1
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
2
|
Li JY, Chen YC, Lee YZ, Huang CH, Sue SC. N-terminal Backbone Pairing Shifts in CCL5- 12AAA 14 Dimer Interface: Structural Significance of the FAY Sequence. Int J Mol Sci 2020; 21:ijms21051689. [PMID: 32121575 PMCID: PMC7084690 DOI: 10.3390/ijms21051689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
CC-type chemokine ligand 5 (CCL5) has been known to regulate immune responses by mediating the chemotaxis of leukocytes. Depending on the environment, CCL5 forms different orders of oligomers to interact with targets and create functional diversity. A recent CCL5 trimer structure revealed that the N-terminal conversed F12-A13-Y14 (12FAY14) sequence is involved in CCL5 aggregation. The CCL5-12AAA14 mutant with two mutations had a deficiency in the formation of high-order oligomers. In the study, we clarify the respective roles of F12 and Y14 through NMR analysis and structural determination of the CCL5-12AAA14 mutant where F12 is involved in the dimer assembly and Y14 is involved in aggregation. The CCL5-12AAA14 structure contains a unique dimer packing. The backbone pairing shifts for one-residue in the N-terminal interface, when compared to the native CCL5 dimer. This difference creates a new structural orientation and leads to the conclusion that F12 confines the native CCL5 dimer configuration. Without F12 anchoring in the position, the interfacial backbone pairing is permitted to slide. Structural plasticity occurs in the N-terminal interaction. This is the first case to report this structural rearrangement through mutagenesis. The study provides a new idea for chemokine engineering and complements the understanding of CCL5 oligomerization and the role of the 12FAY14 sequence.
Collapse
Affiliation(s)
- Jin-Ye Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (J.-Y.L.); (Y.-C.C.); (Y.-Z.L.)
| | - Yi-Chen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (J.-Y.L.); (Y.-C.C.); (Y.-Z.L.)
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (J.-Y.L.); (Y.-C.C.); (Y.-Z.L.)
- Instrument Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (J.-Y.L.); (Y.-C.C.); (Y.-Z.L.)
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-5742025; Fax: +886-3-5715934
| |
Collapse
|
3
|
Chen YC, Chen SP, Li JY, Chen PC, Lee YZ, Li KM, Zarivach R, Sun YJ, Sue SC. Integrative Model to Coordinate the Oligomerization and Aggregation Mechanisms of CCL5. J Mol Biol 2020; 432:1143-1157. [PMID: 31931012 DOI: 10.1016/j.jmb.2019.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 11/25/2022]
Abstract
CC-type chemokine ligand 5 (CCL5) is involved in the pathogenesis of many inflammatory conditions. Under physiological conditions, CCL5 oligomerization and aggregation are considered to be responsible for its inflammatory properties. The structural basis of CCL5 oligomerization remains controversial because the current oligomer models contain no consensus interactions. In this study, NMR and biophysical analyses proposed evidence that the CC-type CCL5 dimer acts as the basic unit to constitute the oligomer and that CCL5 oligomerizes alternatively through E66-K25 and E66-R44/K45 interactions. In addition, a newly determined trimer structure, constituted by CCL5 and the E66S mutant, reported an interfacial interaction through the N-terminal 12FAY14 sequence. The interaction contributes to CCL5 aggregation and precipitation but not to oligomerization. In accordance with the observations, an integrative model explains the CCL5 oligomerization and aggregation mechanism in which CCL5 assembly consists of two types of dimer-dimer interactions and one aggregation mechanism. For full-length CCL5, the molecular accumulation triggers oligomerization through the E66-K25 and E66-R44/K45 interactions, and the 12FAY14 interaction acts as a secondary effect to derive aggregation and precipitation. In contrast, the E66-R44/K45 interaction might dominate in CCL5 N-terminal truncations, and the interaction would lead to the filament-like formation in solution.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Siou-Pei Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jin-Ye Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Chun Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Instrument Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kun-Mou Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
4
|
Rijal G, Li W. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12:20. [PMID: 30220913 PMCID: PMC6136168 DOI: 10.1186/s13036-018-0114-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Human connective tissues are complex physiological microenvironments favorable for optimal survival, function, growth, proliferation, differentiation, migration, and death of tissue cells. Mimicking native tissue microenvironment using various three-dimensional (3D) tissue culture systems in vitro has been explored for decades, with great advances being achieved recently at material, design and application levels. These achievements are based on improved understandings about the functionalities of various tissue cells, the biocompatibility and biodegradability of scaffolding materials, the biologically functional factors within native tissues, and the pathophysiological conditions of native tissue microenvironments. Here we discuss these continuously evolving physical aspects of tissue microenvironment important for human disease modeling, with a focus on tumors, as well as for tissue repair and regeneration. The combined information about human tissue spaces reflects the necessities of considerations when configuring spatial microenvironments in vitro with native fidelity to culture cells and regenerate tissues that are beyond the formats of 2D and 3D cultures. It is important to associate tissue-specific cells with specific tissues and microenvironments therein for a better understanding of human biology and disease conditions and for the development of novel approaches to treat human diseases.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| |
Collapse
|
5
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
6
|
Shah HR, Savjani JK. Recent updates for designing CCR5 antagonists as anti-retroviral agents. Eur J Med Chem 2018; 147:115-129. [PMID: 29425816 DOI: 10.1016/j.ejmech.2018.01.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 01/23/2023]
Abstract
The healthcare system faces various challenges in human immunodeficiency virus (HIV) therapy due to resistance to Anti-Retroviral Therapy (ART) as a consequence of the evolutionary process. Despite the success of antiretroviral drugs like Zidovudine, Zalcitabine, Raltegravir WHO ranks HIV as one of the deadliest diseases with a mortality of one million lives in 2016. Thus, there emerges an urgency of developing a novel anti-retroviral agent that combat resistant HIV strains. The clinical development of ART from a single drug regimen to current triple drug combination is very slow. The progression in the structural biology of the viral envelope prompted the discovery of novel targets, which can be demonstrated a proficient approach for drug design of anti-retroviral agents. The current review enlightens the recent updates in the structural biology of the viral envelope and focuses on CCR5 as a validated target as well as ways to overcome CCR5 resistance. The article also throws light on the SAR studies and most prevalent mutations in the receptor for designing CCR5 antagonists that can combat HIV-1 infection. To conclude, the paper lists diversified scaffolds that are in pipeline by various pharmaceutical companies that could provide an aid for developing novel CCR5 antagonists.
Collapse
Affiliation(s)
- Harshil R Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, India
| | - Jignasa Ketan Savjani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, India.
| |
Collapse
|
7
|
Wu CY, Tsai YY, Chen SY, Lin YP, Shin JW, Wu CC, Yang BC. Interaction of Zap70 and CXCR4 receptor at lamellipodia that determines the directionality during Jurkat T cells chemotaxis. Mol Immunol 2017; 90:245-254. [DOI: 10.1016/j.molimm.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
8
|
El-Shazly AE, Roncarati P, Lejeune M, Lefebvre PP, Delvenne P. Tyrosine kinase inhibition is an important factor for gene expression of CRTH2 in human eosinophils and lymphocytes: A novel mechanism for explaining eosinophils recruitment by the neuro-immune axis in allergic rhinitis. Int Immunopharmacol 2017; 45:180-186. [PMID: 28222358 DOI: 10.1016/j.intimp.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
We recently shown a novel neuro-immune competition between vasoactive intestinal peptide (VIP) and PGD2 for CRTH2 receptor, and that genistein augmented VIP and PGD2-induced eosinophil chemotaxis. However, there are neither studies on the CRTH2 gene expression in allergic rhinitis (AR) nor in the effect of tyrosine kinase inhibitors in CRTH2 gene regulation. Our Objectives were to study the gene expression modulation of CRTH2 receptor in AR patients and the effect of tyrosine kinase inhibitors (TKIs) on CRTH2 gene modulation. Nasal provocation tests, ELISA, qRT-PCR, western blot, flow cytometry and chemotaxis assays in modified micro-Boyden chambers, were all used, to achieve our objectives. Herein we show that AR patients increased the amounts of VIP and PGD2 in their nasal secretions in the early phase reaction, however CRTH2 gene expression from leukocytes recovered in their nasal secretions was upregulated only during the late phase reaction. The TKIs; Genistein, Erbstatin and Herbimycin A, induced the gene expression of CRTH2 and increased the protein content of CRTH2 in both human lymphocytes and eosinophils. This was functional as PGD2/VIP-induced eosinophil chemotaxis was augmented by the TKIs and inhibited by pervanadate, the tyrosine phosphatase inhibitor. These results open channels for therapeutic modalities targeting CRTH2 molecules in AR.
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium; Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium.
| | - P Roncarati
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| | - M Lejeune
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| | - P P Lefebvre
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium
| | - P Delvenne
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| |
Collapse
|
9
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
10
|
Jones GT, Phillips LV, Williams MJA, van Rij AM, Kabir TD. Two C-C Family Chemokines, Eotaxin and RANTES, Are Novel Independent Plasma Biomarkers for Abdominal Aortic Aneurysm. J Am Heart Assoc 2016; 5:e002993. [PMID: 27126477 PMCID: PMC4889176 DOI: 10.1161/jaha.115.002993] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/12/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Inflammation of the aortic wall is recognised as a key pathogenesis of abdominal aortic aneurysm (AAA). This study was undertaken to determine whether inflammatory cytokines could be used as biomarkers for the presence of AAA. METHODS AND RESULTS Tissue profiles of 27 inflammatory cytokine were examined in AAA (n=14) and nonaneurysmal (n=14) aortic tissues. Three cytokines, regulated upon activation normally T-cell expressed and secreted (RANTES), eotaxin, and macrophage inflammatory protein 1 beta (MIP-1b), had increased expression in AAA, particularly within the adventitial layer of the aortic wall. Basic fibroblast growth factor (bFGF) had reduced expression in all layers of the AAA wall. Examination of the circulating plasma profiles of AAA (n=442) and AAA-free controls (n=970) suggested a (risk factor adjusted) AAA-association with eotaxin, RANTES, and high sensitivity C-reactive protein (hsCRP). A plasma inflammatory cytokine score, calculated using these three markers, suggested a strong risk association with AAA (odds ratio, 4.8; 95% CI, 3.5-6.7; P<0.0001), independent of age, sex, history of ischemic heart disease, and smoking. CONCLUSIONS Contrary to reports suggesting a distinct T helper 2-associated inflammatory profile in AAA, this current study suggests a more-generalized pattern of inflammation, albeit with some potentially distinct features, including elevated plasma eotaxin and decreased plasma RANTES. In combination with hsCRP, these markers may have potential utility as AAA biomarkers.
Collapse
Affiliation(s)
- Gregory T Jones
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | | | | | - Andre M van Rij
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - Tasnuva D Kabir
- Department of Surgery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Wiktor M, Hartley O, Grzesiek S. Characterization of structure, dynamics, and detergent interactions of the anti-HIV chemokine variant 5P12-RANTES. Biophys J 2013; 105:2586-97. [PMID: 24314089 PMCID: PMC3853082 DOI: 10.1016/j.bpj.2013.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022] Open
Abstract
RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content.
Collapse
Affiliation(s)
- Maciej Wiktor
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Wiemer AJ, Wernimont SA, Cung TD, Bennin DA, Beggs HE, Huttenlocher A. The focal adhesion kinase inhibitor PF-562,271 impairs primary CD4+ T cell activation. Biochem Pharmacol 2013; 86:770-81. [PMID: 23928188 PMCID: PMC3762933 DOI: 10.1016/j.bcp.2013.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The focal adhesion kinase inhibitor, PF-562,271, is currently in clinical development for cancer, however it is not known how PF-562,271 affects T cell function. Here, we demonstrate inhibitory effects of PF-562,271 on the activation of primary human and mouse T cells. PF-562,271 inhibits T cell receptor signaling-induced T cell adhesion to intercellular adhesion molecule-1 and T cell interactions with antigen-presenting cells. An additional focal adhesion kinase inhibitor, PF-573,228, and genetic depletion of focal adhesion kinase also impair T cell conjugation with antigen-presenting cells. PF-562,271 blocks phosphorylation of the signaling molecules zeta chain associate protein of 70 kDa, linker of activated T cells, and extracellular signal-regulated kinase, and impairs T cell proliferation. The effects observed on T cell proliferation cannot solely be attributed to focal adhesion kinase inhibition, as genetic depletion did not alter proliferation. The effect of PF-562,271 on T cell proliferation is not rescued when proximal T cell receptor signaling is bypassed by stimulation with phorbol-12-myristate-13-acetate and ionomycin. Taken together, our findings demonstrate that focal adhesion kinase regulates integrin-mediated T cell adhesion following T cell receptor activation. Moreover, our findings suggest that PF-562,271 may have immunomodulatory effects that could impact its therapeutic applications.
Collapse
Affiliation(s)
- Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd Unit 3092, Storrs, CT 06269, USA.
| | - Sarah A. Wernimont
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - Thai-duong Cung
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - David A. Bennin
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - Hilary E. Beggs
- Department of Ophthalmology, University of California, 10 Koret Way, San Francisco, CA, 94143, USA.
| | - Anna Huttenlocher
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
- Department of Pediatrics, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
13
|
El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N. Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy 2013; 43:322-31. [PMID: 23414540 DOI: 10.1111/cea.12022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent data indicated that natural killer (NK) cells and chemokines could play a pivotal role in nasal inflammation. CX3CR1, the only receptor for fractalkine/CX3CL1, is abundantly expressed by NK cells, and was recently shown to also be a receptor for eotaxin-3/CCL26. However, no reports explored the NK cells-CX3CL1-CCL26 axis via CX3CR1 in allergy. OBJECTIVE Our goals were first to determine specifically NK cell recruitment pattern in nasal tissue of allergic chronic rhinosinusitis (ACRS) and non-allergic chronic rhinosinusitis (NACRS) patients in comparison with healthy controls, and secondly, to investigate the function of CX3CR1 in NK cell migration. METHODS Immunohistochemistry, microchemotaxis chambers, flow cytometry and confocal microscopy were used in this study. RESULTS Herein, we showed that NK cells infiltrated the epithelial layers of nasal tissue only in ACRS patients and not in NACRS patients or controls. NK cells were also more numerous in the stroma of the nasal tissue from ACRS patients compared with NACRS patients or controls. This migration could be mediated by both CX3CL1 and CCL26, as these two chemokines induced NK cell migration. Moreover, both molecules also stimulated cytoskeleton changes and F-actin reorganisation in NK cells. Chemotaxis and cytoskeleton changes were sensitive to genistein, a tyrosine kinase inhibitor. By flow cytometry, we demonstrated that a single antigen nasal provocation challenge increased the expression of CX3CR1 on NK cells in allergic rhinitis (AR) patients. The function of this receptor was associated with a significant augmentation of NK cell chemotaxis against the optimal doses of CX3CL1 and CCL26. CONCLUSIONS AND CLINICAL RELEVANCE Our results highlight a novel role for CX3CR1 in NK cell migration that may contribute to the NK cell trafficking to the allergic upper airway. This could be mediated largely by CX3CL1 and CCL26 stimulation of the tyrosine kinase pathway.
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
Ondondo B, Jones E, Godkin A, Gallimore A. Home sweet home: the tumor microenvironment as a haven for regulatory T cells. Front Immunol 2013; 4:197. [PMID: 23874342 PMCID: PMC3712544 DOI: 10.3389/fimmu.2013.00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) have a fundamental role in maintaining immune balance by preventing autoreactivity and immune-mediated pathology. However this role of Tregs extends to suppression of anti-tumor immune responses and remains a major obstacle in the development of anti-cancer vaccines and immunotherapies. This feature of Treg activity is exacerbated by the discovery that Treg frequencies are not only elevated in the blood of cancer patients, but are also significantly enriched within tumors in comparison to other sites. These observations have sparked off the quest to understand the processes through which Tregs become elevated in cancer-bearing hosts and to identify the specific mechanisms leading to their accumulation within the tumor microenvironment. This manuscript reviews the evidence for specific mechanisms of intra-tumoral Treg enrichment and will discuss how this information may be utilized for the purpose of manipulating the balance of tumor-infiltrating T cells in favor of anti-tumor effector cells.
Collapse
Affiliation(s)
- Beatrice Ondondo
- Nuffield Department of Medicine, The Jenner Institute (ORCRB), University of Oxford , Oxford , UK
| | | | | | | |
Collapse
|
15
|
El-Shazly AE, Begon DY, Kustermans G, Arafa M, Dortu E, Henket M, Lefebvre PP, Louis R, Delvenne P. Novel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways. J Biol Chem 2013; 288:1374-84. [PMID: 23168411 PMCID: PMC3543020 DOI: 10.1074/jbc.m112.422675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/10/2012] [Indexed: 01/21/2023] Open
Abstract
We explored the relation between vasoactive intestinal peptide (VIP), CRTH2, and eosinophil recruitment. It is shown that CRTH2 expression by eosinophils from allergic rhinitis (AR) patients and eosinophil cell line (Eol-1 cells) was up-regulated by VIP treatment. This was functional and resulted in exaggerated migratory response of cells against PGD2. Nasal challenge of AR patients resulted in a significant increase of VIP contents in nasal secretion (ELISA), and the immunohistochemical studies of allergic nasal tissues showed significant expression of VIP in association with intense eosinophil recruitment. Biochemical assays showed that VIP-induced eosinophil chemotaxis from AR patients and Eol-1 cells was mediated through the CRTH2 receptor. Cell migration against VIP was sensitive to protein kinase C (PKC) and protein kinase A (PKA) inhibition but not to tyrosine kinase or p38 MAPK inhibition or calcium chelation. Western blot demonstrated a novel CRTH2-mediated cytosol-to-membrane translocation of PKC-ε, PKC-δ, and PKA-α, -γ, and -IIαreg in Eol-1 cells upon stimulation with VIP. Confocal images and FACS demonstrated a strong association and co-localization between VIP peptide and CRTH2 molecules. Further, VIP induced PGD2 secretion from eosinophils. Our results demonstrate the first evidence of association between VIP and CRTH2 in recruiting eosinophils.
Collapse
Affiliation(s)
- Amr E El-Shazly
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Liege University Hospital (Centre Hospitalier Universaitaire-C.H.U.), 4000 Liege, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines. Clin Exp Metastasis 2011; 28:551-65. [PMID: 21533871 DOI: 10.1007/s10585-011-9391-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.
Collapse
|
17
|
Virani SS, Nambi V, Hoogeveen R, Wasserman BA, Coresh J, Gonzalez F, Chambless LE, Mosley TH, Boerwinkle E, Ballantyne CM. Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Eur Heart J 2010; 32:459-68. [PMID: 20943669 DOI: 10.1093/eurheartj/ehq367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS To assess the relationship between regulated on activation, normal T-cell expressed and secreted (RANTES) and carotid atherosclerotic plaque burden and plaque characteristics. METHODS AND RESULTS Gadolinium-enhanced magnetic resonance imaging (MRI) of the carotid artery was performed in 1901 participants from the Atherosclerosis Risk in Communities (ARIC) Study. Wall thickness and volume, lipid-core volume, and fibrous cap thickness (by MRI) and plasma RANTES levels (by ELISA) were measured. Regression analysis was performed to study the associations between MRI variables and RANTES. Among 1769 inclusive participants, multivariable regression analysis revealed that total wall volume [beta-coefficient (β) = 0.09, P = 0.008], maximum wall thickness (β = 0.08, P = 0.01), vessel wall area (β = 0.07, P = 0.02), mean minimum fibrous cap thickness (β = 0.11, P = 0.03), and high-sensitivity C-reactive protein (β = 0.09, P = 0.01) were positively associated with RANTES. Total lipid-core volume showed positive association in unadjusted models (β = 0.18, P = 0.02), but not in fully adjusted models (β = 0.13, P = 0.09). RANTES levels were highest in Caucasian females followed by Caucasian males, African-American females, and African-American males (P < 0.0001). Statin use attenuated the relationship between RANTES and measures of plaque burden. CONCLUSION Positive associations between RANTES and carotid wall thickness and lipid-core volume (in univariate analysis) suggest that higher RANTES levels may be associated with extent of carotid atherosclerosis and high-risk plaques. Associations between fibrous cap thickness and RANTES likely reflect the lower reliability estimate for fibrous cap measurements compared with wall volume or lipid-core volume measurements. Statin use may modify the association between RANTES and carotid atherosclerosis. Furthermore, RANTES levels vary by race.
Collapse
Affiliation(s)
- Salim S Virani
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Methodist DeBakey Heart and Vascular Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sharma M. Chemokines and their receptors: orchestrating a fine balance between health and disease. Crit Rev Biotechnol 2010. [DOI: 10.3109/07388550903187418] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Qiu L, Ding L, Huang J, Wang D, Zhang J, Guo B. Induction of copper/zinc-superoxide dismutase by CCL5/CCR5 activation causes tumour necrosis factor-alpha and reactive oxygen species production in macrophages. Immunology 2009; 128:e325-34. [PMID: 19016906 PMCID: PMC2753933 DOI: 10.1111/j.1365-2567.2008.02966.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 11/30/2022] Open
Abstract
Using two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis, we found that copper/zinc superoxide dismutase (Cu/Zn-SOD, SOD-1) was induced in constructed CCR5 stably transfected HEK 293 cells, but not in mock cells, treated with CCL5. CCL5-induced SOD-1 expression was also confirmed in HEK 293-CCR5 cells and CCR5-positive granulocyte-macrophage colony-stimulating factor-induced human macrophages and murine macrophage RAW264.7 cells. CCL5 and CCR5 interaction induced SOD-1 expression mainly via MEK-ERK activation. In addition, we provided evidence that upregulation of SOD-1 by CCL5/CCR5 activation occurred in parallel with the increased release of tumour necrosis factor-alpha and nitric oxide and production of intracellular reactive oxygen species as well as enhanced nuclear factor-kappaB transcriptional activity in CCR5-positive RAW264.7 cells. Conversely, the MEK1/2 inhibitor PD98059 significantly inhibited SOD-1 expression with the decrease of these biological responses. More importantly, inhibition of SOD-1 activity by disulfiram also strongly inhibited the CCL5-induced biological effects. These data suggest that SOD-1 mediates CCR5 activation by CCL5 and that pharmacological modulation of SOD-1 may be beneficial to CCR5-associated diseases.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Biochemical Pharmacy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Li Ding
- Department of Biochemical Pharmacy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Jin Huang
- Department of Pharmacy, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Dong Wang
- Department of Biochemical Pharmacy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Junping Zhang
- Department of Biochemical Pharmacy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Baoyu Guo
- Department of Biochemical Pharmacy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| |
Collapse
|
20
|
Vitiello PF, Rausch MP, Horowitz KM, Kurt RA. Secondary Lymphoid‐Tissue Chemokine Induced Modulation of T Cells. Immunol Invest 2009; 33:235-49. [PMID: 15195699 DOI: 10.1081/imm-120030738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study we were interested in investigating the extent to which stimulation through a chemokine receptor could modulate TCR function. We report that splenic T cells exposed to secondary lymphoid-tissue chemokine (SLC, CCL21) for 72, but not 2 or 24 hours, exhibited a decreased ability to produce IFN-gamma following CD3 crosslinking. Similar findings were observed with CCL2 and CCL5. The decrease in IFN-gamma production was not attributed to a decrease in T cell viability, was not accompanied with an increase in IL-4 production, and could be induced using a G protein coupled receptor agonist indicating involvement of chemokine receptors. One explanation for these findings was that following chemokine exposure the T cells were less efficient at TCR capping and exhibited a decrease in ZAP-70 protein expression. Consequently, these data indicate that CCL21 could modulate the function and expression of proteins necessary for T cell activation.
Collapse
Affiliation(s)
- P F Vitiello
- Department of Biology, Lafayette College, Easton, Pennsylvania 18042, USA
| | | | | | | |
Collapse
|
21
|
El-Shazly AE. Actin reorganization is involved in vasoactive intestinal peptide induced human mast cells priming to fraktalkine-induced chemotaxis. Int J Gen Med 2008; 1:27-31. [PMID: 20428403 PMCID: PMC2840542 DOI: 10.2147/ijgm.s3759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We recently reported a novel neuro-immuno co-operation between vasoactive intestinal peptide (VIP) and fraktalkine (FKN) in recruiting human mast cells to the asthmatic airway that provided a classical example of priming effect on mast cells migratory function, but the role of the F-actin in human mast cell chemotaxis’ priming is poorly defined. Therefore the aim of this study was to further investigate the biophysical role of the cytoskeletal element; the F-actin, intracellular reorganization and its polymerization in mast cell priming of chemotaxis function. In the present communication it is shown by immunofluoresence confocal microscopy analysis that physical F-actin intracellular reorganization in a membrane bound manner on human mast cell is involved in VIP-induced priming of human mast cell chemotaxis against FKN. The F-actin reorganization was calcium independent and without modification of its contents as assessed by fluorescence-activated cell scanning analysis. These results identify a novel role for the biophysical association of F-actin in the crosstalk between neuro-inflammatory mediators and mast cells and may be an important target for therapeutic modalities in allergic inflammation.
Collapse
Affiliation(s)
- Amr E El-Shazly
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Liege University Hospital (Centre hospitalier Universaitaire-C.H.U.), Liege, Belgium
| |
Collapse
|
22
|
CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood 2008; 111:4892-901. [PMID: 18337562 DOI: 10.1182/blood-2007-11-125039] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The multistep, coordinated process of T-cell chemotaxis requires chemokines, and their chemokine receptors, to invoke signaling events to direct cell migration. Here, we examined the role for CCL5-mediated initiation of mRNA translation in CD4(+) T-cell chemotaxis. Using rapamycin, an inhibitor of mTOR, our data show the importance of mTOR in CCL5-mediated T-cell migration. Cycloheximide, but not actinomycin D, significantly reduced chemotaxis, suggesting a possible role for mRNA translation in T-cell migration. CCL5 induced phosphorylation/activation of mTOR, p70 S6K1, and ribosomal protein S6. In addition, CCL5 induced PI-3'K-, phospholipase D (PLD)-, and mTOR-dependent phosphorylation and deactivation of the transcriptional repressor 4E-BP1, which resulted in its dissociation from the eukaryotic initiation factor-4E (eIF4E). Subsequently, eIF4E associated with scaffold protein eIF4G, forming the eIF4F translation initiation complex. Indeed, CCL5 initiated active translation of mRNA, shown by the increased presence of high-molecular-weight polysomes that were significantly reduced by rapamycin treatment. Notably, CCL5 induced protein translation of cyclin D1 and MMP-9, known mediators of migration. Taken together, we describe a novel mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs and "primes" CD4(+) T cells for efficient chemotaxis.
Collapse
|
23
|
Wagner CS, Walther-Jallow L, Buentke E, Ljunggren HG, Achour A, Chambers BJ. Human cytomegalovirus-derived protein UL18 alters the phenotype and function of monocyte-derived dendritic cells. J Leukoc Biol 2008; 83:56-63. [PMID: 17898320 DOI: 10.1189/jlb.0307181] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes the MHC class I-like molecule UL18, which binds with high affinity to the leukocyte Ig-like receptor-1 (LIR-1), an inhibitory receptor commonly expressed on myeloid cells and subsets of NK and T cells. The exact role of UL18 is not known, in particular in relation to its proposed role in HCMV immune escape. Given the ubiquitous expression of LIR-1 on dendritic cells (DCs), we hypothesized that UL18 may affect DC function. To study the effects of UL18 on DC, we made use of UL18 fusion proteins. We demonstrate that UL18 fusion proteins inhibit the chemotaxis of DCs. Furthermore, UL18 interfered with CD40 ligand-induced maturation of DCs, resulting in reduced allogeneic T cell proliferation. Finally, we demonstrate that UL18 proteins up-regulate the expression of the maturation marker CD83 on immature monocyte-derived DCs and induce cytokine production. The capacity of UL18 to affect the function and the phenotype of DCs suggests a novel role for this HCMV-derived protein.
Collapse
Affiliation(s)
- Claudia S Wagner
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Soldevila G, García-Zepeda EA. The role of the Jak-Stat pathway in chemokine-mediated signaling in T lymphocytes. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200700144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Montanheiro P, Vergara MPP, Smid J, da Silva Duarte AJ, de Oliveira ACP, Casseb J. High production of RANTES and MIP-1α in the tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). J Neuroimmunol 2007; 188:138-42. [PMID: 17588676 DOI: 10.1016/j.jneuroim.2007.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/16/2007] [Accepted: 05/22/2007] [Indexed: 11/16/2022]
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) infection is associated with progressive neurological disorders and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). The pathogenesis of TSP/HAM is considered as immune mediated, involving cytotoxic T cell (CTL) responses to a number of viral proteins and notably the regulation protein Tax. T CD8+ cells produce beta-chemokines, which are important in the anti-viral response. In the present study, we have analyzed the CC chemokines (RANTES, MIP-1beta and MIP-1alpha) production in retrovirus-infected subjects. A total of 191 subjects were studied: 52 healthy controls, 72 asymptomatic HTLV-1-infected carriers and 67 TSP/HAM patients. Peripheral blood mononuclear cells were maintained in the presence or absence of PHA, and supernatant fluids were assayed using EIA. MIP-1beta concentration was not significantly different across groups, but RANTES and MIP-1alpha concentrations showed significant differences when the three groups were compared. In TSP/HAM patients, the increase in the production of chemokines may lead to a recruitment of pro-inflammatory factors, contributing to the membrane's myelin damage.
Collapse
Affiliation(s)
- Patricia Montanheiro
- Department of Dermatology, Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Park D, Park I, Lee D, Choi YB, Lee H, Yun Y. The adaptor protein Lad associates with the G protein beta subunit and mediates chemokine-dependent T-cell migration. Blood 2007; 109:5122-8. [PMID: 17327418 DOI: 10.1182/blood-2005-10-061838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lck-interacting adaptor protein/Rlk/Itk-binding protein (Lad/RIBP) was previously identified as an adaptor protein involved in TCR-mediated T-cell activation. To elucidate the functions of Lad further, we here performed yeast 2-hybrid screening using Lad as bait and discovered that the G protein beta subunit (G beta) is a Lad-binding partner. Since the most well-known G protein-coupled receptor in T cells is the chemokine receptor, we investigated whether Lad is involved in chemokine signaling. We found that, upon chemokine treatment, Lad associated with G beta in Jurkat T cells. Furthermore, ectopic expression of dominant-negative Lad or the reduction of endogenous Lad expression by siRNA impaired the chemokine-induced migration of T cells, indicating that Lad is required for chemokine-induced T-cell migration. Subsequent investigation of the signaling pathways revealed that, in response to chemokine, Lad associated with the tyrosine kinases Lck and Zap-70 and that Lad was essential for the activation of Zap-70. Moreover, Lad was required for the chemokine-dependent tyrosine phosphorylation of focal adhesion molecules that included Pyk2 and paxillin. Taken together, these data show that, upon chemokine stimulation, Lad acts as an adaptor protein that links the G protein beta subunit to the tyrosine kinases Lck and Zap-70, thereby mediating T-cell migration.
Collapse
Affiliation(s)
- Dongsu Park
- Department of Life Science, Ewha Woman's University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Dar WA, Knechtle SJ. CXCR3-mediated T-cell chemotaxis involves ZAP-70 and is regulated by signalling through the T-cell receptor. Immunology 2007; 120:467-85. [PMID: 17250586 PMCID: PMC2265907 DOI: 10.1111/j.1365-2567.2006.02534.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The chemokine receptor CXCR3 is critical for the function of activated T cells. We studied the molecular mechanisms of CXCR3 signalling. The addition of CXCR3 ligands to normal human T cells expressing CXCR3 led to the tyrosine phosphorylation of multiple proteins. Addition of the same ligands to Jurkat T cells engineered to express CXCR3 induced tyrosine phosphorylation of proteins with molecular weights similar to those in normal cells. Immunoblotting with phosphotyrosine-specific antibodies identified Zeta-associated protein of 70,000 molecular weight (ZAP-70), linker for the activation of T cells (LAT), and phospholipase-C-gamma1 (PLCgamma1) to be among the proteins that become phosphorylated upon CXCR3 activation. ZAP-70 was phosphorylated on tyrosine 319, LAT on tyrosines 171 and 191, and PLCgamma1 on tyrosine 783. The ZAP-70 inhibitor piceatannol reduced CXCR3-mediated tyrosine phosphorylation of ZAP-70, LAT, PLCgamma1 and mitogen-activated protein kinase Erk and it reduced CXCL10-mediated chemotaxis of both CXCR3-transfected Jurkat T cells and normal T cells expressing CXCR3. These results are consistent with the involvement of ZAP-70 in CXCR3-mediated protein tyrosine phosphorylation and CXCR3-induced T-cell chemotaxis. Studies with the Lck-deficient Jurkat T-cell line, JCAM1.6, demonstrated that phosphorylation of ZAP-70 after CXCR3 activation is a Lck-dependent process. Finally, stimulating CXCR3-expressing Jurkat T cells and normal T cells expressing CXCR3 through the T-cell receptor attenuated CXCR3-induced tyrosine phosphorylation and CXCR3-mediated T-cell migration, indicating the occurrence of cross-talk between T-cell receptor and CXCR3-signalling pathways. These results shed light on the mechanisms of CXCR3 signalling. Such information could be useful when designing therapeutic strategies to regulate T-cell function.
Collapse
Affiliation(s)
- Wasim A Dar
- Department of Surgery, Division of Transplantation, University of Wisconsin-Madison, Madison, WI 53792-7375, USA.
| | | |
Collapse
|
28
|
Sol-Foulon N, Sourisseau M, Porrot F, Thoulouze MI, Trouillet C, Nobile C, Blanchet F, di Bartolo V, Noraz N, Taylor N, Alcover A, Hivroz C, Schwartz O. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 2007; 26:516-26. [PMID: 17215865 PMCID: PMC1783460 DOI: 10.1038/sj.emboj.7601509] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 11/24/2006] [Indexed: 01/29/2023] Open
Abstract
HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell-cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP-70, a key kinase regulating T-cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP-70, or expressing a kinase-dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP-70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP-70, intracellular Gag localization was impaired. ZAP-70 was required in infected donor cells for efficient cell-to-cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T-cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell-to-cell contacts.
Collapse
Affiliation(s)
| | | | - Françoise Porrot
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | | | - Céline Trouillet
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | | | - Fabien Blanchet
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
| | - Vincenzo di Bartolo
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Nelly Noraz
- CNRS UMR5535, Institut de Génétique Moléculaire, Montpellier, France
| | - Naomi Taylor
- CNRS UMR5535, Institut de Génétique Moléculaire, Montpellier, France
| | - Andres Alcover
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | | | - Olivier Schwartz
- Groupe Virus et Immunité, Institut Pasteur, CNRS URA1930, France
- Virus and Immunity Group, Institut Pasteur, CNRS URA 1930, 28 rue du Dr Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 45 68 83 53; fax: +33 1 45 68 89 40; E-mail:
| |
Collapse
|
29
|
Murooka TT, Wong MM, Rahbar R, Majchrzak-Kita B, Proudfoot AEI, Fish EN. CCL5-CCR5-mediated apoptosis in T cells: Requirement for glycosaminoglycan binding and CCL5 aggregation. J Biol Chem 2006; 281:25184-94. [PMID: 16807236 DOI: 10.1074/jbc.m603912200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCL5 (RANTES (regulated on activation normal T cell expressed and secreted)) and its cognate receptor, CCR5, have been implicated in T cell activation. CCL5 binding to glycosaminoglycans (GAGs) on the cell surface or in extracellular matrix sequesters CCL5, thereby immobilizing CCL5 to provide the directional signal. In two CCR5-expressing human T cell lines, PM1.CCR5 and MOLT4.CCR5, and in human peripheral blood-derived T cells, micromolar concentrations of CCL5 induce apoptosis. CCL5-induced cell death involves the cytosolic release of cytochrome c, the activation of caspase-9 and caspase-3, and poly(ADP-ribose) polymerase cleavage. CCL5-induced apoptosis is CCR5-dependent, since native PM1 and MOLT4 cells lacking CCR5 expression are resistant to CCL5-induced cell death. Furthermore, we implicate tyrosine 339 as a critical residue involved in CCL5-induced apoptosis, since PM1 cells expressing a tyrosine mutant receptor, CCR5Y339F, do not undergo apoptosis. We show that CCL5-CCR5-mediated apoptosis is dependent on cell surface GAG binding. The addition of exogenous heparin and chondroitin sulfate and GAG digestion from the cell surface protect cells from apoptosis. Moreover, the non-GAG binding variant, (44AANA47)-CCL5, fails to induce apoptosis. To address the role of aggregation in CCL5-mediated apoptosis, nonaggregating CCL5 mutant E66S, which forms dimers, and E26A, which form tetramers at micromolar concentrations, were utilized. Unlike native CCL5, the E66S mutant fails to induce apoptosis, suggesting that tetramers are the minimal higher ordered CCL5 aggregates required for CCL5-induced apoptosis. Viewed altogether, these data suggest that CCL5-GAG binding and CCL5 aggregation are important for CCL5 activity in T cells, specifically in the context of CCR5-mediated apoptosis.
Collapse
Affiliation(s)
- Thomas T Murooka
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Department of Immunology, University of Toronto, Toronto, Ontario, M5G 2M1, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Tikhonov I, Deetz CO, Paca R, Berg S, Lukyanenko V, Lim JK, Pauza CD. Human Vgamma2Vdelta2 T cells contain cytoplasmic RANTES. Int Immunol 2006; 18:1243-51. [PMID: 16740603 PMCID: PMC2957085 DOI: 10.1093/intimm/dxl055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The adult human Vgamma2Vdelta2 T cell repertoire is a product of chronic selection in the periphery. Endogenous antigens drive the expansion of cells expressing the Vgamma2Vdelta2 TCR. Thus, we would expect the majority of circulating Vgamma2Vdelta2 T cells to be antigen experienced and to have memory phenotype, in contrast to the alpha/beta TCR+ subsets that include a substantial fraction of naive cells. We sought to characterize functional aspects of Vgamma2Vdelta2 T cells that might show whether circulating cells are memory or naive. For these studies, we focus on the expression of the CC chemokine regulated upon activation normal T cell expressed and secreted (RANTES). In naive alphabeta T cells, an initial stimulus triggers the onset of RANTES transcription followed later by protein expression. In memory CD8+ alphabeta T cells, RANTES mRNA is already present in unstimulated cells and protein expression is triggered immediately by TCR signaling; some cells may also contain RANTES protein in cytoplasmic stores. We show here that the vast majority of circulating human T cells contain RANTES protein in cytoplasmic stores and the chemokine is secreted rapidly after TCR signaling. Primary Vgamma2Vdelta2 T cell lines obtained after in vitro stimulation with phosphoantigens behaved similarly to circulating Vgamma2Vdelta2 T cells and contained both RANTES mRNA and protein, but only very low levels of mRNA or protein for macrophage inflammatory protein (MIP)-1alpha or MIP-1beta. The presence of stored RANTES shows that circulating Vgamma2Vdelta2 T cells are mostly memory phenotype and capable of rapid chemokine responses to phosphoantigen stimulation. Considering that one of 40 circulating CD3+ lymphocytes is Vgamma2Vdelta2+, they comprise the largest circulating memory population against a single antigen, and phosphoantigen stimulation will trigger a rapid activation with immediate release of RANTES.
Collapse
Affiliation(s)
- I. Tikhonov
- Institute of Human Virology University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
| | - C. O. Deetz
- Institute of Human Virology University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - R. Paca
- Institute of Human Virology University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
| | - S. Berg
- Institute of Human Virology University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
| | - V. Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
| | - J. K. Lim
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - C. D. Pauza
- Institute of Human Virology University of Maryland Biotechnology Institute, 725 West Lombard Street, Room N546, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Oppermann M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 2005; 16:1201-10. [PMID: 15337520 DOI: 10.1016/j.cellsig.2004.04.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 04/27/2004] [Indexed: 12/13/2022]
Abstract
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.
Collapse
Affiliation(s)
- Martin Oppermann
- Department of Immunology, Georg-August-University Göttingen, Kreuzbergring 57, 37075, Germany.
| |
Collapse
|
32
|
Ivanoff J, Talme T, Sundqvist KG. The role of chemokines and extracellular matrix components in the migration of T lymphocytes into three-dimensional substrata. Immunology 2005; 114:53-62. [PMID: 15606795 PMCID: PMC1782061 DOI: 10.1111/j.1365-2567.2004.02005.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The role of chemokines and their interactions with extracellular matrix components (ECM) or the capacity of T cells to migrate into and accumulate within three-dimensional (3D) collagen type 1 substrata was studied. We examined the influence of chemokines and fibronectin on the infiltration properties of non-infiltrative (do not migrate into 3D substrata) and spontaneously infiltrative (migrate into 3D substrata) T-cell lines. Infiltrative and non-infiltrative T-acute lymphocytic leukaemic cell lines exhibited no consistent differences with respect to the expression of various chemokine receptors or beta(1)-integrins. Chemokines presented inside the collagen increased the depth of migration of infiltrative T-cell lines, but did not render non-infiltrative T-cell lines infiltrative, although they augmented the attachment of non-infiltrative T-cell lines to the upper surface of the collagen. The presence of fibronectin inside the collagen did not render non-infiltrative T-cell lines infiltrative, but markedly augmented the migration of 'infiltrative' T-cell lines into collagen. Both infiltrative and non-infiltrative T-cell lines showed migratory responses to chemokines in Boyden assays (migration detected on 2D substrata). These results indicate that the process of T-cell infiltration/migration into 3D substrata depends on a tissue penetration mechanism distinguishable from migration on 2D substrata and that the basic capacity of T cells to infiltrate is independent of chemokines and ECM components applied as attractants.
Collapse
Affiliation(s)
- Jyrki Ivanoff
- Department of Clinical Immunology, University of Umeå, Umeå, Sweden
| | | | | |
Collapse
|
33
|
Abstract
The ability of activating immune recognition receptors on lymphocytes to regulate cellular activation and function can be profoundly altered by co-stimulation with inhibitory receptors. Inhibitory receptors, such as the MHC-recognizing inhibitory receptors expressed on NK cells and subpopulations of activated T cells, can fully block the generation of any cytotoxic function by targeting proximal signals. Inhibitory Fc receptors on B cells, macrophages and mast cells can influence their threshold for activation, but the induction of inhibitory Fc receptors also appears to play a major role in the attenuation of ongoing responses. The three identified groups of inhibitory B7-recognizing receptors (CTLA-4, PD-1 and BTLA) are only expressed on activated hematopoietic cells, thus exclusively regulating ongoing immune responses in lymphoid organs and the periphery. In each case, the integrated positive and negative regulatory events determine the nature of the functional response.
Collapse
Affiliation(s)
- Paul J Leibson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY. Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 2004; 483:175-86. [PMID: 14729105 DOI: 10.1016/j.ejphar.2003.10.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cross-desensitization between micro-opioid receptor agonists and CC chemokines was shown to occur in immune cells and in the central nervous system. However, these cells do not permit examination of potential mechanisms at cellular levels due to low levels and mixed populations of receptors. In this study, we investigated possible interactions and biochemical mechanisms of cross-desensitization between the mu-opioid and chemokine CCR5 receptors coexpressed in Chinese hamster ovary (CHO) cells. Hemagglutinin (HA)-tagged micro-opioid receptor coimmunoprecipitated with FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys)-tagged chemokine receptor CCR5 in cells expressing the two receptors, but not in a mixture of cells transfected with one of the two receptors, indicating that the two receptors form heterodimers. Treatment with the mu-opioid receptor agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin), the chemokine RANTES (Regulated on Activation, Normal T cell-Expressed and -Secreted) (CCL5), or both, did not affect the level of coimmunoprecipitation. DAMGO and RANTES (CCL5) induced chemotaxis in CHO cells coexpressing both receptors, and preincubation with either DAMGO or RANTES (CCL5) profoundly inhibited chemotaxis caused by the other. DAMGO pretreatment enhanced phosphorylation of the chemokine CCR5 receptor and reduced RANTES (CCL5)-promoted [35S]GTP gamma S binding. Conversely, RANTES (CCL5) preincubation slightly increased phosphorylation of the mu-opioid receptor and significantly reduced DAMGO-induced [35S]GTP gamma S binding. These results indicate that activation of either receptor affected G protein coupling of the other, likely due to enhanced phosphorylation of the receptor. Heterodimerization between the two receptors may contribute to the observed cross-desensitization.
Collapse
Affiliation(s)
- Chongguang Chen
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wong WSF, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:53-69. [PMID: 15023350 DOI: 10.1016/j.bbapap.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 01/21/2023]
Abstract
The pathogenesis of allergic asthma involves the interplay of inflammatory cells and airway-resident cells, and of their secreted mediators including cytokines, chemokines, growth factors and inflammatory mediators. Receptor tyrosine kinases are important for the pathogenesis of airway remodeling. Activation of epidermal growth factor (EGF) receptor kinase and platelet-derived growth factor (PDGF) receptor kinase leads to hyperplasia of airway smooth muscle cells, epithelial cells and goblet cells. Stimulation of non-receptor tyrosine kinases (e.g. Lyn, Lck, Syk, ZAP-70, Fyn, Btk, Itk) is the earliest detectable signaling response upon antigen-induced immunoreceptor activation in inflammatory cells. Cytokine receptor dimerization upon ligand stimulation induces activation of Janus tyrosine kinases (JAKs), leading to recruitment and phosphorylation of signal transducer and activator of transcription (STAT) for selective gene expression regulation. Activation of chemokine receptors can trigger JAK-STAT pathway, Lck, Fyn, Lyn, Fgr, and Syk/Zap-70 to induce chemotaxis of inflammatory cells. Inhibitors of tyrosine kinases have been shown in vitro to block growth factor-induced hyperplasia of airway-resident cells; antigen-induced inflammatory cell activation and cytokine synthesis; cytokine-mediated pro-inflammatory gene expression in inflammatory and airway cells; and chemokine-induced chemotaxis of inflammatory cells. Recently, anti-inflammatory effects of tyrosine kinase inhibitors (e.g. genistein, tyrphostin AG213, piceatannol, tyrphostin AG490, WHI-P97, WHI-P131, Syk antisense) in animal models of allergic asthma have been reported. Therefore, development of inhibitors of tyrosine kinases can be a very attractive strategy for the treatment of asthma.
Collapse
Affiliation(s)
- W S Fred Wong
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, MD2 18 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
36
|
Mueller A, Strange PG. Mechanisms of internalization and recycling of the chemokine receptor, CCR5. ACTA ACUST UNITED AC 2004; 271:243-52. [PMID: 14717692 DOI: 10.1046/j.1432-1033.2003.03918.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CCR5 is a G protein-coupled receptor that binds several natural chemokines but it is also a coreceptor for the entry of M tropic strains of HIV-1 into cells. Levels of CCR5 on the cell surface are important for the rate of HIV-1 infection and are determined by a number of factors including the rates of CCR5 internalization and recycling. Here we investigated the involvement of the actin cytoskeleton in the control of ligand-induced internalization and recycling of CCR5. Cytochalasin D, an actin depolymerizing agent, inhibited chemokine-induced internalization of CCR5 and recycling of the receptor in stably transfected CHO cells and in the monocytic cell line, THP-1. CCR5 internalization and recycling were inhibited by Toxin B and C(3) exoenzyme treatment in CHO and THP-1 cells, confirming activation of members of the RhoGTPase family by CCR5. The specific Rho kinase inhibitor Y27632, however, had no effect on CCR5 internalization or recycling. Ligand-induced activation of CCR5 leads to Rho kinase-dependent formation of focal adhesion complexes. These data indicate that CCR5 internalization and recycling are regulated by actin polymerization and activation of small G proteins in a Rho-dependent manner.
Collapse
Affiliation(s)
- Anja Mueller
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, UK
| | | |
Collapse
|
37
|
Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 2004; 286:G285-93. [PMID: 14715520 DOI: 10.1152/ajpgi.00348.2003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (I/R) injury occurs as a result of restoring blood flow to previously hypoperfused vessels or after tissue transplantation and is characterized by inflammation and microvascular occlusion. We report here that 4-[3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-cyclohexanecarboxylic acid methyl ester (ATL146e), a selective agonist of the A(2A) adenosine receptor (A(2A)AR), profoundly protects mouse liver from I/R injury when administered at the time of reperfusion, and protection is blocked by the antagonist ZM241385. ATL146e lowers liver damage by 90% as assessed by serum glutamyl pyruvic transaminase and reduces hepatic edema and MPO. Most protection remains if ATL146e treatment is delayed for 1 h but disappears when delayed for 4 h after the start of reperfusion. In mice lacking the A(2A)AR gene, protection by ATL1465e is lost and ischemic injury of short duration is exacerbated compared with wild-type mice, suggesting a protective role for endogenous adenosine. I/R injury causes induction of hepatic transcripts for IL-1alpha, IL-1beta, IL-1Ra, IL-6, IL-10, IL-18, INF-beta, INF-gamma, regulated on activation, normal T cell expressed, and presumably secreted (RANTES), major intrinsic protein (MIP)-1alpha, MIP-2, IFN-gamma-inducible protein (IP)-10, and monocyte chemotactic protein (MCP)-1 that are suppressed by administering ATL146e to wild-type but not to A(2A)AR knockout mice. RANTES, MCP-1, and IP-10 are notable as induced chemokines that are chemotactic to T lymphocytes. The induction of cytokines may contribute to transient lymphopenia and neutrophilia that occur after liver I/R injury. We conclude that most damage after hepatic ischemia occurs during reperfusion and can be blocked by A(2A)AR activation. We speculate that inhibition of chemokine and cytokine production limits inflammation and contributes to tissue protection by the A(2A)AR agonist ATL146e.
Collapse
Affiliation(s)
- Yuan-Ji Day
- Department of Internal Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
38
|
Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA. Human Cytomegalovirus Chemokine Receptor US28-induced Smooth Muscle Cell Migration Is Mediated by Focal Adhesion Kinase and Src. J Biol Chem 2003; 278:50456-65. [PMID: 14506272 DOI: 10.1074/jbc.m307936200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus-encoded chemokine receptor US28 induces arterial smooth muscle cell (SMC) migration; however, the underlying mechanisms involved in this process are unclear. We have previously shown that US28-mediated SMC migration occurs by a ligand-dependent process that is sensitive to protein-tyrosine kinase inhibitors. We demonstrate here that US28 signals through the non-receptor protein-tyrosine kinases Src and focal adhesion kinase (FAK) and that this activity is necessary for US28-mediated SMC migration. In the presence of RANTES (regulated on activation normal T cell expressed and secreted), US28 stimulates the production of a FAK.Src kinase complex. Interestingly, Src co-immunoprecipitates with US28 in a ligand-dependent manner. This association occurs earlier than the formation of the FAK.Src kinase complex, suggesting that US28 activates Src before FAK. US28 binding to RANTES also promotes the formation of a Grb2.FAK complex, which is sensitive to treatment with the Src inhibitor PP2, further highlighting the critical role of Src in US28 activation of FAK. Human cytomegalovirus US28-mediated SMC migration is inhibited by treatment with PP2 and through the expression of either of two dominant negative inhibitors of FAK (F397Y and NH2-terminal amino acids 1-401). These findings demonstrate that activation of FAK and Src plays a critical role in US28-mediated signaling and SMC migration.
Collapse
Affiliation(s)
- Daniel N Streblow
- Department of Molecular Microbiology and Immunology and The Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Portland Oregon 97201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pribila JT, Shimizu Y. Signal transduction events regulating integrin function and T cell migration: new functions and complexity. Immunol Res 2003; 27:107-28. [PMID: 12637771 DOI: 10.1385/ir:27:1:107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Integrin receptors facilitate T cell function by mediating adhesive events critical for T cell trafficking and recognition of foreign antigen, including interactions with vascular endothelium, extracellular matrix components, and antigen-presenting cells. Consequently, the functional activity of integrin receptors is acutely regulated by various intracellular signals delivered by other cell surface receptors, resulting in rapid changes in T cell adhesion and migration. This review highlights recent insights into our understanding of the signaling events by which the CD3/T cell receptor complex and chemokine receptors regulate integrin function and T cell migration. These studies highlight novel functions for several signaling molecules, including the tyrosine kinases Itk and ZAP-70, and the adapter protein SLAP-130/Fyb. In addition, analysis of the regulation of integrin function and chemokine-mediated migration has highlighted the critical role that spatial localization of signaling molecules plays in signal transduction, and the importance of the actin cytoskeleton in T cell function.
Collapse
Affiliation(s)
- Jonathan T Pribila
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
40
|
Roscic-Mrkic B, Fischer M, Leemann C, Manrique A, Gordon CJ, Moore JP, Proudfoot AEI, Trkola A. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 2003; 102:1169-77. [PMID: 12714503 DOI: 10.1182/blood-2003-02-0488] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CC-chemokine RANTES (regulated on activation normal T-cell expressed and secreted; CCL5) transduces multiple intracellular signals. Like all chemokines, it stimulates G protein-coupled receptor (GPCR) activity through interaction with its cognate chemokine receptor(s), but in addition also activates a GPCR-independent signaling pathway. Here, we show that the latter pathway is mediated by an interaction between RANTES and glycosaminoglycan chains of CD44. We provide evidence that this association, at both low, physiologically relevant, and higher, probably supraphysiologic concentrations of RANTES, induces the formation of a signaling complex composed of CD44, src kinases, and adapter molecules. This triggers the activation of the p44/42 mitogen-activated protein kinase (MAPK) pathway. By specifically reducing CD44 expression using RNA interference we were able to demonstrate that the p44/p42 MAPK activation by RANTES requires a high level of CD44 expression. As well as potently inhibiting the entry of CCR5 using HIV-1 strains, RANTES can enhance HIV-1 infectivity under certain experimental conditions. This enhancement process depends in part on the activation of p44/p42 MAPK. Here we show that silencing of CD44 in HeLa-CD4 cells prevents the activation of p44/p42 MAPK and leads to a substantial reduction in HIV-1 infectivity enhancement by RANTES.
Collapse
Affiliation(s)
- Branka Roscic-Mrkic
- Division of Infectious Diseases, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kawano T, Matsuse H, Kondo Y, Machida I, Saeki S, Tomari S, Mitsuta K, Obase Y, Fukushima C, Shimoda T, Kohno S. Cysteinyl leukotrienes induce nuclear factor kappa b activation and RANTES production in a murine model of asthma. J Allergy Clin Immunol 2003; 112:369-74. [PMID: 12897744 DOI: 10.1067/mai.2003.1636] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND It has been demonstrated that both cysteinyl leukotrienes (cysLTs) and cytokines are involved in the pathophysiology of bronchial asthma. Nonetheless, the exact mechanism involved in the interaction between these 2 molecules has yet to be determined. OBJECTIVE The aim of the present study was to determine the effects of cysLTs on allergic airway inflammation and allergen-specific cytokine production in a murine model of asthma. METHODS Four groups of BALB/c mice (control mice, Dermatophagoides farinae allergen-sensitized mice, pranlukast cysLT receptor antagonist-treated allergen-sensitized mice, and dexamethasone-treated allergen-sensitized mice) were examined. RESULTS Allergen-sensitized mice exhibited increased airway responsiveness and inflammation. Pranlukast-treated mice showed significant attenuation of these changes concomitant with reduction of T(H)2 cytokine and IFN-gamma production by isolated lung mononuclear cells (MNCs). A much stronger inhibition of all cytokines was noted in dexamethasone-treated mice. Pranlukast also significantly inhibited production of RANTES and activation of nuclear factor kappa B (NF-kappa B) in the isolated lung MNCs. Leukotriene D(4) stimulated isolated lung MNCs to produce RANTES but not any other cytokines and also activated NF-kappa B in these cells. CONCLUSIONS Our results suggest that cysLTs activate NF-kappa B and induce RANTES production from isolated lung MNCs, which in turn might cause migration of eosinophils and activated T lymphocytes into the airway.
Collapse
Affiliation(s)
- Tetsuya Kawano
- Second Department of Internal Medicine, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A. IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 2003; 42:2874-86. [PMID: 12627953 DOI: 10.1021/bi026783d] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CXCR1 and CXCR2 mediate migratory activities in response to IL-8 and other ELR+-CXC chemokines (e.g., GCP-2 and NAP-2). In vitro, activation of migration is induced by low IL-8 concentrations (10-50 ng/mL), whereas migratory shut-off is induced by high IL-8 concentrations (1000 ng/mL). The stimulation of CXCR1 and CXCR2 by IL-8 concentrations that result in migratory activation induced focal adhesion kinase (FAK) phosphorylation in a G(alpha)i-dependent manner. The expression of FRNK, a dominant negative mutant of FAK, perturbed migratory responses to the activating dose of 50 ng/mL IL-8. The migration-activating concentrations of 50 ng/mL GCP-2 and NAP-2 induced less potent migratory responses and FAK phosphorylation in CXCR2-expressing cells as compared with IL-8. These results indicate that FAK is phosphorylated, and required, for the chemotactic response under conditions of migratory activation by ELR+-CXC chemokines. In addition, FAK phosphorylation was determined following exposure to migration-attenuating concentrations of IL-8. In CXCR1-RBL cells this treatment resulted in FAK phosphorylation, in similar levels to those induced by activating concentrations of IL-8. In contrast, in CXCR2-RBL cells the migration-attenuating concentrations of IL-8 induced promoted levels of FAK phosphorylation and different patterns of FAK phosphorylation on its six potential tyrosine phosphorylation sites, as compared to activating concentrations of the chemokine. Exposure to IL-8 resulted not only in FAK phosphorylation but also in its cellular redistribution, indicated by the formation of defined contact regions with the substratum, enriched in phosphorylated FAK and vinculin. Overall, FAK phosphorylation was associated with, and found to be differently regulated upon, ELR+-CXC chemokine-induced migration.
Collapse
Affiliation(s)
- Rotem Feniger-Barish
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
43
|
Abstract
An effective inflammatory immune response first requires the recruitment of cells to the site of inflammation and then their appropriate activation and regulation. Chemokines are critical in this response since they are both chemotactic and immunoregulatory molecules. In this regard, the interaction between CCL5 and CCR5 may be critical in regulating T cell functions, by mediating their recruitment and polarization, activation, and differentiation. Various tyrosine phosphorylation signaling cascades can be engaged following chemokine receptor aggregation on T cells, including the Jak-Stat pathway, FAK activation, the MAP kinase pathway, PI3-kinase activation, and transactivation of the T cell receptor. This review will address specific aspects related to chemokine-T cell interactions and the molecular signaling mechanisms that influence T cell function in an inflammatory immune response.
Collapse
Affiliation(s)
- Mark M Wong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
44
|
Abstract
Recent studies suggest that molecules important for guiding neuronal migration and axon path-finding also play a role in modulating leukocyte chemotaxis. Neuronal migration and leukocyte chemotaxis may share some common regulatory mechanisms. Intracellular signal transduction mechanisms guiding neuronal migration and leukocyte chemotaxis are beginning to be elucidated. Studying molecular mechanisms modulating cell migration may provide new insights into understanding of endogenous inhibitors of inflammation.
Collapse
Affiliation(s)
- Necat Havlioglu
- Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
45
|
Biswas SK, Sodhi A. Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol 2002; 2:1095-107. [PMID: 12349947 DOI: 10.1016/s1567-5769(02)00055-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in the recruitment of monocytes/macrophages associated with several inflammatory diseases and malignancies. The early signal transduction mechanism of macrophage activation in response to in vitro MCP-1 treatment was investigated. The treatment of murine peritoneal macrophages with MCP-1 resulted in a significant enhancement in the tyrosine phosphorylation of cellular proteins, which peaked within 2.5-5 min of MCP-1 treatment. The MCP-1-induced tyrosine phosphorylation of cellular proteins involved the phosphorylation of non-receptor tyrosine kinases Lyn, JAK2, cytoskeletal binding protein paxillin and downstream transcription factors STAT3 and STAT5. Immunoflourescence microscopical studies on MCP-1-treated macrophages showed the cellular localization of the tyrosine-phosphorylated proteins and bundling of actin filaments at the focal adhesion points. MCP-1-induced association of focal adhesion proteins Lyn/phospho-paxillin with CCR2 was also observed by co-precipitation. Inhibitor studies with genistein on MCP-1-induced macrophage TNF and IL-1 production additionally supported the role of protein tyrosine phosphorylation in the process of macrophage activation with MCP-1. Present investigations suggest that the early events in the tyrosine kinase signal transduction pathway for macrophage activation in response to MCP-1 probably involve (1) CCR2 receptor dimerization, (2) enhanced tyrosine phosphorylation and assembly of focal adhesion complex, and (3) the activation of JAK/STAT pathway in the murine peritoneal macrophages.
Collapse
|
46
|
Sato K, Kawasaki H, Morimoto C, Yamashima N, Matsuyama T. An abortive ligand-induced activation of CCR1-mediated downstream signaling event and a deficiency of CCR5 expression are associated with the hyporesponsiveness of human naive CD4+ T cells to CCL3 and CCL5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6263-72. [PMID: 12055240 DOI: 10.4049/jimmunol.168.12.6263] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human memory CD4(+) T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4(+) T cells. We analyzed the regulatory mechanism underlying this difference. Memory and naive CD4(+) T cells expressed similarly high levels of CCR1; however, CCR5 was only expressed in memory CD4(+) T cells at low levels. Experiments using mAbs to block chemokine receptors revealed that CCR1 functioned as a major receptor for the binding of CCL5 in memory and naive CD4(+) T cells as well as the ligand-induced chemotaxis in memory CD4(+) T cells. Stimulation of memory CD4(+) T cells with CCL5 activated protein tyrosine kinase-dependent cascades, which were significantly blocked by anti-CCR1 mAb, whereas this stimulation failed to induce these events in naive CD4(+) T cells. Intracellular expressions of regulator of G protein signaling 3 and 4 were only detected in naive CD4(+) T cells. Pretreatment of cell membrane fractions from memory and naive CD4(+) T cells with GTP-gamma S inhibited CCL5 binding, indicating the involvement of G proteins in the interaction of CCL5 and its receptor(s). In contrast, CCL5 enhanced the GTP binding to G(i alpha) and G(q alpha) in memory CD4(+) T cells, but not in naive CD4(+) T cells. Thus, a failure of the ligand-induced activation of CCR1-mediated downstream signaling event as well as a deficiency of CCR5 expression may be involved in the hyporesponsiveness of naive CD4(+) T cells to CCL3 and CCL5.
Collapse
Affiliation(s)
- Katsuaki Sato
- Department of Immunology and Medical Zoology, School of Medicine, Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| | | | | | | | | |
Collapse
|
47
|
Enomoto M, Nagayama H, Takahashi TA. Enhancement of migratory and aggregate activities of human peripheral blood monocyte-derived dendritic cells by stimulation with RANTES. Microbiol Immunol 2002; 45:639-47. [PMID: 11694076 DOI: 10.1111/j.1348-0421.2001.tb01297.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the effects of various chemokines on the functional activation of granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin-4 (IL-4)-generated human peripheral blood monocyte-derived immature dendritic cells (iDC). Stimulation of iDC with regulated on activation normal T cell expressed and secreted (RANTES) resulted in the promotion of their chemotactic migratory capacity in response to RANTES when compared with that of unstimulated cells. TNF-alpha induced a homotypic aggregated cluster formation of iDC in a dose-dependent manner, whereas the combination of TNF-alpha and RANTES exhibited more potent induction. IDC stimulated with RANTES were more efficient than unstimulated iDC in the production of endogenous RANTES. Treatment of iDC with the combination of TNF-alpha and RANTES was just little effective for the enhancement of allogeneic T-cell stimulatory capacity as compared with that of TNF-alpha treated iDC. These results suggest that endogenous secretions of RANTES from iDC stimulated with RANTES be potentially involved in RANTES-induced changes of properties with respect to morphology and function.
Collapse
Affiliation(s)
- M Enomoto
- Division of Cell Processing, The Institute of Medical Science, The University of Tokyo, Minato-kui, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
48
|
Ticchioni M, Charvet C, Noraz N, Lamy L, Steinberg M, Bernard A, Deckert M. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 2002; 99:3111-8. [PMID: 11964272 DOI: 10.1182/blood.v99.9.3111] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transendothelial migration of activated lymphocytes from the blood into the tissues is an essential step for immune functions. The housekeeping chemokine CXCL12 (or stroma cell-derived factor-1alpha), a highly efficient chemoattractant for T lymphocytes, drives lymphocytes to sites where they are highly likely to encounter antigens. This suggests that cross-talk between the T-cell receptor (TCR) and CXCR4 (the CXCL12 receptor) might occur within these sites. Here we show that the zeta-associated protein 70 (ZAP-70), a key element in TCR signaling, is required for CXCR4 signal transduction. The pharmacologic inhibition of ZAP-70, or the absence of ZAP-70 in Jurkat T cells and in primary CD4(+) T cells obtained from a patient with ZAP deficiency, resulted in an impairment of transendothelial migration that was rescued by the transfection of ZAP-70. Moreover, the overexpression of mutated forms of ZAP-70, whose kinase domain was inactivated, also abrogated the migratory response of Jurkat T cells to CXCL12. In contrast, no involvement of ZAP-70 in T-cell arrest on inflammatory endothelium under flow conditions or in CXCL12-induced actin polymerization was observed. Furthermore, CXCL12 induced time-dependent phosphorylation of ZAP-70, Vav1, and extracellular signal-regulated kinases (ERKs); the latter were reduced in the absence of functional ZAP-70. However, though a dominant-negative Vav1 mutant (Vav1 L213A) blocked CXCL12-induced T-cell migration, pharmacologic inhibition of the ERK pathway did not affect migration, suggesting that ERK activation is dispensable for T-cell chemotaxis. We conclude that cross-talk between the ZAP-70 signaling pathway and the chemokine receptor CXCR4 is required for T-cell migration.
Collapse
Affiliation(s)
- Michel Ticchioni
- INSERM U343 and Laboratoire d'Immunologie, Hôpital de l'Archet, Nice, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Chang TLY, Gordon CJ, Roscic-Mrkic B, Power C, Proudfoot AEI, Moore JP, Trkola A. Interaction of the CC-chemokine RANTES with glycosaminoglycans activates a p44/p42 mitogen-activated protein kinase-dependent signaling pathway and enhances human immunodeficiency virus type 1 infectivity. J Virol 2002; 76:2245-54. [PMID: 11836402 PMCID: PMC135942 DOI: 10.1128/jvi.76.5.2245-2254.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of the CC-chemokine RANTES with its cell surface receptors transduces multiple intracellular signals: low concentrations of RANTES (1 to 10 nM) stimulate G-protein-coupled receptor (GPCR) activity, and higher concentrations (1 microM) activate a phosphotyrosine kinase (PTK)-dependent pathway. Here, we show that the higher RANTES concentrations induce rapid tyrosine phosphorylation of multiple proteins. Several src-family kinases (Fyn, Hck, Src) are activated, as is the focal adhesion kinase p125 FAK and, eventually, members of the p44/p42 mitogen-activated protein kinase (MAPK) family. This PTK signaling pathway can be activated independently of known seven-transmembrane GPCRs for RANTES because it occurs in cells that lack any such RANTES receptors. Instead, activation of the PTK signaling pathway is dependent on the expression of glycosaminoglycans (GAGs) on the cell surface, in that it could not be activated by RANTES in GAG-deficient cells. We have previously demonstrated that RANTES can both enhance and inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). Here we show that activation of both PTK and MAPK is involved in the enhancement of HIV-1 infectivity caused by RANTES in cells that lack GPCRs for RANTES but which express GAGs.
Collapse
Affiliation(s)
- Theresa Li-Yun Chang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Arthos J, Cicala C, Selig SM, White AA, Ravindranath HM, Van Ryk D, Steenbeke TD, Machado E, Khazanie P, Hanback MS, Hanback DB, Rabin RL, Fauci AS. The role of the CD4 receptor versus HIV coreceptors in envelope-mediated apoptosis in peripheral blood mononuclear cells. Virology 2002; 292:98-106. [PMID: 11878912 DOI: 10.1006/viro.2001.1266] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the role of CD4, CXCR4, and CCR5 in HIV envelope-mediated apoptosis by measuring the response of activated PBMCs to recombinant envelope proteins derived from CXCR4- and CCR5-utilizing viruses. Apoptosis of T cells was assessed by annexin-V staining and TdT-mediated dUTP-biotin nick-end labeling. Treatment of CCR5Delta32 homozygote PBMCs with a CCR5-specific envelope induced apoptosis in T cells, demonstrating that envelope--CD4 interactions are sufficient to induce apoptosis. However, a CXCR4-specific envelope induced higher levels of apoptosis than a CCR5-specific envelope, suggesting that envelope-mediated apoptosis can be enhanced by envelope--CXCR4 interactions. We conclude that envelope can induce apoptosis in T cells independently of the coreceptor specificity of a given envelope, or the expression profile of CXCR4 or CCR5 on a target cell. However, envelope--coreceptor interactions, and in particular, envelope--CXCR4 interactions, can contribute to this process.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|