1
|
Liu J, Chang G, Huang J, Ma N, Wang Y, Roy AC, Shen X. Sodium butyrate pretreatment mitigates lipopolysaccharide-induced inflammation through the TLR4/NF-κB signaling pathway in bovine embryo trachea cells. Anim Biotechnol 2022; 33:1571-1581. [PMID: 34435541 DOI: 10.1080/10495398.2021.1919129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study investigated the anti-inflammatory effects and potential mechanisms of sodium butyrate (SB) in bovine embryo tracheal cells (EBTr) stimulated with lipopolysaccharide (LPS). EBTr were exposed to either 1 mmol/L SB for 18 h for the SB group (SB) or to 0.4 μg/mL LPS for 6 h for the LPS group (LPS). PBS was added to EBTr for a control group (CON). EBTr were pretreated with SB for 18 h followed by 6 h of LPS stimulation for the LSB group (LSB). Results showed that with LPS stimulation, the gene expression of TLR4, NF-κB, IL6, and IL8, as well as cytokine production of IL6 and TNF-α, were significantly increased compared with the CON group. In contrast, protein expression of IL10 was decreased. However, these inflammatory effects induced by LPS were reversed in the LSB group. Compared with the CON group, protein expression of TLR4, phospho-NF-κB p65, phospho-IκBα, and IL1α were increased in the LPS group and these were decreased in the LSB group. Similarly, increased nuclear translocation of phospho-NF-κB p65 in the LPS group was suppressed with SB pretreatment. In conclusion, SB can reduce inflammation induced by LPS in EBTr, and this positive effect is mediated through the TLR4 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Animesh Chandra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
2
|
Li Y, Palmer A, Lupu L, Huber-Lang M. Inflammatory response to the ischaemia-reperfusion insult in the liver after major tissue trauma. Eur J Trauma Emerg Surg 2022; 48:4431-4444. [PMID: 35831749 DOI: 10.1007/s00068-022-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polytrauma is often accompanied by ischaemia-reperfusion injury to tissues and organs, and the resulting series of immune inflammatory reactions are a major cause of death in patients. The liver is one of the largest organs in the body, a characteristic that makes it the most vulnerable organ after multiple injuries. In addition, the liver is an important digestive organ that secretes a variety of inflammatory mediators involved in local as well as systemic immune inflammatory responses. Therefore, this review considers the main features of post-traumatic liver injury, focusing on the immuno-pathophysiological changes, the interactions between liver organs, and the principles of treatment deduced. METHODS We focus on the local as well as systemic immune response involving the liver after multiple injuries, with emphasis on the pathophysiological mechanisms. RESULTS An overview of the mechanisms underlying the pathophysiology of local as well as systemic immune responses involving the liver after multiple injuries, the latest research findings, and the current mainstream therapeutic approaches. CONCLUSION Cross-reactivity between various organs and cascade amplification effects are among the main causes of systemic immune inflammatory responses after multiple injuries. For the time being, the pathophysiological mechanisms underlying this interaction remain unclear. Future work will continue to focus on identifying potential signalling pathways as well as target genes and intervening at the right time points to prevent more severe immune inflammatory responses and promote better and faster recovery of the patient.
Collapse
Affiliation(s)
- Yang Li
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ludmila Lupu
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Wang J, Chen Z, Li M, Song Y, Xu W, Wang L, Chen S. Genome-wide identification, immune response profile and functional characterization of IL-10 from spotted knifejaw (Oplegnathus punctatus) during host defense against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:513-524. [PMID: 35472402 DOI: 10.1016/j.fsi.2022.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Interleukin 10 (IL-10), a pleiotropic cytokine, plays an essential role in multiple immunity responses. In the current study, the sequences of IL-10 family were identified from spotted knifejaw (Oplegnathus punctatus) whole genome, and O. punctatus IL-10 (OpIL-10) was cloned and characterized. OpIL-10 encodes 187 amino acids with a typical IL-10 family signature motif and predicted α-helices. It shared high identities with Notolabrus celidotus IL-10 and Epinephelus Lanceolatus IL-10. OpIL-10 was widely detected in healthy tissues, with the abundant expression in liver and skin. It was significantly up-regulated in the six immune-related tissues (liver, spleen, kidney, intestine, gill and skin) after infection against Vibrio harveyi and spotted knifejaw iridovirus (SKIV). Dual-luciferase analysis showed that OpIL-10 overexpression could suppress the activity of NF-κB. Meanwhile, OpIL-10 knockdown caused the down-regulation of five immune-related genes in JAK2/STAT3 signaling pathway and NF-κB signaling pathway, including IL-10R2, TYK2, STAT3, NOD2, and IκB. In addition, LPS and poly I:C stimulated expression of pro-inflammatory cytokines, including IL-6, IL-1β, IL-8, and IL-12, were lower with recombinant OpIL-10 (rOp IL-10) than the control group, indicating the anti-inflammatory roles of rOpIL-10. Taken together, these results indicated OpIL-10 as a negative regulator in the inflammatory responses of spotted knifejaw against bacterial and viral infection, which would help us better understand the role of IL-10 in teleost immunity.
Collapse
Affiliation(s)
- Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
4
|
Piao X, Byun HS, Lee SR, Ju E, Park KA, Sohn KC, Quan KT, Lee J, Na M, Hur GM. 8-Geranylumbelliferone isolated from Paramignya trimera triggers RIPK1/RIPK3-dependent programmed cell death upon TNFR1 ligation. Biochem Pharmacol 2021; 192:114733. [PMID: 34411570 DOI: 10.1016/j.bcp.2021.114733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
In tumor necrosis factor (TNF) signaling, IκB kinase (IKK) complex-mediated activation of NF-κB is a well-known protective mechanism against cell death via transcriptional induction of pro-survival genes occurring as a late checkpoint. However, recent belief holds that IKK functions as an early cell death checkpoint to suppress the death-inducing signaling complex by regulating receptor interacting protein kinase1 (RIPK1) phosphorylation. In this study, we propose that two major gernaylated 7-hydroxy coumarins, 6-geranyl-7-hydroxycoumarin (ostruthin) and 8-geranyl-7-hydroxycoumarin (8-geranylumbelliferone, 8-GU) isolated from Paramignya timera, facilitate RIPK1-dependent dual modes of apoptosis and necroptosis by targeting IKKβ upon TNF receptor1 (TNFR1) ligation. Analysis of events upstream of NF-κB revealed that 8-GU and ostruthin drastically inhibited TNF-induced IKK phosphorylation, while having no effect on TAK1 phosphorylation and TNFR1 complex-I formation. Interestingly, 8-GU did not affect the cell death induced by Fas ligand or TNF-related apoptosis-inducing ligand or that induced by DNA-damaging agents, indicating that 8-GU sensitizes TNF-induced cell death exclusively. Moreover, 8-GU accelerated TNF-driven necroptosis by up-regulating necrosome formation in FADD deficient cancer cells harboring RIPK3. Thus, the present study provides new insights into the molecular mechanism underlying geranylated 7-hydroxy coumarin-mediated control of the RIPK1-dependent early cell death checkpoint and suggests that 8-GU is a potential anti-cancer therapeutic via an alternative apoptosis-independent strategy to overcome TNF resistance.
Collapse
Affiliation(s)
- Xuezhe Piao
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - So-Ra Lee
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - Jinbae Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea.
| |
Collapse
|
5
|
Ko W, Kim N, Lee H, Woo ER, Kim YC, Oh H, Lee DS. Anti-Inflammatory Effects of Compounds from Cudrania tricuspidata in HaCaT Human Keratinocytes. Int J Mol Sci 2021; 22:ijms22147472. [PMID: 34299094 PMCID: PMC8303187 DOI: 10.3390/ijms22147472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022] Open
Abstract
The root bark of Cudrania tricuspidata has been reported to have anti-sclerotic, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and cytotoxic activities. In the present study, the effect of 16 compounds from C. tricuspidata on tumor necrosis factor-α+interferon-γ-treated HaCaT cells were investigated. Among these 16 compounds, 11 decreased IL-6 production and 15 decreased IL-8 production. The six most effective compounds, namely, steppogenin (2), cudraflavone C (6), macluraxanthone B (12), 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3- methoxyxanthone (13), cudraflavanone B (4), and cudratricusxanthone L (14), were selected for further experiments. These six compounds decreased the expression levels of chemokines, such as regulated on activation, normal T cell expressed and secreted (RANTES) and thymus and activation-regulated chemokine (TARC), and downregulated the protein expression levels of intercellular adhesion molecule-1. Compounds 2, 6, 12, 4, and 14 inhibited nuclear factor-kappa B p65 translocation to the nucleus; however, compound 13 showed no significant effects. In addition, extracellular signal regulatory kinase-1/2 phosphorylation was only inhibited by compound 14, whereas p38 phosphorylation was inhibited by compounds 13 and 4. Taken together, the compounds from C. tricuspidata showed potential to be further developed as therapeutic agents to suppress inflammation in skin cells.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea; (Y.-C.K.); (H.O.)
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea; (Y.-C.K.); (H.O.)
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (W.K.); (N.K.); (H.L.); (E.-R.W.)
- Correspondence: ; Tel.: +82-62-230-6386; Fax: +82-62-222-5414
| |
Collapse
|
6
|
Tang N, Liu L, Qiu H, Shi W, Mao D. Analysis of gene expression and functional changes of adrenal gland in a rat model of kidney yang deficiency syndrome treated with Sini decoction. Exp Ther Med 2018; 16:3107-3115. [PMID: 30214533 DOI: 10.3892/etm.2018.6521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
Sini decoction (SND), a well-known traditional Chinese medicine, has been used to treat kidney Yang deficiency for ~1,800 years. The present study aimed to evaluate the effects of SND treatment on hypothalamic-pituitary-adrenal axis hormones in a rat model of Yang deficiency and to explore the molecular mechanisms using microarray analysis of adrenal glands and in vitro adrenocortical cell culture systems. The results indicated that SND treatment recovered circulating serum cortisol, adrenocortical hormone (ACTH) and testosterone levels in a yang deficiency model. Immunohistochemical analysis of pituitary and hypothalamic tissues confirmed increased expression of ACTH and corticotropin-releasing factor, respectively, in response to SND treatment. Microarray analysis identified a marked upregulation of genes involved in ≤metabolic and stress response pathways in rat adrenal tissues in response to SND treatment, exemplified by cyclooxygenase-2 and nuclear factor (NF)-κB. In vitro, SND exerted a protective effect on mitochondria in response to H2O2 exposure also activated NF-κB and cyclic adenosine monophosphate response element binding protein reporter gene activity. These results contributed towards an improved understanding of how SND effectively alleviates the symptoms of kidney Yang deficiency syndrome at the molecular level.
Collapse
Affiliation(s)
- Nong Tang
- Department of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Lihong Liu
- Department of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Hua Qiu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Wei Shi
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| |
Collapse
|
7
|
Touj S, Houle S, Ramla D, Jeffrey-Gauthier R, Hotta H, Bronchti G, Martinoli MG, Piché M. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain. Neuroscience 2017; 352:9-18. [DOI: 10.1016/j.neuroscience.2017.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
|
8
|
Ye Y, Lin P, Zhang W, Tan S, Zhou X, Li R, Pu Q, Koff JL, Dhasarathy A, Ma F, Deng X, Jiang J, Wu M. DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2844-2853. [PMID: 28202616 PMCID: PMC5360514 DOI: 10.4049/jimmunol.1601001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Oxygen is supplied as a supportive treatment for patients suffering from acute respiratory distress syndrome. Unfortunately, high oxygen concentration increases reactive oxygen species generation, which causes DNA damage and ultimately cell death in the lung. Although 8-oxoguanine-DNA glycosylase (OGG-1) is involved in repairing hyperoxia-mediated DNA damage, the underlying molecular mechanism remains elusive. In this study, we report that ogg-1-deficient mice exhibited a significant increase of proinflammatory cytokines (TNF-α, IL-6, and IFN-γ) in the lung after being exposed to 95% oxygen. In addition, we found that ogg-1 deficiency downregulated (macro)autophagy when exposed to hyperoxia both in vitro and in vivo, which was evident by decreased conversion of LC3-I to LC3-II, reduced LC3 punctate staining, and lower Atg7 expression compared with controls. Using a chromatin immunoprecipitation assay, we found that OGG-1 associated with the promoter of Atg7, suggesting a role for OGG1 in regulation of Atg7 activity. Knocking down OGG-1 decreased the luciferase reporter activity of Atg7. Further, inflammatory cytokine levels in murine lung epithelial cell line cells were downregulated following autophagy induction by starvation and rapamycin treatment, and upregulated when autophagy was blocked using 3-methyladenine and chloroquine. atg7 knockout mice and Atg7 small interfering RNA-treated cells exhibited elevated levels of phospho-NF-κB and intensified inflammatory cytokines, suggesting that Atg7 impacts inflammatory responses to hyperoxia. These findings demonstrate that OGG-1 negatively regulates inflammatory cytokine release by coordinating molecular interaction with the autophagic pathway in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Yan Ye
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Weidong Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shirui Tan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Xikun Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 2211116, People's Republic of China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, CT 06510
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100005, People's Republic of China; and
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
9
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
10
|
Negi AK, Renuka, Bhatnagar A, Agnihotri N. Celecoxib and fish oil: a combination strategy for decreased inflammatory mediators in early stages of experimental mammary cancer. Inflammopharmacology 2016; 24:11-22. [PMID: 26749133 DOI: 10.1007/s10787-015-0259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/27/2022]
Abstract
Chronic inflammation has been directly linked to cancer progression. Therefore, current study was designed to understand the mechanism of action of chemo-preventive effect of celecoxib and fish oil on inflammatory mediators in experimental mammary carcinoma. Female Wistar rats were distributed into control and DMBA treated groups and further subdivided based on pretreatment with celecoxib and/or fish oil. Inflammation was measured by assessing expression of NF-κB, COX-2 and cytokines. The results indicated an elevation in expression of NF-κB, COX-2 and cytokines' levels (IFN-γ, IL-4 and IL-10) in DMBA group as compared to controls. On pretreatment with celecoxib and/or fish oil in DMBA treated animals, a significant reduction in expression of NF-κB, COX-2 and cytokines' levels was observed. The decrease was more pronounced with combinatorial regimen than either celecoxib or fish oil alone. To conclude, a combinatorial strategy of celecoxib and fish oil may generate an immune response against the tumor cell by altering cytokine repertoire and decrease the tendency of tumor cells to escape immune surveillance.
Collapse
Affiliation(s)
- Anjana Kumari Negi
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Renuka
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Archana Bhatnagar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A, Dhasarathy A, Wu M. Inhibition of p-IκBα Ubiquitylation by Autophagy-Related Gene 7 to Regulate Inflammatory Responses to Bacterial Infection. J Infect Dis 2015; 212:1816-26. [PMID: 26022442 DOI: 10.1093/infdis/jiv301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae causes serious infections and healthcare burdens in humans. We have previously reported that the deficiency of autophagy-related gene (Atg) 7 in macrophages (murine alveolar macrophage cell line [MH-S]) induced irregular host immunity against K. pneumoniae and worsened pathologic effects in the lung. In the current study, we investigated the molecular mechanism by which Atg7 influenced K. pneumoniae-induced inflammatory responses. METHODS Expression levels of Atg7, ubiquitin (Ub), and tumor necrosis factor (TNF) α and phosphorylation of IκBα (p-IκBα) were determined with immunoblotting. Ubiquitylation of p-IκBα was determined with immunoprecipitation. RESULTS We noted an interaction between Atg7 and p-IκBα, which was decreased in MH-S after K. pneumoniae infection, whereas the interaction between Ub and p-IκBα was increased. Knock-down of Atg7 with small interfering RNA increased p-IκBα ubiquitylation, promoted nuclear factor κB translocation into the nucleus, and increased the production of TNF-α. Moreover, knock-down of Ub with lentivirus-short hairpin RNA Ub particles decreased binding of p-IκBα to Ub and inhibited TNF-α expression in the primary alveolar macrophages and lung tissue of atg7-knockout mice on K. pneumoniae infection. CONCLUSIONS Loss of Atg7 switched binding of p-IκBα from Atg7 to Ub, resulting in increased ubiquitylation of p-IκBα and intensified inflammatory responses against K. pneumoniae. Our findings not only reveal a regulatory role of Atg7 in ubiquitylation of p-IκBα but also indicate potential therapeutic targets for K. pneumoniae control.
Collapse
Affiliation(s)
- Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Michael C Jundt
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Natalie Lichter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Alec Hidebrand
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Archana Dhasarathy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| |
Collapse
|
12
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
13
|
Matsuda A, Ishizaka S, Sato H, Oida K, Amagai Y, Jang H, Tanaka A, Matsuda H. Nuclear Factor-κB Inhibitor as a Preventive Factor of Digital Hypothermia Induced by Lipopolysaccharide in Horses. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Lou C, Takahashi K, Irimura T, Saiki I, Hayakawa Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int J Oncol 2014; 45:2085-91. [PMID: 25175557 DOI: 10.3892/ijo.2014.2624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-κB (NF-κB) activation has been implicated not only in carcinogenesis but also in cancer cell invasion and metastatic process; therefore, targeting the NF-κB pathway is an attractive strategy for controlling meta-stasis. Amongst 56 chemically defined compounds derived from natural products, we have identified a new phytochemical compound Hirsutine, which strongly suppresses NF-κB activity in murine 4T1 breast cancer cells. In accordance with the NF-κB inhibition, Hirsutine reduced the metastatic potential of 4T1 cells, as seen in the inhibition of the migration and invasion capacity of 4T1 cells. Hirsutine further inhibited the constitutive expression of MMP-2 and MMP-9 in 4T1 cells, and reduced the in vivo lung metastatic potential of 4T1 cells in the experimental model. Given that the migration of human breast cancer cells was also inhibited, our present study implies that Hirsutine is an attractive phytochemical compound for reducing metastasis potential of cancer cells by regulating tumor-promoting NF-κB activity.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kei Takahashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
15
|
Ye Y, Li X, Wang W, Ouedraogo KC, Li Y, Gan C, Tan S, Zhou X, Wu M. Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L355-63. [PMID: 24993132 DOI: 10.1152/ajplung.00046.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Klebsiella pneumoniae (Kp) is a Gram-negative bacterium that can cause serious infections in humans. Autophagy-related gene 7 (Atg7) has been implicated in certain bacterial infections; however, the role of Atg7 in macrophage-mediated immunity against Kp infection has not been elucidated. Here we showed that Atg7 expression was significantly increased in murine alveolar macrophages (MH-S) upon Kp infection, indicating that Atg7 participated in host defense. Knocking down Atg7 with small-interfering RNA increased bacterial burdens in MH-S cells. Using cell biology assays and whole animal imaging analysis, we found that compared with wild-type mice atg7 knockout (KO) mice exhibited increased susceptibility to Kp infection, with decreased survival rates, decreased bacterial clearance, and intensified lung injury. Moreover, Kp infection induced excessive proinflammatory cytokines and superoxide in the lung of atg7 KO mice. Similarly, silencing Atg7 in MH-S cells markedly increased expression levels of proinflammatory cytokines. Collectively, these findings reveal that Atg7 offers critical resistance to Kp infection by modulating both systemic and local production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Wenxue Wang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Kiswendsida Claude Ouedraogo
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Yi Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Changpei Gan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
16
|
Miyagi T, Shiotani B, Miyoshi R, Yamamoto T, Oka T, Umezawa K, Ochiya T, Takano M, Tahara H. DSE-FRET: A new anticancer drug screening assay for DNA binding proteins. Cancer Sci 2014; 105:870-4. [PMID: 24724610 PMCID: PMC4317927 DOI: 10.1111/cas.12420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-κB (NF-κB) is a key regulator of cancer progression and the inflammatory effects of disease. To identify inhibitors of DNA binding to NF-κB, we developed a new homogeneous method for detection of sequence-specific DNA-binding proteins. This method, which we refer to as DSE-FRET, is based on two phenomena: protein-dependent blocking of spontaneous DNA strand exchange (DSE) between partially double-stranded DNA probes, and fluorescence resonance energy transfer (FRET). If a probe labeled with a fluorophore and quencher is mixed with a non-labeled probe in the absence of a target protein, strand exchange occurs between the probes and results in fluorescence elevation. In contrast, blocking of strand exchange by a target protein results in lower fluorescence intensity. Recombinant human NF-κB (p50) suppressed the fluorescence elevation of a specific probe in a concentration-dependent manner, but had no effect on a non-specific probe. Competitors bearing a NF-κB binding site restored fluorescence, and the degree of restoration was inversely correlated with the number of nucleotide substitutions within the NF-κB binding site of the competitor. Evaluation of two NF-κB inhibitors, Evans Blue and dehydroxymethylepoxyquinomicin ([−]-DHMEQ), was carried out using p50 and p52 (another form of NF-κB), and IC50 values were obtained. The DSE-FRET technique also detected the differential effect of (−)-DHMEQ on p50 and p52 inhibition. These data indicate that DSE-FRET can be used for high throughput screening of anticancer drugs targeted to DNA-binding proteins.
Collapse
Affiliation(s)
- Toru Miyagi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan; Japanese Red Cross Kanto-koshinetsu Block Blood Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang J, Wu Q, Song S, Wan Y, Zhang R, Tai M, Liu C. Effect of hydrogen-rich water on acute peritonitis of rat models. Int Immunopharmacol 2014; 21:94-101. [PMID: 24793096 DOI: 10.1016/j.intimp.2014.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To study the effect of hydrogen-rich water (HRW) on acute peritonitis with three different rat models. METHODS Acute peritonitis was induced by three methods including intraperitoneal injection of lipopolysaccharide (LPS), rats' feces or cecal ligation and puncture (CLP) operation. For each model, male Sprague Dawley rats were used and distributed into saline control group, HRW control group, saline plus model group, and HRW plus model group. Saline or HRW (3 ml per rat) was orally administered by gavage for 7 days beforehand and 3 days after modeling. The efficacy was tested by detecting concentrations of white blood cells (WBCs), plasma endotoxin, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. The activities of malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) in visceral peritoneum tissues were also evaluated. Meanwhile, histopathology examination of visceral peritoneum was performed using hematoxylin and eosin staining. The expression and location of nuclear factor kappaB (NF-κB) in the visceral peritoneum were detected by immunohistochemistry. RESULTS Three models showed the same result that hydrogen-rich water had an efficient protective effect on acute peritonitis. HRW could significantly lower the levels of WBCs, plasma endotoxin and cytokines, enhance GSH activity and reduce MPO and MDA activities in the peritoneum tissue when compared with that of groups with only saline treated. Simultaneously, we found that HRW could also decrease the NF-κB expression in the peritoneum tissues. CONCLUSION Hydrogen-rich water could alleviate the severity of acute peritonitis, and it might perform this function by its anti-inflammation, anti-oxidation and anti-bacterial effects and reducing NF-κB expression in the peritoneum tissues.
Collapse
Affiliation(s)
- Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sidong Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruiyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Minghui Tai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Obstetrics and Gynecology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
18
|
TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food Chem Toxicol 2014; 66:56-64. [DOI: 10.1016/j.fct.2014.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 01/08/2023]
|
19
|
Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:690545. [PMID: 23710287 PMCID: PMC3654319 DOI: 10.1155/2013/690545] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.
Collapse
|
20
|
Nuclear factor κB down-regulates human UDP-glucuronosyltransferase 1A1: a novel mechanism involved in inflammation-associated hyperbilirubinaemia. Biochem J 2013; 449:761-70. [DOI: 10.1042/bj20121055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Jaundice or hyperbilirubinaemia is a common complication of sepsis. UGT1A1 (UDP-glucuronosyltransferase 1A1) is a critical gene for bilirubin metabolism and irinotecan detoxification. However, the molecular pathogenesis of hyperbilirubinaemia during inflammation needs to be further clarified. Human hepatic UGT1A1 expression was analysed by RT (reverse transcription)–PCR, qRT-PCR (quantitative real-time PCR) and Western blotting in response to LPS (lipopolysaccharide) stimulation. Transcription regulatory elements in the upstream promoter region of the human UGT1A1 gene were determined using EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation). The important role of the transcription regulatory element was examined using a luciferase assay, and was determined by qRT-PCR using a transcription factor activation inhibitor. LPS down-regulated the UGT1A1 mRNA expression in human hepatoma cell lines. A newly identified NF-κB (nuclear factor κB)-binding site was located on the upstream promoter region (−725/−716) of the human UGT1A1 gene. LPS-induced NF-κB activation and specific binding to the NF-κB-binding site can suppress human UGT1A1 promoter activity and human UGT1A1 expression. We demonstrated that LPS mediates the suppression of human UGT1A1 expression through specific binding of NF-κB to this newly identified NF-κB-binding site in the upstream promoter of the human UGT1A1 gene. The present study may partly explain the molecular pathogenesis of inflammation-associated hyperbilirubinaemia.
Collapse
|
21
|
Patterson AL, Squires EL, Hansen TR, Bouma GJ, Bruemmer JE. Gene profiling of inflammatory genes in day 18 endometria from pregnant and non-pregnant mares. Mol Reprod Dev 2012; 79:777-84. [DOI: 10.1002/mrd.22112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 11/05/2022]
|
22
|
Lipoxin receptor agonist, may be a potential treatment for hemorrhagic shock-induced acute lung injury. Med Hypotheses 2012; 79:92-4. [PMID: 22546755 DOI: 10.1016/j.mehy.2012.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
The main pathogenesis of acute lung injury induced by hemorrhagic shock is increasingly recognized as an inflammatory process. BML-111, a lipoxin receptor agonist, has been demonstrated to promote acute inflammatory resolution by reduction of pro-inflammatory cytokines, attenuation of neutrophilic infiltration, and increasing macrophage phagocytosis of apoptotic neutrophils. Meanwhile, lipoxins and lipoxin analogues have been reported to play pro-resolving and anti-inflammatory effects in many disease models including cerebral ischemia, dorsal air pouch, peritonitis, and so on. Therefore, we hypothesize that BML-111 may be implicated in pathogenesis of hemorrhagic shock-induced acute lung injury.
Collapse
|
23
|
Kim Y, Seo JH, Kim H. β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol (Tokyo) 2012; 57:216-23. [PMID: 21908944 DOI: 10.3177/jnsv.57.216] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are involved in the pathogenesis of gastric inflammation. Interleukin-8 (IL-8) is a potent mediator of the inflammatory response by activating and recruiting neutrophils to the site of infection. Oxidant-sensitive transcription factor NF-κB regulates the expression of IL-8 in the immune and inflammatory events. Carotenoids (carotenes and oxygenated carotenoids) show antioxidant and anti-inflammatory activities. Low intake of β-carotene leads to high risk of gastric cancer. Oxygenated carotenoid lutein inhibited NF-κB activation in experimental uveitis. The present study aims to investigate whether β-carotene and lutein inhibit H(2)O(2)-induced activation of NF-κB and expression of IL-8 in gastric epithelial AGS cells. The cells were treated with carotenoids 2 h prior to the treatment of H(2)O(2). mRNA expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR analyses. IL-8 level in the medium was determined by enzyme-linked immunosorbent assay. NF-κB activation was assessed by electrophoretic mobility shift assay. ROS levels of the cells were detected by confocal microscopic analysis for fluorescent dichlorofluorescein. As a result, H(2)O(2 )induced the activation of NF-κB and expression of IL-8 in AGS cells time-dependently. β-Carotene and lutein showed inhibitory effects on H(2)O(2)-induced increase in intracellular ROS levels, activation of NF-κB, and IL-8 expression in AGS cells. In conclusion, supplementation of carotenoids such as β-carotene and lutein may be beneficial for the treatment of oxidative stress-mediated gastric inflammation.
Collapse
Affiliation(s)
- Youngha Kim
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
24
|
Impellizzeri D, Mazzon E, Di Paola R, Galuppo M, Bramanti P, Zhang J, Bobb K, Monie D, Meshulam J, Sliskovic D, Cuzzocrea S. PBS-1086, a Rel Inhibitor of NF-κB, Ameliorates Collagen-Induced Arthritis in Mice. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The family of nuclear factor-kappaB (NF-κB) transcription factors is intimately involved in the regulation of expression of numerous genes in the setting of the inflammatory response. Inflammation, cartilage degradation, cell proliferation, angiogenesis and pannus formation are hallmarks of the pathogenesis of both collagen-induced arthritis (CIA) in rodents and rheumatoid arthritis (RA) in humans. The aim of this study is to investigate the effect of PBS-1086, a ReI inhibitor of NF-κB, on the modulation of the inflammatory response in mice subjected to CIA in comparison to the effect of etanercept. CIA was induced in mice by an intradermal injection of bovine type II collagen (CII) emulsion and complete Freund's adjuvant (CFA) at the base of the tail. On day 21, a second injection of CII in CFA was administered. Mice developed erosive hind paw arthritis when immunised with CII in CFA. Macroscopic clinical evidence of CIA first appeared as peri-articular erythema and oedema in the hind paws. The incidence of CIA was 100% by day 28 in the CII challenged mice and the severity of CIA progressed over a 35-day period with a resorption of bone. The histopathology of CIA included erosion of the cartilage at the joint. Treatment with PBS-1086 starting at the onset of arthritis (day 21) ameliorated the clinical signs at days 21–35 and improved histological status in the joint and paw. In addition, it also reduced the neutrophil infiltration which is a key mediator of RA. In this study, we demonstrate that PBS-1086 exerts an anti-inflammatory effect during chronic inflammation and ameliorates the tissue damage associated with CIA. The anti-inflammatory activities of PBS-1086 are comparable to those of etanercept treatment.
Collapse
Affiliation(s)
- D. Impellizzeri
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - E. Mazzon
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - R. Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - M. Galuppo
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - P. Bramanti
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - J. Zhang
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | - K. Bobb
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | - D. Monie
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | - J. Meshulam
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | | | - S. Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Yin W, Wang X, Ding Y, Peng H, Liu YL, Wang RG, Yang YL, Xiong JH, Kang SX. Expression of nuclear factor -κBp65 in mononuclear cells in Kawasaki disease and its relation to coronary artery lesions. Indian J Pediatr 2011; 78:1378-82. [PMID: 21688043 DOI: 10.1007/s12098-011-0478-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 05/09/2011] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the association of nuclear factor-kappa B (NF-κB) and complications of Kawasaki disease (KD) in Chinese children. METHODS Based on color Doppler examination results, 86 affected children in the KD group were divided into two groups: 39 cases in coronary artery lesion group (CALs subgroup) and 47 cases in non-coronary artery lesion group (Non-CALs subgroup). Infection control group consisted of 65 cases of hospitalized infected children with fever, having same age as the affected children. Healthy control group consisted of 102 cases of healthy children of the same age, visiting the hospital for physical examination. Western blot was used to detect the expression of NF-кBp65 and IкBα proteins in periphery blood mononuclear cells (PBMC); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TNF-α and MCP-1 mRNA. RESULTS The value of NF-kBp65 (optical density) in the PBMC cell nuclei in the KD group was significantly higher than that in the two control groups (p < 0.01). The value of NF-κBp65 in the CALs subgroup was significantly higher than that in the Non-CALs subgroup (p < 0.05). The value of NF-κBp65 inhibitor IκBα in the KD group was significantly lower than that in the infection control group and the healthy control group (p < 0.01). There was a positive correlation between the ratio nucleus NF-κBP65/ IκBα and the severity degree of CALs(r = 0.536, p < 0.05). The value of TNF-α mRNA (O.D ratio) in the KD group was significantly higher than that in the two control groups (P < 0.01), and the value of TNF-α mRNA in the CALs subgroup was significantly higher than that in the Non-CALs subgroup (P < 0.05). The value of MCP-1 mRNA in the KD group was significantly higher than that in the two control groups (P < 0.01), and the value of MCP-1 mRNA in the CALs subgroup was significantly higher than that in the Non-CALs subgroup (P < 0.05). CONCLUSIONS NF-κBp65 participates in the pathogenesis of vasculitis of KD in acute stage, and may aggravate the vasculitis in KD and plays a part in the formation of CALs.
Collapse
Affiliation(s)
- Wei Yin
- Department of Infectious and Immunological Diseases, Wuhan Children's Hospital, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Krzyzaniak MJ, Peterson CY, Cheadle G, Loomis W, Wolf P, Kennedy V, Putnam JG, Bansal V, Eliceiri B, Baird A, Coimbra R. Efferent vagal nerve stimulation attenuates acute lung injury following burn: The importance of the gut-lung axis. Surgery 2011; 150:379-89. [PMID: 21783215 DOI: 10.1016/j.surg.2011.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to assess acute lung injury when protection to the gut mucosal barrier offered by vagus nerve stimulation is eliminated by an abdominal vagotomy. METHODS Male balb/c mice were subjected to 30% total body surface area steam burn with and without electrical stimulation to the right cervical vagus nerve. A cohort of animals were subjected to abdominal vagotomy. Lung histology, myeloperoxidase and ICAM-1 immune staining, myeloperoxidase enzymatic assay, and tissue KC levels were analyzed 24 hours after burn. Additionally, lung IkB-α, NF-kB immunoblots, and NF-kB-DNA binding measured by photon emission analysis using NF-kB-luc transgenic mice were performed. RESULTS Six hours post burn, phosphorylation of both NF-kB p65 and IkB-α were observed. Increased photon emission signal was seen in the lungs of NF-kB-luc transgenic animals. Vagal nerve stimulation blunted NF-kB activation similar to sham animals whereas abdominal vagotomy eliminated the anti-inflammatory effect. After burn, MPO positive cells and ICAM-1 expression in the lung endothelium was increased, and lung histology demonstrated significant injury at 24 hours. Vagal nerve stimulation markedly decreased neutrophil infiltration as demonstrated by MPO immune staining and enzyme activity. Vagal stimulation also markedly attenuated acute lung injury at 24 hours. The protective effects of vagal nerve stimulation were reversed by performing an abdominal vagotomy. CONCLUSION Vagal nerve stimulation is an effective strategy to protect against acute lung injury following burn. Moreover, the protective effects of vagal nerve stimulation in the prevention of acute lung injury are eliminated by performing an abdominal vagotomy. These results establish the importance of the gut-lung axis after burn in the genesis of acute lung injury.
Collapse
Affiliation(s)
- Michael J Krzyzaniak
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California, San Diego School of Medicine, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
PPAR Regulation of Inflammatory Signaling in CNS Diseases. PPAR Res 2011; 2008:658520. [PMID: 18670616 PMCID: PMC2490815 DOI: 10.1155/2008/658520] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/22/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases.
Collapse
|
28
|
Inhibition of immune activation by a novel nuclear factor-kappa B inhibitor in HTLV-I-associated neurologic disease. Blood 2011; 117:3363-9. [PMID: 21212284 DOI: 10.1182/blood-2010-10-306571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human T-lymphotropic virus type I (HTLV-I) causes a chronic inflammatory disorder of the central nervous system termed HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-I encodes a protein known to activate several host-signaling pathways involved in inflammation, such as the nuclear factor-κB (NF-κB). The contribution of the NF-κB pathway to the pathogenesis of HAM/TSP, however, has not been fully defined. We show evidence of canonical NF-κB activation in short-term cultures of peripheral blood mononuclear cells (PBMCs) from subjects with HAM/TSP. NF-κB activation was closely linked to HTLV-I viral protein expression. The NF-κB activation in HAM/TSP PBMCs was reversed by a novel small-molecule inhibitor that demonstrates potent and selective NF-κB antagonist activity. Inhibition of NF-κB activation led to a reduction in the expression of lymphocyte activation markers and resulted in reduced cytokine signaling in HAM/TSP PBMCs. Furthermore, NF-κB inhibition led to a reduction in spontaneous lymphoproliferation, a key ex vivo correlate of the immune activation associated with HAM/TSP. These results indicate that NF-κB activation plays a critical upstream role in the immune activation of HAM/TSP, and identify the NF-κB pathway as a potential target for immunomodulation in HAM/TSP.
Collapse
|
29
|
Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NMT, Irino Y, Komatsu M, Tanaka K, Kutsumi H, Azuma T, Yoshida M. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Arch Biochem Biophys 2010; 506:223-35. [PMID: 21156154 DOI: 10.1016/j.abb.2010.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 01/06/2023]
Abstract
Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development and homeostasis. There is growing evidence that impaired autophagy leads to the pathogenesis of diverse diseases. However, the role of autophagy in intestinal epithelium is not clearly understood, although previous studies have pointed out the possibility for the relationships of autophagy with bowel inflammation. In this study, we investigated the involvement of autophagy in intestinal epithelium with inflammatory responses. We generated the mice with a conditional deletion of Atg7, which is one of the autophagy regulated gene, in intestinal epithelium. In Atg7-deficient small intestinal epithelium, LPS-induced production of TNF-α and IL-1β mRNA was enhanced in comparison to the control small intestinal tissues. In addition, the degree of LPS-induced activation of NF-κB was promoted in Atg7-deficient intestinal epithelium. These results demonstrate that autophagy can attenuate endotoxin-induced inflammatory responses in intestinal epithelium resulting in the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Yoshimi Fujishima
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li F, Wang L, Zhang H, Zheng P, Zhao J, Qiu L, Zhang Y, Song L. Molecular cloning and expression of a Relish gene in Chinese mitten crab Eriocheir sinensis. Int J Immunogenet 2010; 37:499-508. [DOI: 10.1111/j.1744-313x.2010.00954.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Gong QH, Wang Q, Pan LL, Liu XH, Huang H, Zhu YZ. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol Biochem Behav 2010; 96:52-8. [DOI: 10.1016/j.pbb.2010.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
32
|
Costantini TW, Deree J, Martins J, Putnam JG, de Campos T, Coimbra R. A novel fluid resuscitation strategy modulates pulmonary transcription factor activation in a murine model of hemorrhagic shock. Clinics (Sao Paulo) 2010; 65:621-8. [PMID: 20613939 PMCID: PMC2898548 DOI: 10.1590/s1807-59322010000600010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Combining the hemodynamic and immune benefits of hypertonic saline with the anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline (HSPTX) as a hemorrhagic shock resuscitation strategy reduces lung injury when compared with the effects of Ringer's lactate (RL). We hypothesized that HSPTX exerts its anti-inflammatory effects by interfering with nuclear factor kappa B/cAMP response element-binding protein (NF-kappaB-CREB) competition for the coactivator CREB-binding protein (CBP) in lung tissue, thus affecting pro-inflammatory mediator production. METHODS Male Sprague-Dawley rats underwent 60 minutes of hemorrhagic shock to reach a mean arterial blood pressure of 35 mmHg followed by resuscitation with either RL or HSPTX (7.5% HS + 25 mg/kg PTX). After four hours, lung samples were collected. NF-kappaB activation was assessed by measuring the levels of phosphorylated cytoplasmic inhibitor of kappa B (I-kappaB) and nuclear NF-kappaB p65 by western blot. NF-kappaB and CREB DNA-binding activity were measured by electrophoretic mobility shift assay (EMSA). Competition between NF-kappaB and CREB for the coactivator CBP was determined by immunoprecipitation. Interleukin-8 (IL-8) levels in the lung were measured by ELISA. RESULTS RL resuscitation produced significantly higher levels of lung IL-8 levels, I-kappaB phosphorylation, p65 phosphorylation, and NF-kappaB DNA binding compared with HSPTX. NF-kappaB-CBP-binding activity was similar in both groups, whereas CREB-CBP-binding activity was significantly increased with HSPTX. CREB-DNA binding-activity increased to a greater level with HSPTX compared with RL. DISCUSSION HSPTX decreases lung inflammation following hemorrhagic shock compared with conventional resuscitation using RL through attenuation of NF-kappaB signaling and increased CREB-DNA binding activity. HSPTX may have therapeutic potential in the attenuation of ischemia-reperfusion injury observed after severe hemorrhagic shock.
Collapse
|
33
|
Nrf2 and NF-κB and Their Concerted Modulation in Cancer Pathogenesis and Progression. Cancers (Basel) 2010; 2:483-97. [PMID: 24281078 PMCID: PMC3835087 DOI: 10.3390/cancers2020483] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species, produced by oxidative stress, are implicated in the initiation, promotion, and malignant conversion of carcinogenesis through activation/suppression of redox-sensitive transcription factors. NF-E2-related factor 2 (Nrf2) encodes for antioxidant and general cytoprotection genes, while NF-κB regulates the expression of pro-inflammatory genes. A variety of anti-inflammatory or anti-carcinogenic phyto-chemicals suppress NF-κB signalling and activate the Nrf2-ARE pathway. In this review we consider the role of Nrf2 and NF-κB in cancer pathogenesis and progression, focusing on their concerted modulation and potential cross-talk.
Collapse
|
34
|
Mitsui S, Torii K, Fukui H, Tsujimura K, Maeda A, Nose M, Nagatsu A, Mizukami H, Morita A. The herbal medicine compound falcarindiol from Notopterygii Rhizoma suppresses dendritic cell maturation. J Pharmacol Exp Ther 2010; 333:954-60. [PMID: 20215408 DOI: 10.1124/jpet.109.162305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dendritic cells (DCs) are important for regulating the immune response. We report an herbal medicine compound called falcarindiol that affects DC function. Ethanol extracts of 99 crude drugs that are the main components of 210 traditional Japanese medicines (Kampo medicine) approved by the Ministry of Health, Labor and Welfare in Japan were prepared and screened using the murine epidermal-derived Langerhans cell line XS106. Notopterygii Rhizoma strongly suppressed major histocompatibility complex (MHC) class II expression in XS106 cells. Activity-guided fractionation led to the isolation and identification of falcarindiol as a principal active compound in Notopterygii Rhizoma. Falcarindiol (1-5 microM) dose-dependently suppressed MHC II expression in XS106 cells. Fresh-isolated bone marrow-derived DCs were examined for the production of MHC II, CD80, CD86, interleukin (IL)-12p70, and IL-10. Treatment of bone marrow-derived DCs with 5 muM falcarindiol significantly inhibited lipopolysaccharide-induced phenotype activation and cytokine secretion and inhibited MHC II expression by CD40 ligation, but not phorbol 12-myristate 13-acetate + ionomycin or IL-12. Falcarindiol inhibited DC maturation by blocking the canonical pathway of nuclear factor-kappaB and phosphorylated p38. Topical application of 0.002 and 0.01% falcarindiol before sensitization dose-dependently suppressed delayed-type hypersensitivity to ovalbumin (p < 0.01). Falcarindiol induces immunosuppressive effects in vitro and in vivo and might be a novel therapy for autoimmune or allergic diseases.
Collapse
Affiliation(s)
- Seika Mitsui
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang P, Li Y, Li J. Influence of hydroxyethyl starch on healing of colonic anastomosis in a rat model of peritonitis. J INVEST SURG 2010; 22:375-82. [PMID: 19842893 DOI: 10.1080/08941930903214727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND This study was designed to evaluate the role of different intravascular volume replacement regimens of HES 130/0.4 on wound healing process in left colonic anastomoses in the presence of intra-abdominal sepsis induced by murine model of cecal ligation and puncture (CLP). METHODS The left colonic anastomosis was performed in 40 rats that were divided into five groups (n = 8/group): saline controls (30 ml/kg); CLP plus saline (30 ml/kg); CLP plus HES (7.5, 15, or 30 ml/kg, respectively). Saline or HES was treated before the construction of left colonic anastomosis and on a regular daily basis. Anastomotic bursting pressures were measured in vivo on day 5. Tissue samples were obtained for analyses of hydroxyproline (HP) contents, myeloperoxidase (MPO) activity, malondialdehyde (MDA), reduced glutathione (GSH) levels, and nuclear factor-kappa B (NF-kappa B) activation. The plasma levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 were also measured. RESULTS Intra-abdominal sepsis led to significant decreases in colonic anastomotic bursting pressures, and perianastomotic tissue HP contents and GSH levels, along with increases in perianastomotic tissue MPO activity, MDA levels and NF-kappa B activation and plasma levels of TNF-alpha and IL-6. After treated with HES, these provoked perianastomotic tissue MPO activity, MDA levels, NF-kappa B activation, and plasma levels of TNF-alpha and IL-6 were suppressed and GSH levels were restored, especially in 15 ml/kg HES group. Without obvious influence on systemic nutritional condition, HES 15 ml/kg but not HES 7.5 ml/kg significantly increased anastomotic bursting pressures, and perianastomotic tissue HP contents. However, HES 30 ml/kg even led to adverse effects on anastomotic bursting pressures. CONCLUSIONS This study showed that moderate doses (15 ml/kg) of HES 130/0.4 administration significantly prevented this intraperitoneal sepsis-induced impaired anastomotic healing of the left colon. It also suggested the possibility of poorer anastomotic healing receiving HES at higher doses (30 ml/kg). Clearly, HES 130/0.4 now should not be recommended to use at a high doses postoperatively in sepsis.
Collapse
Affiliation(s)
- Pengfei Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | |
Collapse
|
36
|
Effect of the combination of fibrin glue and growth hormone on intestinal anastomoses in a pig model of traumatic shock associated with peritonitis. World J Surg 2010; 33:567-76. [PMID: 19132439 DOI: 10.1007/s00268-008-9889-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intra-abdominal sepsis and hemorrhagic shock have been found to impair the healing of intestinal anastomoses. The present study examined whether fibrin glue (FG) and recombinant human growth hormone (GH) can improve intestinal primary anastomotic healing in a pig model of traumatic shock associated with peritonitis. Further, the study was designed to investigate the probable mechanism of these agents. METHODS Female anesthetized pigs were divided into five groups. Group sham (n = 7), pigs without traumatic shock had small bowel resection anastomoses; group control (n = 14), pigs had bowel resection anastomoses 24 h after abdominal gunshot plus exsanguination/resuscitation; group FG (n = 14); group GH (n = 14); group FG/GH (n = 14), pigs received FG, recombinant GH, or both, respectively. Recombinant GH was given daily for 7 days. Blood samples were collected daily for measurement of interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha levels. Investigations also included adhesion formation, anastomotic bursting pressure, tensile strength, hydroxyproline (HP) content, myeloperoxidase (MPO), tumor necrosis factor (NF)-kappaB activity, and histology analysis 10 days later. A second experiment (n = 20 subjects assigned to each of the five groups) was designed to study survival during the first 20 postoperative days. RESULTS Traumatic shock associated with peritonitis led to significant decreases in intestinal anastomotic bursting pressures, tensile strengths, and tissue hydroxyproline content, along with severe adhesion formation, increases in MPO activity and NF-kappaB activity, and plasma levels of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). Both FG and recombinant GH treatment led to early significant increases in plasma levels of TNF-alpha and IL-6. At the same time, FG alone, unlike recombinant GH alone, led to significant increases in anastomotic bursting pressures, tensile strength, and tissue HP content, along with decreases in anastomotic MPO and NF-kappaB activity and later plasma levels of TNF-a and IL-6. The FG group also developed more marked neoangiogenesis and collagen deposition on histology analysis. However, FG and recombinant GH synergistically effected improved anastomotic healing, abolishing the infaust effects promoted by recombinant GH. Adhesion formation after intestinal anastomosis could not be lowered by FG alone or by the combination of FG and recombinant GH. Both FG alone and FG/GH, in contrast to GH alone and control treatment, significantly prolonged the survival time of experimental animals. CONCLUSIONS We found that FG, but not recombinant GH, could lower the risk of anastomotic leakage, improve intestinal anastomotic healing, and prolong survival in a pig model of traumatic shock associated with peritonitis. Both FG and recombinant GH synergistically effected improved intestinal anastomotic healing. It was suggested that GH could be used locally to promote intestinal anastomotic healing in intra-abdominal peritonitis.
Collapse
|
37
|
Gong QH, Li F, Jin F, Shi JS. Resveratrol Attenuates Neuroinflammation-mediated Cognitive Deficits in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Fei Li
- Department of Pharmacology, Zunyi Medical College
| | - Feng Jin
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Jing-Shan Shi
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| |
Collapse
|
38
|
Nucleic acid drugs for prevention of cardiac rejection. J Biomed Biotechnol 2009; 2009:916514. [PMID: 20069118 PMCID: PMC2804055 DOI: 10.1155/2009/916514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/07/2009] [Accepted: 10/11/2009] [Indexed: 12/28/2022] Open
Abstract
Heart transplantation has been broadly performed in humans. However, occurrence of acute and chronic rejection has not yet been resolved. Several inflammatory factors, such as cytokines and adhesion molecules, enhance the rejection. The graft arterial disease (GAD), which is a type of chronic rejection, is characterized by intimal thickening comprised of proliferative smooth muscle cells. Specific treatments that target the attenuation of acute rejection and GAD formation have not been well studied in cardiac transplantation. Recent progress in the nucleic acid drugs, such as antisense oligodeoxynucleotides (ODNs) to regulate the transcription of disease-related genes, has important roles in therapeutic applications. Transfection of cis-element double-stranded DNA, named as “decoy,” has been also reported to be a useful nucleic acid drug. This decoy strategy has been not only a useful method for the experimental studies of gene regulation but also a novel clinical strategy. In this paper, we reviewed the experimental results of NF-κB, E2F, AP-1, and STAT-1 decoy and other ODNs using the experimental heart transplant models.
Collapse
|
39
|
Wang P, Gong G, Li Y, Li J. Hydroxyethyl starch 130/0.4 augments healing of colonic anastomosis in a rat model of peritonitis. Am J Surg 2009; 199:232-9. [PMID: 19897171 DOI: 10.1016/j.amjsurg.2009.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study was designed to investigate the role of hydroxyethyl starch (HES) 130/0.4 on the wound healing process in left colonic anastomoses in the presence of intra-abdominal sepsis. METHODS The left colonic anastomosis was performed in 40 rats that were divided into 4 groups: (1) group SHAM, laparatomy plus cecal mobilization (n = 10); (2) group SHAM + HES, HES130/.4-treated controls (n = 10); and (3) group CLP, cecal ligation and puncture (n = 10); (4) group CLP + HES, CLP plus HES130/.4 (n = 10). HES130/.4 was administrated before the construction of colonic anastomosis, 15 mL/kg/24 hours and daily for 4 postoperative days. Anastomotic bursting pressures (ABPs) were measured in vivo on day 5. Tissue samples were obtained for analyses of hydroxyproline (HP) contents, myeloperoxidase (MPO) activity, malondialdehyde (MDA), reduced glutathione (GSH) levels, and nuclear factor-kappaB (NF-kappaB) activation. The plasma levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, d-dimer, and protein C (PC) were also measured. Anastomotic granulation tissues were fixed for transmission electron microscopic (TEM) analyses. RESULTS Intra-abdominal sepsis led to significant decreases in colonic anastomotic bursting pressures, perianastomotic tissue HP contents, GSH levels, and plasma levels of PC, along with increases in perianastomotic tissue MPO activity, MDA levels, NF-kappaB activation, and plasma levels of TNF-alpha, IL-6, and d-dimer. However, HES130/.4 treatment significantly inhibited all these responses. TEM analyses revealed that there was a trend toward a higher density of fibroblast distribution and a higher rate of fibroblast activation in the SHAM- and HES 130/0.4-treated animals, compared with the CLP group. CONCLUSIONS This study showed that moderate doses (15 mL/kg) of HES 130/0.4 administration significantly prevented this intraperitoneal sepsis-induced impaired anastomotic healing of the left colon. This beneficial effect of HES 130/0.4 can be mainly attributed to its anti-inflammatory and antioxidant properties and beneficial effects of modulating endothelial-associated coagulopathy.
Collapse
Affiliation(s)
- Pengfei Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, 305 E. Zhongshan Rd., Nanjing, 210,002, China
| | | | | | | |
Collapse
|
40
|
Kure I, Nishiumi S, Nishitani Y, Tanoue T, Ishida T, Mizuno M, Fujita T, Kutsumi H, Arita M, Azuma T, Yoshida M. Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. J Pharmacol Exp Ther 2009; 332:541-8. [PMID: 19846590 DOI: 10.1124/jpet.109.159046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipoxins, which are bioactive lipids derived from omega-6 polyunsaturated fatty acids, play important roles in various biological functions. In this study, the anti-inflammatory effects of lipoxin A(4) (LXA4; 5S,6R,15S-trihydroxy-7,9,13-trans-11-eicosatetraenoic acid) were investigated in in vitro cultured cell experiments and in vivo animal experiments. In mouse peritoneal macrophages and mouse macrophage cell line RAW264.7 cells, LXA4 reduced the lipopolysaccharide (LPS)-induced increase in the mRNA expression level of tumor necrosis factor (TNF)-alpha. LXA4 also reduced the LPS-induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). In an LPS-induced acute inflammation mouse model, the injection of LXA4 at 5 microg/kg b.wt. led to down-regulation of the TNF-alpha level in serum and the TNF-alpha mRNA expression level in intestinal epithelial cells. Moreover, LXA4 reduced the LPS-caused phosphorylation of IkappaB kinases, IkappaB, and NF-kappaB, the degradation of IkappaB, and the nuclear translocation of NF-kappaB in intestinal epithelial cells. In a coculture system using RAW264.7 cells and human colon carcinoma cell line Caco-2 cells, treatment with LXA4 to Caco-2 cells led to reduction of LPS-evoked TNF-alpha production in RAW264.7 cells and interleukin-8 mRNA expression in Caco-2 cells. These results indicate that LXA4 exerts anti-inflammatory effects through inhibition of NF-kappaB activation, and, therefore, LXA4 may be useful as a therapeutic strategy against intestinal mucosa inflammation.
Collapse
Affiliation(s)
- Izumi Kure
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Charalambous MP, Lightfoot T, Speirs V, Horgan K, Gooderham NJ. Expression of COX-2, NF-kappaB-p65, NF-kappaB-p50 and IKKalpha in malignant and adjacent normal human colorectal tissue. Br J Cancer 2009; 101:106-15. [PMID: 19513071 PMCID: PMC2713702 DOI: 10.1038/sj.bjc.6605120] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND: Cyclooxygenase-2 (COX-2) is selectively over-expressed in colorectal tumours. The mechanism of COX-2 induction in these tumours is not fully understood, although evidence suggests a possible link between nuclear factor (NF)-κB and COX-2. We hypothesised an association between COX-2 expression and NF-κB-p65, NF-κB-p50 and IκB-kinase-α (IKKα) in both epithelial and stromal cells in human colorectal cancer. Methods: Using immunohistochemistry, we measured COX-2, NF-κB-p65, NF-κB-p65 nuclear localisation sequence (NLS), NF-κB-p50, NF-κB-p50 NLS and IKKα protein expression in matched colorectal biopsy samples comprising both non-tumour and adjacent tumour tissue from 32 patients with colorectal cancer. Results: We have shown that stromal cells of malignant and surrounding normal colorectal tissue express COX-2. In all cell types of malignant tissue, and in vascular endothelial cells (VECs) of neighbouring normal tissue, COX-2 expression was strongly associated with NF-κB-p65 expression (Pearson's correlation, P=0.019 for macrophages, P=0.001 for VECs, P=0.002 for fibroblasts (malignant tissue), and P=0.011 for VECs (non-malignant tissue)) but not NF-κB-p50 or IKKα. Conclusions: These data suggest that in these cells COX-2 induction may be mediated through activation of the canonical NF-κB pathway. Finally, the lack of association between COX-2, NF-κB-p65 or IKKα in stromal cells with the clinical severity of colorectal cancer as determined by Duke's stage, suggests that COX-2, NF-κB-p65 and IKKα expression are possibly early post-initiation events, which could be involved in tumour progression.
Collapse
Affiliation(s)
- M P Charalambous
- Leeds Institute of Molecular Medicine, Wellcome Trust, St James's University Hospital, Leeds, UK
| | | | | | | | | |
Collapse
|
42
|
Sourris KC, Lyons JG, de Courten MP, Dougherty SL, Henstridge DC, Cooper ME, Hage M, Dart A, Kingwell BA, Forbes JM, de Courten B. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals. Diabetes 2009; 58:1259-65. [PMID: 19258436 PMCID: PMC2682665 DOI: 10.2337/db08-1725] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link between CLAIS and insulin resistance. RESEARCH DESIGN AND METHODS Adiposity (dual-energy X-ray absorptiometry), waist-to-hip ratio (WHR), and insulin sensitivity (M, hyperinsulinemic-euglycemic clamp) were measured in 22 healthy nondiabetic volunteers (aged 29 +/- 11 years, body fat 28 +/- 11%). NF-kappaB activity (DNA-binding assay) and JNK1/2 activity (phosphorylated JNK) were assessed in biopsies of the vastus lateralis muscle and subcutaneous adipose tissue and in peripheral blood mononuclear cell (PBMC) lysates. RESULTS NF-kappaB activities in PBMCs and muscle were positively associated with WHR after adjustment for age, sex, and percent body fat (both P < 0.05). NF-kappaB activity in PBMCs was inversely associated with M after adjustment for age, sex, percent body fat, and WHR (P = 0.02) and explained 16% of the variance of M. There were no significant relationships between NF-kappaB activity and M in muscle or adipose tissue (both NS). Adipose-derived JNK1/2 activity was not associated with obesity (all P> 0.1), although it was inversely related to M (r = -0.54, P < 0.05) and explained 29% of its variance. When both NF-kappaB and JNK1/2 were examined statistically, only JNK1/2 activity in adipose tissue was a significant determinant of insulin resistance (P = 0.02). CONCLUSIONS JNK1/2 activity in adipose tissue but not NF-kappaB activity in PBMCs is an independent determinant of insulin resistance in healthy individuals.
Collapse
Affiliation(s)
- Karly C. Sourris
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jasmine G. Lyons
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | - Mark E. Cooper
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle Hage
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Anthony Dart
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | - Barbora de Courten
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Corresponding author: Barbora de Courten,
| |
Collapse
|
43
|
Jung WK, Heo SJ, Jeon YJ, Lee CM, Park YM, Byun HG, Choi YH, Park SG, Choi IW. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4439-46. [PMID: 19408937 DOI: 10.1021/jf9003913] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To identify the neuroprotective effect of dieckol, a hexameric compound of phloroglucinol isolated from marine brown alga, Ecklonia cava , this study investigated the anti-inflammatory effect of dieckol on lipopolysaccharide (LPS)-stimulated murine BV2 microglia and elucidated the molecular mechanism. The results showed that dieckol suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner, without causing cytotoxicity. It also significantly reduced the generation of proinflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Moreover, dieckol significantly reduced LPS-induced nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinases (MAPKs) activation, as well as reactive oxygen species (ROS) production. Taken together, the inhibition of LPS-induced NO and PGE(2) production might be due to the suppression of NF-κB and p38 MAPK signal pathway and, at least in part, by inhibiting the generation of ROS. Hence, these effects of dieckol might assist therapeutic treatment for neurodegenerative diseases that are accompanied by microglial activation.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Marine Life Science and Marine Life Research Center, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang P, Gong G, Wei Z, Li Y. Ethyl pyruvate prevents intestinal inflammatory response and oxidative stress in a rat model of extrahepatic cholestasis. J Surg Res 2009; 160:228-35. [PMID: 19628226 DOI: 10.1016/j.jss.2009.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/01/2009] [Accepted: 03/13/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ringer's ethyl pyruvate solution (REPS) has been shown to ameliorate liver injury in a murine model of extrahepatic cholestasis. The goal of the present investigation was to gain additional information about whether infusing REPS instead of Ringer's lactate solution (RLS) after inducing obstructive jaundice would be beneficial to intestinal barrier function, inflammatory response, and oxidative stress. METHODS Male Sprague Dawley rats were divided into three groups: Group Sham (n=6), sham-treated controls; Group RLS (n=9), common bile duct ligation (CBDL) plus RLS; and Group REPS (n=9), CBDL plus REPS. On 14 d after BDL, the rats were sacrificed and intestinal permeability was analyzed. Ileal IL-6 and TNF-alpha levels, malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), and NF-kappaB activity were determined. Histologic examination and apoptosis of ileum were also examined. RESULTS Relative to sham-treated controls, CBDL in RLS-treated rats were associated with increased intestinal permeability to FITC-labeled dextran (4.51+/-0.85 versus 0.44+/-0.18, P<0.01), histopathologic damage and apoptosis (68.4+/-13.4 versus 6.7+/-1.9 pre-1000 villi cells, P<0.01). IL-6 and TNF-alpha level, MDA, MPO, and NF-kappaB activity in ileal tissues were also promoted, along with decreased GSH levels. Treatment with REPS significantly decreased intestinal permeability (3.37+/-0.71, P<0.01) and apoptosis (42.8+/-14.3 pre-1000 villi cells, P<0.01). Other changes were also significantly attenuated by treatment with REPS after CBDL. CONCLUSIONS The present study demonstrates that administration of REPS, but not RLS, maintains intestinal barrier function and reduces intestinal oxidative damage, inflammatory response, and apoptosis in cholestatic rats. This effect of ethyl pyruvate may be useful for preventing intestinal injury in patients with biliary obstruction.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
45
|
Abstract
Acute lung injury (ALI) has been documented clinically following several pathological states such as trauma, septic shock and pneumonia. The histopathological characteristics, paired with the production of a number of cellular pro-inflammatory mediators, play a crucial role in the progression of ALI. During ALI, polymorphonuclear neutrophil (PMN)-mediated apoptosis is delayed by macrophages, possibly via effects on the Fas/FasL mediated pathway, leading to the accumulation of these cells at the site of injury and inflammation. The transcriptional regulation of NFκB, CREB, and AP-1 also regulates the pathogenesis of ALI. During sepsis and septic shock, we found evidence of infiltrating leukocytes in the alveolar spaces along with an increased number of TUNEL-positive cells in the lung sections. We also observed an increased expression of TRADD and Bax/Bcl2 ratio at 7 days post-sepsis. In contrast, the NFκB/IκB ratio increased at 1 day post-sepsis. Together, these data provide evidence illustrating the induction of apoptosis in lung tissues subsequent to the onset of polymicrobial sepsis. The results support the concept that the upregulation of apoptosis following lung inflammation plays a crucial role in the development of acute lung injury and related disorders such as ARDS.
Collapse
|
46
|
Wang P, Li Y, Li J. Hydroxyethyl starch 130/0.4 prevents the early pulmonary inflammatory response and oxidative stress after hemorrhagic shock and resuscitation in rats. Int Immunopharmacol 2009; 9:347-53. [DOI: 10.1016/j.intimp.2008.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/20/2008] [Accepted: 12/22/2008] [Indexed: 11/16/2022]
|
47
|
Wang P, Li Y, Li J. Protective Roles of Hydroxyethyl Starch 130/0.4 in Intestinal Inflammatory Response and Oxidative Stress After Hemorrhagic Shock and Resuscitation in Rats. Inflammation 2009; 32:71-82. [DOI: 10.1007/s10753-009-9105-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Deree J, Martins J, de Campos T, Putnam JG, Loomis WH, Wolf P, Coimbra R. Pentoxifylline Attenuates Lung Injury and Modulates Transcription Factor Activity in Hemorrhagic Shock. J Surg Res 2007; 143:99-108. [DOI: 10.1016/j.jss.2007.03.083] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/30/2022]
|
49
|
Gadjeva M, Wang Y, Horwitz BH. NF-kappaB p50 and p65 subunits control intestinal homeostasis. Eur J Immunol 2007; 37:2509-17. [PMID: 17705134 DOI: 10.1002/eji.200737186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mice which lack the p50 subunit of NF-kappaB and are heterozygous for the p65 subunit (3X mice), are exquisitely sensitive to LPS-induced shock. Here, we demonstrate that prior to becoming moribund, 3X mice challenged with LPS develop a profound enteropathy. The enteropathy is characterized by defects in intestinal barrier function, increased epithelial apoptosis, and deregulated intestinal cytokine gene expression. The defect that sensitizes 3X mice to LPS-induced enteropathy is located within the innate immune compartment, as LPS induced similar findings in 3X mice lacking lymphocytes (3X/RAG). TNF-alpha depletion ameliorated the ability of LPS to induce pathology and TNF-alpha was able to independently induce similar findings, suggesting that TNF-alpha plays a critical role in the development of LPS-induced pathology in these mice. These data highlight that NF-kappaB subunits have essential functions in regulating intestinal homeostasis during acute inflammation.
Collapse
Affiliation(s)
- Mihaela Gadjeva
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Abstract
The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- John J Bright
- Neuroscience Research Laboratory, Methodist Research Institute, Clarian Health, Indianapolis, IN 46202, USA.
| |
Collapse
|