1
|
Priam P, Krasteva V, Rousseau P, Polsinelli A, Côté L, Desanlis I, Farah A, Lavallée VP, Kmita M, Lessard JA. Smarcd1 subunit of SWI/SNF chromatin-remodeling complexes collaborates with E2a to promote murine lymphoid specification. Dev Cell 2024; 59:3124-3140.e8. [PMID: 39232562 DOI: 10.1016/j.devcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/02/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Polsinelli
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ines Desanlis
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Azer Farah
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Marie Kmita
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
2
|
Ma X, Lin L, Zhao Q, Iqbal M. TriTan: an efficient triple nonnegative matrix factorization method for integrative analysis of single-cell multiomics data. Brief Bioinform 2024; 26:bbae615. [PMID: 39581871 PMCID: PMC11586128 DOI: 10.1093/bib/bbae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to facilitate interpretation in biological discovery.
Collapse
Affiliation(s)
- Xin Ma
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Lijing Lin
- Centre for Health Informatics, Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Qian Zhao
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Ge Y, Liu H, Huang W, Zhu H, Zong D, He X. Immunoinhibitory effects of hypoxia-driven reprogramming of EGR1 hi and EGR3 positive B cells in the nasopharyngeal carcinoma microenvironment. Oral Oncol 2024; 158:106999. [PMID: 39197193 DOI: 10.1016/j.oraloncology.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
Regulatory B (Breg) cells is a type of immune cell that exhibit immunosuppressive behavior within the tumor microenvironment. However, the differentiation and regulatory mechanisms of these Breg cells remain unexplored. Single-cell transcriptome sequencing analysis of human nasopharyngeal carcinoma (NPC) revealed a significant enrichment of B cell subset characterized by high expression of EGR1 and EGR3 in the tumor microenvironment. Notably, in the hypoxic microenvironment, these B cells induce MAPK pathway activation, subsequently triggering the activation of transcription factors EGR1 and EGR3, which further modulate the expression of immunosuppressive factors like TGFB1 and IL10. In transplant experiments using primary B cells induced under hypoxia and co-transplanted with cancer cells, a significant increase in tumor growth was observed. Mechanism experiments demonstrated that EGR1hi and EGR3+ B cells further activate the maturation and immunosuppressive function of Treg cells through the secretion of IL16 and TNF-α. Hence, this study identifies the key transcription factors EGR1 and EGR3 as essential regulators and elucidates the differentiation of Breg cells under hypoxic conditions.
Collapse
Affiliation(s)
- Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Haitao Liu
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Wenxuan Huang
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Huanfeng Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Dan Zong
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Yan C, Chen J, Wang B, Wang J, Luo M, Tong J, Xu X, Zhang Q, Wang X. PD-L1 Expression Is Increased in LPS-Induced Acute Respiratory Distress Syndrome by PI3K-AKT-Egr-1/C/EBPδ Signaling Pathway. Inflammation 2024; 47:1459-1478. [PMID: 38376609 DOI: 10.1007/s10753-024-01988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
The role of programmed death ligand 1 (PD-L1) has been extensively investigated in adaptive immune system. However, increasing data show that innate immune responses are also affected by the immune checkpoint molecule. It has been demonstrated that regulation of PD-L1 signaling in macrophages may be a potential therapeutic method for acute respiratory distress syndrome (ARDS). However, the PD-L1 expression pattern in local macrophages and whole lung tissues remains mysterious, hindering optimization of the potential treatment program. Therefore, we aim to determine the PD-L1 expression pattern during ARDS. Our findings show that PD-L1 levels are markedly increased in lipopolysaccharide (LPS)-stimulated lung tissues, which might be attributable to an increase in the gene expression by immune cells, including macrophages and neutrophils. In vitro experiments are performed to explore the mechanism involved in LPS-induced PD-L1 production. We find that PD-L1 generation is controlled by transcription factors early growth response 1 (Egr-1) and CCAAT/enhancer binding protein delta (C/EBPδ). Strikingly, PD-L1 production is enhanced by phosphoinositide-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway via up-regulation of Egr-1 and C/EBPδ expressions. Additionally, we observe that expressions of Egr-1 and C/EBPδ mutually reinforce each other. Moreover, we observe that PD-L1 is protective for ARDS due to its regulatory role in macrophage-associated inflammatory response. In summary, during LPS-induced ARDS, PD-L1 expression, which is beneficial for the disease, is increased via the PI3K-AKT1-Egr-1/C/EBPδ signaling pathway, providing theoretical basis for application of methods controlling PD-L1 signaling in macrophages for ARDS treatment in clinic.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital of Southeast University, Nanjing, 210009, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| | - Jing Chen
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Botao Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - Jingya Wang
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Ming Luo
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jingru Tong
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Xuanli Xu
- Department of Respiratory, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| |
Collapse
|
5
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Cao J, Wang X, Advani V, Lu YW, Malizia AP, Singh GB, Huang Z, Liu J, Wang C, Oliveira EM, Mably JD, Chen K, Wang D. mt-Ty 5'tiRNA regulates skeletal muscle cell proliferation and differentiation. Cell Prolif 2023; 56:e13416. [PMID: 36756712 PMCID: PMC10392060 DOI: 10.1111/cpr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, we sought to determine the role of tRNA-derived fragments in the regulation of gene expression during skeletal muscle cell proliferation and differentiation. We employed cell culture to examine the function of mt-Ty 5' tiRNAs. Northern blotting, RT-PCR as well as RNA-Seq, were performed to determine the effects of mt-Ty 5' tiRNA loss and gain on gene expression. Standard and transmission electron microscopy (TEM) were used to characterize cell and sub-cellular structures. mt-Ty 5'tiRNAs were found to be enriched in mouse skeletal muscle, showing increased levels in later developmental stages. Gapmer-mediated inhibition of tiRNAs in skeletal muscle C2C12 myoblasts resulted in decreased cell proliferation and myogenic differentiation; consistent with this observation, RNA-Seq, transcriptome analyses, and RT-PCR revealed that skeletal muscle cell differentiation and cell proliferation pathways were also downregulated. Conversely, overexpression of mt-Ty 5'tiRNAs in C2C12 cells led to a reversal of these transcriptional trends. These data reveal that mt-Ty 5'tiRNAs are enriched in skeletal muscle and play an important role in myoblast proliferation and differentiation. Our study also highlights the potential for the development of tiRNAs as novel therapeutic targets for muscle-related diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Faculty of Environment and LifeBeijing University of TechnologyBeijingP. R. China
| | - Xin Wang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Advani
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Vascular Biology Program, Department of Surgery, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrea P. Malizia
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Gurinder Bir Singh
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Zhan‐Peng Huang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jianming Liu
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Present address:
Vertex pharmaceuticalsBostonMassachusettsUSA
| | - Chunbo Wang
- UNC McAllister Heart InstituteUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Edilamar M. Oliveira
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- School of Physical Education and SportUniversity of Sao PauloSao PauloBrazil
| | - John D. Mably
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Da‐Zhi Wang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
7
|
Chang W, Li H, Ou W, Wang SY. A novel zinc metabolism-related gene signature to predict prognosis and immunotherapy response in lung adenocarcinoma. Front Immunol 2023; 14:1147528. [PMID: 37033934 PMCID: PMC10079938 DOI: 10.3389/fimmu.2023.1147528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background Zinc is a key mineral element in regulating cell growth, development, and immune system. We constructed the zinc metabolism-related gene signature to predict prognosis and immunotherapy response for lung adenocarcinoma (LUAD). Methods Zinc metabolism-associated gene sets were obtained from Molecular Signature Database. Then, the zinc metabolism-related gene signature (ZMRGS) was constructed and validated. After combining with clinical characteristics, the nomogram for practical application was constructed. The differences in biological pathways, immune molecules, and tumor microenvironment (TME) between the different groups were analyzed. Tumor Immune Dysfunction and Exclusion algorithm (TIDE) and two immunotherapy datasets were used to evaluate the immunotherapy response. Results The signature was constructed according to six key zinc metabolism-related genes, which can well predict the prognosis of LUAD patients. The nomogram also showed excellent prediction performance. Functional analysis showed that the low-risk group was in the status of immune activation. More importantly, the lower risk score of LUAD patients showed a higher response rate to immunotherapy. Conclusion The state of zinc metabolism is closely connected to prognosis, tumor microenvironment, and response to immunotherapy. The zinc metabolism-related signature can well evaluate the prognosis and immunotherapy response for LUAD patients.
Collapse
Affiliation(s)
- Wuguang Chang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hongmu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| | - Si-Yu Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| |
Collapse
|
8
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
9
|
Pang Z, Xu Y, Zhu Q. Early Growth Response 1 Suppresses Macrophage Phagocytosis by Inhibiting NRF2 Activation Through Upregulation of Autophagy During Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2022; 11:773665. [PMID: 35096638 PMCID: PMC8790152 DOI: 10.3389/fcimb.2021.773665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infections in cystic fibrosis patients and immunocompromised individuals. A tightly regulated immune response possessed by healthy individuals can effectively control P. aeruginosa infections, whereas the patients with dysregulated immune response are susceptible to this bacterial pathogen. Early growth response 1 (Egr-1) is a zinc-finger transcription factor involved in regulation of various cellular functions, including immune responses. We previously identified that Egr-1 was deleterious to host in a mouse model of acute P. aeruginosa pneumonia by promoting systemic inflammation and impairing bacterial clearance in lung, which associated with reduced phagocytosis and bactericidal ability of leucocytes, including macrophages and neutrophils. However, the molecular mechanisms underlying the Egr-1-suppressed phagocytosis of P. aeruginosa are incompletely understood. Herein, we investigated whether the Egr-1-regulated autophagy play a role in macrophage phagocytosis during P. aeruginosa infection by overexpression or knockdown of Egr-1. We found that overexpression of Egr-1 inhibited the phagocytic activity of macrophages, and the autophagy activator rapamycin and inhibitor chloroquine could reverse the effects of Egr-1 knockdown and Egr-1 overexpression on phagocytosis of P. aeruginosa, respectively. Furthermore, the Egr-1-overexpressing macrophages displayed upregulated expression of autophagy-related proteins LC3A, LC3B and Atg5, and decreased levels of p62 in macrophages. Further studies revealed that the macrophages with Egr-1 knockdown displayed enhanced activation of transcription factor NRF2 and expression of scavenger receptors MACRO and MSR1. Altogether, these findings suggest that Egr-1 suppresses the phagocytosis of P. aeruginosa by macrophages through upregulation of autophagy and inhibition of NRF2 signaling.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Arumugam K, Shin W, Schiavone V, Vlahos L, Tu X, Carnevali D, Kesner J, Paull EO, Romo N, Subramaniam P, Worley J, Tan X, Califano A, Cosma MP. The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep 2020; 33:108474. [PMID: 33296649 DOI: 10.1016/j.celrep.2020.108474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Bi-species, fusion-mediated, somatic cell reprogramming allows precise, organism-specific tracking of unknown lineage drivers. The fusion of Tcf7l1-/- murine embryonic stem cells with EBV-transformed human B cell lymphocytes, leads to the generation of bi-species heterokaryons. Human mRNA transcript profiling at multiple time points permits the tracking of the reprogramming of B cell nuclei to a multipotent state. Interrogation of a human B cell regulatory network with gene expression signatures identifies 8 candidate master regulator proteins. Of these 8 candidates, ectopic expression of BAZ2B, from the bromodomain family, efficiently reprograms hematopoietic committed progenitors into a multipotent state and significantly enhances their long-term clonogenicity, stemness, and engraftment in immunocompromised mice. Unbiased systems biology approaches let us identify the early driving events of human B cell reprogramming.
Collapse
Affiliation(s)
- Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Valentina Schiavone
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiaochuan Tu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jordan Kesner
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Evan O Paull
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Neus Romo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Prem Subramaniam
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, J.P. Sulzberger Columbia Genome Center, Department of Biomedical Informatics, Department of Biochemistry and Molecular Biophysics, Department of Medicine, Columbia University, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
11
|
He YS, Yang XK, Hu YQ, Xiang K, Pan HF. Emerging role of Fli1 in autoimmune diseases. Int Immunopharmacol 2020; 90:107127. [PMID: 33234418 DOI: 10.1016/j.intimp.2020.107127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
The Ets transcription factor family exerts crucial role in cell proliferation, apoptosis, differentiation and migration. Friend leukemia integration 1 (Fli1), a member of the Ets family, is expressed in fibroblasts, endothelial cells and immune cells. Fli1 gene is participated in the development, proliferation, activation, migration and other processes of immune cells. Fli1 can also affect the function of immune cells by regulating cytokines and chemokines. Emerging evidence has shown that Fli1 is implicated in the etiology of several autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). In this review, we mainly discuss the current evidence for the role of Fli1 in these diseases.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
12
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Pasula S, Tessneer KL, Fu Y, Gopalakrishnan J, Pelikan RC, Kelly JA, Wiley GB, Wiley MM, Gaffney PM. Role of Systemic Lupus Erythematosus Risk Variants With Opposing Functional Effects as a Driver of Hypomorphic Expression of TNIP1 and Other Genes Within a Three-Dimensional Chromatin Network. Arthritis Rheumatol 2020; 72:780-790. [PMID: 31804013 PMCID: PMC7188567 DOI: 10.1002/art.41188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Genetic variants in the region of tumor necrosis factor-induced protein 3-interacting protein 1 (TNIP1) are associated with autoimmune disease and reduced TNIP1 gene expression. The aim of this study was to define the functional genetic mechanisms driving TNIP1 hypomorphic expression imparted by the systemic lupus erythematosus-associated TNIP1 H1 risk haplotype. METHODS Dual luciferase expression and electrophoretic mobility shift assays were used to evaluate the allelic effects of 11 risk variants on enhancer function and nuclear protein binding in immune cell line models (Epstein-Barr virus [EBV]-transformed human B cells, Jurkat cells, and THP-1 cells), left in a resting state or stimulated with phorbol 12-myristate 13-acetate/ionomycin. HiChIP was used to define the regulatory 3-dimensional (3-D) chromatin network of the TNIP1 haplotype by detecting in situ long-range DNA contacts associated with H3K27ac-marked chromatin in EBV B cells. Then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression of genes within the 3-D chromatin network. RESULTS Bioinformatics analyses of 50 single-nucleotide polymorphisms on the TNIP1 H1 risk haplotype identified 11 non-protein-coding variants with a high likelihood of influencing TNIP1 gene expression. Eight variants in EBV B cells, 5 in THP-1 cells, and 2 in Jurkat cells exhibited various allelic effects on enhancer activation, resulting in a cumulative suppressive effect on TNIP1 expression (net effect of risk variants -7.14 fold, -6.80 fold, and -2.44 fold, respectively; n > 3). Specifically, in EBV B cells, only 2 variants (rs10057690 and rs13180950) exhibited allele-specific loss of both enhancer activity and nuclear protein binding (each P < 0.01 relative to nonrisk alleles). In contrast, the rs10036748 risk allele reduced binding affinities of the transcriptional repressors basic helix-loop-helix family member 40/differentially expressed in chondrocytes 1 (bHLHe40/DEC1) (P < 0.05 relative to nonrisk alleles) and CREB-1 (P not significant) in EBV B cells, resulting in a gain of enhancer activity (P < 0.05). HiChIP and qRT-PCR analyses revealed that overall transcriptional repression of the TNIP1 haplotype extended to the neighboring genes DCTN4 and GMA2, both of which also showed decreased expression in the presence of the TNIP1 risk haplotype (P < 0.001 and P < 0.01, respectively, relative to the nonrisk haplotype); notably, it was found that these genes share a 3-D chromatin network. CONCLUSION Hypomorphic TNIP1 expression results from the combined concordant and opposing effects of multiple risk variants carried on the TNIP1 risk haplotype, with the strongest regulatory effect in B lymphoid lineage cells. Furthermore, the TNIP1 risk haplotype effect extends to neighboring genes within a shared chromatin network.
Collapse
Affiliation(s)
- Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Richard C. Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Graham B. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infect Immun 2019; 88:IAI.00678-19. [PMID: 31611276 PMCID: PMC6921661 DOI: 10.1128/iai.00678-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of nosocomial infections. The molecular mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Early growth response 1 (Egr-1) is a zinc-finger transcription factor that controls inflammatory responses. Here, we characterized the role of Egr-1 in host defense against P. aeruginosa infection in a mouse model of acute bacterial pneumonia. Egr-1 expression was rapidly and transiently induced in response to P. aeruginosa infection. Egr-1-deficient mice displayed decreased mortality, reduced levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-1β [IL-1β], IL-6, IL-12, and IL-17), and enhanced bacterial clearance from the lung. Egr-1 deficiency caused diminished NF-κB activation in P. aeruginosa-infected macrophages independently of IκBα phosphorylation. A physical interaction between Egr-1 and NF-κB p65 was found in P. aeruginosa-infected macrophages, suggesting that Egr-1 could be required for assembly of heterodimeric transcription factors that direct synthesis of inflammatory mediators. Interestingly, Egr-1 deficiency had no impact on neutrophil recruitment in vivo due to its differential effects on chemokine production, which included diminished accumulation of KC (CXCL1), MIP2 (CXCL2), and IP-10 (CXCL10) and increased accumulation of LIX (CXCL5). Importantly, Egr-1-deficient macrophages and neutrophils displayed significant increases in nitric oxide production and bacterial killing ability that correlated with enhanced bacterial clearance in Egr-1-deficient mice. Together, these findings suggest that Egr-1 plays a detrimental role in host defense against P. aeruginosa acute lung infection by promoting systemic inflammation and negatively regulating the nitric oxide production that normally assists with bacterial clearance.
Collapse
|
15
|
The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Vet Res 2019; 15:223. [PMID: 31266499 PMCID: PMC6604481 DOI: 10.1186/s12917-019-1972-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background The role played by the humoral immune response in animals vaccinated against a mycobacterial disease such as paratuberculosis, is not well understood. Sheep vaccinated against Mycobacterium avium subsp. paratuberculosis (MAP) can still become infected and in some cases succumb to clinical disease. The strength and location of the humoral immune response following vaccination could contribute to the ability of sheep to clear MAP infection. We examined the peripheral antibody response along with the localised humoral response at the site of paratuberculosis infection, the ileum, to better understand how this contributes to MAP infection of sheep following vaccination and exposure. Results Through assessing MAP specific serum IgG1 and IgG levels we show that the timing and strength of the humoral immune response directly relates to prevention of infection following vaccination. Vaccinated sheep that subsequently became infected had significantly reduced levels of MAP specific serum IgG1 early after vaccination. In contrast, vaccinated sheep that did not subsequently become infected had significantly elevated MAP specific serum IgG1 following vaccination. Furthermore, at 12 months post MAP exposure, vaccinated and subsequently uninfected sheep had downregulated expression of genes related to the humoral response in contrast to vaccinated infected sheep where expression levels were upregulated. Conclusions The timing and strength of the humoral immune response following vaccination against paratuberculosis in sheep directly relates to subsequent infection status. An initial strong IgG1 response following vaccination was crucial to prevent infection. Additionally, vaccinated uninfected sheep were able to modulate that response following apparent MAP clearance, unlike vaccinated infected animals where there was apparent dysregulation of the humoral response, which is associated with progression to clinical disease.
Collapse
|
16
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|
17
|
Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2016; 113:E7260-E7267. [PMID: 27799566 DOI: 10.1073/pnas.1610970113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.
Collapse
|
18
|
Zhang K, Li N, Ainsworth RI, Wang W. Systematic identification of protein combinations mediating chromatin looping. Nat Commun 2016; 7:12249. [PMID: 27461729 PMCID: PMC4974460 DOI: 10.1038/ncomms12249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Chromatin looping plays a pivotal role in gene expression and other biological processes through bringing distal regulatory elements into spatial proximity. The formation of chromatin loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting sites and form complexes in three-dimensional (3D) space. Previously, identification of DBP cooperation has been limited to those binding to neighbouring regions in the proximal linear genome (1D cooperation). Here we present the first study that integrates protein ChIP-seq and Hi-C data to systematically identify both the 1D- and 3D-cooperation between DBPs. We develop a new network model that allows identification of cooperation between multiple DBPs and reveals cell-type-specific and -independent regulations. Using this framework, we retrieve many known and previously unknown 3D-cooperations between DBPs in chromosomal loops that may be a key factor in influencing the 3D organization of chromatin.
Collapse
Affiliation(s)
- Kai Zhang
- Graduate Program in Bioinformatics and Systems Biology, University of California, La Jolla, San Diego, California 92093-0359, USA
| | - Nan Li
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, California 92093-0359, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, California 92093-0359, USA
| | - Richard I. Ainsworth
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, California 92093-0359, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, California 92093-0359, USA
| | - Wei Wang
- Graduate Program in Bioinformatics and Systems Biology, University of California, La Jolla, San Diego, California 92093-0359, USA
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, California 92093-0359, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, California 92093-0359, USA
| |
Collapse
|
19
|
Contreras JR, Palanichamy JK, Tran TM, Fernando TR, Rodriguez-Malave NI, Goswami N, Arboleda VA, Casero D, Rao DS. MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1. Oncotarget 2016; 6:11023-37. [PMID: 25906746 PMCID: PMC4484436 DOI: 10.18632/oncotarget.3433] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context.
Collapse
Affiliation(s)
- Jorge R Contreras
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA.,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, CA, USA
| | | | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Thilini R Fernando
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Norma I Rodriguez-Malave
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA.,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, CA, USA
| | - Neha Goswami
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation. Biochem J 2015; 473:201-10. [PMID: 26554024 DOI: 10.1042/bj20150596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.
Collapse
|
21
|
Oh YK, Jang E, Paik DJ, Youn J. Early Growth Response-1 Plays a Non-redundant Role in the Differentiation of B Cells into Plasma Cells. Immune Netw 2015; 15:161-6. [PMID: 26140048 PMCID: PMC4486779 DOI: 10.4110/in.2015.15.3.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022] Open
Abstract
Early growth response (Egr)-1 is a Cys2-His2-type zincfinger transcription factor. It has been shown to induce survival and proliferation of immature and mature B cells, respectively, but its role in the differentiation of B cells into plasma cells remains unclear. To examine the effects of Egr-1 deficiency on the activation of B cells, naive B cells from Egr1-/- mice and their wild-type (WT) littermates were activated to proliferate and differentiate, and then assayed by FACS. Proportions of cells undergoing proliferation and apoptosis did not differ between Egr1-/- and WT mice. However, Egr1-/- B cells gave rise to fewer plasma cells than WT B cells. Consistently, Egr1-/- mice produced significantly lower titer of antigen-specific IgG than their WT littermates upon immunization. Our results demonstrate that Egr-1 participates in the differentiation program of B cells into plasma cells, while it is dispensable for the proliferation and survival of mature B cells.
Collapse
Affiliation(s)
- Yeon-Kyung Oh
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Doo-Jin Paik
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
22
|
Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, Narita M, Srivastava D, Yamanaka S. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 2013; 14:40-52. [PMID: 24239284 DOI: 10.1016/j.stem.2013.11.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/22/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022]
Abstract
Reprogramming differentiated cells into induced pluripotent stem cells (iPSCs) promotes a broad array of cellular changes. Here we show that the let-7 family of microRNAs acts as an inhibitory influence on the reprogramming process through a regulatory pathway involving prodifferentiation factors, including EGR1. Inhibiting let-7 in human cells promotes reprogramming to a comparable extent to c-MYC when combined with OCT4, SOX2, and KLF4, and persistence of let-7 inhibits reprogramming. Inhibiting let-7 during reprogramming leads to an increase in the level of the let-7 target LIN-41/TRIM71, which in turn promotes reprogramming and is important for overcoming the let-7 barrier to reprogramming. Mechanistic studies revealed that LIN-41 regulates a broad array of differentiation genes, and more specifically, inhibits translation of EGR1 through binding its cognate mRNA. Together our findings outline a let-7-based pathway that counteracts the activity of reprogramming factors through promoting the expression of prodifferentiation genes.
Collapse
Affiliation(s)
- Kathleen A Worringer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tim A Rand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Yohei Hayashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Salma Sami
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tanabe
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Suppression of the LMP2A target gene, EGR-1
, protects Hodgkin's lymphoma cells from entry to the EBV lytic cycle. J Pathol 2013; 230:399-409. [DOI: 10.1002/path.4198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023]
|
24
|
Schickel JN, Pasquali JL, Soley A, Knapp AM, Decossas M, Kern A, Fauny JD, Marcellin L, Korganow AS, Martin T, Soulas-Sprauel P. Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity. EMBO Mol Med 2012; 4:1261-75. [PMID: 23109291 PMCID: PMC3531602 DOI: 10.1002/emmm.201201595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/22/2023] Open
Abstract
The mechanisms behind flares of human autoimmune diseases in general, and of systemic lupus in particular, are poorly understood. The present scenario proposes that predisposing gene defects favour clinical flares under the influence of external stimuli. Here, we show that Carabin is low in B cells of (NZB × NZW) F1 mice (murine SLE model) long before the disease onset, and is low in B cells of lupus patients during the inactive phases of the disease. Using knock-out and B-cell-conditional knock-out murine models, we identify Carabin as a new negative regulator of B-cell function, whose deficiency in B cells speeds up early B-cell responses and makes the mice more susceptible to anti-dsDNA production and renal lupus flare after stimulation with a Toll-like Receptor 9 agonist, CpG-DNA. Finally, in vitro analysis of NFκB activation and Erk phosphorylation in TLR9- and B-cell receptor (BCR)-stimulated Carabin-deficient B cells strongly suggests how the internal defect synergizes with the external stimulus and proposes Carabin as a natural inhibitor of the potentially dangerous crosstalk between BCR and TLR9 pathways in self-reactive B cells.
Collapse
|
25
|
Terrier B, Joly F, Vazquez T, Benech P, Rosenzwajg M, Carpentier W, Garrido M, Ghillani-Dalbin P, Klatzmann D, Cacoub P, Saadoun D. Expansion of Functionally Anergic CD21−/lowMarginal Zone-like B Cell Clones in Hepatitis C Virus Infection-Related Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:6550-63. [DOI: 10.4049/jimmunol.1102022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Li S, Symonds ALJ, Zhu B, Liu M, Raymond MV, Miao T, Wang P. Early growth response gene-2 (Egr-2) regulates the development of B and T cells. PLoS One 2011; 6:e18498. [PMID: 21533228 PMCID: PMC3077377 DOI: 10.1371/journal.pone.0018498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/09/2011] [Indexed: 11/21/2022] Open
Abstract
Background Understanding of how transcription factors are involved in lymphocyte development still remains a challenge. It has been shown that Egr-2 deficiency results in impaired NKT cell development and defective positive selection of T cells. Here we investigated the development of T, B and NKT cells in Egr-2 transgenic mice and the roles in the regulation of distinct stages of B and T cell development. Methods and Findings The expression of Egr1, 2 and 3 were analysed at different stages of T and B cell development by RT-PCT and results showed that the expression was strictly regulated at different stages. Forced expression of Egr-2 in CD2+ lymphocytes resulted in a severe reduction of CD4+CD8+ (DP) cells in thymus and pro-B cells in bone marrow, which was associated with reduced expression of Notch1 in ISP thymocytes and Pax5 in pro-B cells, suggesting that retraction of Egr-2 at the ISP and pro-B cell stages is important for the activation of lineage differentiation programs. In contrast to reduction of DP and pro-B cells, Egr-2 enhanced the maturation of DP cells into single positive (SP) T and NKT cells in thymus, and immature B cells into mature B cells in bone marrow. Conclusions Our results demonstrate that Egr-2 expressed in restricted stages of lymphocyte development plays a dynamic, but similar role for the development of T, NKT and B cells.
Collapse
Affiliation(s)
- Suling Li
- Department of Biosciences, Brunel University, Uxbridge, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ngiam N, Peltekova V, Engelberts D, Otulakowski G, Post M, Kavanagh BP. Early growth response-1 worsens ventilator-induced lung injury by up-regulating prostanoid synthesis. Am J Respir Crit Care Med 2010; 181:947-56. [PMID: 20110555 DOI: 10.1164/rccm.200908-1297oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Ventilator-induced lung injury (VILI) is common and serious and may be mediated in part by prostanoids. We have demonstrated increased expression of the early growth response-1 (Egr1) gene by injurious ventilation, but whether-or how-such up-regulation contributes to injury is unknown. OBJECTIVES We sought to define the role of Egr1 in the pathogenesis of VILI. METHODS An in vivo murine model of VILI was used, and Egr1(+/+) (wild-type) and Egr1(-/-) mice were studied; the effects of prostaglandin E receptor subtype 1 (EP1) inhibition were assessed. MEASUREMENTS AND MAIN RESULTS Injurious ventilation caused lung injury in wild-type mice, but less so in Egr1(-/-) mice. The injury was associated with expression of EGR1 protein, which was localized to type II cells and macrophages and was concentrated in nuclear extracts. There was a concomitant increase in expression of phosphorylated p44/p42 mitogen-activated protein kinases. The prostaglandin E synthase (mPGES-1) gene has multiple EGR1 binding sites on its promoter, and induction of mPGES-1 mRNA (as well as the prostanoid product, PGE2) by injurious ventilation was highly dependent on the presence of the Egr1 gene. PGE2 mediates many lung effects via EP1 receptors, and EP1 blockade (with ONO-8713) lessened lung injury. CONCLUSIONS This is the first demonstration of a mechanism whereby expression of a novel gene (Egr1) can contribute to VILI via a prostanoid-mediated pathway.
Collapse
Affiliation(s)
- Nicola Ngiam
- Physiology and Experimental Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
28
|
Boyle KB, Hadaschik D, Virtue S, Cawthorn WP, Ridley SH, O'Rahilly S, Siddle K. The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ 2009; 16:782-9. [PMID: 19229250 PMCID: PMC2670277 DOI: 10.1038/cdd.2009.11] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The zinc finger-containing transcription factors Egr1 (Krox24) and Egr2 (Krox20) have been implicated in the proliferation and differentiation of many cell types. Egr2 has earlier been shown to play a positive role in adipocyte differentiation, but the function of Egr1 in this context is unknown. We compared the roles of Egr1 and Egr2 in the differentiation of murine 3T3-L1 adipocytes. Egr1 protein was rapidly induced after addition of differentiation cocktail, whereas Egr2 protein initially remained low before increasing on days 1 and 2, concomitant with the disappearance of Egr1. In marked contrast to the effects of Egr2, differentiation was inhibited by ectopic expression of Egr1 and potentiated by knockdown of Egr1. The pro-adipogenic effects of Egr1 knockdown were particularly notable when isobutylmethylxanthine (IBMX) was omitted from the differentiation medium. However, knockdown of Egr1 did not affect CCAAT/enhancer binding protein (C/EBP)beta protein expression or phosphorylation of CREB Ser133. Further, Egr1 did not directly affect the activity of promoters for the master adipogenic transcription factors, C/EBPalpha or peroxisome proliferator-activated receptor-gamma2, as assessed in luciferase reporter assays. These data indicate that Egr1 and Egr2 exert opposing influences on adipocyte differentiation and that the careful regulation of both is required for maintaining appropriate levels of adipogenesis. Further, the pro-differentiation effects of IBMX involve suppression of the inhibitory influence of Egr1.
Collapse
Affiliation(s)
| | - Dirk Hadaschik
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| | - William P. Cawthorn
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| | - Simon H. Ridley
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Gururajan M, Simmons A, Dasu T, Spear BT, Calulot C, Robertson DA, Wiest DL, Monroe JG, Bondada S. Early growth response genes regulate B cell development, proliferation, and immune response. THE JOURNAL OF IMMUNOLOGY 2008; 181:4590-602. [PMID: 18802061 DOI: 10.4049/jimmunol.181.7.4590] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Egr-1 (early growth response gene-1) is an immediate early gene encoding a zinc finger motif-containing transcription factor. Upon cross-linking of BCR, mature B cells undergo proliferation with an increase in Egr-1 message. Immature B lymphoma cells that express Egr-1 message and protein constitutively are growth inhibited when Egr-1 is down-regulated by negative signals from BCR or by antisense oligonucleotides. To test the hypothesis that Egr-1 is important for B cell development, we examined B cells from primary and secondary lymphoid organs in Egr-1(-/-) mice. Marginal zone B cell development was arrested in these mice, whereas the B cells in all other compartments were increased. To test the hypothesis that Egr-1 function may be partially compensated by other Egr family members, we developed transgenic mice expressing a dominant negative form of Egr-1, which lacks the trans activation domain but retains the DNA-binding domain, in a B cell-specific manner. There was a decrease in B lymphopoiesis in the bone marrow accompanied by a reduction in splenic immature and mature B cells as well as marginal zone B cells in the transgenic mice. Moreover, transgenic mice respond poorly to BCR cross-linking in vitro and T-independent and T-dependent Ags in vivo.
Collapse
Affiliation(s)
- Murali Gururajan
- Departments of Microbiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang XK, Moussa O, LaRue A, Bradshaw S, Molano I, Spyropoulos DD, Gilkeson GS, Watson DK. The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1644-54. [PMID: 18641300 PMCID: PMC2504761 DOI: 10.4049/jimmunol.181.3.1644] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fli-1 belongs to the Ets transcription factor family and is expressed primarily in hematopoietic cells, including most cells active in immunity. To assess the role of Fli-1 in lymphocyte development in vivo, we generated mice that express a truncated Fli-1 protein, lacking the C-terminal transcriptional activation domain (Fli-1(DeltaCTA)). Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice had significantly fewer splenic follicular B cells, and an increased number of transitional and marginal zone B cells, compared with wild-type controls. Bone marrow reconstitution studies demonstrated that this phenotype is the result of lymphocyte intrinsic effects. Expression of Igalpha and other genes implicated in B cell development, including Pax-5, E2A, and Egr-1, are reduced, while Id1 and Id2 are increased in Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice. Proliferation of B cells from Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice was diminished, although intracellular Ca(2+) flux in B cells from Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice was similar to that of wild-type controls after anti-IgM stimulation. Immune responses and in vitro class switch recombination were also altered in Fli-1(DeltaCTA)/Fli-1(DeltaCTA) mice. Thus, Fli-1 modulates B cell development both centrally and peripherally, resulting in a significant impact on the in vivo immune response.
Collapse
Affiliation(s)
- Xian K Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, Wagers AJ. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2:380-91. [PMID: 18397757 DOI: 10.1016/j.stem.2008.01.015] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 10/19/2007] [Accepted: 01/22/2008] [Indexed: 12/29/2022]
Abstract
EGR1 is a member of the immediate early response transcription factor family and functions in cell growth, development, and stress responses in many tissues. Here we report an additional role for EGR1 in regulating homeostasis of hematopoietic stem cells (HSCs). HSCs normally express Egr1 at high levels, but dramatically downregulate its expression when induced to divide and migrate. Consistent with this finding, mice lacking Egr1 exhibit significant increases in steady-state levels of dividing HSCs in the bone marrow (BM), and a striking spontaneous mobilization of HSCs into the peripheral blood. These data identify EGR1 as a transcriptional regulator of stem cell migration that normally functions to promote HSC quiescence and retention in the niche. The ability of this single factor to regulate both proliferation and mobilization of HSCs suggests that EGR1 commands a genetic program that coordinates stem cell division and migration to maintain appropriate HSC number and function.
Collapse
Affiliation(s)
- Irene M Min
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
In adult mammals, bone marrow pluripotent hematopoietic stem cells generate B lymphoid-specified progeny that progress through a series of well-characterized stages before generating B-cell receptor expressing B lymphocytes. These functionally immature B lymphocytes then migrate to the spleen wherein they differentiate through transitional stages into follicular or marginal zone B lymphocytes capable of responding to T-dependent and -independent antigens, respectively. During the terminal stages of B lymphocyte development in the bone marrow, as well as immediately following egress into the peripheral compartments, B lymphocytes are counterselected to eliminate B lymphocytes with potentially dangerous self-reactivity. These developmental and selection events in the bone marrow and periphery are dependent on the integration of intrinsic genetic programs with extrinsic microenvironmental signals that drive progenitors toward increasing B lineage commitment and maturation. This chapter provides a comprehensive overview of the various stages of primary and secondary B lymphocyte development with an emphasis on the selection processes that affect decisions at critical checkpoints. Our intent is to stress the concept that at many steps in the developmental process leading to a mature immunocompetent B lymphocyte, B lineage cells are integrating multiple and different signaling inputs that are translated into specific and appropriate cell fate decisions.
Collapse
MESH Headings
- Aging
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/physiology
- Cell Lineage
- Humans
- Lymphopoiesis/genetics
- Models, Immunological
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombination, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
33
|
Lauritsen JPH, Haks MC, Lefebvre JM, Kappes DJ, Wiest DL. Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 2006; 209:176-90. [PMID: 16448543 DOI: 10.1111/j.0105-2896.2006.00349.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During thymopoiesis, two major types of mature T cells are generated that can be distinguished by the clonotypic subunits contained within their T-cell receptor (TCR) complexes: alphabeta T cells and gammadelta T cells. Although there is no consensus as to the exact developmental stage where alphabeta and gammadelta T-cell lineages diverge, gammadelta T cells and precursors to the alphabeta T-cell lineage (bearing the pre-TCR) are thought to be derived from a common CD4- CD8- double-negative precursor. The role of the TCR in alphabeta/gammadelta lineage commitment has been controversial, in particular whether different TCR isotypes intrinsically favor adoption of the corresponding lineage. Recent evidence supports a signal strength model of lineage commitment, whereby stronger signals promote gammadelta development and weaker signals promote adoption of the alphabeta fate, irrespective of the TCR isotype from which the signals originate. Moreover, differences in the amplitude of activation of the extracellular signal-regulated kinase- mitogen-activated protein kinase-early growth response pathway appear to play a critical role. These findings will be placed in context of previous analyses in an effort to more precisely define the signals that control T-lineage fate during thymocyte development.
Collapse
Affiliation(s)
- Jens Peter H Lauritsen
- Fox Chase Cancer Center, Division of Basic Sciences, Immunobiology Working Group, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
35
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:403-406. [DOI: 10.11569/wcjd.v12.i2.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
36
|
Affiliation(s)
- Mark S Schlissel
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
37
|
Segel GB, Woodlock TJ, Xu J, Li L, Felgar RE, Ryan DH, Lichtman MA, Wang N. Early gene activation in chronic leukemic B lymphocytes induced toward a plasma cell phenotype. Blood Cells Mol Dis 2003; 30:277-87. [PMID: 12737946 DOI: 10.1016/s1079-9796(03)00035-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of lymphocytes that are arrested at an intermediate stage of B lymphocyte development. CLL B lymphocytes transform (mature) to a plasmacytic phenotype with loss of CD19 and CD20 and the appearance of cytoplasmic immunoglobulin when treated in vitro with phorbol esters. We have used array hybridization technology to describe gene expression patterns for untreated and tetradecanoyl phorbol acetate (TPA)-treated CLL B cells at 5, 10, and 20 min following initial TPA exposure. Three genes, early growth response factor 1 (EGR-1), dual specificity phosphatase 2, and CD69 (early T-cell activation antigen), showed a 2.0-fold or greater increase in mRNA transcription at four or more of six time points in two studies. Upregulation of expression of these genes was confirmed by real-time polymerase chain reaction in the TPA-treated cells of four CLL patients. A progressive increase in gene expression was observed during the 20-min time course for all three genes. In addition, protein expression of EGR-1 and CD69 was increased as measured by immunofluorescence cell analysis. Several genes (PKC, n-myc, jun D, and BCL-2) previously reported as overexpressed in CLL lymphocytes were overexpressed in these studies also, but were not altered by TPA treatment. Genes for proteins whose upregulation requires hours of TPA exposure (the 4F2hc component of the L-system amino acid transporter, prohibition, and hsp60) were assessed, and their later expression contrasted with the early expression of EGR-1, dual specificity phosphatase 2, and CD69. EGR-1 encodes a zinc-finger transcription factor that is induced by pokeweed mitogen and TPA and promotes B lymphocyte maturation. The dual specificity phosphatase 2 encodes an enzyme that reverses mitogen activated protein kinase cell activation by dephosphorylation. The CD69 protein is induced by TPA in thymocytes and is a type II transmembrane signaling molecule in hematopoietic cells. These findings suggest that the products of these three genes may be central to early steps in the TPA-induced evolution of CLL B cells to a plasmacytic phenotype.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- DNA-Binding Proteins/genetics
- Early Growth Response Protein 1
- Gene Expression Profiling
- Humans
- Immediate-Early Proteins/genetics
- Lectins, C-Type
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Oligonucleotide Array Sequence Analysis
- Plasma Cells/cytology
- Protein Phosphatase 2
- Protein Tyrosine Phosphatases/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- George B Segel
- Department of Pediatrics, and Unity Health System, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gruber F, Hufnagl P, Hofer-Warbinek R, Schmid JA, Breuss JM, Huber-Beckmann R, Lucerna M, Papac N, Harant H, Lindley I, de Martin R, Binder BR. Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha -induced PAI-1 expression. Blood 2003; 101:3042-8. [PMID: 12506026 DOI: 10.1182/blood-2002-07-2331] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is the main fibrinolysis inhibitor, and high plasma levels are associated with an increased risk for vascular diseases. Inflammatory cytokines regulate PAI-1 through a hitherto unclear mechanism. Using reporter gene analysis, we could identify a region in the PAI-1 promoter that contributes to basal expression as well as to tumor necrosis factor alpha (TNFalpha) induction of PAI-1 in endothelial cells. Using this region as bait in a genetic screen, we could identify Nur77 (NAK-1, TR3, NR4A1) as an inducible DNA-binding protein that binds specifically to the PAI-1 promoter. Nur77 drives transcription of PAI-1 through direct binding to an NGFI-B responsive element (NBRE), indicating monomeric binding and a ligand-independent mechanism. Nur77, itself, is transcriptionally up-regulated by TNFalpha. High expression levels of Nur77 and its colocalization with PAI-1 in atherosclerotic tissues indicate that the described mechanism for PAI-1 regulation may also be operative in vivo.
Collapse
MESH Headings
- Arteriosclerosis/metabolism
- Binding Sites
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Consensus Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation/drug effects
- Humans
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Plasminogen Activator Inhibitor 1/biosynthesis
- Plasminogen Activator Inhibitor 1/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Florian Gruber
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Aicher WK, Alexander D, Haas C, Kuchen S, Pagenstecher A, Gay S, Peter HH, Eibel H. Transcription factor early growth response 1 activity up-regulates expression of tissue inhibitor of metalloproteinases 1 in human synovial fibroblasts. ARTHRITIS AND RHEUMATISM 2003; 48:348-59. [PMID: 12571843 DOI: 10.1002/art.10774] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate the regulatory potential of early growth response 1 (Egr-1) on tissue inhibitor of metalloproteinases 1 (TIMP-1) expression in synovial fibroblasts. METHODS Egr-1 and TIMP-1 transcripts were detected by in situ hybridization in synovial tissue. Egr-1-regulated TIMP expression was studied in immortalized fibroblast lines using gel retardation assays, RNase protection analysis, reporter gene studies using the human TIMP-1 promoter, and by enzyme-linked immunosorbent assay. RESULTS TIMP-1 and Egr-1 were coexpressed in synovial fibroblasts of inflamed joints, and Egr-1 activated the expression of TIMP-1. Egr-1 binding to a recognition sequence in the TIMP-1 promoter was demonstrated in gel retardation and reporter gene assays. Since the same DNA sequence was also recognized by the transcription factor Sp-1, our results suggest that the expression of TIMP-1 in synovial fibroblasts may be differentially regulated by Egr-1 and Sp-1. In addition, fibroblasts expressing Egr-1 at high levels were found to express increased levels of TIMP-2 and TIMP-3 messenger RNA. CONCLUSION The enhanced expression of Egr-1 may regulate the activity of matrix metalloproteinases in synovial fibroblasts by enhancing the expression of the TIMP-1, -2, and -3 genes.
Collapse
|
40
|
Alexander D, Judex M, Meyringer R, Weis-Klemm M, Gay S, Müller-Ladner U, Aicher WK. Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. Biol Chem 2002; 383:1845-53. [PMID: 12553721 DOI: 10.1515/bc.2002.208] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synovial fibroblasts from rheumatoid arthritis patients express elevated levels of the transcription factor Egr-1. The metabolic consequences of Egr-1 overexpression in fibroblasts are not known in detail. Therefore we searched for gene products that are differentially expressed in Egr-1(high) versus Egr-1(low) fibroblasts. Immortalized synovial fibroblasts were transfected with two different Egr-1 expression vectors. Expression of recombinant Egr-1 was confirmed by RT-PCR and immunoblots. Random arbitrarily primed PCR revealed that Egr-1 induces enhanced transcription levels of the alpha1 chain of type I collagen. Increased expression of the alpha2 (I) chain could also be observed. We found enhanced levels of type I collagen propeptide in supernatants and stronger signals of alpha2 (I) protein in extracts of the Egr-1(high) expressing clone versus controls. Additionally, Egr-1 was transiently expressed in fibrosarcoma cells. These cells showed a pronounced elevation of type I collagen (alpha1) transcripts as well. Moreover, we could demonstrate that Egr-1 induces transcription of other genes including type II collagen (alpha1) and plateled-derived growth factor beta1. These data suggest that upregulation of Egr-1 might contribute tofibrosis observed in rheumatoid arthritis synovium by activation of genes encoding the alpha1 and alpha2 chains of type I collagen.
Collapse
Affiliation(s)
- Dorothea Alexander
- Research Laboratories, Center for Orthopedic Surgery, University Hospital Tubingen, Pulvermühlstrasse 5, D-72070 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee JM, Lee KH, Weidner M, Osborne BA, Hayward SD. Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci U S A 2002; 99:11878-83. [PMID: 12195020 PMCID: PMC129362 DOI: 10.1073/pnas.182552499] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus infection in vitro immortalizes primary B cells. EBNA2 is an Epstein-Barr virus-encoded transcriptional transactivator that mimics the effects of activated Notch signaling and is essential for this proliferative response. An assay using Sindbis virus (SV) as a cell death inducer revealed that, like Notch, EBNA2 also has antiapoptotic activity. We show that Nur77 is a mediator of SV-induced cell death and that EBNA2 antiapoptotic activity results from interaction with Nur77. EBNA2 colocalized with Nur77 in transfected cells and coprecipitated with Nur77 in IB4 B cells. EBNA2 binds to Nur77 through sequences in the EBNA2 amino acid 123-147 conserved domain and an EBNA2 mutant unable to bind Nur77 also lost the ability to protect cells from SV-induced apoptosis. EBNA2 exerted its antideath function by retaining Nur77 in the nucleus and preventing Nur77 from targeting mitochondria in response to apoptotic stimuli. Thus, targeting of Nur77 can be added to the list of strategies used by viruses to counter apoptosis.
Collapse
Affiliation(s)
- Jae Myun Lee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
42
|
Bettini M, Xi H, Milbrandt J, Kersh GJ. Thymocyte development in early growth response gene 1-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1713-20. [PMID: 12165491 DOI: 10.4049/jimmunol.169.4.1713] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early growth response gene 1 (Egr1) codes for a transcriptional regulator that contains a zinc-finger DNA binding domain. Egr1 expression is induced by a variety of extracellular stimuli including TCR-ligand interactions. Its pattern of expression in the thymus and dependence on ERK activation have led to speculation that it has a role in T cell development, but the exact nature of this role has been undefined. To more clearly define the role of Egr1 in thymocyte development, we have analyzed thymocytes from Egr1-deficient mice. We find that thymuses from Egr1-deficient mice contain twice as many cells as age-matched controls, and the increase in thymocyte number is apparent at the early CD4/CD8 double negative stage of development. Subsequent maturation to the CD4/CD8 double positive stage and survival of the double positive cells both appear normal in Egr1-deficient animals. We also find that Egr1 promotes positive selection of both CD4 and CD8 single positive cells without playing a major role in negative selection. Egr1 influences positive selection by enhancing expression of the helix-loop-helix inhibitor Id3 and the anti-apoptosis molecule bcl-2. Thus, Egr1 translates developmental signals into appropriate changes in gene expression at multiple stages of thymocyte development.
Collapse
Affiliation(s)
- Matthew Bettini
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
43
|
Amendt C, Mann A, Schirmacher P, Blessing M. Resistance of keratinocytes to TGFβ-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J Cell Sci 2002; 115:2189-98. [PMID: 11973359 DOI: 10.1242/jcs.115.10.2189] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pleiotropic growth factor TGFβ plays an important role in regulating responses to skin injury. TGFβ targets many different cell types and is involved in all aspects of wound healing entailing inflammation,re-epithelialization, matrix formation and remodeling. To elucidate the role of TGFβ signal transduction in keratinocytes during cutaneous wound healing, we have used transgenic mice expressing a dominant negative type II TGFβ receptor exclusively in keratinocytes. We could demonstrate that this loss of TGFβ signaling in keratinocytes led to an accelerated re-epithelialization of full thickness excisional wounds accompanied by an increased proliferation in keratinocytes at the wound edge. Furthermore, we show that impaired TGFβ signaling in keratinocytes reduces apoptosis in re-epithelialized wounds of transgenic animals.
A cDNA array identified the transcription factor early growth response factor 1 (Egr1) as a target gene for TGFβ in late phases of the wound healing process. As a member of the immediate-early gene family, Egr1 is upregulated shortly after injury and induces the expression of growth factor genes. We could demonstrate that Egr1 expression is also upregulated in skin wounds which have already undergone re-epithelialization. In conclusion, we attribute the enhanced re-epithelialization in our transgenics to the resistance of keratinocytes to TGFβ-mediated growth restriction and apoptosis induction. We also propose a new role for TGFβ induced Egr1 in late phase wound repair.
Collapse
Affiliation(s)
- Christiane Amendt
- I. Medical Department, Section Pathophysiology, Johannes Gutenberg-University, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
44
|
Carleton M, Haks MC, Smeele SAA, Jones A, Belkowski SM, Berger MA, Linsley P, Kruisbeek AM, Wiest DL. Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1649-58. [PMID: 11823493 DOI: 10.4049/jimmunol.168.4.1649] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progression of immature CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint to the CD4(+)CD8(+) stage requires activation of the pre-TCR complex; however, few of the DNA-binding proteins that serve as molecular effectors of those pre-TCR signals have been identified. We demonstrate in this study that members of the early growth response (Egr) family of transcription factors are critical effectors of the signals that promote this developmental transition. Specifically, the induction of three Egr family members (Egr1, 2, and 3) correlates with pre-TCR activation and development of CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint. Enforced expression of each of these Egr factors is able to bypass the block in thymocyte development associated with defective pre-TCR function. However, Egr family members may play somewhat distinct roles in promoting thymocyte development, because there are differences in the genes modulated by enforced expression of particular Egr factors. Finally, interfering with Egr function using dominant-negative proteins disrupts thymocyte development from the CD4(-)CD8(-) to the CD4(+)CD8(+) stage. Taken together, these data demonstrate that the Egr proteins play an essential role in executing the differentiation program initiated by pre-TCR signaling.
Collapse
Affiliation(s)
- Michael Carleton
- Immunobiology Working Group, Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lyakisheva A, Felda O, Ganser A, Schmidt RE, Schubert J. Paroxysmal nocturnal hemoglobinuria: Differential gene expression of EGR-1 and TAXREB107. Exp Hematol 2002; 30:18-25. [PMID: 11823033 DOI: 10.1016/s0301-472x(01)00763-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal defect of hematopoietic stem cells characterized by deficiency in GPI-anchored surface proteins. It is not yet known how GPI-deficient stem cells are able to expand within the bone marrow and contribute considerably to the hematopoiesis. In PNH, as well as in AA and MDS, genetic instability and increased mutation frequency have been detected. Therefore, a second event is very likely, such as additional mutations, leading to clonal expansion of GPI-deficient bone marrow stem cell in PNH. METHODS In order to elucidate the molecular basis of clonal expansion in PNH, we identified several genes differentially expressed in normal and GPI-deficient cells of PNH patients by combination of RNA fingerprinting and cDNA array hybridization. RESULTS Expression of two of these genes, EGR-1 and TAXREB107, has been further investigated. EGR-1 is upregulated in granulocytes of all PNH patients analyzed so far. In contrast, significant upregulation of TAXREB107 is present only in some of our PNH patients. Further analysis confirmed their overexpression in PNH and excluded a possible secondary event character of observed overexpression. Moreover, similar levels of expression in cases of other clonal diseases, such as MPS and MDS, has been identified. CONCLUSION Our data suggest that additional genetic alterations apart from PIG-A mutations could be present in PNH granulocytes. In addition, these genetic changes might contribute to clonal expansion of GPI-deficient cells in PNH.
Collapse
Affiliation(s)
- Anna Lyakisheva
- Dept. of Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
46
|
Mora-Garcia P, Sakamoto KM. Granulocyte colony-stimulating factor induces Egr-1 up-regulation through interaction of serum response element-binding proteins. J Biol Chem 2000; 275:22418-26. [PMID: 10806199 DOI: 10.1074/jbc.m001731200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) stimulates the proliferation and maturation of myeloid progenitor cells both in vitro and in vivo. We showed that G-CSF rapidly and transiently induces expression of egr-1 in the NFS60 myeloid cell line. Transient transfections of NFS60 cells with recombinant constructs containing various deletions of the human egr-1 promoter identified the serum response element (SRE) between nucleotides (nt) -418 and -391 as a critical G-CSF-responsive sequence. The SRE (SRE-1) contains a CArG box, the binding site for the serum response factor (SRF), which is flanked at either side by an ETS protein binding site. We demonstrated that a single copy of the wild-type SRE-1 in the minimal promoter plasmid, pTE2, is sufficient to induce transcriptional activation in response to G-CSF and that both the ETS protein binding site and the CArG box are required for maximal transcriptional activation of the pTE2-SRE-1 construct. In electromobility shift assays using NFS60 nuclear extracts, we identified SRF and the ETS protein Fli-1 as proteins that bind the SRE-1. We also demonstrated through electrophoretic mobility shift assays, using an SRE-1 probe containing a CArG mutation, that Fli-1 binds the SRE-1 independently of SRF. Our data suggest that SRE-binding proteins potentially play a role in G-CSF-induced egr-1 expression in myeloid cells.
Collapse
Affiliation(s)
- P Mora-Garcia
- Department of Pediatrics, Division of Hematology/Oncology, School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
47
|
Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood 2000. [DOI: 10.1182/blood.v95.8.2552] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGranulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.
Collapse
|
48
|
Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood 2000. [DOI: 10.1182/blood.v95.8.2552.008k30_2552_2558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.
Collapse
|
49
|
Abstract
Erythroid Kruppel like factor (EKLF) is the founding member of a family of transcription factors which are defined by the presence of three C-terminal C2H2-type zinc fingers. Since its discovery 6 years ago, the study of EKLF has been intense. In this review I will revisit the discovery of EKLF, and highlight recent advances in our understanding of how it interacts with other proteins to regulate erythroid gene transcription. The current knowledge of the biological role/s of EKLF in erythroid cell differentiation and globin gene switching are summarized.
Collapse
Affiliation(s)
- A Perkins
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|