalla M, Gandhi A, Chaturvedi V, Smith EP, Schwemberger S, Osterburg A, Babcock GF, Tomer Y. Employing a recombinant HLA-DR3 expression system to dissect major histocompatibility complex II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective. J Biol Chem 2009; 284:34231-43. [PMID: 19776016 DOI: 10.1074/jbc.m109.041574] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, we have shown that statistical synergism between amino acid variants in thyroglobulin (Tg) and specific HLA-DR3 pocket sequence signatures conferred a high risk for autoimmune thyroid disease (AITD). Therefore, we hypothesized that this statistical synergism mirrors a biochemical interaction between Tg peptides and HLA-DR3, which is key to the pathoetiology of AITD. To test this hypothesis, we designed a recombinant HLA-DR3 expression system that was used to express HLA-DR molecules harboring either AITD susceptibility or resistance DR pocket sequences. Next, we biochemically generated the potential Tg peptidic repertoire available to HLA-DR3 by separately treating 20 purified human thyroglobulin samples with cathepsins B, D, or L, lysosomal proteases that are involved in antigen processing and thyroid biology. Sequences of the cathepsin-generated peptides were then determined by matrix-assisted laser desorption ionization time-of-flight-mass spectroscopy, and algorithmic means were employed to identify putative AITD-susceptible HLA-DR3 binders. From four predicted peptides, we identified two novel peptides that bound strongly and specifically to both recombinant AITD-susceptible HLA-DR3 protein and HLA-DR3 molecules expressed on stably transfected cells. Intriguingly, the HLA-DR3-binding peptides we identified had a marked preference for the AITD-susceptibility DR signatures and not to those signatures that were AITD-protective. Structural analyses demonstrated the profound influence that the pocket signatures have on the interaction of HLA-DR molecules with Tg peptides. Our study suggests that interactions between Tg and discrete HLA-DR pocket signatures contribute to the initiation of AITD.
Collapse
Affiliation(s)
- Eric M Jacobson
- Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cross-recognition of HLA DR4 alloantigen by virus-specific CD8+ T cells: a new paradigm for self-/nonself-recognition. Blood 2009; 114:2244-53. [DOI: 10.1182/blood-2009-05-222596] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The ability of CD8+ T cells to engage a diverse range of peptide–major histocompatibility complex (MHC) complexes can also lead to cross-recognition of self and nonself peptide-MHC complexes and thus directly contribute toward allograft rejection or autoimmunity. Here we present a novel form of cross-recognition by herpes virus–specific CD8+ cytotoxic T cells that challenges the current paradigm of self/non-self recognition. Functional characterization of a human leukocyte antigen (HLA) Cw*0602-restricted cytomegalovirus-specific CD8+ T-cell response revealed an unusual dual specificity toward a pp65 epitope and the alloantigen HLA DR4. This cross-recognition of HLA DR4 alloantigen was critically dependent on the coexpression of HLA DM and was preferentially directed toward the B-cell lineage. Furthermore, allostimulation of peripheral blood lymphocytes with HLA DRB*0401-expressing cells rapidly expanded CD8+ T cells, which recognized the pp65 epitope in the context of HLA Cw*0602. T-cell repertoire analysis revealed 2 dominant populations expressing T-cell receptor beta variable (TRBV)4-3 or TRBV13, with cross-reactivity exclusively mediated by the TRBV13+ clonotypes. More importantly, cross-reactive TRBV13+ clonotypes displayed markedly lower T-cell receptor binding affinity and a distinct pattern of peptide recognition, presumably mimicking a structure presented on the HLA DR4 allotype. These results illustrate a novel mechanism whereby virus-specific CD8+ T cells can cross-recognize HLA class II molecules and may contribute toward allograft rejection and/or autoimmunity.
Collapse
|
49
|
Vassilakos D, Natoli A, Dahlheim M, Hoelzel AR. Balancing and directional selection at exon-2 of the MHC DQB1 locus among populations of odontocete cetaceans. Mol Biol Evol 2009; 26:681-9. [PMID: 19126865 DOI: 10.1093/molbev/msn296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diversity of exon-2 (peptide-binding region) of the DQB1 locus (Class II, major histocompatibility complex, MHC) was investigated on an extended sample of populations of three focal cetacean species (two sibling delphinid species and another in the same family). We tested the hypothesis that dolphin populations with a worldwide distribution across different habitats and geographic regions will be under differential selective pressure by comparing DQB1 variation with variation at neutral markers and by investigating putative functional residues within the exon-2 sequence at the population level. Variation at the DQB1 locus was not correlated to neutral differentiation (assessed by comparison with microsatellite DNA markers), and overall F(ST) values were significantly lower for the MHC locus, consistent with expectations for balancing selection. Measures of heterozygosity and d(n)/d(s) ratios were also consistent with balancing selection. However, outliers in the F(ST) comparisons and the analysis of putative functional residues suggested incidences of directional selection in local populations.
Collapse
Affiliation(s)
- Demetrios Vassilakos
- School of Biological and Biomedical Sciences, University of Durham, United Kingdom
| | | | | | | |
Collapse
|
50
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|