1
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Steier Z, Aylard DA, McIntyre LL, Baldwin I, Kim EJY, Lutes LK, Ergen C, Huang TS, Robey EA, Yosef N, Streets A. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4 + T cell and CD8 + T cell lineage commitment. Nat Immunol 2023; 24:1579-1590. [PMID: 37580604 PMCID: PMC10457207 DOI: 10.1038/s41590-023-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
The development of CD4+ T cells and CD8+ T cells in the thymus is critical to adaptive immunity and is widely studied as a model of lineage commitment. Recognition of self-peptide major histocompatibility complex (MHC) class I or II by the T cell antigen receptor (TCR) determines the CD8+ or CD4+ T cell lineage choice, respectively, but how distinct TCR signals drive transcriptional programs of lineage commitment remains largely unknown. Here we applied CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell states for each T cell lineage. These analyses identified a sequential process whereby all thymocytes initiate CD4+ T cell lineage differentiation during a first wave of TCR signaling, followed by a second TCR signaling wave that coincides with CD8+ T cell lineage specification. CITE-seq and pharmaceutical inhibition experiments implicated a TCR-calcineurin-NFAT-GATA3 axis in driving the CD4+ T cell fate. Our data provide a resource for understanding cell fate decisions and implicate a sequential selection process in guiding lineage choice.
Collapse
Affiliation(s)
- Zoë Steier
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dominik A Aylard
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Laura L McIntyre
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Isabel Baldwin
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Esther Jeong Yoon Kim
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Lydia K Lutes
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Can Ergen
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA
| | | | - Ellen A Robey
- University of California, Berkeley, Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Berkeley, CA, USA.
| | - Nir Yosef
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA, USA.
- Weizmann Institute of Science, Department of Systems Immunology, Rehovot, Israel.
| | - Aaron Streets
- University of California, Berkeley, Department of Bioengineering, Berkeley, CA, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
- University of California, Berkeley, Center for Computational Biology, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
4
|
Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021; 148:dev199754. [PMID: 34323272 PMCID: PMC8353164 DOI: 10.1242/dev.199754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C. Yanez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
5
|
Karimi MM, Guo Y, Cui X, Pallikonda HA, Horková V, Wang YF, Gil SR, Rodriguez-Esteban G, Robles-Rebollo I, Bruno L, Georgieva R, Patel B, Elliott J, Dore MH, Dauphars D, Krangel MS, Lenhard B, Heyn H, Fisher AG, Štěpánek O, Merkenschlager M. The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nat Commun 2021; 12:99. [PMID: 33397934 PMCID: PMC7782583 DOI: 10.1038/s41467-020-20306-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
CD4 and CD8 mark helper and cytotoxic T cell lineages, respectively, and serve as coreceptors for MHC-restricted TCR recognition. How coreceptor expression is matched with TCR specificity is central to understanding CD4/CD8 lineage choice, but visualising coreceptor gene activity in individual selection intermediates has been technically challenging. It therefore remains unclear whether the sequence of coreceptor gene expression in selection intermediates follows a stereotypic pattern, or is responsive to signaling. Here we use single cell RNA sequencing (scRNA-seq) to classify mouse thymocyte selection intermediates by coreceptor gene expression. In the unperturbed thymus, Cd4+Cd8a- selection intermediates appear before Cd4-Cd8a+ selection intermediates, but the timing of these subsets is flexible according to the strength of TCR signals. Our data show that selection intermediates discriminate MHC class prior to the loss of coreceptor expression and suggest a model where signal strength informs the timing of coreceptor gene activity and ultimately CD4/CD8 lineage choice.
Collapse
Affiliation(s)
- Mohammad M Karimi
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ya Guo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaokai Cui
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Husayn A Pallikonda
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Veronika Horková
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sara Ruiz Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gustavo Rodriguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Irene Robles-Rebollo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ludovica Bruno
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Radina Georgieva
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bhavik Patel
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James Elliott
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Marian H Dore
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Danielle Dauphars
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ondřej Štěpánek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
6
|
Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019; 71:513-518. [PMID: 31418051 PMCID: PMC6790186 DOI: 10.1007/s00251-019-01127-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022]
Abstract
Demonstration that immature CD4 + 8+ thymocytes contain T cell precursors that are subjected to positive and negative selection was the major step towards understanding how the adaptive immune system acquires the ability to distinguish foreign or abnormal (mutated or infected) self-cells from normal (healthy) cells. In the present review, the roles of TCR, CD4, CD8, and MHC molecules in intrathymic selection and some of the crucial experiments that contributed to the solution of the great immunological puzzle of self/nonself discrimination are described in an historical perspective. Recently, these experiments were highlighted by the immunological community by awarding the 2016 Novartis Prize for Immunology to Philippa Marrack, John Kappler, and Harald von Boehmer.
Collapse
Affiliation(s)
- Paweł Kisielow
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl St. 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
7
|
Kisielow J, Obermair FJ, Kopf M. Deciphering CD4 + T cell specificity using novel MHC-TCR chimeric receptors. Nat Immunol 2019; 20:652-662. [PMID: 30858620 DOI: 10.1038/s41590-019-0335-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/25/2019] [Indexed: 01/25/2023]
Abstract
αβ T cell antigen receptors (TCRs) bind complexes of peptide and major histocompatibility complex (pMHC) with low affinity, which poses a considerable challenge for the direct identification of αβ T cell cognate peptides. Here we describe a platform for the discovery of MHC class II epitopes based on the screening of engineered reporter cells expressing novel pMHC-TCR (MCR) hybrid molecules carrying cDNA-derived peptides. This technology identifies natural epitopes of CD4+ T cells in an unbiased and efficient manner and allows detailed analysis of TCR cross-reactivity that provides recognition patterns beyond discrete peptides. We determine the cognate peptides of virus- and tumor-specific T cells in mouse disease models and present a proof of concept for human T cells. Furthermore, we use MCR to identify immunogenic tumor neo-antigens and show that vaccination with a peptide naturally recognized by tumor-infiltrating lymphocytes efficiently protects mice from tumor challenge. Thus, the MCR technology holds promise for basic research and clinical applications, allowing the personalized identification of T cell-specific neo-antigens in patients.
Collapse
Affiliation(s)
- Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| | | | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Apert C, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein Cell 2018; 9:322-332. [PMID: 28540653 PMCID: PMC5876181 DOI: 10.1007/s13238-017-0425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive regulatory T lymphocytes (Treg) expressing the transcription factor Foxp3 play a vital role in the maintenance of tolerance of the immune-system to self and innocuous non-self. Most Treg that are critical for the maintenance of tolerance to self, develop as an independent T-cell lineage from common T cell precursors in the thymus. In this organ, their differentiation requires signals from the T cell receptor for antigen, from co-stimulatory molecules, as well as from cytokine-receptors. Here we focus on the cytokines implicated in thymic development of Treg, with a particular emphasis on the roles of interleukin-2 (IL-2) and IL-15. The more recently appreciated involvement of TGF-β in thymic Treg development is also briefly discussed. Finally, we discuss how cytokine-dependence of Treg development allows for temporal, quantitative, and potentially qualitative modulation of this process.
Collapse
Affiliation(s)
- Cécile Apert
- CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Paola Romagnoli
- CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | | |
Collapse
|
9
|
Li Z, Zhang S, Wan Y, Cai M, Wang W, Zhu Y, Li Z, Hu Y, Wang H, Chen H, Cui L, Zhang X, Zhang J, He W. MicroRNA-146a Overexpression Impairs the Positive Selection during T Cell Development. Front Immunol 2018; 8:2006. [PMID: 29410664 PMCID: PMC5787067 DOI: 10.3389/fimmu.2017.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs play crucial roles in modulating immune system. miR-146a, a potent feedback suppressor of NF-κB signaling, was shown to limit the innate immune response and myelopoiesis in a knockout mouse model. Here, we observed high lymphopoiesis demonstrated as mild splenomegaly and severe lymphadenopathy in a miR-146a transgenic mouse model. Overexpression of miR-146a resulted in enhanced proliferation and reduced apoptosis of T cells. More activated CD4+ T cells or effector memory T cells were observed in transgenic mice even under physiological conditions. Importantly, as one of the key steps to generate central tolerance, the positive selection of thymocytes is impaired in transgenic mice, resulting in more CD4+CD8+ double-positive thymocytes but fewer CD4+CD8− and CD4−CD8+ single-positive thymocytes. The maturation of selected CD4−CD8+ thymocytes was also impaired, leading to more severe loss of CD4−CD8+ than CD4+CD8− thymocytes in thymus of transgenic mice. Gene expression profiling analysis identified nine positive selection-associated genes, which were downregulated in transgenic mice, including genes encoding major histocompatibility complex class I/II molecules, IL-7 receptor α chain, and Gimap4, whose downregulation may contribute to the impairment of positive selection. Gimap4 was verified as a novel target of miR-146a. These findings further extend our understanding of the function of miR-146a in T cell biology and identify a novel regulatory mechanism underlying the positive selection during T cell development.
Collapse
Affiliation(s)
- Zinan Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Siya Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Menghua Cai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Weiqing Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union College, Beijing, China
| | - Yuli Zhu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Zhen Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
10
|
Kisielow P. Demonstration of Functional Heterogeneity of T lymphocytes and Identification of Their Two Major Subsets. Front Immunol 2014; 5:609. [PMID: 25520718 PMCID: PMC4249582 DOI: 10.3389/fimmu.2014.00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paweł Kisielow
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy , Wrocław , Poland
| |
Collapse
|
11
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Au-Yeung BB, Melichar HJ, Ross JO, Cheng DA, Zikherman J, Shokat KM, Robey EA, Weiss A. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol 2014; 15:687-94. [PMID: 24908390 PMCID: PMC4095875 DOI: 10.1038/ni.2918] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
The catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA. [5]
| | - Heather J Melichar
- 1] Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] [3]
| | - Jenny O Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Debra A Cheng
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Julie Zikherman
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Arthur Weiss
- 1] Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA. [2] Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [4] Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. Proc Natl Acad Sci U S A 2014; 111:E2550-8. [PMID: 24927565 DOI: 10.1073/pnas.1408482111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Positive selection of CD8 T cells in the thymus is thought to be a multistep process lasting 3-4 d; however, the discrete steps involved are poorly understood. Here, we examine phenotypic changes, calcium signaling, and intrathymic migration in a synchronized cohort of MHC class I-specific thymocytes undergoing positive selection in situ. Transient elevations in intracellular calcium concentration ([Ca(2+)]i) and migratory pauses occurred throughout the first 24 h of positive selection, becoming progressively briefer and accompanied by a gradual shift in basal [Ca(2+)]i over time. Changes in chemokine-receptor expression and relocalization from the cortex to medulla occurred between 12 and 24 h after the initial encounter with positive-selecting ligands, a time frame at which the majority of thymocytes retain CD4 and CD8 expression and still require T-cell receptor (TCR) signaling to efficiently complete positive selection. Our results identify distinct phases in the positive selection of MHC class I-specific thymocytes that are distinguished by their TCR-signaling pattern and intrathymic location and provide a framework for understanding the multistep process of positive selection in the thymus.
Collapse
|
14
|
Sinclair C, Seddon B. Overlapping and asymmetric functions of TCR signaling during thymic selection of CD4 and CD8 lineages. THE JOURNAL OF IMMUNOLOGY 2014; 192:5151-9. [PMID: 24771853 DOI: 10.4049/jimmunol.1303085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR signaling plays a central role in directing developmental fates of thymocytes. Current models suggest TCR signal duration directs CD4 versus CD8 lineage development. To investigate the role of TCR signaling during positive selection directly, we switched signaling off in a cohort of selecting thymocytes and followed, in time, their subsequent fate. We did this using an inducible Zap70 transgenic mouse model that allowed Zap70-dependent signaling to be turned on and then off again. Surprisingly, loss of TCR signaling in CD4(+)CD8(lo) thymocytes did not prevent their development into committed CD4 single positives (SPs), nor their continued maturation to HSA(lo) SPs. However, numbers of CD4 SPs underwent a substantial decline following loss of Zap70 expression, suggesting an essential survival role for the kinase. Termination of TCR signaling is considered an essential step in CD8 lineage development. Loss of Zap70 expression, however, resulted in the rapid death of CD8 lineage precursor thymocytes and a failure to generate CD8 SPs. Significantly, extending the window of Zap70 expression was sufficient for generation and export of both CD4 and CD8 T cells. These data reveal a parallel requirement for TCR-mediated survival signaling, but an asymmetric requirement for TCR-mediated maturation signals.
Collapse
Affiliation(s)
- Charles Sinclair
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Benedict Seddon
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
15
|
Proceedings of the Conference “Lymphocyte Development, Tolerance and Autoimmunity: Solved and Open Questions”, Held at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, on May 12, 2011 (Wrocław, Poland). Arch Immunol Ther Exp (Warsz) 2011; 59:327-30. [DOI: 10.1007/s00005-011-0142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/30/2023]
|
16
|
Saini M, Sinclair C, Marshall D, Tolaini M, Sakaguchi S, Seddon B. Regulation of Zap70 expression during thymocyte development enables temporal separation of CD4 and CD8 repertoire selection at different signaling thresholds. Sci Signal 2010; 3:ra23. [PMID: 20332428 DOI: 10.1126/scisignal.2000702] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To investigate the temporal regulation of the commitment of immature thymocytes to either the CD4(+) or the CD8(+) lineage in the thymus, we developed a transgenic mouse that expressed a tetracycline-inducible gene encoding the tyrosine kinase zeta chain-associated protein kinase of 70 kD (Zap70), which restored development in Zap70(-/-) thymocytes arrested at the preselection, CD4(+)CD8(+) double-positive (DP) stage. After induction of the expression of Zap70 and the production of Zap70 protein, CD4(+) single-positive (SP) cells that expressed Zbtb7b (which encodes the CD4(+) T cell-associated transcription factor ThPOK) became abundant within 30 hours, whereas CD8(+) SP cells were not detectable until day 4. We found that mature CD4(+) and CD8(+) cells arose from phenotypically distinct subsets of DP thymocytes that developed with different kinetics and contrasting sensitivities to stimulation of the T cell antigen receptor (TCR). In wild-type mice, expression of endogenous Zap70 progressively increased during maturation of the DP subsets, and the abundance of Zap70 protein determined the sensitivity of the cells to stimulation of the TCR. This temporal gradient in the amount of Zap70 protein enabled the selection of CD4(+) and CD8(+) repertoires in separate temporal windows and at different TCR signaling thresholds, thereby facilitating discrimination of distinct positive selection signals in these lineages.
Collapse
Affiliation(s)
- Manoj Saini
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
17
|
Ebert PJR, Li QJ, Huppa JB, Davis MM. Functional development of the T cell receptor for antigen. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:65-100. [PMID: 20800817 PMCID: PMC4887107 DOI: 10.1016/s1877-1173(10)92004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell's extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR-ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell-antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive alphabetaT cells.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
18
|
Ladi E, Schwickert TA, Chtanova T, Chen Y, Herzmark P, Yin X, Aaron H, Chan SW, Lipp M, Roysam B, Robey EA. Thymocyte-dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. THE JOURNAL OF IMMUNOLOGY 2008; 181:7014-23. [PMID: 18981121 DOI: 10.4049/jimmunol.181.10.7014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the dynamics of the interactions between thymocytes and other cell types, as well as the spatiotemporal distribution of thymocytes during positive selection in the microenvironment of the cortex. We used two-photon laser scanning microscopy of the mouse thymus to visualize thymocytes and dendritic cells (DCs) and to characterize their interactions in the cortex. We show that thymocytes make frequent contacts with DCs in the thymic cortex and that these associations increase when thymocytes express T cell receptors that mediate positive selection. We also show that cortical DCs and the chemokine CCL21 expression are closely associated with capillaries throughout the cortex. The overexpression of the chemokine receptor CCR7 in thymocytes results in an increase in DC-thymocyte interactions, while the loss of CCR7 in the background of a positive-selecting TCR reduces the extent of DC-thymocyte interactions. These observations identify a vasculature-associated microenvironment within the thymic cortex that promotes interactions between DCs and thymocytes that are receiving positive selection signals.
Collapse
Affiliation(s)
- Ena Ladi
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ebert PJR, Ehrlich LIR, Davis MM. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 2008; 29:734-45. [PMID: 18993085 DOI: 10.1016/j.immuni.2008.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 07/18/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
Abstract
Immature double-positive (CD4(+)CD8(+)) thymocytes respond to negatively selecting peptide-MHC ligands by forming an immune synapse that sustains contact with the antigen-presenting cell (APC). Using fluorescently labeled peptides, we showed that as few as two agonist ligands could promote APC contact and subsequent apoptosis in reactive thymocytes. Furthermore, we showed that productive signaling for positive selection, as gauged by nuclear translocation of a green fluorescent protein (GFP)-labeled NFATc construct, did not involve formation of a synapse between thymocytes and selecting epithelial cells in reaggregate thymus cultures. Antibody blockade of endogenous positively selecting ligands prevented NFAT nuclear accumulation in such cultures and reversed NFAT accumulation in previously stimulated thymocytes. Together, these data suggest a "gauntlet" model in which thymocytes mature by continually acquiring and reacquiring positively selecting signals without sustained contact with epithelial cells, thereby allowing them to sample many cell surfaces for potentially negatively selecting ligands.
Collapse
Affiliation(s)
- Peter J R Ebert
- Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
20
|
Chidgey AR, Boyd RL. Thymic stromal cells and positive selection. APMIS 2008. [DOI: 10.1111/j.1600-0463.2001.907801.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Yin X, Ladi E, Chan SW, Li O, Killeen N, Kappes DJ, Robey EA. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. THE JOURNAL OF IMMUNOLOGY 2008; 179:7358-64. [PMID: 18025179 DOI: 10.4049/jimmunol.179.11.7358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.
Collapse
Affiliation(s)
- Xinye Yin
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The generation of CD4 and CD8 alphabeta T-cell lineages from CD4+ CD8+ double-positive (DP) thymocyte precursors is a complex process initiated by engagement of major histocompatibility complex (MHC) by T-cell receptor (TCR) and coreceptor. Quantitative differences in TCR signaling induced by this interaction impose an instructional bias on CD4/CD8 lineage commitment that must be reinforced by MHC recognition and TCR signaling over subsequent selection steps in order for the thymocyte to progress and mature in the adopted lineage. Our studies show that the transmembrane receptor Notch plays a role in this process by modifying TCR signal transduction in DP thymocytes. In this review, we consider the functional relationship of TCR and Notch signaling pathways in the selection and specification of CD4 and CD8 T-cell lineages.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | | | |
Collapse
|
23
|
Ribot J, Romagnoli P, van Meerwijk JPM. Agonist ligands expressed by thymic epithelium enhance positive selection of regulatory T lymphocytes from precursors with a normally diverse TCR repertoire. THE JOURNAL OF IMMUNOLOGY 2006; 177:1101-7. [PMID: 16818767 PMCID: PMC2346540 DOI: 10.4049/jimmunol.177.2.1101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+CD25+ regulatory T lymphocytes play a crucial role in inhibition of autoimmune pathology. In accordance with this physiological role, it is now well established that the repertoire of these lymphocytes is strongly enriched in autospecific cells. However, despite extensive investigation, the thymic mechanisms involved in development of regulatory T cells remain incompletely defined. To address the issue of selection of regulatory T cell precursors in mice with a naturally diverse TCR repertoire, we have analyzed development of superantigen-specific regulatory T cells in hemopoietic chimeras in which endogenous super-antigens are exclusively presented by thymic epithelial cells. Our results demonstrate that recognition of agonist ligands expressed by thymic epithelium does not lead to deletion but substantially enhances development of mature regulatory T cells. Interestingly, also development of a small subpopulation of CD25-expressing T cells lacking expression of the transcription factor Foxp3, thought to be autospecific, is enhanced by expression of the agonist ligand on thymic epithelium. Based on quantitative arguments, we propose that commitment to the regulatory T cell lineage is not dictated by the specificity of precursors, but that recognition of the agonist ligand expressed by thymic epithelium substantially enhances their positive selection.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- CD4 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Forkhead Transcription Factors/biosynthesis
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Radiation Chimera
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Interleukin-2/biosynthesis
- Superantigens/biosynthesis
- Superantigens/immunology
- Superantigens/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
|
24
|
Martin B, Bécourt C, Bienvenu B, Lucas B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 2006; 108:270-7. [PMID: 16527889 DOI: 10.1182/blood-2006-01-0017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The role of self-recognition in the maintenance of the peripheral CD4+ T-cell pool has been extensively studied, but no clear answer has so far emerged. Indeed, in studies of the role of self-major histocompatibility complex (MHC) molecules in CD4+ T-cell survival, several parameters must be taken into account when interpreting the results: (1) in a lymphopenic environment, observations are biased by concomitant proliferation of T cells arising in MHC-expressing mice; (2) the peripheral T-cell compartment is qualitatively and quantitatively different in nonlymphopenic, normal, and MHC class II-deficient mice; and (3) in C57BL/6 Aβ-/- mice (traditionally considered MHC class II-deficient), the Aα chain and the Eβ chain associate to form a hybrid AαEβ MHC class II molecule. In light of these considerations, we revisited the role of interactions with MHC class II molecules in the survival of peripheral CD4+ T cells. We found that the answer to the question “is self-recognition required for CD4+ T cells to survive?” is not a simple yes or no. Indeed, although long-term survival of CD4+ T cells does not depend on self-recognition in lymphopenic mice, interactions with MHC class II molecules are required for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. (Blood. 2006;108:270-277)
Collapse
Affiliation(s)
- Bruno Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) U561, Saint-Vincent-de-Paul Hospital, Paris, France
| | | | | | | |
Collapse
|
25
|
Brown N, Nagarkatti M, Nagarkatti PS. Diethylstilbestrol alters positive and negative selection of T cells in the thymus and modulates T-cell repertoire in the periphery. Toxicol Appl Pharmacol 2006; 212:119-26. [PMID: 16122773 DOI: 10.1016/j.taap.2005.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 11/15/2022]
Abstract
Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effects of DES on T-cell differentiation in the thymus using the HY-TCR transgenic (Tg) mouse model in which the female mice exhibit positive selection of T cells bearing the Tg TCR, while the male mice show negative selection of such T cells. In female HY-TCR-Tg mice, exposure to DES showed more pronounced decrease in thymic cellularity when compared to male mice. Additionally, female mice also showed a significant decrease in the proportion of double-positive (DP) T cells in the thymus and HY-TCR-specific CD8+ T cells in the periphery. Male mice exhibiting negative selection also showed decreased thymic cellularity following DES exposure. Moreover, the male mice showed increased proportion of double-negative (DN) T cells in the thymus and decreased proportion of CD8+ T cells. The density of expression of HY-TCR on CD8+ cells was increased following DES exposure in both females and males. Finally, the proliferative response of thymocytes to mitogens and peripheral lymph node T cells to male H-Y antigen was significantly altered in female and male mice following DES treatment. Taken together, these data suggest that DES alters T-cell differentiation in the thymus by interfering with positive and negative selection processes, which in turn modulates the T-cell repertoire in the periphery.
Collapse
Affiliation(s)
- Nicole Brown
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
26
|
Minet E, Cosse JP, Demazy C, Raes M, Michiels C. Accumulation of the pro-apoptotic factor Bak is controlled by antagonist factor Mcl-1 availability. Apoptosis 2006; 11:1039-47. [PMID: 16547591 DOI: 10.1007/s10495-006-6650-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptosis has become recognized as a crucial mechanism involved in a wide range of physiological and pathological processes. Following an initial pro-apoptotic signal, controlling phases allow the cell to reinforce or downgrade signals leading to the irrevocable entry into apoptosis. Bak (Bcl-2-antagonist killer) is a mitochondrial pore-forming pro-apoptotic effector inhibited through titration by the anti-apoptotic protein Mcl-1 (Myeloid cell leukemia-1). Viruses have taken advantage of proteasome-dependent degradation of Bak as a mechanism to prevent apoptosis in infected cells. It is not clear however whether regulation of Bak protein level is involved in other physiological processes. In this report, we show that Mcl-1 level is paralleled by Bak while a Mcl-1 non-interacting mutant of Bak does not accumulate in cells. This mechanism is proteasome independent. Following serum withdrawal, Bak accumulation becomes independent of Mcl-1 level and cells are sensitized to pro-apoptotic stimuli. Based on these results, we propose that regulation of Mcl-1-Bak steochiometry is a control mechanism used as a checkpoint to prevent or allow entry into apoptosis.
Collapse
Affiliation(s)
- E Minet
- Laboratory of Biochemistry and Cellular Biology, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | | | | | | | | |
Collapse
|
27
|
Abstract
Intracellular signals arising from interactions of immature thymocytes with distinct populations of stromal cells in the thymus are central to T cell development. The characteristics of these signals and the mechanisms underlying thymocyte migration between stromal cell compartments have been difficult to identify from static measurements of fixed tissue. Recent advances in two-photon microscopy and the development of three-dimensional models for real-time studies of T cell development have shed light on how single cells navigate the thymus. These studies reveal crosstalk between thymocyte signaling and motility that may integrate the search for potentially rare self-antigens with the requirement for sustained signaling in T cell maturation.
Collapse
Affiliation(s)
- Nirav R Bhakta
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center Rm B-111A, Stanford CA 94305, USA
| | | |
Collapse
|
28
|
Romagnoli P, Hudrisier D, van Meerwijk JPM. Molecular signature of recent thymic selection events on effector and regulatory CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:5751-8. [PMID: 16237066 PMCID: PMC2346488 DOI: 10.4049/jimmunol.175.9.5751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural CD4+CD25+ regulatory T lymphocytes (Treg) are key protagonists in the induction and maintenance of peripheral T cell tolerance. Their thymic origin and biased repertoire continue to raise important questions about the signals that mediate their development. We validated analysis of MHC class II capture by developing thymocytes from thymic stroma as a tool to study quantitative and qualitative aspects of the cellular interactions involved in thymic T cell development and used it to analyze Treg differentiation in wild-type mice. Our data indicate that APCs of bone marrow origin, but, surprisingly and importantly, not thymic epithelial cells, induce significant negative selection among the very autoreactive Treg precursors. This fundamental difference between thymic development of regulatory and effector T lymphocytes leads to the development of a Treg repertoire enriched in cells specific for a selected subpopulation of self-Ags, i.e., those specifically expressed by thymic epithelial cells.
Collapse
Affiliation(s)
- Paola Romagnoli
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Centre de Physiopathologie Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
29
|
McNeil LK, Starr TK, Hogquist KA. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci U S A 2005; 102:13574-9. [PMID: 16174747 PMCID: PMC1224638 DOI: 10.1073/pnas.0505110102] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is unknown how the contrasting events of positive and negative selection can lead to the distinct biological outcomes of life or death. An increasing body of evidence suggests that the duration of extracellular signal-regulated kinase (ERK) signaling plays a role in thymocyte selection. However, it remains unclear what the kinetics of ERK activation are during positive selection in vivo. In this study, we examined the magnitude and duration of ERK signaling in intact murine thymic tissues cultured under conditions of negative or positive selection. We found that negative selection induced a rapid and robust ERK activation that is associated with death, whereas positive selection stimulated a lower intensity and brief ERK activation that quickly declined and then gradually increased and was sustained over several days. The expression pattern of Egr-1 (early growth response-1), a downstream ERK effector, correlates with the biphasic kinetics of ERK during positive selection. Id3 (inhibitor of differentiation/DNA binding 3) also exhibits biphasic kinetics but appeared to be independent of ERK signaling. Furthermore, inhibitors of T cell receptor ligation and ERK activation block maturation of CD8 single-positive thymocytes even when added after 24 h. These results demonstrate that the in vivo duration of ERK signaling must be sustained to support positive selection.
Collapse
Affiliation(s)
- Lisa K McNeil
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
30
|
Laky K, Fowlkes BJ. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr Opin Immunol 2005; 17:116-21. [PMID: 15766669 DOI: 10.1016/j.coi.2005.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MHC specificity in positive selection is a major determinant in the CD4/CD8 T cell lineage decision. Previous studies support the view that quantitative differences in T cell receptor (TCR) signaling in immature CD4+CD8+ double positive thymocytes leads to an instructive bias in CD4/CD8 T cell lineage commitment that must be re-inforced in subsequent selection steps to ensure that MHC-restricted antigen recognition is linked to appropriate effector functions in mature T cells. Recent work has further defined the TCR signaling pathways involved in this process, but a major effort has been made to identify transcription factors and other regulators of CD4 and CD8 T cell lineage commitment. Methods and screens for detecting changes in gene expression, associated with TCR signaling in positive selection and lineage determination, are starting to provide a better understanding of these complex developmental processes.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
31
|
Kattman SJ, Lukin KR, Oh JZ, Berg RE, Staerz UD. Maturational stage-dependent thymocyte responses to TCR engagement. Eur J Immunol 2005; 35:2051-60. [PMID: 15915541 DOI: 10.1002/eji.200425293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thymocyte positive and negative selection are dependent on avidity-driven TCR-mediated recognition events in the thymus. High-avidity recognition events result in negative selection, while low-avidity recognition events result in positive selection. However, it has not been established how thymocytes maturation stages affect their responses to TCR signals of different avidities. We gained insight into this question when we reduced thymocyte selection to an in vitro system, in which full maturation of developmentally synchronized immature double-positive thymocytes was induced on a cloned line of thymic epithelial cells. Our analysis of the kinetics of thymocyte development supports a multi-phasic model of thymic selection. In it, thymocyte maturation stages as well as interaction avidity control the outcome TCR stimulation. Positive selection is initiated during a primary recognition event that proceeds independently of the TCR avidity. During a secondary recognition event the final fate of thymocyte, full maturation versus negative selection, is determined by TCR avidity.
Collapse
Affiliation(s)
- Steven J Kattman
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|
32
|
Theodoro A, Barreto CB, Gusmão PM, Von Held J, Cruz ADD, Montalvão F, Bozza M, Fucs R. Influence of first-wave derived T lymphocytes in the long term functional reconstitution of allogeneic T cell deficient hosts. Immunobiology 2004; 207:207-15. [PMID: 12777062 DOI: 10.1078/0171-2985-00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional immunological reconstitution and the patterns of cytokine secretion were comparatively studied in BALB/c nu/nu mice grafted with allogeneic B6.Thy-1.1+ E14 or E18 embryonic thymus. In spite of equivalent proliferative responses to both mitogen or MLR stimuli, the two groups presented different cytokine patterns. B6 E18-thymus grafted BALB/c nu/nu mice showed a predominant IL-2/IFN-gamma secretion in response to mitogen or to CBA haplotype, with insignificant secretion of either cytokine to the tolerated BALB/c or donor B6 haplotype. In contrast, E14 grafted mice showed a significant IL-10 secretion, both in response to mitogens or to the tolerated haplotypes, even in the absence of a detectable proliferative response. A significant IFN-gamma secretion appeared only accompanying high responses to CBA. The preferential Th2 profile associated to the E14 chimeras was coincident with a longer lifespan of the nude host kept in a conventional environment, higher CD3+ cells frequency in the blood and functional restoration of allogeneic skin graft rejection, not seen on the E18 chimeras. The meaning of these results is discussed in relation to the previously described longer persistence of the first-wave donor derived lymphocytes in the allogeneic BALB/c periphery, also exclusive of the E14 grafted group.
Collapse
Affiliation(s)
- Adriano Theodoro
- Department of Immunobiology, Federal Fluminense University, Niterói, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Canelles M, Park ML, Schwartz OM, Fowlkes BJ. The influence of the thymic environment on the CD4-versus-CD8 T lineage decision. Nat Immunol 2003; 4:756-64. [PMID: 12858172 DOI: 10.1038/ni953] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 06/13/2003] [Indexed: 01/22/2023]
Abstract
T cell receptor signaling is an essential factor regulating thymocyte selection, but the function of the thymic environment in this process is not clear. In mice transgenic for major histocompatibility complex class II-restricted T cell receptors, every thymocyte is potentially selectable for maturation in the CD4 lineage. To address whether selection frequency affects positive selection, we created hematopoietic chimeras with mixtures of selectable and nonselectable precursors. With increased proportions of nonselectable thymocytes, positive selection of MHC class II-specific precursors was enhanced, generating not only CD4 but also CD8 thymocytes. These results indicate that the CD4 versus CD8 fate of selectable precursors can be influenced by the selection potential of its neighbors.
Collapse
Affiliation(s)
- Matilde Canelles
- Laboratory of Cellular and Molecular Immunology, Building 4, Room 111, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0420, USA
| | | | | | | |
Collapse
|
34
|
Liu X, Adams A, Wildt KF, Aronow B, Feigenbaum L, Bosselut R. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J Exp Med 2003; 197:363-73. [PMID: 12566420 PMCID: PMC2193832 DOI: 10.1084/jem.20021698] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although T cell receptor (TCR) signals are essential for intrathymic T cell-positive selection, it remains controversial whether they only serve to initiate this process, or whether they are required throughout to promote thymocyte differentiation and survival. To address this issue, we have devised a novel approach to interfere with thymocyte TCR signaling in a developmental stage-specific manner in vivo. We have reconstituted mice deficient for Zap70, a tyrosine kinase required for TCR signaling and normally expressed throughout T cell development, with a Zap70 transgene driven by the adenosine deaminase (ADA) gene enhancer, which is active in CD4(+)CD8(+) thymocytes but inactive in CD4(+) or CD8(+) single-positive (SP) thymocytes. In such mice, termination of Zap70 expression impaired TCR signal transduction and arrested thymocyte development after the initiation, but before the completion, of positive selection. Arrested thymocytes had terminated Rag gene expression and up-regulated TCR and Bcl-2 expression, but failed to differentiate into mature CD4 or CD8 SP thymocytes, to be rescued from death by neglect or to sustain interleukin 7R alpha expression. These observations identify a TCR-dependent proofreading mechanism that verifies thymocyte TCR specificity and differentiation choices before the completion of positive selection.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.
Collapse
Affiliation(s)
- Ronald N Germain
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| |
Collapse
|
36
|
Richie LI, Ebert PJR, Wu LC, Krummel MF, Owen JJT, Davis MM. Imaging synapse formation during thymocyte selection: inability of CD3zeta to form a stable central accumulation during negative selection. Immunity 2002; 16:595-606. [PMID: 11970882 DOI: 10.1016/s1074-7613(02)00299-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TCR signaling can result in cell fates ranging from activation to tolerance to apoptosis. Organization of molecules in an "immunological synapse" between mature T cells and APCs correlates with the strength of TCR signaling. To investigate synapse formation during thymic selection, we have established a reaggregate system in which molecular recruitment of GFP fusion proteins to thymocyte:stromal cell interfaces can be visualized in real time. We demonstrate that negative selection is associated with efficient conjugate formation and rapid recruitment of p56(lck) and CD3zeta to an immunological synapse. Interestingly, CD3zeta-GFP does not accumulate at the center of the synapse, as in mature T cells, but at the periphery across a wide range of ligand densities. This implicates differences in synapse geometry in initiation of alternate signals downstream of the TCR.
Collapse
Affiliation(s)
- Lauren I Richie
- Program in Immunology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hayashi K, Abe N, Watanabe T, Obinata M, Ito M, Sato T, Habu S, Satake M. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4957-65. [PMID: 11673502 DOI: 10.4049/jimmunol.167.9.4957] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand the gene regulation involved in the development of single-positive (SP) thymocytes, we generated transgenic mice in which the AML1 transcription factor is overexpressed. In these mice the number of CD8 SP thymocytes was greatly increased, and this continued to be true even when MHC class I was absent. This promotion to the CD8 SP lineage was not, however, observed when both class I and class II were absent. Furthermore, even thymocytes carrying MHC class II-restricted TCR differentiated into the CD8 SP lineage when AML1 was overexpressed. The selected CD8 SP cells were, however, unable to mature, as judged by the expression level of heat-stable Ag. Thus, overexpression of AML1 is able to skew class II-restricted thymocytes into the CD8 SP lineage, but not to drive the maturation of resulting selected CD8 SP cells.
Collapse
Affiliation(s)
- K Hayashi
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mariathasan S, Zakarian A, Bouchard D, Michie AM, Zúñiga-Pflücker JC, Ohashi PS. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4966-73. [PMID: 11673503 DOI: 10.4049/jimmunol.167.9.4966] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymocyte development, high-affinity/avidity TCR engagement leads to the induction of negative selection and apoptosis, while lower TCR affinity-avidity interactions lead to positive selection and survival. To elucidate how these extracellular interactions are translated into intracellular signals that distinguish between positive and negative selection, we developed a culture system in which naive double-positive thymocytes were either induced to differentiate along the CD8(+) lineage pathway or were triggered for clonal deletion. Using this system, we show that sustained low level activation of extracellular signal-regulated kinases (ERKs) promotes positive selection, whereas strong but transient ERK activation is coupled with negatively selecting stimuli. Importantly, similar ERK activation profiles were demonstrated during positive selection for strong agonist ligands presented at low concentrations or weak agonist ligands. This is consistent with the affinity/avidity model and a role for strong or weak agonists during positive selection. Surprisingly, the addition of a pharmacological inhibitor which blocks ERK activation prevented the induction of negative selection. These data suggest that the duration and strength of the TCR signal is involved in discriminating between positive and negative selection.
Collapse
Affiliation(s)
- S Mariathasan
- Department of Medical Biophysics and Immunology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Kraj P, Pacholczyk R, Ignatowicz H, Kisielow P, Jensen P, Ignatowicz L. Positive selection of CD4(+) T cells is induced in vivo by agonist and inhibited by antagonist peptides. J Exp Med 2001; 194:407-16. [PMID: 11514598 PMCID: PMC2193504 DOI: 10.1084/jem.194.4.407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Accepted: 06/19/2001] [Indexed: 11/04/2022] Open
Abstract
The nature of peptides that positively select T cells in the thymus remains poorly defined. Here we report an in vivo model to study the mechanisms of positive selection of CD4(+) T cells. We have restored positive selection of TCR transgenic CD4(+) thymocytes, arrested at the CD4(+)CD8(+) stage, due to the lack of the endogenously selecting peptide(s), in mice deficient for H2-M and invariant chain. A single injection of soluble agonist peptide(s) initiated positive selection of CD4(+) transgenic T cells that lasted for up to 14 days. Positively selected CD4(+) T cells repopulated peripheral lymphoid organs and could respond to the antigenic peptide. Furthermore, coinjection of the antagonist peptide significantly inhibited agonist-driven positive selection. Hence, contrary to the prevailing view, positive selection of CD4(+) thymocytes can be induced in vivo by agonist peptides and may be a result of accumulation of signals from TCR engaged by different peptides bound to major histocompatibility complex class II molecules. We have also identified a candidate natural agonist peptide that induces positive selection of CD4(+) TCR transgenic thymocytes.
Collapse
Affiliation(s)
- Piotr Kraj
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Rafal Pacholczyk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Hanna Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Pawel Kisielow
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland
| | - Peter Jensen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Leszek Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
40
|
Wong P, Barton GM, Forbush KA, Rudensky AY. Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J Exp Med 2001; 193:1179-87. [PMID: 11369789 PMCID: PMC2193333 DOI: 10.1084/jem.193.10.1179] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrathymic self-peptide–major histocompatibility complex class II (MHC) molecules shape the T cell repertoire through positive and negative selection of immature CD4+CD8+ thymocytes. By analyzing the development of MHC class II–restricted T cell receptor (TCR) transgenic T cells under conditions in which the endogenous peptide repertoire is altered, we show that self-peptide–MHC complexes are also involved in setting T cell activation thresholds. This occurs through changes in the expression level of molecules on thymocytes that influence the sensitivity of TCR signaling. Our results suggest that the endogenous peptide repertoire modulates T cell responsiveness in the thymus in order to enforce tolerance to self-antigens.
Collapse
Affiliation(s)
- Phillip Wong
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Gregory M. Barton
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Katherine A. Forbush
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Alexander Y. Rudensky
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| |
Collapse
|
41
|
Abstract
During development, alphabeta T cells undergo positive or negative selection and CD4(+)/CD8(+) lineage commitment-events that have a major impact on the functionality of the T cell repertoire. The precise mechanisms of these differentiative steps remain elusive. Research this year has focused on quantitative models of signaling. For positive selection, the timing and extent of ERK activation may be important. For lineage commitment, the extent of Lck recruitment and activation may be the decisive factor. Next, the search is on for the genes that commit the cell to the fate determined by these quantitative differences in signals.
Collapse
Affiliation(s)
- K A Hogquist
- Center for Immunology, University of Minnesota, MMC 334, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Abstract
To characterize the ligand binding properties of a naive T cell repertoire capable of responding to a foreign antigen, we analyzed T cell populations from T cell receptor (TCR) beta transgenic mice using a novel, single cell peptide/major histocompatibility complex (MHC) tetramer dissociation assay. The largely CD4+CD8(-/low) antigen-specific thymocyte repertoire exhibited a broad, bimodal distribution of tetramer binding half-lives (t(1/2)s), with a significant underrepresentation in the intermediate half-life range in which the majority of the peripheral repertoire lies. Thus, cells with the potential to bind foreign antigen with the lowest and highest stability are likely to be selectively removed from the repertoire prior to their establishment in the periphery. These studies provide direct evidence that thymic selection biases the naive peripheral T cell repertoire toward TCR-ligand interactions that fall within a moderate half-life "window."
Collapse
Affiliation(s)
- P A Savage
- Program in Cancer Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
43
|
Moore JK, Scheinman RI, Bellgrau D. The identification of a novel T cell activation state controlled by a diabetogenic gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:241-8. [PMID: 11123298 DOI: 10.4049/jimmunol.166.1.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cyclin-dependent kinase inhibitor p27(kip) regulates the cell cycle at the G(1)-S phase restriction point. S phase entry and cell cycle commitment in peripheral T cells requires p27(kip) degradation, normally initiated by the receipt of costimulatory signals such as those provided by B7.1 or IL-2. We have previously reported that T cells from BioBreeding (BB)-diabetes-prone (DP) rats exhibit decreased costimulatory requirements for activation and cell cycle entry. In the present study, we find that peripheral T cell subsets from BB-DP rats demonstrate activation-like characteristics, including significantly reduced levels of p27(kip) as well as increased levels of proliferating cell nuclear Ag (PCNA). Since our previous studies have established that expression of extracellular activation markers are relatively low in unmanipulated peripheral BB-DP T cells; this p27(low) PCNA(high) phenotype represents a novel activation state. Analyses of T cell subsets from congenic rats demonstrate that this phenotype segregates with the lyp diabetogenic locus and that the p27(low) PCNA(high) phenotype is T cell specific. This p27(low) PCNA(high) phenotype is not seen in medullary thymocytes, but appears abruptly in the recent thymic emigrant population, suggesting that the lyp locus does not act directly on cell cycle regulators but rather alters the interaction between T cells and the peripheral environment. These results provide a biochemical basis for costimulation-independent activation and suggest a mechanism whereby a diabetes susceptibility gene contributes to disease development.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Cycle Proteins
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Chromosome Segregation/immunology
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Enzyme Inhibitors/metabolism
- Genetic Predisposition to Disease
- Immunophenotyping
- Lymphocyte Activation/genetics
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Male
- Microtubule-Associated Proteins/antagonists & inhibitors
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/metabolism
- Proliferating Cell Nuclear Antigen/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 22
- Protein Tyrosine Phosphatases/genetics
- Rats
- Rats, Inbred BB
- Rats, Inbred F344
- Rats, Inbred Lew
- Rats, Sprague-Dawley
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thy-1 Antigens/biosynthesis
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- J K Moore
- Department of Immunology, Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
44
|
Dorfman JR, Stefanová I, Yasutomo K, Germain RN. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nat Immunol 2000; 1:329-35. [PMID: 11017105 DOI: 10.1038/79783] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) signaling triggered by recognition of self-major histocompatibility complex (MHC) ligands has been proposed to maintain the viability of naïve T cells and to provoke their proliferation in T cell-deficient hosts. Consistent with this, the partially phosphorylated state of TCR zeta chains in naïve CD4+ and CD8+ T cells in vivo was found to be actively maintained by TCR interactions with specific peptide-containing MHC molecules. TCR ligand-dependent phosphorylation of TCR zeta was lost within one day of cell transfer into MHC-deficient hosts, yet the survival of transferred CD4+ lymphocytes was the same in recipients with or without MHC class II expression for one month. Thus, despite clear evidence for TCR signaling in nonactivated naïve T cells, these data argue against the concept that such signaling plays a predominant role in determining lymphocyte lifespan.
Collapse
Affiliation(s)
- J R Dorfman
- Lymphocyte Biology Section, Laboratory of Immunology, Building 10 Room 11N311, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Yasutomo K, Lucas B, Germain RN. TCR signaling for initiation and completion of thymocyte positive selection has distinct requirements for ligand quality and presenting cell type. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3015-22. [PMID: 10975810 DOI: 10.4049/jimmunol.165.6.3015] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymocyte selection involves signaling by TCR engaging diverse self-peptide:MHC molecule ligands on various cell types in the cortex and medulla. Here we separately analyze early and late stages of selection to better understand how presenting cell type, ligand quality, and the timing of TCR signaling contribute to intrathymic differentiation. TCR transgenic CD4+CD8+ thymocytes (double positive (DP)) from MHC-deficient mice were stimulated using various presenting cells and ligands. The resulting CD69high cells were isolated and evaluated for maturation in reaggregate cultures with wild-type or MHC molecule-deficient thymic stroma with or without added hemopoietic dendritic cells (DC). Production of CD4+ T cells required TCR signaling in the reaggregates, indicating that transient recognition of self-ligands by DP is inadequate for full differentiation. DC bearing a potent agonist ligand could initiate positive selection, producing activated thymocytes that matured into agonist-responsive T cells in reaggregates lacking the same ligand. DC could also support the TCR signaling necessary for late maturation. These results argue that despite the negative role assigned to DC in past studies, neither the peptide:MHC molecule complexes present on DC nor any other signals provided by these cells stimulate only thymocyte death. These findings also indicate that unique epithelial ligands are not necessary for positive selection. They provide additional insight into the role of ligand quality in selection events and support the concept that following initiation of maturation from the DP state, persistent TCR signaling is characteristic of and perhaps required by T cells.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/classification
- Antigen-Presenting Cells/enzymology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD4 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/biosynthesis
- Cell Aggregation/immunology
- Cell Differentiation/immunology
- Cell Survival/immunology
- Cells, Cultured
- Cytochrome c Group/immunology
- Cytochrome c Group/metabolism
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Histocompatibility Antigens Class II/metabolism
- Immunophenotyping
- Lectins, C-Type
- Ligands
- Lymphocyte Activation
- Major Histocompatibility Complex/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptides/agonists
- Peptides/immunology
- Peptides/metabolism
- Proto-Oncogene Proteins c-bcl-2/agonists
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- K Yasutomo
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
46
|
Hare KJ, Jenkinson EJ, Anderson G. An essential role for the IL-7 receptor during intrathymic expansion of the positively selected neonatal T cell repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2410-4. [PMID: 10946265 DOI: 10.4049/jimmunol.165.5.2410] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intrathymic T cell development is a multistage process involving discrete phases of proliferation as well as differentiation. From studies on IL-7 or IL-7Ralpha-deficient mice, it is clear that the IL-7 receptor (IL-7R) plays a critical role during the initial stages of intrathymic CD4-8- precursor development. In contrast, the role of IL-7R in later stages of thymocyte development are unclear. Here, we have used various approaches to investigate directly the role of the IL-7R in thymocyte positive selection and the recently described phase of postselection proliferation. First, we show that positive selection involves selective up-regulation of IL-7Ralpha- and IL-7Rgamma-chains, with the majority of CD4+ and CD8+ cells being IL-7R+. Second, MHC class II+ thymic epithelium-which drives postselection proliferation-expresses IL-7 mRNA. Finally, analysis of positive selection and postselection proliferation in thymocytes from IL-7Ralpha-/- neonates shows that positive selection occurs normally, whereas postselection expansion is drastically reduced. Thus, our data provide the first evidence that, as well as playing a role during early phases of thymic development, IL-7R mediates intrathymic expansion of positively selected thymocytes, which may aid in establishment of the neonatal peripheral T cell pool.
Collapse
Affiliation(s)
- K J Hare
- Department of Anatomy, Division of Immunity and Infection, Medical School, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | | | | |
Collapse
|
47
|
Abstract
In this essay we suggest that the primary goal of the cells of the immune system is to ensure their own growth and survival. In adults, in steady-state conditions, the number and distribution of lymphocyte populations is under homeostatic control. New lymphocytes that are continuously produced in primary and secondary lymphoid organs must compete with resident cells for survival. We discuss recent findings supporting lymphocyte survival as a continuous active process and implicating cognate receptor engagement as fundamental survival signals for both T and B lymphocytes. The conflict of survival interests between different cell types gives rise to a pattern of interactions that mimics the behavior of complex ecological systems. In their flight for survival and in response to competition, lymphocytes use different survival signals within different ecological niches during cell differentiation. This is the case for T and B lymphocytes and also for naive and memory/activated T and B cells. We discuss how niche differentiation allows the co-existence of different cell types and guarantees both repertoire diversity and efficient immune responses.
Collapse
Affiliation(s)
- A A Freitas
- Lymphocyte Population Biology Unit, URA CNRS 1961, Institut Pasteur, Paris, France.
| | | |
Collapse
|
48
|
Hirokawa M, Horiuchi T, Kawabata Y, Kitabayashi A, Miura AB. Reconstitution of gammadelta T cell repertoire diversity after human allogeneic hematopoietic cell transplantation and the role of peripheral expansion of mature T cell population in the graft. Bone Marrow Transplant 2000; 26:177-85. [PMID: 10918428 DOI: 10.1038/sj.bmt.1702478] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have examined the reconstitution of gammadelta T cell repertoire diversity after human allogeneic hematopoietic cell transplantation using a polymerase chain reaction (PCR)-based complementarity-determining region (CDR) 3 size spectratyping and DNA sequencing. The CDR3 complexity in the variable region of the T cell receptor (TCR)-delta chain was different amongst the individuals studied. Furthermore, CDR3 size distribution patterns of allogeneic hematopoietic cell transplant recipients were almost completely recovered by a few months after transplantation. In some patients, clonal predominance of the TCRDV1+ T cells became evident during the period after transplantation. In one particular donor/recipient pair, clonal predominance of TCRDV1+ T cells was already present in blood lymphocytes of the donor, and was also observed in the recipient after transplantation. Using this donor/recipient pair, we have questioned whether gammadelta T cell regeneration occurs via the peripheral expansion of mature T cells in the graft. In the donor lymphocytes, two expanding gammadelta T cell clones, which were demonstrated by CDR3 sequences of the TCR-delta chain, were recognized. These two clones were identified in the T cells from the recipient post transplant, but not before transplantation. One of the two clones was still detectable 1(1/2) years after the transplant procedure. These results strongly suggest that peripheral expansion of mature T cells in the graft is the principal pathway of gammadelta T cell regeneration after allogeneic hematopoietic cell transplantation in adults.
Collapse
MESH Headings
- Adolescent
- Adult
- Cell Division
- Clone Cells
- Complementarity Determining Regions/genetics
- Female
- Gene Rearrangement
- Graft Survival
- Hematopoietic Stem Cell Transplantation
- Humans
- Male
- Middle Aged
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/blood
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Analysis, DNA
- T-Lymphocyte Subsets
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transplantation, Homologous
Collapse
Affiliation(s)
- M Hirokawa
- Department of Internal Medicine III, Akita University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
49
|
Tanchot C, Fernandes HV, Rocha B. The organization of mature T-cell pools. Philos Trans R Soc Lond B Biol Sci 2000; 355:323-8. [PMID: 10794050 PMCID: PMC1692750 DOI: 10.1098/rstb.2000.0569] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To deal with exogenous pathogens the peripheral T-cell compartment requires diverse repertoires (as those of naive cells) and efficient responses, the latter dependent on the persistence of memory cells. In the present work we show that (i) naive and memory cells differ in the type of interactions required for survival and division; (ii) they are segregated into independent ecological niches; (iii) that the size of each niche is controlled by independent homeostatic mechanisms; and (iv) that naive T cells do not have intrinsic life spans, surviving in the absence of thymus output but being continuously substituted by thymus export. The independent homeostatic regulation of the naive and memory T-cell pools guarantees the maintenance of versatile and efficient repertoires throughout life as well as the persistence of the naive T-cell pool after the thymus atrophies at puberty.
Collapse
Affiliation(s)
- C Tanchot
- Institute National de la Santé et de la Recherche Médicale U345, Institut Necker, Paris, France
| | | | | |
Collapse
|
50
|
Salmon P, Mong M, Kang XJ, Cado D, Robey E. The Role of CD8α′ in the CD4 Versus CD8 Lineage Choice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8α′) can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8α and CD8α′ restores CD8 T cell development in CD8α mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8α′ favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Mimi Mong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Xiao-Jun Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Dragana Cado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ellen Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|