1
|
Lledó-Delgado A, Preston-Hurlburt P, Currie S, Clark P, Linsley PS, Long SA, Liu C, Koroleva G, Martins AJ, Tsang JS, Herold KC. Teplizumab induces persistent changes in the antigen-specific repertoire in individuals at risk for type 1 diabetes. J Clin Invest 2024; 134:e177492. [PMID: 39137044 PMCID: PMC11405034 DOI: 10.1172/jci177492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUNDTeplizumab, a non-FcR-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) in at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown.METHODSWith an extended analysis of study participants, we found that 36% were undiagnosed or remained free of clinical diabetes after 5 years, suggesting operational tolerance. Using single-cell RNA sequencing, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders.RESULTSAt 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced, and patients with lower expression of CD127 had longer diabetes-free intervals. In addition, the frequency of autoantigen-reactive CD8+ T cells, which expanded in the placebo group over 18 months, did not increase in the teplizumab group.CONCLUSIONThese findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation, and prevents expansion of autoreactive T cells.TRIAL REGISTRATIONClinicalTrials.gov NCT01030861.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases/NIH, Juvenile Diabetes Research Foundation.
Collapse
Affiliation(s)
- Ana Lledó-Delgado
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paula Preston-Hurlburt
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Currie
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pamela Clark
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - S. Alice Long
- Benaroya Research Institute, Seattle, Washington, USA
| | - Can Liu
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Martins
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John S. Tsang
- Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
3
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
4
|
Tilsed CM, Sadiq BA, Papp TE, Areesawangkit P, Kimura K, Noguera-Ortega E, Scholler J, Cerda N, Aghajanian H, Bot A, Mui B, Tam Y, Weissman D, June CH, Albelda SM, Parhiz H. IL7 increases targeted lipid nanoparticle-mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell protein translation. Proc Natl Acad Sci U S A 2024; 121:e2319856121. [PMID: 38513098 PMCID: PMC10990120 DOI: 10.1073/pnas.2319856121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Phurin Areesawangkit
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kenji Kimura
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Estela Noguera-Ortega
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - John Scholler
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nicholas Cerda
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Adrian Bot
- Capstan Therapeutics, San Diego, CA92121
| | - Barbara Mui
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Steven M. Albelda
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Ashraf MT, Ahmed Rizvi SH, Kashif MAB, Shakeel Khan MK, Ahmed SH, Asghar MS. Efficacy of anti-CD3 monoclonal antibodies in delaying the progression of recent-onset type 1 diabetes mellitus: A systematic review, meta-analyses and meta-regression. Diabetes Obes Metab 2023; 25:3377-3389. [PMID: 37580969 DOI: 10.1111/dom.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/16/2023]
Abstract
AIM Type 1 diabetes mellitus is widely recognized as a chronic autoimmune disease characterized by the pathogenic destruction of beta cells, resulting in the loss of endogenous insulin production. Insulin administration remains the primary therapy for symptomatic treatment. Recent studies showed that disease-modifying agents, such as anti-CD3 monoclonal antibodies, have shown promising outcomes in improving the management of the disease. In late 2022, teplizumab received approval from the US Food and Drug Administration (FDA) as the first disease-modifying agent for the treatment of type 1 diabetes. This review aims to evaluate the clinical evidence regarding the efficacy of anti-CD3 monoclonal antibodies in the prevention and treatment of type 1 diabetes. METHODS A comprehensive search of PubMed, Google Scholar, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) was conducted up to December 2022 to identify relevant randomized controlled trials. Meta-analysis was performed using a random-effects model, and odds ratios with 95% confidence intervals (CIs) were calculated to quantify the effects. The Cochrane risk of bias tool was employed for quality assessment. RESULTS In total, 11 randomized controlled trials involving 1397 participants (908 participants in the intervention arm, 489 participants in the control arm) were included in this review. The mean age of participants was 15 years, and the mean follow-up time was 2.04 years. Teplizumab was the most commonly studied intervention. Compared with placebo, anti-CD3 monoclonal antibody treatment significantly increased the C-peptide concentration in the area under the curve at shorter timeframes (mean difference = 0.114, 95% CI: 0.069 to 0.159, p = .000). Furthermore, anti-CD3 monoclonal antibodies significantly reduced the patients' insulin intake across all timeframes (mean difference = -0.123, 95% CI: -0.151 to -0.094, p < .001). However, no significant effect on glycated haemoglobin concentration was observed. CONCLUSION The findings of this review suggest that anti-CD3 monoclonal antibody treatment increases endogenous insulin production and improves the lifestyle of patients by reducing insulin dosage. Future studies should consider the limitations, including sample size, heterogeneity and duration of follow-up, to validate the generalizability of these findings further.
Collapse
Affiliation(s)
- Muhammad Talal Ashraf
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | - Syed Hassan Ahmed
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
6
|
Fotino C, Molano RD, Ben Nasr M, Umland O, Fraker CA, Ulissi U, Balasubramanian HB, Lunati ME, Usuelli V, Seelam AJ, Khalefa SA, La Sala C, Gimeno J, Mendez AJ, Ricordi C, Bayer AL, Fiorina P, Pileggi A. Reversal of Experimental Autoimmune Diabetes With an sCD39/Anti-CD3 Treatment. Diabetes 2023; 72:1641-1651. [PMID: 37625134 PMCID: PMC10588287 DOI: 10.2337/db23-0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and β-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D. ARTICLE HIGHLIGHTS
Collapse
MESH Headings
- Animals
- Female
- Mice
- 5'-Nucleotidase/metabolism
- Adenosine Triphosphate/metabolism
- Antigens, CD/metabolism
- Apyrase/metabolism
- CD3 Complex/metabolism
- CD3 Complex/immunology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Mice, Inbred NOD
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Carmen Fotino
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - R. Damaris Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Oliver Umland
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Christopher A. Fraker
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Ulisse Ulissi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Maria Elena Lunati
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Salma Ayman Khalefa
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Christian La Sala
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Jennifer Gimeno
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Armando J. Mendez
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Allison L. Bayer
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| |
Collapse
|
7
|
Lidström T, Cumming J, Gaur R, Frängsmyr L, Pateras IS, Mickert MJ, Franklin O, Forsell MN, Arnberg N, Dongre M, Patthey C, Öhlund D. Extracellular Galectin 4 Drives Immune Evasion and Promotes T-cell Apoptosis in Pancreatic Cancer. Cancer Immunol Res 2023; 11:72-92. [PMID: 36478037 PMCID: PMC9808371 DOI: 10.1158/2326-6066.cir-21-1088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/19/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by rich deposits of extracellular matrix (ECM), affecting the pathophysiology of the disease. Here, we identified galectin 4 (gal 4) as a cancer cell-produced protein that was deposited into the ECM of PDAC tumors and detected high-circulating levels of gal 4 in patients with PDAC. In orthotopic transplantation experiments, we observed increased infiltration of T cells and prolonged survival in immunocompetent mice transplanted with cancer cells with reduced expression of gal 4. Increased survival was not observed in immunodeficient RAG1-/- mice, demonstrating that the effect was mediated by the adaptive immune system. By performing single-cell RNA-sequencing, we found that the myeloid compartment and cancer-associated fibroblast (CAF) subtypes were altered in the transplanted tumors. Reduced gal 4 expression associated with a higher proportion of myofibroblastic CAFs and reduced numbers of inflammatory CAFs. We also found higher proportions of M1 macrophages, T cells, and antigen-presenting dendritic cells in tumors with reduced gal 4 expression. Using a coculture system, we observed that extracellular gal 4 induced apoptosis in T cells by binding N-glycosylation residues on CD3ε/δ. Hence, we show that gal 4 is involved in immune evasion and identify gal 4 as a promising drug target for overcoming immunosuppression in PDAC.
Collapse
Affiliation(s)
- Tommy Lidström
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Joshua Cumming
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Rahul Gaur
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Frängsmyr
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Oskar Franklin
- Department of Surgical and Perioperative Science, Umeå University, Umeå, Sweden
| | | | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Cedric Patthey
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Corresponding Author: Daniel Öhlund, Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187 Umeå, Sweden. Phone: 469-0785-1727; E-mail:
| |
Collapse
|
8
|
Chitnis T, Kaskow BJ, Case J, Hanus K, Li Z, Varghese JF, Healy BC, Gauthier C, Saraceno TJ, Saxena S, Lokhande H, Moreira TG, Zurawski J, Roditi RE, Bergmark RW, Giovannoni F, Torti MF, Li Z, Quintana F, Clementi WA, Shailubhai K, Weiner HL, Baecher-Allan CM. Nasal administration of anti-CD3 monoclonal antibody modulates effector CD8+ T cell function and induces a regulatory response in T cells in human subjects. Front Immunol 2022; 13:956907. [PMID: 36505477 PMCID: PMC9727230 DOI: 10.3389/fimmu.2022.956907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Parenteral anti-CD3 Mab (OKT3) has been used to treat transplant rejection and parental administration of a humanized anti-CD3 Mab (Teplizumab) showed positive effects in diabetes. Nasal administration of anti-CD3 Mab has not been carried out in humans. Nasal anti-CD3 Mab suppresses autoimmune diseases and central nervous system (CNS) inflammation in animal models. We investigated the safety and immune effects of a fully humanized, previously uncharacterized nasal anti-CD3 Mab (Foralumab) in humans and its in vitro stimulatory properties. Methods In vitro, Foralumab were compared to UCHT1 anti-human CD3 mAb. For human administration, 27 healthy volunteers (9 per group) received nasal Foralumab or placebo at a dose of 10ug, 50ug, or 250ug daily for 5 days. Safety was assessed and immune parameters measured on day 1 (pre-treatment), 7, 14, and 30 by FACS and by scRNAseq. Results In vitro, Foralumab preferentially induced CD8+ T cell stimulation, reduced CD4+ T cell proliferation and lowered expression of IFNg, IL-17 and TNFa. Foralumab induced LAP, TIGIT, and KLRG1 immune checkpoint molecules on CD8+ and CD4+ T cells in a mechanism independent of CD8 T cells. In vivo, nasal Foralumab did not modulate CD3 from the T cell surface at any dose. Immune effects were primarily observed at the 50ug dose and consisted of reduction of CD8+ effector memory cells, an increase in naive CD8+ and CD4+ T cells, and reduced CD8+ T cell granzyme B and perforin expression. Differentially expressed genes observed by scRNAseq in CD8+ and CD4+ populations promoted survival and were anti-inflammatory. In the CD8+ TEMRA population there was induction of TIGIT, TGFB1 and KIR3DL2, indicative of a regulatory phenotype. In the memory CD4+ population, there was induction of CTLA4, KLRG1, and TGFB whereas there was an induction of TGF-B1 in naïve CD4+ T cells. In monocytes, there was induction of genes (HLA-DP, HLA-DQ) that promote a less inflammatory immune response. No side effects were observed, and no subjects developed human anti-mouse antibodies. Conclusion These findings demonstrate that nasal Foralumab is safe and immunologically active in humans and presents a new avenue for the treatment of autoimmune and CNS diseases.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States,*Correspondence: Tanuja Chitnis, ; Clare M. Baecher-Allan,
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Katherine Hanus
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Brian C. Healy
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Christian Gauthier
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Taylor J. Saraceno
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Shrishti Saxena
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Hrishikesh Lokhande
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Thais G. Moreira
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jonathan Zurawski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rachel E. Roditi
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States,Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Regan W. Bergmark
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States,Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Federico Giovannoni
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Maria F. Torti
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhaorong Li
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Francisco Quintana
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | | | | | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare M. Baecher-Allan
- Harvard Medical School, Boston, MA, United States,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States,*Correspondence: Tanuja Chitnis, ; Clare M. Baecher-Allan,
| |
Collapse
|
9
|
LeFevre JD, Cyriac SL, Tokmic A, Pitlick JM. Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. Am J Health Syst Pharm 2022; 79:2099-2117. [PMID: 36056809 DOI: 10.1093/ajhp/zxac244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells, resulting in a loss of insulin production. Patients with T1D carry a substantial disease burden as well as substantial short-term and long-term risks associated with inadequate glycemic control. Currently, treatment mainly consists of insulin, which only treats the symptoms of T1D and not the root cause. Thus, disease-modifying agents such as anti-CD3 monoclonal antibodies (mAbs) that target the autoimmune destruction of beta cells in T1D would provide significant relief and health benefits for patients with T1D. This review summarizes the clinical evidence regarding the safety and efficacy of anti-CD3 mAbs in the prevention and treatment of T1D. SUMMARY A total of 27 studies reporting or evaluating data from clinical trials involving otelixizumab and teplizumab were included in the review. Anti-CD3 mAbs have shown significant benefits in both patients at high risk for T1D and those with recent-onset T1D. In high-risk populations, anti-CD3 mAbs delayed time to diagnosis, preserved C-peptide levels, and improved metabolic parameters. In recent-onset T1D, anti-CD3 mAbs preserved C-peptide levels and reduced insulin needs for extended periods. Anti-CD3 mAb therapy appears to be safe, with primarily transient and self-limiting adverse effects and no negative long-term effects. CONCLUSION Anti-CD3 mAbs are promising disease-modifying treatments for T1D. Their role in T1D may introduce short-term and long-term benefits with the potential to mitigate the significant disease burden; however, more evidence is required for an accurate assessment.
Collapse
Affiliation(s)
- James D LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Sneha L Cyriac
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Adna Tokmic
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Jamie M Pitlick
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| |
Collapse
|
10
|
Morita M, Mizui M, Masuyama S, Tsokos GC, Isaka Y. Reduction of Cell Surface T-Cell Receptor by Non-Mitogenic CD3 Antibody to Mitigate Murine Lupus. Front Immunol 2022; 13:855812. [PMID: 35419004 PMCID: PMC8995471 DOI: 10.3389/fimmu.2022.855812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
T-cells are critically involved in the pathogenesis of systemic lupus erythematosus. Although treatment with the anti-CD3 antibody has been reported to be effective in several autoimmune disease animal models including lupus, the immunosuppressive mechanisms remain obscure because of its pleiotropic in vivo kinetics. In this study, a conventional anti-CD3 (2C11C) and a non-mitogenic anti-CD3 with a manipulated Fc region (2C11S) were compared to elucidate the underlying mechanism of action. The efficacy and safety of 2C11S in vivo were demonstrated by sustained TCR reduction for a longer period as compared to 2C11C and no induction of cytokine release or T-cell depletion. Anti-CD3s were administered to NZB/W F1 (BWF1) mice at different time points for individual periods. The short-term treatment with 2C11S in the early phase of lupus suppressed the autoantibody associated with the reduction of germinal center B-cells. Treatment in the late phase attenuated lupus nephritis without affecting autoantibodies or differentiation of effector T-cells. The effect of reduced TCR in the development of autoimmunity was examined by CD3ζ heterozygous-deficient mice, in which T-cells had reduced TCR intensity but showed normal TCR signaling response. Autoantibody and lupus nephritis were attenuated significantly in CD3ζ heterozygous-deficient lupus-prone mice. Collectively, the reduction of surface TCR by non-mitogenic anti-CD3 could sufficiently suppress the development of lupus.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
11
|
Li G, Reid KM, Spitler K, Beatty N, Boucher J, Davila ML. CD3 engagement as a new strategy for allogeneic “off-the-shelf” T cell therapy. Mol Ther Oncolytics 2022; 24:887-896. [PMID: 35317526 PMCID: PMC8919219 DOI: 10.1016/j.omto.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic “off-the-shelf” (OTS) chimeric antigen receptor T cells (CAR-T cells) hold promise for more accessible CAR-T therapy. Here, we report a novel and simple way to make allogeneic OTS T cells targeting cancer. By engineering T cells with a bispecific T cell engager (BiTE), both TCRαβ and CD3ε expression on the T cell surface are dramatically reduced. BiTE-engineered T (BiTE-T) cells show reduced reaction to TCR stimulation in vitro and have low risk of graft-versus-host disease (GvHD) in vivo. BiTE-T cells down-regulated CD3ε/TCRαβ on bystander T cells by releasing BiTEs. BiTE-T cells produce much fewer cytokines and are comparable to CAR-T cells on anti-cancer efficacy in xenograft mouse models with pre-existing HLA-mismatched T cells. Co-expressing co-stimulatory factors or T cell-promoting cytokines enhanced BiTE-T cells. Our study suggests CD3ε engagement could be a new strategy for allogeneic T cell therapy worthy of further evaluation.
Collapse
Affiliation(s)
- Gongbo Li
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Gongbo Li, Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kayla M. Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristen Spitler
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nolan Beatty
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Justin Boucher
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Marco L. Davila, Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Pearson JA, McKinney EF, Walker LSK. 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 1:ltab024. [PMID: 35156097 PMCID: PMC8826223 DOI: 10.1093/immadv/ltab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the insulin-producing β cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, therapeutic options for T1D are once more at a turning point. Years of effort directed at developing immunotherapies are finally starting to pay off, with signs of progress in new onset and even preventative settings. Here, we review a selection of immunotherapies that have shown promise in preserving β cell function and highlight future considerations for immunotherapy in the T1D setting.
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, England, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, England, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute or Immunity and Transplantation, University College London, Royal Free Campus, London, UK
| |
Collapse
|
13
|
Reed J, Wetzel SA. Assessing in vitro and in vivo Trogocytosis By Murine CD4 + T cells. Bio Protoc 2020; 10:e3607. [PMID: 33659572 PMCID: PMC7842502 DOI: 10.21769/bioprotoc.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/23/2020] [Accepted: 03/12/2020] [Indexed: 11/02/2022] Open
Abstract
Recognition of antigens by lymphocytes (B, T, and NK) on the surface of an antigen-presenting cell (APC) leads to lymphocyte activation and the formation of an immunological synapse between the lymphocyte and the APC. At the immunological synapse APC membrane and associated membrane proteins can be transferred to the lymphocyte in a process called trogocytosis. The detection of trogocytosed molecules provides insights to the activation state, antigen specificity, and effector functions and differentiation of the lymphocytes. Here we outline our protocol for identifying trogocytosis-positive CD4+ T cells in vitro and in vivo. In vitro, antigen presenting cells are surface biotinylated and pre-loaded with magnetic polystyrene beads before incubating for a short time with in vitro activated CD4+ T cell blasts (90 min) or naïve T cells (3-24 h). After T cell recovery and APC depletion by magnetic separation trogocytosis positive (trog+) cells are identified by streptavidin staining of trogocytosed, biotinylated APC membrane proteins. Their activation phenotype, effector function, and effector differentiation are subsequently analyzed by flow cytometry immediately or after subsequent incubation. Similarly, trogocytosis-positive cells can be identified and similarly analyzed by flow cytometry. Previous studies have described methods for analyzing T cell trogocytosis to identify antigen-specific cells or the antigenic epitopes recognized by the cells. With the current protocol, the effects of trogocytosis on the individual T cell or the ability of trog+ T cells to modulate the activation and function of other immune cells can be assessed over an extended period of time.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
14
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
15
|
Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy 2019; 11:1555-1567. [PMID: 31865872 DOI: 10.2217/imt-2019-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Achievements in cancer immunotherapy require augmentation of a host's anti-tumor immune response for anti-cancer modality. Materials & methods: Different concentrations of recombinant anti-CD3 nanobody were administered at predetermined time intervals during a 24-day treatment period and then expression of angiogenic biomarkers including VEGFR2, MMP9 and CD31, as well as tumor cell proliferation marker ki67, was determined in tumor sections by immunohistochemistry. Furthermore, expression of cytokines was examined in peripheral blood of mice. Results: Based on our results, administration of nanobody could reduce biomarker expression in tumor sections. Tumor growth was also delayed and survival rate was increased in response to nanobody treatment. Moreover, expression of pro-inflammatory cytokines was reduced. Conclusion: In conclusion, we demonstrated that administration of nanobody could effectively suppress angiogenesis as well as tumor growth.
Collapse
Affiliation(s)
- Azadeh Sharif Khatibi
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Majidzade-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Naidoo L, Mzobe Z, Jin SW, Rajkoomar E, Reddy T, Brockman MA, Brumme ZL, Ndung'u T, Mann JK. Nef-mediated inhibition of NFAT following TCR stimulation differs between HIV-1 subtypes. Virology 2019; 531:192-202. [PMID: 30927712 DOI: 10.1016/j.virol.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/11/2023]
Abstract
Functional characterisation of different HIV-1 subtypes may improve understanding of viral pathogenesis and spread. Here, we evaluated the ability of 345 unique HIV-1 Nef clones representing subtypes A, B, C and D to inhibit NFAT signalling following TCR stimulation. The contribution of this Nef function to disease progression was also assessed in 211 additional Nef clones isolated from unique subtype C infected individuals in early or chronic infection. On average, subtype A and C Nef clones exhibited significantly lower ability to inhibit TCR-mediated NFAT signalling compared to subtype B and D Nef clones. While this observation corroborates accumulating evidence supporting relative attenuation of subtypes A and C that may paradoxically contribute to their increased global prevalence and spread, no significant correlations between Nef-mediated NFAT inhibition activity and clinical markers of HIV-1 infection were observed, indicating that the relationship between Nef function and pathogenesis is complex.
Collapse
Affiliation(s)
- Lisa Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zinhle Mzobe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban 4001, South Africa; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
17
|
Fujii H, Tanaka Y, Nakazawa H, Sugiyama A, Manabe N, Shinoda A, Shimizu N, Hattori T, Hosokawa K, Sujino T, Ito T, Niide T, Asano R, Kumagai I, Umetsu M. Compact Seahorse‐Shaped T Cell–Activating Antibody for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hiroto Fujii
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences Tohoku University 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
- JST PRESTO 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Aruto Sugiyama
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Noriyoshi Manabe
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science Hokkaido University Sapporo 060–0810 Japan
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization 1‐1 Oho Tsukuba Ibaraki 305–0801 Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Takuma Sujino
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Teppei Niide
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|
18
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
19
|
Benson RA, Garcon F, Recino A, Ferdinand JR, Clatworthy MR, Waldmann H, Brewer JM, Okkenhaug K, Cooke A, Garside P, Wållberg M. Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Front Immunol 2018; 9:1006. [PMID: 29867981 PMCID: PMC5968092 DOI: 10.3389/fimmu.2018.01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
We present a novel and readily accessible method facilitating cellular time-resolved imaging of transplanted pancreatic islets. Grafting of islets to the mouse ear pinna allows non-invasive, in vivo longitudinal imaging of events in the islets and enables improved acquisition of experimental data and use of fewer experimental animals than is possible using invasive techniques, as the same mouse can be assessed for the presence of islet infiltrating cells before and after immune intervention. We have applied this method to investigating therapeutic protection of beta cells through the well-established use of anti-CD3 injection, and have acquired unprecedented data on the nature and rapidity of the effect on the islet infiltrating T cells. We demonstrate that infusion of anti-CD3 antibody leads to immediate effects on islet infiltrating T cells in islet grafts in the pinna of the ear, and causes them to increase their speed and displacement within 20 min of infusion. This technique overcomes several technical challenges associated with intravital imaging of pancreatic immune responses and facilitates routine study of beta islet cell development, differentiation, and function in health and disease.
Collapse
Affiliation(s)
- Robert A. Benson
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Garcon
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James M. Brewer
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Garside
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Jung K, Ha JH, Kim JE, Kim JA, Kim YJ, Kim CH, Kim YS. Heterodimeric Fc-fused IL12 shows potent antitumor activity by generating memory CD8 + T cells. Oncoimmunology 2018; 7:e1438800. [PMID: 29900039 DOI: 10.1080/2162402x.2018.1438800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 01/07/2023] Open
Abstract
Interleukin-12 (IL12) (p35/p40 complex) is a heterodimeric cytokine with potent anti-tumor activity. However, its short serum half-life and high dose-related toxicities limit its clinical efficacy. Here, we constructed heterodimeric immunoglobulin Fc-fused mouse IL12 (mIL12) in a monovalent binding format (mono-mIL12-Fc) to generate long-acting mIL12 in the naturally occurring heterodimeric form. Mono-mIL12-Fc exhibited a much longer plasma half-life than recombinant mIL12, enabling twice-weekly systemic injections to remove established tumors in syngeneic mouse models. Mono-mIL12-Fc was more potent than wild-type Fc-based bivalent-binding IL12-Fc (bi-mIL12-Fc) for eradicating large established immunogenic tumors without noticeable toxicities by enhancing interferon-γ production and the proliferation of immune effector cells in tumors. More importantly, mono-mIL12-Fc triggered weaker IL12 signaling than bi-mIL12-Fc, favoring the generation of functional and protective memory CD8+ T cells. Our results demonstrate that heterodimeric-Fc-fused IL12 is a suitable format for augmenting adaptive CD8+ T cell immune responses, providing a practical alternative to the systemic administration of IL12 for antitumor therapy.
Collapse
Affiliation(s)
- Keunok Jung
- Priority Research Center for Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| | - Ji-Hee Ha
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.,Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
21
|
T Lymphocytes and Autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:125-168. [DOI: 10.1016/bs.ircmb.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Transplant Site Influences the Immune Response After Islet Transplantation: Bone Marrow Versus Liver. Transplantation 2017; 101:1046-1055. [PMID: 27575689 DOI: 10.1097/tp.0000000000001462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The aim of this study was to characterize the immune response against intrabone marrow (BM-Tx) or intraliver (liver-Tx) transplanted islets in the presence or in the absence of immunosuppression. METHODS Less (C57BL/6 in Balb/c) and highly (Balb/c in C57BL/6) stringent major histocompatibility complex fully mismatched mouse models were used to evaluate the alloimmune response. Single antigen-mismatched mouse model (C57BL/6 RIP-GP in C57BL/6) was used to evaluate the antigen-specific immune response. Mice received tacrolimus (FK-506, 0.1 mg/kg per day)/mycophenolate mofetil (MMF, 60 mg/kg per day), and anti-CD3 (50 μg/day) either alone or in combination. RESULTS Transplant site did not impact the timing nor the kinetics of the alloimmune and single antigen-specific memory T cell responses in the absence of immunosuppression or in the presence of MMF/FK-506 combination. On the other hand, the median time to graft rejection was 28 ± 5.2 days and 16 ± 2.6 days (P = 0.14) in the presence of anti-CD3 treatment, 50 ± 12.5 days and 10 ± 1.3 days (P = 0.003) in the presence of anti-CD3/MMF/FK-506 treatment for liver-Tx and BM-Tx, respectively. Anti-CD3 did not differentially reach BM and liver tissues but was more effective in reducing graft associated T cell responses in liver-Tx than in BM-Tx. CONCLUSIONS Islets infused in the BM appear less protected from the adaptive immune response in the presence of the anti-CD3 treatment. This result raises some concerns over the potential of the BM as a site for islet allotransplantation.
Collapse
|
23
|
Wallberg M, Recino A, Phillips J, Howie D, Vienne M, Paluch C, Azuma M, Wong FS, Waldmann H, Cooke A. Anti-CD3 treatment up-regulates programmed cell death protein-1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology 2017; 151:248-260. [PMID: 28211040 PMCID: PMC5418468 DOI: 10.1111/imm.12729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
T cells play a key role in the pathogenesis of type 1 diabetes, and targeting the CD3 component of the T‐cell receptor complex provides one therapeutic approach. Anti‐CD3 treatment can reverse overt disease in spontaneously diabetic non‐obese diabetic mice, an effect proposed to, at least in part, be caused by a selective depletion of pathogenic cells. We have used a transfer model to further investigate the effects of anti‐CD3 treatment on green fluorescent protein (GFP)+ islet‐specific effector T cells in vivo. The GFP expression allowed us to isolate the known effectors at different time‐points during treatment to assess cell presence in various organs as well as gene expression and cytokine production. We find, in this model, that anti‐CD3 treatment does not preferentially deplete the transferred effector cells, but instead inhibits their metabolic function and their production of interferon‐γ. Programmed cell death protein 1 (PD‐1) expression was up‐regulated on the effector cells from anti‐CD3‐treated mice, and diabetes induced through anti‐PD‐L1 antibody could only be reversed with anti‐CD3 antibody if the anti‐CD3 treatment lasted beyond the point when the anti‐PD‐L1 antibody was washed out of the system. This suggests that PD‐1/PD‐L1 interaction plays an important role in the anti‐CD3 antibody mediated protection. Our data demonstrate an additional mechanism by which anti‐CD3 therapy can reverse diabetogenesis.
Collapse
Affiliation(s)
- Maja Wallberg
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jenny Phillips
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Margaux Vienne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Miyuki Azuma
- Department of Molecular Immunology Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - F Susan Wong
- Diabetes Research Group, Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Cardiff, UK
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy 2016; 8:889-906. [DOI: 10.2217/imt-2016-0049] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of tolerance is a major goal of immunotherapy. Investigations over the last 20 years have shown that anti-CD3 monoclonal antibodies (mAbs) effectively treat autoimmune disease in animal models and have also shown promise in clinical trials. Tolerance induction by anti-CD3 mAbs is related to the induction of Tregs that control pathogenic autoimmune responses. Here, we review preclinical and clinical studies in which intravenous or mucosal administration of anti-CD3 mAbs has been employed and provide an outlook on future developments to enhance the efficacy of this promising therapeutic approach.
Collapse
Affiliation(s)
- Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Spitz C, Winkels H, Bürger C, Weber C, Lutgens E, Hansson GK, Gerdes N. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell Mol Life Sci 2016; 73:901-22. [PMID: 26518635 PMCID: PMC11108393 DOI: 10.1007/s00018-015-2080-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/30/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Charlotte Spitz
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Holger Winkels
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Bürger
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Göran K Hansson
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
| |
Collapse
|
26
|
Page KR, Mezzalana E, MacDonald AJ, Zamuner S, De Nicolao G, van Maurik A. Temporal pharmacokinetic/pharmacodynamic interaction between human CD3ε antigen-targeted monoclonal antibody otelixizumab and CD3ε binding and expression in human peripheral blood mononuclear cell static culture. J Pharmacol Exp Ther 2015; 355:199-205. [PMID: 26341624 DOI: 10.1124/jpet.115.224899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Abstract
Otelixizumab is a monoclonal antibody (mAb) directed to human CD3ε, a protein forming part of the CD3/T-cell receptor (TCR) complex on T lymphocytes. This study investigated the temporal interaction between varying concentrations of otelixizumab, binding to human CD3 antigen, and expression of CD3/TCR complexes on lymphocytes in vitro, free from the confounding influence of changing lymphocyte frequencies observed in vivo. A static in vitro culture system was established in which primary human peripheral blood mononuclear cells (PBMCs) were incubated over an extended time course with titrated concentrations of otelixizumab. At each time point, free, bound, and total CD3/TCR expression on both CD4+ and CD8+ T cells and the amount of free otelixizumab antibody in the supernatant were measured. The pharmacokinetics of free otelixizumab in the culture supernatants was saturable, with a shorter apparent half-life at low concentration. Correspondingly, a rapid, otelixizumab concentration-, and time-dependent reduction in CD3/TCR expression was observed. These combined observations were consistent with the phenomenon known as target-mediated drug disposition (TMDD). A mechanistic, mathematical pharmacokinetic/pharmacodynamic (PK/PD) model was then used to characterize the free otelixizumab-CD3 expression-time relationship. CD3/TCR modulation induced by otelixizumab was found to be relatively fast compared with the re-expression rate of CD3/TCR complexes following otelixizumab removal from supernatants. In summary, the CD3/TCR receptor has been shown to have a major role in determining otelixizumab disposition. A mechanistic PK/PD model successfully captured the PK and PD in vitro data, confirming TMDD by otelixizumab.
Collapse
Affiliation(s)
- Kevin R Page
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Enrica Mezzalana
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Alexander J MacDonald
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Stefano Zamuner
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Giuseppe De Nicolao
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| | - Andre van Maurik
- GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.)
| |
Collapse
|
27
|
Blank G, Welker C, Sipos B, Sonntag K, Müller F, Eckert F, Seitz C, Nadalin S, LaCorcia G, Königsrainer A, Snell D, Handgretinger R, Schilbach K. Preemptive administration of human αβ T cell receptor-targeting monoclonal antibody GZ-αβTCR potently abrogates aggressive graft-versus-host disease in vivo. Ann Hematol 2015; 94:1907-19. [PMID: 26264693 DOI: 10.1007/s00277-015-2471-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
GVHD, both acute and chronic, remains the major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, there is still a great need for therapeutic tools for the prevention and treatment of GVHD. Several biologics have shown promising results in salvage therapies but are attendant on an increased risk for opportunistic infections, lymphoproliferative disorders, and relapse. This is partly due to efficient T cell elimination that neither dissects alloreactive from non-alloreactive T cells nor considers functional and structural distinctiveness of pathogen- and malignancy-reactive γδ and iNKT T cells. A novel, humanized monoclonal antibody, GZ-αβTCR, specific for the human αβ T cell receptor, was evaluated in a xenogeneic GVHD model for its potential to prevent or ameliorate GVHD and prolong survival. We could show that GZ-αβTCR significantly attenuated clinical signs of GVHD and prolonged survival by preferential depletion of CD4 cells and the naïve T cell compartment, the trigger and driver of GVHD. In a regimen that included a preemptive dose, GZ-αβTCR treatment sufficiently abrogated GVHD. Importantly, GZ-αβTCR's specificity spared host cell-mediated immune competence of cell types other than αβT cells: namely γδT cells. GZ-αβTCR's outstanding capacity to prevent GVHD and ameliorate an ongoing GVHD while sparing immune cells other than αβT cells strongly recommends GZ-αβTCR for the prevention and treatment of acute GVHD in clinical settings.
Collapse
Affiliation(s)
- Gregor Blank
- Department of General, Visceral and Transplantation Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Christian Welker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Katja Sonntag
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Friederike Müller
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Christian Seitz
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplantation Surgery, University Hospital Tübingen, Tübingen, Germany
| | | | - Alfred Königsrainer
- Department of General, Visceral and Transplantation Surgery, University Hospital Tübingen, Tübingen, Germany
| | | | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany.
| |
Collapse
|
28
|
You S. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance. Front Immunol 2015; 6:242. [PMID: 26042125 PMCID: PMC4437185 DOI: 10.3389/fimmu.2015.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.
Collapse
Affiliation(s)
- Sylvaine You
- Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; INSERM U1151, Institut Necker-Enfants Malades , Paris , France ; CNRS UMR 8253, Institut Necker-Enfants Malades , Paris , France
| |
Collapse
|
29
|
Yossef R, Gur C, Shemesh A, Guttman O, Hadad U, Nedvetzki S, Miletić A, Nalbandyan K, Cerwenka A, Jonjic S, Mandelboim O, Porgador A. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes. PLoS One 2015; 10:e0118936. [PMID: 25719382 PMCID: PMC4342013 DOI: 10.1371/journal.pone.0118936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.
Collapse
Affiliation(s)
- Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Nedvetzki
- BioLineRx Ltd., 19 Hartum Street, P.O. Box 45158. Jerusalem 91450, Israel
| | - Antonija Miletić
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg 69120, Germany
| | - Stipan Jonjic
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
30
|
Baas MC, Kuhn C, Valette F, Mangez C, Duarte MS, Hill M, Besançon A, Chatenoud L, Cuturi MC, You S. Combining Autologous Dendritic Cell Therapy with CD3 Antibodies Promotes Regulatory T Cells and Permanent Islet Allograft Acceptance. THE JOURNAL OF IMMUNOLOGY 2014; 193:4696-703. [DOI: 10.4049/jimmunol.1401423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Vudattu NK, Herold KC. Delayed anti-CD3 therapy in a mouse heart transplant model induced tolerance and long-term survival of allograft: achieving tolerance. Immunotherapy 2014; 5:1173-6. [PMID: 24188671 DOI: 10.2217/imt.13.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Goto R, You S, Zaitsu M, Chatenoud L, Wood KJ. Delayed anti-CD3 therapy results in depletion of alloreactive T cells and the dominance of Foxp3(+) CD4(+) graft infiltrating cells. Am. J. Transplant. 13(7), 1655-1664 (2013). Humanized Fc receptor nonbinding anti-CD3 monoclonal antibodies have been tested in patients with autoimmune diseases with the goal of inducing immune tolerance. However, the timing of drug administration may be an important determinant of the biologic effects, since not all T cells are equally affected, and there may be different subsets of cells involved during the evolution of immune responses. The study by Goto et al. showed that delayed administration of anti-CD3 therapy was more effective in depleting alloreactive T cells than administration at the time of transplant, and resulted in long-term survival of the graft by promoting infiltration of CD4 Tregs into the graft.
Collapse
Affiliation(s)
- Nalini K Vudattu
- Department of Immunobiology, Yale University, 300 George St #353E, New Haven, CT 06520, USA
| | | |
Collapse
|
32
|
Regulation of T Cell Activation and Anergy by the Intensity of the Ca2+Signal in Cooperation with Other Signals. Biosci Biotechnol Biochem 2014; 74:1788-93. [DOI: 10.1271/bbb.100107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Shiheido H, Aoyama T, Takahashi H, Hanaoka K, Abe T, Nishida E, Chen C, Koga O, Hikida M, Shibagaki Y, Morita A, Nikawa T, Hattori S, Watanabe T, Shimizu J. Novel CD3-specific antibody induces immunosuppression via impaired phosphorylation of LAT and PLCγ1 following T-cell stimulation. Eur J Immunol 2014; 44:1770-80. [PMID: 24595757 DOI: 10.1002/eji.201344146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023]
Abstract
The activation of T cells is known to be accompanied by the temporary downmodulation of the TCR/CD3 complex on the cell surface. Here, we established a novel monoclonal antibody, Dow2, that temporarily induces downmodulation of the TCR/CD3 complex in mouse CD4(+) T cells without activating T cells. Dow2 recognized the determinant on CD3ε; however, differences were observed in the binding mode between Dow2 and the agonistic anti-CD3ε Ab, 145-2C11. An injection of Dow2 in vivo resulted in T-cell anergy, and prolonged the survival of cardiac allografts without a marked increase in cytokine release. The phosphorylated forms of the signaling proteins PLC-γ1 and LAT in Dow2-induced anergic T cells were markedly decreased upon stimulation. However, the levels of phosphorylated LAT and PLCγ1 in Dow2-induced anergic T cells could be rescued in the presence of the proteasome inhibitor MG-132. These results suggest that proteasome-mediated degradation is involved in hypophosphorylated LAT and PLCγ1 in Dow2-induced anergic T cells. The novel CD3-specific Ab, Dow2, may provide us with a unique tool for inducing immunosuppression.
Collapse
Affiliation(s)
- Hirokazu Shiheido
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li L, Nishio J, van Maurik A, Mathis D, Benoist C. Differential response of regulatory and conventional CD4⁺ lymphocytes to CD3 engagement: clues to a possible mechanism of anti-CD3 action? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3694-704. [PMID: 23986534 PMCID: PMC3932531 DOI: 10.4049/jimmunol.1300408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several clinical trials have shown anti-CD3 treatment to be a promising therapy for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3(+) regulatory T cells (Tregs) are likely to be involved, but through unknown mechanistic pathways. We profiled the transcriptional consequences in CD4(+) Tregs and conventional T cells (Tconvs) in the first hours and days after anti-CD3 treatment of NOD mice. Anti-CD3 treatment led to a transient transcriptional response, terminating faster than most Ag-induced responses. Most transcripts were similarly induced in Tregs and Tconvs, but several were differential, in particular, those encoding the IL-7R and transcription factors Id2/3 and Gfi1, upregulated in Tregs but repressed in Tconvs. Because IL-7R was a plausible candidate for driving the homeostatic response of Tregs to anti-CD3, we tested its relevance by supplementation of anti-CD3 treatment with IL-7/anti-IL-7 complexes. Although ineffective alone, IL-7 significantly improved the rate of remission induced by anti-CD3. Four anti-human CD3 mAbs exhibited the same differential effect on IL-7R expression in human as in mouse cells, suggesting that the mechanism also underlies therapeutic effect in human cells, and perhaps a rationale for testing a combination of anti-CD3 and IL-7 for the treatment of recent-onset human type 1 diabetes. Thus, systems-level analysis of the response to anti-CD3 in the early phase of the treatment demonstrates different responses in Tregs and Tconvs, and provides new leads to a mechanistic understanding of its mechanism of action in reverting recent-onset diabetes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Drug Synergism
- Gene Expression Regulation/drug effects
- Humans
- Interleukin-7/pharmacology
- Mice
- Mice, Transgenic
- Protein Binding
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Li Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Junko Nishio
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - André van Maurik
- Immuno Inflammation, GlaxoSmithKline, Stevenage, SG1 2NY, United Kingdom
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Jeker LT, Bour-Jordan H, Bluestone JA. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb Perspect Med 2013; 2:a007807. [PMID: 22393537 DOI: 10.1101/cshperspect.a007807] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 Diabetes (T1D), also called juvenile diabetes because of its classically early onset, is considered an autoimmune disease targeting the insulin-producing β cells in the pancreatic islets of Langerhans. T1D reflects a loss of tolerance to tissue self-antigens caused by defects in both central tolerance, which aims at eliminating potentially autoreactive lymphocytes developing in the thymus, and peripheral tolerance, which normally controls autoreactive T cells that escaped the thymus. Like in other autoimmune diseases, the mechanisms leading to T1D are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in the breakdown of peripheral tolerance. In this article, we discuss the contribution of these factors in the development of the autoimmune response targeting pancreatic islets in T1D and the therapeutic strategies currently being explored to correct these defects.
Collapse
Affiliation(s)
- Lukas T Jeker
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
36
|
Goto R, You S, Zaitsu M, Chatenoud L, Wood KJ. Delayed anti-CD3 therapy results in depletion of alloreactive T cells and the dominance of Foxp3+ CD4+ graft infiltrating cells. Am J Transplant 2013; 13:1655-64. [PMID: 23750800 PMCID: PMC3790953 DOI: 10.1111/ajt.12272] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/08/2013] [Accepted: 03/31/2013] [Indexed: 01/25/2023]
Abstract
The engineered Fc-nonbinding (crystallizable fragment-nonbinding) CD3 antibody has lower mitogenicity and a precise therapeutic window for disease remission in patients with type 1 diabetes. Before anti-CD3 can be considered for use in transplantation, the most effective timing of treatment relative to transplantation needs to be elucidated. In this study anti-CD3F(ab')2 fragments or saline were administered intravenously for 5 consecutive days (early: d1-3 or delayed: d3-7) to mice transplanted with a cardiac allograft (H2(b)-to-H2(k); d0). Survival of allografts was prolonged in mice treated with the early protocol (MST = 48 days), but most were rejected by d100. In contrast, in mice treated with the delayed protocol allografts continued to survive long term. The delayed protocol significantly inhibited donor alloreactivity at d30 as compared to the early protocol. A marked increase in Foxp3(+) T cells (50.3 ± 1.6%) infiltrating the allografts in mice treated with the delayed protocol was observed (p < 0.0001 vs. early (24.9 ± 2.1%)) at d10; a finding that was maintained in the accepted cardiac allografts at d100. We conclude that the timing of treatment with anti-CD3 therapy is critical for inducing long-term graft survival. Delaying administration effectively inhibits the alloreactivity and promotes the dominance of intragraft Foxp3(+) T cells allowing long-term graft acceptance.
Collapse
Affiliation(s)
- R Goto
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - S You
- Universite Paris Descartes, Institut National de la Santé et de la Recherche Médicale Unit 1013Paris, France
| | - M Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - L Chatenoud
- Universite Paris Descartes, Institut National de la Santé et de la Recherche Médicale Unit 1013Paris, France
| | - KJ Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom,* Kathryn J. Wood,
| |
Collapse
|
37
|
Martin A, Tisch RM, Getts DR. Manipulating T cell-mediated pathology: Targets and functions of monoclonal antibody immunotherapy. Clin Immunol 2013; 148:136-47. [DOI: 10.1016/j.clim.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022]
|
38
|
Sakurai T, Takai R, Bürgin H, Shioda A, Sakamoto Y, Amano J, Grimm HP, Richter WF, Higuchi Y, Chiba S, Kawamura A, Suzuki M, Müller L. The Effects of Interleukin-6 Signal Blockade on Immune System, Reproductive and Skeletal Development in Juvenile Mice. ACTA ACUST UNITED AC 2013; 98:170-82. [DOI: 10.1002/bdrb.21053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Takayuki Sakurai
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | - Ryo Takai
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | - Heinrich Bürgin
- Non-Clinical Safety; Pharma Research and Early Development; F. Hoffmann-La Roche Ltd.; Basel; Switzerland
| | - Akifumi Shioda
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | | | - Jun Amano
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | - Hans Peter Grimm
- Non-Clinical Safety; Pharma Research and Early Development; F. Hoffmann-La Roche Ltd.; Basel; Switzerland
| | - Wolfgang F. Richter
- Non-Clinical Safety; Pharma Research and Early Development; F. Hoffmann-La Roche Ltd.; Basel; Switzerland
| | | | - Shuichi Chiba
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | - Akinori Kawamura
- Primary Lifecycle Management Department; Chugai Pharmaceutical Co., Ltd.; Tokyo; Japan
| | - Masami Suzuki
- Research Division; Chugai Pharmaceutical Co., Ltd.; Shizuoka; Japan
| | - Lutz Müller
- Non-Clinical Safety; Pharma Research and Early Development; F. Hoffmann-La Roche Ltd.; Basel; Switzerland
| |
Collapse
|
39
|
Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ. Pharmacokinetics and Pharmacodynamics of a Chimeric/Humanized Anti-CD3 Monoclonal Antibody, Otelixizumab (TRX4), in Subjects With Psoriasis and With Type 1 Diabetes Mellitus. J Clin Pharmacol 2013; 50:494-506. [DOI: 10.1177/0091270009349376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
You S, Zuber J, Kuhn C, Baas M, Valette F, Sauvaget V, Sarnacki S, Sawitzki B, Bach JF, Volk HD, Chatenoud L. Induction of allograft tolerance by monoclonal CD3 antibodies: a matter of timing. Am J Transplant 2012; 12:2909-19. [PMID: 22882762 DOI: 10.1111/j.1600-6143.2012.04213.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite remarkable progress in organ transplantation through the development of a wealth of immunosuppressive drugs highly effective at controlling acute rejection, two major problems still remain, the loss of transplants due to chronic rejection and the growing number of sensitized recipients due to previous transplants, transfusions or pregnancies. Induction of immune tolerance appears to be the only way to curb this complex situation. Here we describe that a therapy, already successfully used to restore immune tolerance to self-antigens in overt autoimmunity, is effective at promoting transplant tolerance. We demonstrate that a short low-dose course with CD3 antibodies started after transplantation, at the time of effector T cell priming to alloantigens, induces permanent acceptance of fully mismatched islet allografts. Mechanistic studies revealed that antigen-specific regulatory and effector T cells are differentially affected by the treatment. CD3 antibody treatment preferentially induces apoptosis of activated alloreactive T cells which is mandatory for tolerance induction. In contrast, regulatory T cells are relatively spared from CD3 antibody-induced depletion and can transfer antigen-specific tolerance thus arguing for their prominent role in sustaining long-term graft survival.
Collapse
Affiliation(s)
- S You
- Institut National de la Santé et de la Recherche Médicale, Unité U1013, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Skelley JW, Elmore LK, Kyle JA. Teplizumab for treatment of type 1 diabetes mellitus. Ann Pharmacother 2012; 46:1405-12. [PMID: 22968521 DOI: 10.1345/aph.1r065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To review the pharmacology, pharmacokinetics, safety, and efficacy of teplizumab and evaluate relevant clinical trial data. DATA SOURCES Searches of MEDLINE, International Pharmaceutical Abstracts, ClinicalTrials.gov, American Diabetes Association scientific posters, and Google Scholar (1966-May 2012) were conducted using the key words teplizumab, anti-CD3 monoclonal antibody, MGA031, and hOKT3γ1 (Ala-Ala). Searches were limited to articles published in English. STUDY SELECTION AND DATA EXTRACTION Clinical trials evaluating teplizumab for type 1 diabetes mellitus (T1DM) published in English were selected from the data sources. All published relevant abstracts were included. References cited in identified articles were used for additional citations. DATA SYNTHESIS T1DM accounts for up to 10% of all cases of diabetes mellitus. T1DM is characterized as a chronic and progressive autoimmune disease leading to the destruction of insulin-producing β-cells of the pancreas. Teplizumab is a humanized Fc-mutated anti-CD3 monoclonal antibody that alters the function of the T-lymphocytes that mediate the destruction of the insulin-producing β-cells. While clinical data are limited, both Phase 2 and Phase 3 studies have demonstrated preserved C-peptide response as a measure of insulin production, decreased exogenous insulin use, and improved glycemic control following a 12- to 14-day teplizumab infusion in patients diagnosed with T1DM within the previous 6 weeks. However, 1 Phase 3 trial failed to find the same benefits in those diagnosed with T1DM within the previous 12 weeks when a lower cumulative teplizumab dose was used. Initial studies indicated that teplizumab is well tolerated, with a self-limiting rash as the most commonly reported adverse effect. CONCLUSIONS Teplizumab is an anti-CD3 human monoclonal antibody with promising activity in treatment of patients with T1DM. Results from Phase 3 trials are needed to further determine safety, efficacy, and dosing frequency.
Collapse
Affiliation(s)
- Jessica W Skelley
- Department of Pharmacy Practice, McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA.
| | | | | |
Collapse
|
42
|
A humanised mouse model of cytokine release: comparison of CD3-specific antibody fragments. J Immunol Methods 2012; 384:33-42. [PMID: 22796190 DOI: 10.1016/j.jim.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023]
Abstract
CD3-specific antibodies have shown clinical efficacy in both transplantation and autoimmunity. However, targeting CD3 in this way can lead to T-cell activation and a serious cytokine release syndrome mediated by Fcγ receptor binding. An in vivo mouse model has been developed using severe combined immunodeficient (SCID) mice to detect human T-cell depletion and cytokine release into the circulation after administration of OKT3. This system has been used to evaluate OKT3 antibody fragments lacking the entire Fc region alongside whole antibody constructs. These data clearly show that cytokine release is detected with all OKT3 antibody constructs and fragments tested and these can be ranked from highest to lowest as follows: mIgG2a>hIgG1 (Ala-Ala)>hIgG1 diFab' maleimide (DFM)>hIgG1 F(ab')₂>mIgG2a F(ab')₂>hIgG1 Fab'. Furthermore, the monovalent hIgG1 Fab' fragment gives the least cytokine release but it does not deplete human T-cells in this assay format. This suggests that T-cell activation may be playing a role in the mechanism of action of anti-CD3 antibodies and consequently the unwanted cytokine release is potentially unavoidable for this class of molecules. This model system provides a useful tool to aid in understanding and reducing the potential risks of cytokine release following antibody therapy.
Collapse
|
43
|
Sprangers B, Van der Schueren B, Gillard P, Mathieu C. Otelixizumab in the treatment of Type 1 diabetes mellitus. Immunotherapy 2011; 3:1303-16. [DOI: 10.2217/imt.11.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Anti-CD3 antibodies have been demonstrated in both animal and human studies to be able to reverse autoimmune diseases; for example Type 1 diabetes. Not only does treatment with anti-CD3 antibodies result in the removal of pathogenic T cells but evidence suggests that a state of operational tolerance can be induced through the effects on regulatory T cells. The clinical use of anti-CD3 antibodies has been hampered by their safety profile. However, the introduction of humanized, nonmitogenic, aglycosylated anti-CD3 antibodies, such as otelixizumab, and promising results reported in newly-diagnosed patients with Type 1 diabetes, have renewed the interest for these antibodies in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ben Sprangers
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49 bus 811, B-3000 Leuven, Belgium
| | - Bart Van der Schueren
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Laboratory of Experimental Medicine & Endocrinology, University of Leuven, Leuven, Belgium. University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
44
|
Abstract
Strategies for inducing immune tolerance are fundamentally similar across a spectrum of immune-mediated disorders, including allergic disease, autoimmunity, and rejection of allografts. In each case, the objective of establishing an immunoregulatory balance is challenged by variable upswings in effector cell populations and proinflammatory mediators of immunity, requiring careful, and innovative therapeutic intervention to restore stability. The Immune Tolerance Network, an international consortium sponsored by the National Institutes of Health, seeks to advance both the scientific understanding and the clinical success of immune therapies for these disorders, through an innovative and collaborative effort involving clinical trials and mechanistic studies. Over the last decade, scientists have evaluated cell-based ablation and deviation strategies in trials using lymphocyte-specific targeting, induction of host-donor hematopoietic chimerism, induction of antigen-specific immune regulation, and a variety of antigen desensitization approaches. In this article, we review some of the highlights of this experience and discuss the potential for progress, utilizing new insights into regulatory mechanisms and biomarker signatures of tolerance.
Collapse
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute, Seattle, WA 98101-2795, USA.
| | | | | |
Collapse
|
45
|
Penaranda C, Tang Q, Bluestone JA. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2015-22. [PMID: 21742976 DOI: 10.4049/jimmunol.1100713] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monoclonal anti-CD3 Abs have been used clinically for two decades to reverse steroid-resistant acute graft rejection. In autoimmune diabetes, short course treatment with FcR-nonbinding (FNB) anti-CD3 mAb in mice with recent onset of diabetes induces long-term disease remission. Induction of tolerogenic regulatory T cells (Tregs) has been implicated to be one of the mechanisms of action by FNB anti-CD3 mAb in these settings. In this study, we examined the effect of FNB anti-CD3 mAb treatment on the homeostasis of naive, effector, and regulatory T cells in vivo. Anti-CD3 treatment induced a transient systemic rise in the percentage but not absolute number of CD4(+)Foxp3(+) Tregs due to selective depletion of CD4(+)Foxp3(-) conventional T cells. T cell depletion induced by FNB anti-CD3 mAb was independent of the proapoptotic proteins Fas, caspase-3, and Bim and was not inhibited by overexpression of the anti-apoptotic protein, Bcl-2. Tregs were not preferentially expanded and we found no evidence of conversion of conventional T cells into Tregs, suggesting that the pre-existing Tregs are resistant to anti-CD3-induced cell death. Interestingly, expression of the transcription factor Helios, which is expressed by thymus-derived natural Tregs, was increased in Tregs after FNB anti-CD3 mAb treatment, suggesting that the anti-CD3 treatment can alter, and potentially stabilize, Treg function. Taken together, the results suggest that FNB anti-CD3 therapy promotes tolerance by restoring the balance between pathogenic and regulatory T cells.
Collapse
Affiliation(s)
- Cristina Penaranda
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
46
|
Nishio J, Feuerer M, Wong J, Mathis D, Benoist C. Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. ACTA ACUST UNITED AC 2010; 207:1879-89. [PMID: 20679403 PMCID: PMC2931163 DOI: 10.1084/jem.20100205] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Treatment with anti-CD3 is a promising therapeutic approach for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3+ regulatory T (T reg) cells may be involved, but the evidence has been conflicting. We investigated this issue in mice derived from the NOD model, which were engineered so that T reg populations were perturbed, or could be manipulated by acute ablation or transfer. The data highlighted the involvement of Foxp3+ cells in anti-CD3 action. Rather than a generic influence on all T reg cells, the therapeutic effect seemed to involve an ∼50–60-fold expansion of previously constrained T reg cell populations; this expansion occurred not through conversion from Foxp3− conventional T (T conv) cells, but from a proliferative expansion. We found that T reg cells are normally constrained by TCR-specific niches in secondary lymphoid organs, and that intraclonal competition restrains their possibility for conversion and expansion in the spleen and lymph nodes, much as niche competition limits their selection in the thymus. The strong perturbations induced by anti-CD3 overcame these niche limitations, in a process dependent on receptors for interleukin-2 (IL-2) and IL-7.
Collapse
Affiliation(s)
- Junko Nishio
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Cornwell WD, Rogers TJ. Uncoupling of T cell receptor zeta chain function during the induction of anergy by the superantigen, staphylococcal enterotoxin A. Toxins (Basel) 2010; 2:1704-17. [PMID: 22069657 PMCID: PMC3153262 DOI: 10.3390/toxins2071704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/17/2010] [Accepted: 06/28/2010] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA) induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy). We characterized the components of the T cell receptor (TCR) during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals.
Collapse
Affiliation(s)
- William D Cornwell
- FELS Institute, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
48
|
Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity 2010; 32:488-99. [PMID: 20412759 DOI: 10.1016/j.immuni.2010.04.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by destruction of insulin-producing pancreatic beta cells. Many broad-based immunosuppressive and antigen-specific immunoregulatory therapies have been and are currently being evaluated for their utility in the prevention and treatment of T1D. Looking forward, this review discusses the potential therapeutic use of antigen-specific tolerance strategies, including tolerance induced by "tolerogenic" antigen-presenting cells pulsed with diabetogenic antigens and transfer of induced or expanded regulatory T cells, which have demonstrated efficacy in nonobese diabetic (NOD) mice. Depending on the time of therapeutic intervention in the T1D disease process, antigen-specific immunoregulatory strategies may be employed as monotherapies, or in combination with short-term tolerance-promoting immunoregulatory drugs and/or drugs promoting differentiation of insulin-producing beta cells from endogenous progenitors.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
49
|
Naik VM, Naik MN, Goldberg RA, Smith TJ, Douglas RS. Immunopathogenesis of thyroid eye disease: emerging paradigms. Surv Ophthalmol 2010; 55:215-26. [PMID: 20385333 DOI: 10.1016/j.survophthal.2009.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 12/22/2022]
Abstract
Graves disease represents a systemic autoimmune process targeting the thyroid, orbit, and pretibial skin. The thyroid dysfunction is treatable, but no consistently effective medical therapy has yet been described for the orbital manifestations of Graves disease, also known as thyroid-associated ophthalmopathy or thyroid eye disease. Several autoantigens are potentially relevant to the pathogenesis of thyroid eye disease. Activating antibodies generated against the thyrotropin receptor can be detected in a majority of patients, and these drive hyperthyroidism. However, stimulating antibodies against the insulin-like growth factor-1 receptor (IGF-1R) may also play a role in the extra-thyroid manifestations of Graves disease. IGF-1R is overexpressed by orbital fibroblasts derived from patients with thyroid eye disease, whereas IGF-1R(+) T and IGF-1R(+) B cells are considerably more frequent in Graves disease. Actions of several cytokines and the molecular interplay peculiar to the orbit appear to provoke the inflammation, fat expansion, and deposition of excessive extracellular matrix molecules in thyroid eye disease. Based upon these new insights, several therapeutic strategies can now be proposed that, for the first time, might specifically interrupt its pathogenesis.
Collapse
|
50
|
Weatherly K, Braun MY. Organ transplantation: modulation of T-cell activation pathways initiated by cell surface receptors to suppress graft rejection. Methods Mol Biol 2010; 677:419-30. [PMID: 20941624 DOI: 10.1007/978-1-60761-869-0_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T-cell activation depends upon two types of signals: a T-cell-receptor-mediated antigen-specific signal and several non-antigen-specific ones provided by the engagement of costimulatory and/or inhibitory T-cell surface molecules. In clinical transplantation, T-cell costimulatory/inhibitory molecules are involved in determining cytokine production, vascular endothelial cell damage, and induction of transplant rejection. Several of the latest new immunotherapeutic strategies being currently developed to control graft rejection aim at inhibiting alloreactive T-cell function by regulating activating and costimulatory/inhibitory signals to T cells. This article describes the recent development and potential application of these therapies in experimental and pre-clinical transplantation.
Collapse
Affiliation(s)
- Kathleen Weatherly
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|