1
|
Chen YG, Rieser E, Bhamra A, Surinova S, Kreuzaler P, Ho MH, Tsai WC, Peltzer N, de Miguel D, Walczak H. LUBAC enables tumor-promoting LTβ receptor signaling by activating canonical NF-κB. Cell Death Differ 2024; 31:1267-1284. [PMID: 39215104 PMCID: PMC11445442 DOI: 10.1038/s41418-024-01355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Lymphotoxin β receptor (LTβR), a member of the TNF receptor superfamily (TNFR-SF), is essential for development and maturation of lymphoid organs. In addition, LTβR activation promotes carcinogenesis by inducing a proinflammatory secretome. Yet, we currently lack a detailed understanding of LTβR signaling. In this study we discovered the linear ubiquitin chain assembly complex (LUBAC) as a previously unrecognized and functionally crucial component of the native LTβR signaling complex (LTβR-SC). Mechanistically, LUBAC-generated linear ubiquitin chains enable recruitment of NEMO, OPTN and A20 to the LTβR-SC, where they act coordinately to regulate the balance between canonical and non-canonical NF-κB pathways. Thus, different from death receptor signaling, where LUBAC prevents inflammation through inhibition of cell death, in LTβR signaling LUBAC is required for inflammatory signaling by enabling canonical and interfering with non-canonical NF-κB activation. This results in a LUBAC-dependent LTβR-driven inflammatory, protumorigenic secretome. Intriguingly, in liver cancer patients with high LTβR expression, high expression of LUBAC correlates with poor prognosis, providing clinical relevance for LUBAC-mediated inflammatory LTβR signaling.
Collapse
Affiliation(s)
- Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Peter Kreuzaler
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Meng-Hsing Ho
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nieves Peltzer
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Department of Translational Genomics and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Medical Faculty, Cologne, Germany
- Department of Genome Editing, University of Stuttgart, Stuttgart, Germany
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
3
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Yang X, Jiang S, Liu F, Li Z, Liu W, Zhang X, Nan F, Li J, Yu M, Wang Y, Wang B. HCMV IE1/IE1mut Therapeutic Vaccine Induces Tumor Regression via Intratumoral Tertiary Lymphoid Structure Formation and Peripheral Immunity Activation in Glioblastoma Multiforme. Mol Neurobiol 2024; 61:5935-5949. [PMID: 38261253 PMCID: PMC11249408 DOI: 10.1007/s12035-024-03937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Glioblastoma multiforme (GBM), a highly malignant invasive brain tumor, is associated with poor prognosis and survival and lacks an effective cure. High expression of the human cytomegalovirus (HCMV) immediate early protein 1 (IE1) in GBM tissues is strongly associated with their malignant progression, presenting a novel target for therapeutic strategies. Here, the bioluminescence imaging technology revealed remarkable tumor shrinkage and improved survival rates in a mouse glioma model treated with HCMV IE1/IE1mut vaccine. In addition, immunofluorescence data demonstrated that the treated group exhibited significantly more and larger tertiary lymphoid structures (TLSs) than the untreated group. The presence of TLS was associated with enhanced T cell infiltration, and a large number of proliferating T cells were found in the treated group. Furthermore, the flow cytometry results showed that in the treatment group, cytotoxic T lymphocytes exhibited partial polarization toward effector memory T cells and were activated to play a lethal role in the peripheral immunological organs. Furthermore, a substantial proportion of B cells in the draining lymph nodes expressed CD40 and CD86. Surprisingly, quantitative polymerase chain reaction indicated that a high expression of cytokines, including chemokines in brain tumors and immune tissues, induced the differentiation, development, and chemokine migration of immune cells in the treated group. Our study data demonstrate that IE1 or IE1mut vaccination has a favorable effect in glioma mice models. This study holds substantial implications for identifying new and effective therapeutic targets within GBM.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengjun Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zonghui Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenxuan Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fulong Nan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meng Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Zhang G, Feizi N, Zhao D, Halesha L, Williams AL, Randhawa PS, Abou-Daya KI, Oberbarnscheidt MH. Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection. JCI Insight 2024; 9:e177555. [PMID: 38954463 PMCID: PMC11383591 DOI: 10.1172/jci.insight.177555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLOs) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLOs regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin αβ/lymphotoxin β receptor (LTαβ/LTβR) pathway, which is essential for TLO formation, to define the role of TLOs in transplantation. We showed that intragraft TLOs are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLOs in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLOs or LTα overexpression accelerated rejection. If the LTβR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival was prolonged. Intravital microscopy of renal TLOs demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLOs contributes to local immune responses, leading to earlier allograft failure. TLOs and the LTαβ/LTβR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases, such as autoimmune diseases or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Neda Feizi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Daqiang Zhao
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Latha Halesha
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Amanda L Williams
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Parmjeet S Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khodor I Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
7
|
Cheng Y, Liu Y, Xu D, Zhang D, Yang Y, Miao Y, He S, Xu Q, Li E. An engineered TNFR1-selective human lymphotoxin-alpha mutant delivered by an oncolytic adenovirus for tumor immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167122. [PMID: 38492783 DOI: 10.1016/j.bbadis.2024.167122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lymphotoxin α (LTα) is a soluble factor produced by activated lymphocytes which is cytotoxic to tumor cells. Although a promising candidate in cancer therapy, the application of recombinant LTα has been limited by its instability and toxicity by systemic administration. Secreted LTα interacts with several distinct receptors for its biological activities. Here, we report a TNFR1-selective human LTα mutant (LTα Q107E) with potent antitumor activity. Recombinant LTα Q107E with N-terminal 23 and 27 aa deletion (named LTα Q1 and Q2, respectively) showed selectivity to TNFR1 in both binding and NF-κB pathway activation assays. To test the therapeutic potential, we constructed an oncolytic adenovirus (oAd) harboring LTα Q107E Q2 mutant (named oAdQ2) and assessed the antitumor effect in mouse xenograft models. Intratumoral delivery of oAdQ2 inhibited tumor growth. In addition, oAdQ2 treatment enhanced T cell and IFNγ-positive CD8 T lymphocyte infiltration in a human PBMC reconstituted-SCID mouse xenograft model. This study provides evidence that reengineering of bioactive cytokines with tissue or cell specific properties may potentiate their therapeutic potential of cytokines with multiple receptors.
Collapse
Affiliation(s)
- Yan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, China
| | - Yu Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, China
| | - Dan Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, China
| | - Yang Yang
- Shanghai Baoyuan Pharmaceutical Co., Ltd, Shanghai, China
| | - Yuqing Miao
- The Affiliated Yancheng First People's Hospital, Medical School, Nanjing University, Yancheng, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, China; The Affiliated Yancheng First People's Hospital, Medical School, Nanjing University, Yancheng, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Shanghai, China; Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, China; Department of Oncology, Shanghai Tenth People's Hospital, Shanghai, China.
| |
Collapse
|
8
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related transcriptome unveils a distinctive remodeling matrix pattern in penetrating ileal Crohn's disease. J Crohns Colitis 2024:jjae064. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing (B2) and penetrating (B3) ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analyzed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture(s) (B3s) and 12 without (B3o). Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes a p-adjusted <0.05 and Fold Change ≤-1.5 or ≥ 1.5 was adopted. qPCR and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localization, perianal disease and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, while eight differentially expressed genes were so in other organs. The most significantly active biologic processes and pathways in penetrating disease were response to TGFβand matrix organization and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodeling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center (CHUA), Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto (FMUP), Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
9
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
10
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int J Mol Sci 2024; 25:2631. [PMID: 38473878 DOI: 10.3390/ijms25052631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in HCC patients is significantly compromised by some major issues including the immunosuppressive environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical trials are underway focusing on the identification of optimal target antigens and the decryption of the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular targets for CAR cells highlights the importance for a more practical approach for CAR-modified cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC, identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges. Ongoing advancements in scientific research and convergence of diverse treatment modalities offer the potential to greatly enhance HCC patients' care in the future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
12
|
Ruddle NH. Regulation, Maintenance, and Remodeling of High Endothelial Venules in Homeostasis, Inflammation, and Cancer. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100705. [PMID: 38523879 PMCID: PMC10956444 DOI: 10.1016/j.cophys.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High endothelial venules (HEVs), high walled cuboidal blood vessels, through their expression of adhesion molecules and chemokines, allow the entrance of lymphoid cells into primary, secondary, and tertiary lymphoid structures (aka tertiary lymphoid organs). HEV heterogeneity exists between various lymphoid organs in their expression of peripheral node addressin (PNAd) and mucosal vascular addressin adhesion molecule 1(MAdCAM-1). Transcriptomic analyses reveal extensive heterogeneity, plasticity, and regulation of HEV gene expression in ontogeny, acute inflammation, and chronic inflammation within and between lymphoid organs. Rules regulating HEV development are flexible in inflammation. HEVs in tumor tertiary lymphoid structures are diagnostic of favorable clinical outcome and response to Immunotherapy, including immune check point blockade. Immunotherapy induces HEVs and provides an entrance for naïve, central memory, and effector cells and a niche for stem like precursor cells. Understanding HEV regulation will permit their exploitation as routes for drug delivery to autoimmune lesions, rejecting organs, and tumors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520-8034
| |
Collapse
|
13
|
Shen C, Zhang DL, Cheng XL, Zhang WC, Zhao JJ. Urological Tumor: A Narrative Review of Tertiary Lymphatic Structures. Urol Int 2023; 107:841-847. [PMID: 37769625 PMCID: PMC10623398 DOI: 10.1159/000532127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs), as ectopic lymphoid-like tissues, are highly similar to secondary lymphoid organs and are not only involved in chronic inflammation and autoimmune responses but are also closely associated with tumor immunotherapy and prognosis. The complex composition of the urological tumor microenvironment not only varies greatly in response to immunotherapy, but the prognostic value of TLSs in different urological tumors remains controversial. SUMMARY We searched PubMed, Web of Science, and other full-text database systems. TLSs, kidney cancer, uroepithelial cancer, bladder cancer, and prostate cancer as keywords, relevant literature was searched from the time the library was built to 2023. Systematically explore the role and mechanism of TLSs in urological tumors. It includes the characteristics of TLSs, the role and mechanism of TLSs in urological tumors, and the clinical significance of TLSs in urological tumors. KEY MESSAGES The prognostic role of TLSs in different urological tumors was significantly different. It is not only related to its enrichment in the tumor but also highly correlated with the location of the tumor. In addition, autoimmune toxicity may be a potential barrier to its role in the formation of TLSs through induction. Therefore, studying the mechanisms of TLSs in autoimmune diseases may help in the development of antitumor target drugs.
Collapse
Affiliation(s)
- Chong Shen
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Dong-Li Zhang
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Xiao-Long Cheng
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Wei-Chuan Zhang
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Jian-Jun Zhao
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| |
Collapse
|
14
|
Sabahi M, Salehipour A, Bazl MSY, Rezaei N, Mansouri A, Borghei-Razavi H. Local immunotherapy of glioblastoma: A comprehensive review of the concept. J Neuroimmunol 2023; 381:578146. [PMID: 37451079 DOI: 10.1016/j.jneuroim.2023.578146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Despite advancements in standard treatments, the prognosis of Glioblastoma (GBM) remains poor, prompting research for novel therapies. Immunotherapy is a promising treatment option for GBM, and many immunotherapeutic agents are currently under investigation. Chimeric antigen receptor (CAR) T cells are rapidly evolving in immunotherapy of GBM with many clinical trials showing efficacy of CAR T cells exerting anti-tumor activity following recognition of tumor-associated antigens (TAAs). Exhaustion in CAR T cells can reduce their capacity for long-term persistence and anti-tumor action. Local immunotherapy, which targets the tumor microenvironment and creates a more hospitable immunological environment for CAR T cells, has the potential to reduce CAR T cell exhaustion and increase immunity. Tertiary lymphoid structures (TLS) are ectopic lymphoid-like formations that can develop within the tumor microenvironment or in other non-lymphoid tissues. As a comprehensive local immunotherapy tool, the incorporation of TLS into an implanted biodegradable scaffold has amazing immunotherapeutic potential. The immune response to GBM can be improved even further by strategically inserting a stimulator of interferon genes (STING) agonist into the scaffold. Additionally, the scaffold's addition of glioma stem cells (GSC), which immunotherapeutic approaches may use to target, enhances the removal of cancer cells from their source. Furthermore, it has been demonstrated that GSCs have an impact on TLS formation, which helps to create a favorable tumor microenvironment. Herein, we overview local delivery of a highly specific tandem AND-gate CAR T cell along with above mentioned components. A multifaceted approach that successfully engages the immune system to mount an efficient targeted immune response against GBM is provided by the integration of CAR T cells, TLS, STING agonists, and GSCs within an implantable biodegradable scaffold. This approach offers a promising therapeutic approach for patients with GBM.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sajjad Yavari Bazl
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| |
Collapse
|
15
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Paik B, Tong L. Polymorphisms in Lymphotoxin-Alpha as the "Missing Link" in Prognosticating Favourable Response to Omega-3 Supplementation for Dry Eye Disease: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044236. [PMID: 36835647 PMCID: PMC9965360 DOI: 10.3390/ijms24044236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Elements of inflammation are found in almost all chronic ocular surface disease, such as dry eye disease. The chronicity of such inflammatory disease speaks to the dysregulation of innate and adaptive immunity. There has been a rising interest in omega-3 fatty acids to attenuate inflammation. While many cell-based (in vitro) studies verify the anti-inflammatory effects of omega-3, different human trials report discordant outcomes after supplementation. This may be due to underlying inter-individual differences in inflammatory cytokine metabolism (such as tumor necrosis factor alpha (TNF-α)), in which genetic differences might play a role, such as polymorphisms in the lymphotoxin alpha (LT-α) gene. Inherent TNF-α production affects omega-3 response and is also associated with LT-α genotype. Therefore, LT-α genotype might predict omega-3 response. Using the NIH dbSNP, we analyzed the relative frequency of LT-α polymorphisms among various ethnicities, each weighted by the genotype's probability of positive response. While the probability of response for unknown LT-α genotypes are 50%, there is greater distinction in response rates between various genotypes. Hence, there is value in genetic testing to prognosticate an individual's response to omega-3.
Collapse
Affiliation(s)
- Benjamin Paik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-6227-7255
| |
Collapse
|
17
|
Sato Y, Tamura M, Yanagita M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol Dial Transplant 2023; 38:26-33. [PMID: 34245300 DOI: 10.1093/ndt/gfab212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues that develop at sites of chronic inflammation in nonlymphoid organs. As with lymph nodes, TLTs initiate adaptive immune responses and coordinate local tissue immunity. Although virtually ignored for decades, TLTs have recently received a great deal of attention for their ability to influence disease severity, prognosis and response to therapy in various diseases, including cancer, autoimmune disorders and infections. TLTs are also induced in kidneys of patients with chronic kidney diseases such as immunoglobulin A nephropathy and lupus nephritis. Nevertheless, TLTs in the kidney have not been extensively investigated and their mechanism of development, functions and clinical relevance remain unknown, mainly because of the absence of adequate murine kidney TLT models and limited availability of human kidney samples containing TLTs. We recently found that aged kidneys, but not young kidneys, exhibit multiple TLTs after injury. Interestingly, although they are a minor component of TLTs, resident fibroblasts in the kidneys diversify into several distinct phenotypes that play crucial roles in TLT formation. Furthermore, the potential of TLTs as a novel kidney injury/inflammation marker as well as a novel therapeutic target for kidney diseases is also suggested. In this review article we describe the current understanding of TLTs with a focus on age-dependent TLTs in the kidney and discuss their potential as a novel therapeutic target and kidney inflammation marker.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
19
|
Cai D, Yu H, Wang X, Mao Y, Liang M, Lu X, Shen X, Guan W. Turning Tertiary Lymphoid Structures (TLS) into Hot Spots: Values of TLS in Gastrointestinal Tumors. Cancers (Basel) 2023; 15:cancers15020367. [PMID: 36672316 PMCID: PMC9856964 DOI: 10.3390/cancers15020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregation structures found in the tumor microenvironment (TME). Emerging evidence shows that TLSs are significantly correlated with the progression of gastrointestinal tumors, patients' prognosis, and the efficacy of adjuvant therapy. Besides, there are still some immunosuppressive factors in the TLSs that may affect the anti-tumor responses of TLSs, including negative regulators of anti-tumor immune responses, the immune checkpoint molecules, and inappropriate tumor metabolism. Therefore, a more comprehensive understanding of TLSs' responses in gastrointestinal tumors is essential to fully understand how TLSs can fully exert their anti-tumor responses. In addition, targeting TLSs with immune checkpoint inhibitors and vaccines to establish mature TLSs is currently being developed to reprogram the TME, further benefiting cancer immunotherapies. This review summarizes recent findings on the formation of TLSs, the mechanisms of their anti-tumor immune responses, and the association between therapeutic strategies and TLSs, providing a novel perspective on tumor-associated TLSs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Heng Yu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| |
Collapse
|
20
|
Liu T, Zhuang XX, Qin XJ, Wei LB, Gao JR. Identifying effective diagnostic biomarkers and immune infiltration features in chronic kidney disease by bioinformatics and validation. Front Pharmacol 2022; 13:1069810. [PMID: 36642989 PMCID: PMC9838551 DOI: 10.3389/fphar.2022.1069810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Chronic kidney disease (CKD), characterized by sustained inflammation and immune dysfunction, is highly prevalent and can eventually progress to end-stage kidney disease. However, there is still a lack of effective and reliable diagnostic markers and therapeutic targets for CKD. Methods: First, we merged data from GEO microarrays (GSE104948 and GSE116626) to identify differentially expressed genes (DEGs) in CKD and healthy patient samples. Then, we conducted GO, KEGG, HPO, and WGCNA analyses to explore potential functions of DEGs and select clinically significant modules. Moreover, STRING was used to analyse protein-protein interactions. CytoHubba and MCODE algorithms in the cytoscape plug-in were performed to screen hub genes in the network. We then determined the diagnostic significance of the obtained hub genes by ROC and two validation datasets. Meanwhile, the expression level of the biomarkers was verified by IHC. Furthermore, we examined immunological cells' relationships with hub genes. Finally, GSEA was conducted to determine the biological functions that biomarkers are significantly enriched. STITCH and AutoDock Vina were used to predict and validate drug-gene interactions. Results: A total of 657 DEGs were screened and functional analysis emphasizes their important role in inflammatory responses and immunomodulation in CKD. Through WGCNA, the interaction network, ROC curves, and validation set, four hub genes (IL10RA, CD45, CTSS, and C1QA) were identified. Furthermore, IHC of CKD patients confirmed the results above. Immune infiltration analysis indicated that CKD had a significant increase in monocytes, M0 macrophages, and M1 macrophages but a decrease in regulatory T cells, activated dendritic cells, and so on. Moreover, four hub genes were statistically correlated with them. Further analysis exhibited that IL10RA, which obtained the highest expression level in hub genes, was involved in abnormalities in various immune cells and regulated a large number of immune system responses and inflammation-related pathways. In addition, the drug-gene interaction network contained four potential therapeutic drugs targeting IL10RA, and molecular docking might make this relationship viable. Conclusion: IL10RA and its related hub molecules might play a key role in the development of CKD and could be potential biomarkers in CKD.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China,*Correspondence: Jia Rong Gao,
| |
Collapse
|
21
|
Monaco G, Khavaran A, Gasull AD, Cahueau J, Diebold M, Chhatbar C, Friedrich M, Heiland DH, Sankowski R. Transcriptome Analysis Identifies Accumulation of Natural Killer Cells with Enhanced Lymphotoxin-β Expression during Glioblastoma Progression. Cancers (Basel) 2022; 14:4915. [PMID: 36230839 PMCID: PMC9563981 DOI: 10.3390/cancers14194915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas are the most common primary brain tumors. Despite extensive clinical and molecular insights into these tumors, the prognosis remains dismal. While targeted immunotherapies have shown remarkable success across different non-brain tumor entities, they failed to show efficacy in glioblastomas. These failures prompted the field to reassess the idiosyncrasies of the glioblastoma microenvironment. Several high-dimensional single-cell RNA sequencing studies generated remarkable findings about glioblastoma-associated immune cells. To build on the collective strength of these studies, we integrated several murine and human datasets that profiled glioblastoma-associated immune cells at different time points. We integrated these datasets and utilized state-of-the-art algorithms to investigate them in a hypothesis-free, purely exploratory approach. We identified a robust accumulation of a natural killer cell subset that was characterized by a downregulation of activation-associated genes with a concomitant upregulation of apoptosis genes. In both species, we found a robust upregulation of the Lymphotoxin-β gene, a cytokine from the TNF superfamily and a key factor for the development of adaptive immunity. Further validation analyses uncovered a correlation of lymphotoxin signaling with mesenchymal-like glioblastoma regions in situ and in TCGA and CGGA glioblastoma cohorts. In summary, we identify lymphotoxin signaling as a potential therapeutic target in glioblastoma-associated natural killer cells.
Collapse
Affiliation(s)
- Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ashkan Khavaran
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan Cahueau
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
22
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
23
|
James Bates RE, Browne E, Schalks R, Jacobs H, Tan L, Parekh P, Magliozzi R, Calabrese M, Mazarakis ND, Reynolds R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022; 145:4287-4307. [PMID: 35776111 DOI: 10.1093/brain/awac232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Organised meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the cerebrospinal fluid of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior sub-clinical immunisation with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localised over-expression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin+ fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on prior myelin oligodendrocyte glycoprotein immunisation, the neuronal loss was present irrespective of immunisation. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.
Collapse
Affiliation(s)
- Rachel E James Bates
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Eleanor Browne
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Renee Schalks
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Heather Jacobs
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Li Tan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Puja Parekh
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Roberta Magliozzi
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Liu SW, Sun F, Rong SJ, Wang T, Wang CY. Lymphotoxins Serve as a Novel Orchestrator in T1D Pathogenesis. Front Immunol 2022; 13:917577. [PMID: 35757751 PMCID: PMC9219589 DOI: 10.3389/fimmu.2022.917577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes (T1D) stems from pancreatic β cell destruction by islet reactive immune cells. Similar as other autoimmune disorders, there is no curative remedy for T1D thus far. Chronic insulitis is the hallmark of T1D, which creates a local inflammatory microenvironment that impairs β cell function and ultimately leads to β cell death. Immune regulation shows promise in T1D treatment by providing a time window for β cell recovery. However, due to the complex nature of T1D pathogenesis, the therapeutic effect of immune regulation is often short-lasting and unsatisfying in monotherapies. Lymphotoxins (LTs) were first identified in 1960s as the lymphocyte-producing cytokine that can kill other cell types. As a biological cousin of tumor necrosis factor alpha (TNFα), LTs play unique roles in T1D development. Herein in this review, we summarized the advancements of LTs in T1D pathogenesis. We particularly highlighted their effect on the formation of peri-islet tertiary lymphoid organs (TLOs), and discussed their synergistic effect with other cytokines on β cell toxicity and autoimmune progression. Given the complex and dynamic crosstalk between immune cells and β cells in T1D setting, blockade of lymphotoxin signaling applied to the existing therapies could be an efficient approach to delay or even reverse the established T1D.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
25
|
Nayar S, Pontarini E, Campos J, Berardicurti O, Smith CG, Asam S, Gardner DH, Colafrancesco S, Lucchesi D, Coleby R, Chung MM, Iannizzotto V, Hunter K, Bowman SJ, Carlesso G, Herbst R, McGettrick HM, Browning J, Buckley CD, Fisher BA, Bombardieri M, Barone F. Immunofibroblasts regulate LTα3 expression in tertiary lymphoid structures in a pathway dependent on ICOS/ICOSL interaction. Commun Biol 2022; 5:413. [PMID: 35508704 PMCID: PMC9068764 DOI: 10.1038/s42003-022-03344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/10/2022] [Indexed: 01/15/2023] Open
Abstract
Immunofibroblasts have been described within tertiary lymphoid structures (TLS) that regulate lymphocyte aggregation at sites of chronic inflammation. Here we report, for the first time, an immunoregulatory property of this population, dependent on inducible T-cell co-stimulator ligand and its ligand (ICOS/ICOS-L). During inflammation, immunofibroblasts, alongside other antigen presenting cells, like dendritic cells (DCs), upregulate ICOSL, binding incoming ICOS + T cells and inducing LTα3 production that, in turn, drives the chemokine production required for TLS assembly via TNFRI/II engagement. Pharmacological or genetic blocking of ICOS/ICOS-L interaction results in defective LTα expression, abrogating both lymphoid chemokine production and TLS formation. These data provide evidence of a previously unknown function for ICOSL-ICOS interaction, unveil a novel immunomodulatory function for immunofibroblasts, and reveal a key regulatory function of LTα3, both as biomarker of TLS establishment and as first driver of TLS formation and maintenance in mice and humans.
Collapse
Affiliation(s)
- Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Joana Campos
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Onorina Berardicurti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Saba Asam
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - David H Gardner
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | | | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming-May Chung
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Kelly Hunter
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gianluca Carlesso
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Ronald Herbst
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Helen M McGettrick
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Jeff Browning
- Departments of Microbiology and Rheumatology, Boston University School of Medicine, Boston, MA, USA
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin A Fisher
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
- Candel Therapeutics, Needham, Boston, MA, USA.
| |
Collapse
|
26
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
27
|
Rosales IA, Yang C, Farkash EA, Ashry T, Ge J, Aljabban I, Ayyar A, Ndishabandi D, White R, Gildner E, Gong J, Liang Y, Lakkis FG, Nickeleit V, Russell PS, Madsen JC, Alessandrini A, Colvin RB. Novel intragraft regulatory lymphoid structures in kidney allograft tolerance. Am J Transplant 2022; 22:705-716. [PMID: 34726836 DOI: 10.1111/ajt.16880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023]
Abstract
Intragraft events thought to be relevant to the development of tolerance are here subjected to a comprehensive mechanistic study during long-term spontaneous tolerance that occurs in C57BL/6 mice that receive life sustaining DBA/2 kidneys. These allografts rapidly develop periarterial Treg-rich organized lymphoid structures (TOLS) that form in response to class II but not to class I MHC disparity and form independently of lymphotoxin α and lymphotoxin β receptor pathways. TOLS form in situ in the absence of lymph nodes, spleen, and thymus. Distinctive transcript patterns are maintained over time in TOLS including transcripts associated with Treg differentiation, T cell checkpoint signaling, and Th2 differentiation. Pathway transcripts related to inflammation are expressed in early stages of accepted grafts but diminish with time, while B cell transcripts increase. Intragraft transcript patterns at one week posttransplant distinguish those from kidneys destined to be rejected, that is, C57BL/6 allografts into DBA/2 recipients, from those that will be accepted. In contrast to inflammatory tertiary lymphoid organs (iTLOs) that form in response to chronic viral infection and transgenic Lta expression, TOLS lack high endothelial venules and germinal centers. TOLS represent a novel, pathogenetically important type of TLO that are in situ markers of regulatory tolerance.
Collapse
Affiliation(s)
- Ivy A Rosales
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chao Yang
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tameem Ashry
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifu Ge
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Imad Aljabban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Archana Ayyar
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dorothy Ndishabandi
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rebecca White
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elena Gildner
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jingjing Gong
- NanoString Technologies, Inc., Seattle, Washington, USA
| | - Yan Liang
- NanoString Technologies, Inc., Seattle, Washington, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute and Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Volker Nickeleit
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paul S Russell
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B Colvin
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Jamaly S, Rakaee M, Abdi R, Tsokos GC, Fenton KA. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun Rev 2021; 20:102980. [PMID: 34718163 DOI: 10.1016/j.autrev.2021.102980] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Kidney involvement confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). The pathogenesis of lupus nephritis (LN) involves diverse mechanisms instigated by elements of the autoimmune response which alter the biology of kidney resident cells. Processes in the glomeruli and in the interstitium may proceed independently albeit crosstalk between the two is inevitable. Podocytes, mesangial cells, tubular epithelial cells, kidney resident macrophages and stromal cells with input from cytokines and autoantibodies present in the circulation alter the expression of enzymes, produce cytokines and chemokines which lead to their injury and damage of the kidney. Several of these molecules can be targeted independently to prevent and reverse kidney failure. Tertiary lymphoid structures with true germinal centers are present in the kidneys of patients with lupus nephritis and have been increasingly recognized to associate with poorer renal outcomes. Stromal cells, tubular epithelial cells, high endothelial vessel and lymphatic venule cells produce chemokines which enable the formation of structures composed of a T-cell-rich zone with mature dendritic cells next to a B-cell follicle with the characteristics of a germinal center surrounded by plasma cells. Following an overview on the interaction of the immune cells with kidney resident cells, we discuss the cellular and molecular events which lead to the formation of tertiary lymphoid structures in the interstitium of the kidneys of mice and patients with lupus nephritis. In parallel, molecules and processes that can be targeted therapeutically are presented.
Collapse
Affiliation(s)
- Simin Jamaly
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mehrdad Rakaee
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
29
|
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021; 10:2712. [PMID: 34685692 PMCID: PMC8534745 DOI: 10.3390/cells10102712] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.
Collapse
Affiliation(s)
- Jan K. Hennigs
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christiane Matuszcak
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
30
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
31
|
Dorraji ES, Oteiza A, Kuttner S, Martin-Armas M, Kanapathippillai P, Garbarino S, Kalda G, Scussolini M, Piana M, Fenton KA. Positron emission tomography and single photon emission computed tomography imaging of tertiary lymphoid structures during the development of lupus nephritis. Int J Immunopathol Pharmacol 2021; 35:20587384211033683. [PMID: 34344200 PMCID: PMC8351034 DOI: 10.1177/20587384211033683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lymphoid neogenesis occurs in tissues targeted by chronic inflammatory processes, such as infection and autoimmunity. In systemic lupus erythematosus (SLE), such structures develop within the kidneys of lupus-prone mice ((NZBXNZW)F1) and are observed in kidney biopsies taken from SLE patients with lupus nephritis (LN). The purpose of this prospective longitudinal animal study was to detect early kidney changes and tertiary lymphoid structures (TLS) using in vivo imaging. Positron emission tomography (PET) by tail vein injection of 18-F-fluoro-2-deoxy-D-glucose (18F-FDG)(PET/FDG) combined with computed tomography (CT) for anatomical localization and single photon emission computed tomography (SPECT) by intraperitoneal injection of 99mTC labeled Albumin Nanocoll (99mTC-Nanocoll) were performed on different disease stages of NZB/W mice (n = 40) and on aged matched control mice (BALB/c) (n = 20). By using one-way ANOVA analyses, we compared two different compartmental models for the quantitative measure of 18F-FDG uptake within the kidneys. Using a new five-compartment model, we observed that glomerular filtration of 18FFDG in lupus-prone mice decreased significantly by disease progression measured by anti-dsDNA Ab production and before onset of proteinuria. We could not visualize TLS within the kidneys, but we were able to visualize pancreatic TLS using 99mTC Nanocoll SPECT. Based on our findings, we conclude that the five-compartment model can be used to measure changes of FDG uptake within the kidney. However, new optimal PET/SPECT tracer administration sites together with more specific tracers in combination with magnetic resonance imaging (MRI) may make it possible to detect formation of TLS and LN before clinical manifestations.
Collapse
Affiliation(s)
- Esmaeil S Dorraji
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Ana Oteiza
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Samuel Kuttner
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Premasany Kanapathippillai
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Sara Garbarino
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Gustav Kalda
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, 8016UiT The Arctic University of Norway, Tromsø, Norway
| | - Mara Scussolini
- Dipartimento di Matematica, 9302Universita di Genova, Genova, Italy
| | - Michele Piana
- Dipartimento di Matematica, 9302Universita di Genova, Genova, Italy.,Dipartimento di Matematica, 9302Universita di Genova, and CNR-SPIN, Genova, Italy
| | - Kristin A Fenton
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, 8016UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
32
|
Fleig SV, Konen FF, Schröder C, Schmitz J, Gingele S, Bräsen JH, Lovric S, Schmidt BMW, Haller H, Skripuletz T, von Vietinghoff S. Long-term B cell depletion associates with regeneration of kidney function. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1479-1488. [PMID: 34324242 PMCID: PMC8589377 DOI: 10.1002/iid3.499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
Background Chronic kidney disease (CKD) is a common condition that increases mortality and the risk of cardiovascular and other morbidities regardless of underlying renal condition. Chronic inflammation promotes renal fibrosis. Recently, renal B cell infiltrates were described in chronic kidney disease of various etiologies beyond autoimmunity. Methods We here investigated B cells and indicators of tertiary lymphoid structure formation in human renal biopsies. Renal function was studied during long‐term B cell depletion in human patients with membranous nephropathy and with CKD of unknown origin. Results Cytokine profiles of tertiary lymphoid structure formation were detected in human renal interstitium in a range of kidney diseases. Complex B cell structures consistent with tertiary lymphoid organ formation were evident in human membranous nephropathy. Here, B cell density did not significantly associate with proteinuria severity, but with worse excretory renal function. Proteinuria responses mostly occurred within the first 6 months of B cell depletion. In contrast, recovery of excretory kidney function was observed only after 18 months of continuous therapy, consistent with a structural process. Renal tertiary lymphatic structures were also detected in the absence of autoimmune kidney disease. To start to address whether B cell depletion may affect CKD in a broader population, we assessed kidney function in neurologic patients with CKD of unknown origin. In this cohort, eGFR significantly increased within 24 months of B cell depletion. Conclusion Long‐term B cell depletion associated with significant improvement of excretory kidney function in human CKD. Kinetics and mechanisms of renal B cell aggregation should be investigated further to stratify the impact of B cells and their aggregates as therapeutic targets.
Collapse
Affiliation(s)
- Susanne V Fleig
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.,Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Franz F Konen
- Department of Neurology, Hannover Medical School, Hannover.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| | - Christoph Schröder
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| | - Jessica Schmitz
- Nephropathology unit, Institute for Pathology, Hannover Medical School, Hannover
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| | - Jan H Bräsen
- Nephropathology unit, Institute for Pathology, Hannover Medical School, Hannover
| | - Svjetlana Lovric
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| | - Bernhard M W Schmidt
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Hermann Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| | - Sibylle von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.,Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany.,Interdisciplinary Day Clinic, Hannover Medical School, Hannover
| |
Collapse
|
33
|
van Hooren L, Vaccaro A, Ramachandran M, Vazaios K, Libard S, van de Walle T, Georganaki M, Huang H, Pietilä I, Lau J, Ulvmar MH, Karlsson MCI, Zetterling M, Mangsbo SM, Jakola AS, Olsson Bontell T, Smits A, Essand M, Dimberg A. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun 2021; 12:4127. [PMID: 34226552 PMCID: PMC8257767 DOI: 10.1038/s41467-021-24347-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response. Agonistic CD40 antibodies (αCD40) have broad immunostimulatory properties, however their efficacy in glioma remains unclear. Here the authors show that αCD40 promotes the formation of tertiary lymphoid structures but does not improve survival and impairs the response to immune checkpoint blockade in murine glioma models.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
34
|
Asam S, Nayar S, Gardner D, Barone F. Stromal cells in tertiary lymphoid structures: Architects of autoimmunity. Immunol Rev 2021; 302:184-195. [PMID: 34060101 DOI: 10.1111/imr.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The molecular mediators present within the inflammatory microenvironment are able, in certain conditions, to favor the initiation of tertiary lymphoid structure (TLS) development. TLS is organized lymphocyte clusters able to support antigen-specific immune response in non-immune organs. Importantly, chronic inflammation does not always result in TLS formation; instead, TLS has been observed to develop specifically in permissive organs, suggesting the presence of tissue-specific cues that are able to imprint the immune responses and form TLS hubs. Fibroblasts are tissue-resident cells that define the anatomy and function of a specific tissue. Fibroblast plasticity and specialization in inflammatory conditions have recently been unraveled in both immune and non-immune organs revealing a critical role for these structural cells in human physiology. Here, we describe the role of fibroblasts in the context of TLS formation and its functional maintenance in the tissue, highlighting their potential role as therapeutic disease targets in TLS-associated diseases.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,bNIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Yeo KP, Lim HY, Angeli V. Leukocyte Trafficking via Lymphatic Vessels in Atherosclerosis. Cells 2021; 10:cells10061344. [PMID: 34072313 PMCID: PMC8229118 DOI: 10.3390/cells10061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, lymphatic vessels have received increasing attention and our understanding of their development and functional roles in health and diseases has greatly improved. It has become clear that lymphatic vessels are critically involved in acute and chronic inflammation and its resolution by supporting the transport of immune cells, fluid, and macromolecules. As we will discuss in this review, the involvement of lymphatic vessels has been uncovered in atherosclerosis, a chronic inflammatory disease of medium- and large-sized arteries causing deadly cardiovascular complications worldwide. The progression of atherosclerosis is associated with morphological and functional alterations in lymphatic vessels draining the diseased artery. These defects in the lymphatic vasculature impact the inflammatory response in atherosclerosis by affecting immune cell trafficking, lymphoid neogenesis, and clearance of macromolecules in the arterial wall. Based on these new findings, we propose that targeting lymphatic function could be considered in conjunction with existing drugs as a treatment option for atherosclerosis.
Collapse
|
36
|
Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021; 12:675538. [PMID: 34054863 PMCID: PMC8160316 DOI: 10.3389/fimmu.2021.675538] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ryosuke Nakagawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - James J. Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Adam W. Mailloux
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
37
|
Filderman JN, Appleman M, Chelvanambi M, Taylor JL, Storkus WJ. STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Front Immunol 2021; 12:690105. [PMID: 34054879 PMCID: PMC8155498 DOI: 10.3389/fimmu.2021.690105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tertiary lymphoid structures (TLS), also known as ectopic lymphoid structures (ELS) or tertiary lymphoid organs (TLO), represent a unique subset of lymphoid tissues noted for their architectural similarity to lymph nodes, but which conditionally form in peripheral tissues in a milieu of sustained inflammation. TLS serve as regional sites for induction and expansion of the host B and T cell repertoires via an operational paradigm involving mature dendritic cells (DC) and specialized endothelial cells (i.e. high endothelial venules; HEV) in a process directed by TLS-associated cytokines and chemokines. Recent clinical correlations have been reported for the presence of TLS within tumor biopsies with overall patient survival and responsiveness to interventional immunotherapy. Hence, therapeutic strategies to conditionally reinforce TLS formation within the tumor microenvironment (TME) via the targeting of DC, vascular endothelial cells (VEC) and local cytokine/chemokine profiles are actively being developed and tested in translational tumor models and early phase clinical trials. In this regard, a subset of agents that promote tumor vascular normalization (VN) have been observed to coordinately support the development of a pro-inflammatory TME, maturation of DC and VEC, local production of TLS-inducing cytokines and chemokines, and therapeutic TLS formation. This mini-review will focus on STING agonists, which were originally developed as anti-angiogenic agents, but which have recently been shown to be effective in promoting VN and TLS formation within the therapeutic TME. Future application of these drugs in combination immunotherapy approaches for greater therapeutic efficacy is further discussed.
Collapse
Affiliation(s)
- Jessica N Filderman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark Appleman
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
39
|
Gubernatorova EO, Polinova AI, Petropavlovskiy MM, Namakanova OA, Medvedovskaya AD, Zvartsev RV, Telegin GB, Drutskaya MS, Nedospasov SA. Dual Role of TNF and LTα in Carcinogenesis as Implicated by Studies in Mice. Cancers (Basel) 2021; 13:1775. [PMID: 33917839 PMCID: PMC8068266 DOI: 10.3390/cancers13081775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) and lymphotoxin alpha (LTα) are two related cytokines from the TNF superfamily, yet they mediate their functions in soluble and membrane-bound forms via overlapping, as well as distinct, molecular pathways. Their genes are encoded within the major histocompatibility complex class III cluster in close proximity to each other. TNF is involved in host defense, maintenance of lymphoid tissues, regulation of cell death and survival, and antiviral and antibacterial responses. LTα, known for some time as TNFβ, has pleiotropic functions including control of lymphoid tissue development and homeostasis cross talk between lymphocytes and their environment, as well as lymphoid tissue neogenesis with formation of lymphoid follicles outside the lymph nodes. Along with their homeostatic functions, deregulation of these two cytokines may be associated with initiation and progression of chronic inflammation, autoimmunity, and tumorigenesis. In this review, we summarize the current state of knowledge concerning TNF/LTα functions in tumor promotion and suppression, with the focus on the recently uncovered significance of host-microbiota interplay in cancer development that may explain some earlier controversial results.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Almina I. Polinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail M. Petropavlovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga A. Namakanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexandra D. Medvedovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ruslan V. Zvartsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Georgij B. Telegin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences (BIBCh, RAS), 142290 Pushchino, Russia;
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodarsky Krai, Russia
| |
Collapse
|
40
|
CD169 + lymph node macrophages have protective functions in mouse breast cancer metastasis. Cell Rep 2021; 35:108993. [PMID: 33852863 DOI: 10.1016/j.celrep.2021.108993] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/01/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Although the contribution of macrophages to metastasis is widely studied in primary tumors, the involvement of macrophages in tumor-draining lymph nodes (LNs) in this process is less clear. We find CD169+ macrophages as the predominant macrophage subtype in naive LNs, which undergo proliferative expansion in response to tumor stimuli. CD169+ LN macrophage depletion, using an anti-CSF-1R antibody or clodronate-loaded liposomes, leads to increased metastatic burden in two mouse breast cancer models. The expansion of CD169+ macrophages is tightly connected to B cell expansion in tumor-draining LNs, and B cell depletion abrogates the effect of CD169+ macrophage absence on metastasis, indicating that the CD169+ macrophage anti-metastatic effects require B cell presence. These results reveal a protective role of CD169+ LN macrophages in breast cancer metastasis and raise caution for the use of drugs aiming at the depletion of tumor-associated macrophages, which might simultaneously deplete macrophages in tumor-draining LNs.
Collapse
|
41
|
N J, J T, Sl N, Gt B. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 2021; 10:1900508. [PMID: 33854820 PMCID: PMC8018489 DOI: 10.1080/2162402x.2021.1900508] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic cellular aggregates that resemble secondary lymphoid organs in their composition and structural organization. In contrast to secondary lymphoid organs, TLS are not imprinted during embryogenesis but are formed in non-lymphoid tissues in response to local inflammation. TLS structures exhibiting a variable degree of maturation are found in solid tumors. They are composed of various immune cell types including dendritic cells and antigen-specific B and T lymphocytes, that together, actively drive the immune response against tumor development and progression. This review highlights the successive steps leading to tumor TLS formation and its association with clinical outcomes. We discuss the role played by tumor-infiltrating B lymphocytes and plasma cells, their prognostic value in solid tumors and immunotherapeutic responses and their potential for future targeting.
Collapse
Affiliation(s)
- Jacquelot N
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Tellier J
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nutt Sl
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Belz Gt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,The University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
43
|
Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein RG, Amit I, Schwartz M. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Sci Alliance 2020; 4:4/1/e202000907. [PMID: 33277355 PMCID: PMC7723261 DOI: 10.26508/lsa.202000907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
We found that acute insult to the central nervous system induces the formation of lymphocyte aggregates reminiscent of tertiary lymphoid structures within the spinal cord meninges. Unlike draining CNS-cervical lymph nodes, meningeal lymphocytes are locally activated during neuro-inflammtion and neurodegeneration. Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different stages of life in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscent of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. After acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS-like structures, and continue to accumulate during the late phase of the response to the injury, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single-cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a special immune response develops in the meninges during various neurological pathologies in the CNS, a possible reflection of its immune privileged nature.
Collapse
Affiliation(s)
- Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Catarina Raposo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Ruckh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Boaz Mohar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel .,Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| |
Collapse
|
44
|
Zou C, Mifflin L, Hu Z, Zhang T, Shan B, Wang H, Xing X, Zhu H, Adiconis X, Levin JZ, Li F, Liu CF, Liu JS, Yuan J. Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease. Cell Rep 2020; 33:108447. [PMID: 33296651 DOI: 10.1016/j.celrep.2020.108447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
The contribution and mechanism of cerebrovascular pathology in Alzheimer's disease (AD) pathogenesis are still unclear. Here, we show that venular and capillary cerebral endothelial cells (ECs) are selectively vulnerable to necroptosis in AD. We identify reduced cerebromicrovascular expression of murine N-acetyltransferase 1 (mNat1) in two AD mouse models and hNat2, the human ortholog of mNat1 and a genetic risk factor for type-2 diabetes and insulin resistance, in human AD. mNat1 deficiency in Nat1-/- mice and two AD mouse models promotes blood-brain barrier (BBB) damage and endothelial necroptosis. Decreased mNat1 expression induces lysosomal degradation of A20, an important regulator of necroptosis, and LRP1β, a key component of LRP1 complex that exports Aβ in cerebral ECs. Selective restoration of cerebral EC expression of mNAT1 delivered by adeno-associated virus (AAV) rescues cerebromicrovascular levels of A20 and LRP1β, inhibits endothelial necroptosis and activation, ameliorates mitochondrial fragmentation, reduces Aβ deposits, and improves cognitive function in the AD mouse model.
Collapse
Affiliation(s)
- Chengyu Zou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Zhirui Hu
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Tian Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Xin Xing
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Xian Adiconis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fupeng Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jun S Liu
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
45
|
Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M, Hu Y, Ertüz Z, Lopez MA, Ansari M, Strunz M, Mayr C, Angelidis I, Ciminieri C, Costa R, Kohlhepp MS, Guillot A, Günes G, Jeridi A, Funk MC, Beroshvili G, Prokosch S, Hetzer J, Verleden SE, Alsafadi H, Lindner M, Burgstaller G, Becker L, Irmler M, Dudek M, Janzen J, Goffin E, Gosens R, Knolle P, Pirotte B, Stoeger T, Beckers J, Wagner D, Singh I, Theis FJ, de Angelis MH, O'Connor T, Tacke F, Boutros M, Dejardin E, Eickelberg O, Schiller HB, Königshoff M, Heikenwalder M, Yildirim AÖ. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 2020; 588:151-156. [PMID: 33149305 PMCID: PMC7718297 DOI: 10.1038/s41586-020-2882-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Lymphotoxin β-receptor (LTβR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTβR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTβR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTβR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTβR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTβR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFβ signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/β-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTβR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.
Collapse
Affiliation(s)
- Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Dominik Pfister
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Zeynep Ertüz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Martin A Lopez
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Christoph Mayr
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Gizem Günes
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Aicha Jeridi
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Maja C Funk
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
| | - Giorgi Beroshvili
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | | | - Hani Alsafadi
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michael Lindner
- Asklepios Fachkliniken Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
- Translational Lung Research and CPC-M bioArchive, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Janzen
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Percy Knolle
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Darcy Wagner
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J Theis
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
- Experimental Genetics, Technische Universität München, Freising, Germany
| | - Tracy O'Connor
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
- Medical Faculty Mannheim & BioQuant, Heidelberg University, Heidelberg, Germany
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany.
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany.
| |
Collapse
|
46
|
Shimizu H, Kobayashi H, Kanbori M, Ishii Y. Effectiveness of golimumab in rheumatoid arthritis patients with inadequate response to first-line biologic therapy: Results from a Japanese post-marketing surveillance study. Mod Rheumatol 2020; 31:556-565. [PMID: 32677849 DOI: 10.1080/14397595.2020.1797266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To assess the real-world effectiveness of golimumab in Japanese patients with rheumatoid arthritis who had previously received first-line biologic therapy. METHODS A post-hoc analysis of post-marketing surveillance was performed. The effectiveness of golimumab was assessed in 731 patients with an inadequate response to first-line biologic therapy stratified by their prior biologic agents. Outcome variables included DAS28-CRP, DAS28-ESR, SDAI and CDAI, and medication persistence. Logistic regression analyses were conducted to identify factors associated with the likelihood of achieving a DAS28-CRP response (good/moderate) after 24 weeks of golimumab treatment. RESULTS Patients demonstrated significant improvement in the clinical signs and symptoms of rheumatoid arthritis at 24 weeks, as indicated by the reduction of DAS28-CRP (Δ0.87), DAS28-ESR (Δ0.85), SDAI (Δ7.32), and CDAI (Δ6.98) scores. This result was consistent across the subgroups stratified by previous biologic therapy. Multivariate analysis failed to identify any factors associated with response to golimumab. CONCLUSION In the real-world clinical setting, switching to golimumab was effective for Japanese patients with an inadequate response to first-line biologic therapy regardless of the biologic agent, including both TNF and non-TNF inhibitors.
Collapse
Affiliation(s)
- Hirohito Shimizu
- Immunology Department, Medical Affairs Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Hisanori Kobayashi
- External Collaboration and Portfolio Management Department, Clinical Science Division, R&D, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Masayoshi Kanbori
- Japan Safety & Surveillance Division, R&D, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Yutaka Ishii
- Immunology Department, Medical Affairs Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| |
Collapse
|
47
|
Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev 2020; 161-162:42-62. [PMID: 32750376 PMCID: PMC7736208 DOI: 10.1016/j.addr.2020.07.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
In cancer, lymph nodes (LNs) coordinate tumor antigen presentation necessary for effective antitumor immunity, both at the levels of local cellular interactions and tissue-level organization. In this review, we examine how LNs may be engineered to improve the therapeutic outcomes of cancer immunotherapy. At the cellular scale, targeting the LNs impacts the potency of cancer vaccines, immune checkpoint blockade, and adoptive cell transfer. On a tissue level, macro-scale biomaterials mimicking LN features can function as immune niches for cell reprogramming or delivery in vivo, or be utilized in vitro to enable preclinical testing of drugs and vaccines. We additionally review strategies to induce ectopic lymphoid sites reminiscent of LNs that may improve antitumor T cell priming.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
| |
Collapse
|
48
|
Marinkovic T, Marinkovic D. Biological mechanisms of ectopic lymphoid structure formation and their pathophysiological significance. Int Rev Immunol 2020; 40:255-267. [PMID: 32631119 DOI: 10.1080/08830185.2020.1789620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ectopic lymphoid structures (ELS) or tertiary lymphoid organs are structures with the organization similar to the one of secondary lymphoid organs, formed in non-lymphoid tissues. They are considered to be an important site for the lymphocytic physiological and pathological role in conditions such are chronic infections, autoimmune diseases, cancer, and allograft rejection. Although similar to the secondary lymphoid tissues, the initiation of ELS formation is not preprogramed and requires chronic inflammation, expression of homeostatic chemokines, and lymphotoxin beta receptor activation. Importantly, while ELS formation may be considered beneficiary in antimicrobial and antitumor immunity, the persistence of these active lymphoid structures within the tissue increase the chance for development of autoimmunity and lymphoma. This paper is providing an overview of biological mechanisms involved in ELS formation, as well as the overview of the pathophysiological role of these structures. In addition, the paper discusses the possibility to therapeutically target ELS formation, bearing in mind their bivalent nature and role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Department of Medical Sciences, Western Serbia Academy of Applied Sciences, Uzice, Serbia
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
49
|
Conejo-Garcia JR, Biswas S, Chaurio R. Humoral immune responses: Unsung heroes of the war on cancer. Semin Immunol 2020; 49:101419. [PMID: 33183950 PMCID: PMC7738315 DOI: 10.1016/j.smim.2020.101419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Solid cancers progress from primordial lesions through complex interactions between tumor-promoting and anti-tumor immune cell types, ultimately leading to the orchestration of humoral and T cell adaptive immune responses, albeit in an immunosuppressive environment. B cells infiltrating most established tumors have been associated with a dual role: Some studies have associated antibodies produced by tumor-associated B cells with the promotion of regulatory activities on myeloid cells, and also with direct immunosuppression through the production of IL-10, IL-35 or TGF-β. In contrast, recent studies in multiple human malignancies identify B cell responses with delayed malignant progression and coordinated T cell protective responses. This includes the elusive role of Tertiary Lymphoid Structures identified in many human tumors, where the function of B cells remains unknown. Here, we discuss emerging data on the dual role of B cell responses in the pathophysiology of human cancer, providing a perspective on future directions and possible novel interventions to restore the coordinated action of both branches of the adaptive immune response, with the goal of maximizing immunotherapeutic effectiveness.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ricardo Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
50
|
Torphy RJ, Schulick RD, Zhu Y. Understanding the immune landscape and tumor microenvironment of pancreatic cancer to improve immunotherapy. Mol Carcinog 2020; 59:775-782. [PMID: 32166821 DOI: 10.1002/mc.23179] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
Immunotherapy has revolutionized cancer treatment for several hematologic and solid organ malignancies; however, pancreatic cancer remains unresponsive to conventional immunotherapies. Several characteristics of pancreatic cancer present challenges to successful treatment with immunotherapy, including its aggressive biology, poor immunogenicity, and abundant desmoplastic stroma which can impede effector T cell infiltration and promote an immunosuppressive microenvironment. In this review, we evaluate the current understanding of the immune and stromal landscapes of pancreatic cancer, discuss the successes and failures of stroma-targeted therapies, and highlight how stroma-directed therapies may be synergistic with immunotherapy.
Collapse
Affiliation(s)
- Robert J Torphy
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|