1
|
Guo J, Xue Z, Ma R, Yi W, Hui Z, Guo Y, Yao Y, Cao W, Wang J, Ju Z, Lu L, Wang L. The transcription factor Zfp281 sustains CD4 + T lymphocyte activation through directly repressing Ctla-4 transcription. Cell Mol Immunol 2020; 17:1222-1232. [PMID: 31511645 PMCID: PMC7784856 DOI: 10.1038/s41423-019-0289-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/25/2019] [Indexed: 01/14/2023] Open
Abstract
The expression of coinhibitory receptors, such as CTLA-4, on effector T cells is a key mechanism for the negative regulation of T-cell activation. However, the transcriptional regulation of CTLA-4 is not well understood. Zfp281, a C2H2 zinc finger protein, is a negative regulator of pluripotency maintenance of embryonic stem cells. Nevertheless, the function of Zfp281 in differentiated cells has not been studied. We generated Zfp281 conditional knockout mice in which the function of the Zfp281 gene was conditionally disrupted by the Cd4Cre transgene to study its impact on T cell function. Zfp281 had no effect on T-cell development, but CD4+ T cell activation and cytokine production were impaired due to diminished T-cell receptor signaling. Furthermore, Zfp281 deficiency inhibited in vivo T cell responses to Listeria monocytogenes infection. Using genome-wide expression profiling assays, we determined that Zfp281 repressed Ctla-4 expression by directly binding to GC-rich sites in its promoter, which inhibited the negative feedback of T cell activation. In line with this result, CTLA-4 blockade and shRNA knockdown partly rescued the reduced cytokine production caused by Zfp281 deficiency. These findings indicate that Zfp281 sustains CD4+ T lymphocyte activation by directly repressing Ctla-4 transcription.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhonghui Xue
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ruoyu Ma
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zhaoyuan Hui
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yixin Guo
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yuxi Yao
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wenqiang Cao
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Laboraty Animal Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway. Sci Rep 2020; 10:14156. [PMID: 32843651 PMCID: PMC7447789 DOI: 10.1038/s41598-020-70824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent data suggest that the transcription factor Zfp148 represses activation of the tumor suppressor p53 in mice and that therapeutic targeting of the human orthologue ZNF148 could activate the p53 pathway without causing detrimental side effects. We have previously shown that Zfp148 deficiency promotes p53-dependent proliferation arrest of mouse embryonic fibroblasts (MEFs), but the underlying mechanism is not clear. Here, we showed that Zfp148 deficiency downregulated cell cycle genes in MEFs in a p53-dependent manner. Proliferation arrest of Zfp148-deficient cells required increased expression of ARF, a potent activator of the p53 pathway. Chromatin immunoprecipitation showed that Zfp148 bound to the ARF promoter, suggesting that Zfp148 represses ARF transcription. However, Zfp148 preferentially bound to promoters of other transcription factors, indicating that deletion of Zfp148 may have pleiotropic effects that activate ARF and p53 indirectly. In line with this, we found no evidence of genetic interaction between TP53 and ZNF148 in CRISPR and siRNA screen data from hundreds of human cancer cell lines. We conclude that Zfp148 deficiency, by increasing ARF transcription, downregulates cell cycle genes and cell proliferation in a p53-dependent manner. However, the lack of genetic interaction between ZNF148 and TP53 in human cancer cells suggests that therapeutic targeting of ZNF148 may not increase p53 activity in humans.
Collapse
|
3
|
Borghaei RC, Gorski G, Seutter S, Chun J, Khaselov N, Scianni S. Zinc-binding protein-89 (ZBP-89) cooperates with NF-κB to regulate expression of matrix metalloproteinases (MMPs) in response to inflammatory cytokines. Biochem Biophys Res Commun 2016; 471:503-9. [DOI: 10.1016/j.bbrc.2016.02.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 11/27/2022]
|
4
|
Mazuy C, Ploton M, Eeckhoute J, Berrabah W, Staels B, Lefebvre P, Helleboid-Chapman A. Palmitate increases Nur77 expression by modulating ZBP89 and Sp1 binding to the Nur77 proximal promoter in pancreatic β-cells. FEBS Lett 2013; 587:S0014-5793(13)00781-3. [PMID: 24512852 DOI: 10.1016/j.febslet.2013.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022]
Abstract
Nur77 is a stress sensor in pancreatic β-cells, which negatively regulates glucose-stimulated insulin secretion. We recently showed that a lipotoxic shock caused by exposure of β-cells to the saturated fatty acid palmitate strongly increases Nur77 expression. Here, using dual luciferase reporter assays and Nur77 promoter deletion constructs, we identified a regulatory cassette between -1534 and -1512 bp upstream from the translational start site mediating Nur77 promoter activation in response to palmitate exposure. Chromatin immunoprecipitation, transient transfection and siRNA-mediated knockdown assays revealed that palmitate induced Nur77 promoter activation involves Sp1 recruitment and ZBP89 release from the gene promoter.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Jérôme Eeckhoute
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Wahiba Berrabah
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Audrey Helleboid-Chapman
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| |
Collapse
|
5
|
Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, Wang H, Li YM, Bhandoola A, Aster JC, Blacklow SC, Pear WS. Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev 2010; 24:2395-407. [PMID: 20935071 PMCID: PMC2964750 DOI: 10.1101/gad.1975210] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis).
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation
- Cells, Cultured
- Flow Cytometry
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Multimerization
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Receptor, Notch1/chemistry
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Hudan Liu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony W.S. Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kelly L. Arnett
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mark Y. Chiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lanwei Xu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Olga Shestova
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen C. Blacklow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Warren S. Pear
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis. Differentiation 2009; 77:492-504. [PMID: 19505630 DOI: 10.1016/j.diff.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022]
Abstract
Currently, considerable information is available about how muscle-specific genes are activated during myogenesis, yet little is known about how non-muscle genes are down-regulated. The intermediate filament protein vimentin is known to be "turned off" during myogenesis to be replaced by desmin, the muscle-specific intermediate filament protein. Here, we demonstrate that vimentin down-regulation is the result of the combined effect of several transcription factors. Levels of the positive activators, Sp1/Sp3, which are essential for vimentin expression, decrease during myogenesis. In addition, c-Jun and Stat3, two additional positive-acting transcription factors for vimentin gene expression, are also down-regulated. Over-expression via adenoviral approaches demonstrates that the up-regulation of the repressor ZBP-89 is critical to vimentin down-regulation. Elimination of ZBP-89 via siRNA blocks the down-regulation of vimentin and Sp1/Sp3 expression. From these studies we conclude that the combinatorial effect of the down-regulation of positive-acting transcription factors such as Sp1/Sp3, c-Jun and Stat3 versus the up-regulation of the repressor ZBP-89 contributes to the "turning off" of the vimentin gene during myogenesis.
Collapse
|
7
|
Regulation of V(D)J recombination by E-protein transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:148-56. [PMID: 19731808 DOI: 10.1007/978-1-4419-0296-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive study of the E-proteins E2A and HEB duringlymphocyte development has revealed various functions for these bHLH transcription factors in regulating V(D)J recombination in both B- and T-cells. The study of E-proteins in mammals began with the identification of E2A by its ability to bind immunoglobulin heavy and light chain enhancers. Subsequent analysis has identified numerous roles for E2A and HEB at the immunoglobulin and T-cell receptor loci. E-protein targets also include the rag genes and other factors critical for recombination and for regulation of the developmental windows when cells undergo recombination. E-proteins appear to be master regulators that coordinate antigen receptor gene rearrangement and expression. This chapter focuses on how E-proteins regulate V(D)J recombination by activating transcription, initiating rearrangement and driving differentiation during B- and T-cell development.
Collapse
|
8
|
Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur J Immunol 2008; 38:2389-400. [PMID: 18792017 DOI: 10.1002/eji.200838470] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are central players in the innate and adaptive immune response against viral infections. The molecular mechanism that underlies pDC development from progenitor cells is only beginning to be elucidated. Previously, we reported that the Ets factor Spi-B and the inhibitors of DNA binding protein 2 (Id2) or Id3, which antagonize E-protein activity, are crucially involved in promoting or impairing pDC development, respectively. Here we show that the basic helix-loop-helix protein E2-2 is predominantly expressed in pDC, but not in their progenitor cells or conventional DC. Forced expression of E2-2 in progenitor cells stimulated pDC development. Conversely, inhibition of E2-2 expression by RNA interference impaired the generation of pDC suggesting a key role of E2-2 in development of these cells. Notably, Spi-B was unable to overcome the Id2 enforced block in pDC development and moreover Spi-B transduced pDC expressed reduced Id2 levels. This might indicate that Spi-B contributes to pDC development by promoting E2-2 activity. Consistent with notion, simultaneous overexpression of E2-2 and Spi-B in progenitor cells further stimulated pDC development. Together our results provide additional insight into the transcriptional network controlling pDC development as evidenced by the joint venture of E2-2 and Spi-B.
Collapse
Affiliation(s)
- Maho Nagasawa
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
A role for E2-2 at the DN3 stage of early thymopoiesis. Mol Immunol 2008; 45:3302-11. [PMID: 18384878 DOI: 10.1016/j.molimm.2008.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 11/22/2022]
Abstract
Roles for the E-proteins E2A and HEB during T lymphocyte development have been well established. Based on our previous observations of counter selection against T cells lacking E2-2, it seemed reasonable to assume that there would be a function also for E2-2 in thymocyte development. Aiming at assigning such a role for E2-2, we analyzed the expression of E2-2, E2A, HEB as well as Id mRNA during T cell development. Interestingly, whereas all three E-proteins were expressed during early thymocyte development, significant expression beyond the DP stage was detected only for E2A. Among the Id proteins, Id2 displayed a prominent expression exclusively in DN1, whereas Id3 showed some expression in DN1, followed by a down regulation and then a prominent induction, peaking in the DP stage. E2-2 was expressed during the DN stages, as well as in the DP stage, suggesting that E2-2 operates in concert with the other E-proteins during early thymocyte development. We found that E2-2 null thymocytes displayed a partial block at the DN3 stage of development, as well as a reduced expression of pre-T alpha, known to be regulated also by E2A and HEB. The fact that E2-2 deficient thymocytes develop without gross abnormalities is likely to stem from redundancy due to the co-expression of E2A and HEB.
Collapse
|
10
|
Abstract
Prospective isolation of hematopoietic stem and progenitor cells has identified the lineal relationships among all blood-cell types and has allowed their developmental mechanisms to be assayed at the single-cell level. These isolated cell populations are used to elucidate the molecular mechanism of lineage fate decision and of its plasticity directly by stage-specific enforcement or repression of lineage-instructive signaling in purified cells. With an emphasis on the myeloid lineage, this review summarizes current concepts and controversies regarding adult murine hematopoietic development and discusses the potential mechanisms, operated by single or by multiple transcription factors, of myeloid lineage fate decision.
Collapse
Affiliation(s)
- Hiromi Iwasaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | |
Collapse
|
11
|
Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104:12377-82. [PMID: 17640912 PMCID: PMC1941477 DOI: 10.1073/pnas.0704579104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent studies have suggested that, in ES cells, inactive genes encoding early developmental regulators possess bivalent histone modification domains and are therefore poised for activation. However, bivalent domains were not observed at typical tissue-specific genes. Here, we show that windows of unmethylated CpG dinucleotides and putative pioneer factor interactions mark enhancers for at least some tissue-specific genes in ES cells. The unmethylated windows expand in cells that express the gene and contract, disappear, or remain unchanged in nonexpressing tissues. However, in ES cells, they do not always coincide with common histone modifications. Genomic footprinting and chromatin immunoprecipitation demonstrated that transcription factor binding underlies the unmethylated windows at enhancers for the Ptcra and Alb1 genes. After stable integration of premethylated Ptcra enhancer constructs into the ES cell genome, the unmethylated windows readily appeared. In contrast, the premethylated constructs remained fully methylated and silent after introduction into Ptcra-expressing thymocytes. These findings provide initial functional support for a model in which pioneer factor interactions in ES cells promote the assembly of a chromatin structure that is permissive for subsequent activation, and in which differentiated tissues lack the machinery required for gene activation when these ES cell marks are absent. The enhancer marks may therefore represent important features of the pluripotent state.
Collapse
Affiliation(s)
- Jian Xu
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Scott D. Pope
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Ali R. Jazirehi
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Joanne L. Attema
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| | - Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| | - Jason A. Watts
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Kenneth S. Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
- To whom correspondence may be addressed. E-mail: or
| | - Stephen T. Smale
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
12
|
Lauritsen JPH, Haks MC, Lefebvre JM, Kappes DJ, Wiest DL. Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 2006; 209:176-90. [PMID: 16448543 DOI: 10.1111/j.0105-2896.2006.00349.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During thymopoiesis, two major types of mature T cells are generated that can be distinguished by the clonotypic subunits contained within their T-cell receptor (TCR) complexes: alphabeta T cells and gammadelta T cells. Although there is no consensus as to the exact developmental stage where alphabeta and gammadelta T-cell lineages diverge, gammadelta T cells and precursors to the alphabeta T-cell lineage (bearing the pre-TCR) are thought to be derived from a common CD4- CD8- double-negative precursor. The role of the TCR in alphabeta/gammadelta lineage commitment has been controversial, in particular whether different TCR isotypes intrinsically favor adoption of the corresponding lineage. Recent evidence supports a signal strength model of lineage commitment, whereby stronger signals promote gammadelta development and weaker signals promote adoption of the alphabeta fate, irrespective of the TCR isotype from which the signals originate. Moreover, differences in the amplitude of activation of the extracellular signal-regulated kinase- mitogen-activated protein kinase-early growth response pathway appear to play a critical role. These findings will be placed in context of previous analyses in an effort to more precisely define the signals that control T-lineage fate during thymocyte development.
Collapse
Affiliation(s)
- Jens Peter H Lauritsen
- Fox Chase Cancer Center, Division of Basic Sciences, Immunobiology Working Group, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
13
|
Xu Q, Springer L, Merchant JL, Jiang H. Identification of zinc finger binding protein 89 (ZBP-89) as a transcriptional activator for a major bovine growth hormone receptor promoter. Mol Cell Endocrinol 2006; 251:88-95. [PMID: 16621236 DOI: 10.1016/j.mce.2006.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
The objective of this study was to identify the transcription factors that regulate the expression of growth hormone receptor (GHR) 1A mRNA, a major GHR mRNA variant in the bovine liver. A deoxyribonuclease I footprint analysis revealed that the GHR1A promoter region -69 to -30 (relative to the transcription start site for GHR1A mRNA) contained binding sites for bovine liver nuclear proteins. Using a yeast one-hybrid analysis, zinc finger binding protein 89 (ZBP-89) was identified as a binding protein to this promoter region. Binding of ZBP-89 to the GHR1A promoter region -69 to -30 was further confirmed by an electrophoretic mobility shift assay. In cotransfection analyses, overexpression of ZBP-89 enhanced (P<0.01) the activity of the GHR1A promoter and this enhancement was dependent on the putative ZBP-89 binding site in the promoter. These results together indicate that ZBP-89 is a transcription factor that regulates the expression of GHR1A mRNA.
Collapse
Affiliation(s)
- Qingfu Xu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061-0306, USA
| | | | | | | |
Collapse
|
14
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
16
|
von Boehmer H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 2005; 5:571-7. [PMID: 15999096 DOI: 10.1038/nri1636] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of alphabeta T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the alphabeta-TCR in which the pre-TCR alpha-chain that is covalently associated with the TCR beta-chain is a 'surrogate' TCR alpha-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR alpha-chain that has different capabilities from the TCR alpha-chain. As described here, I consider that experimental evidence favours the latter view.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Holley-Guthrie EA, Seaman WT, Bhende P, Merchant JL, Kenney SC. The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 2005; 79:745-55. [PMID: 15613302 PMCID: PMC538557 DOI: 10.1128/jvi.79.2.745-755.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BMRF1 gene encodes an early lytic protein that functions not only as the viral DNA polymerase processivity factor but also as a transcriptional activator. BMRF1 has been previously shown to activate transcription of an EBV early promoter, BHLF1, though a GC-rich motif which binds to SP1 and ZBP-89, although the exact mechanism for this effect is not known (D. J. Law, S. A. Tarle, and J. L. Merchant, Mamm. Genome 9:165-167, 1998). Here we demonstrate that BMRF1 activates transcription of the cellular gastrin gene in telomerase-immortalized keratinocytes. Furthermore, BMRF1 activated a reporter gene construct driven by the gastrin promoter in a variety of cell types, and this effect was mediated by two SP1/ZBP-89 binding sites in the gastrin promoter. ZBP-89 has been previously shown to negatively regulate the gastrin promoter. However, ZBP-89 can function as either a negative or positive regulator of transcription, depending upon the promoter and perhaps other, as-yet-unidentified factors. BMRF1 increased the binding of ZBP-89 to the gastrin promoter, and a ZBP-89-GAL4 fusion protein was converted into a positive transcriptional regulator by cotransfection with BMRF1. BMRF1 also enhanced the transcriptional activity of an SP1-GAL4 fusion protein. These results suggest that BMRF1 activates target promoters through its effect on both the SP1 and ZBP-89 transcription factors. Furthermore, as the EBV genome is present in up to 10% of gastric cancers, and the different forms of gastrin are growth factors for gastrointestinal epithelium, our results suggest a mechanism by which lytic EBV infection could promote the growth of gastric cells.
Collapse
Affiliation(s)
- Elizabeth A Holley-Guthrie
- Lineberger Comprehensive Cancer Center, CB # 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
18
|
Shigematsu H, Reizis B, Iwasaki H, Mizuno SI, Hu D, Traver D, Leder P, Sakaguchi N, Akashi K. Plasmacytoid Dendritic Cells Activate Lymphoid-Specific Genetic Programs Irrespective of Their Cellular Origin. Immunity 2004; 21:43-53. [PMID: 15345219 DOI: 10.1016/j.immuni.2004.06.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The developmental origin of type I interferon (IFN)-producing plasmacytoid dendritic cells (PDCs) is controversial. In particular, the rearrangement of immunoglobulin heavy chain (IgH) genes in murine PDCs and the expression of pre-T cell receptor alpha (pTalpha) gene by human PDCs were proposed as evidence for their "lymphoid" origin. Here we demonstrate that PDCs capable of IFN production develop efficiently from both myeloid- and lymphoid-committed progenitors. Rearranged IgH genes as well as RAG transcripts were found in both myeloid- and lymphoid-derived PDCs. The human pTalpha transgenic reporter was activated in both myeloid- and lymphoid-derived PDCs at a level comparable to pre-T cells. PDCs were the only cell population that activated murine RAG1 knockin and human pTalpha transgenic reporters outside the lymphoid lineage. These results highlight a unique developmental program of PDCs that distinguishes them from other cell types including conventional dendritic cells.
Collapse
Affiliation(s)
- Hirokazu Shigematsu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Boopathi E, Lenka N, Prabu SK, Fang JK, Wilkinson F, Atchison M, Giallongo A, Avadhani NG. Regulation of murine cytochrome c oxidase Vb gene expression during myogenesis: YY-1 and heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP1) reciprocally regulate transcription activity by physical interaction with the BERF-1/ZBP-89 factor. J Biol Chem 2004; 279:35242-54. [PMID: 15190078 DOI: 10.1074/jbc.m403160200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transcription suppressor element (sequence -481 to -320) containing a G-rich motif (designated GTG) and a newly identified CAT-rich motif (designated CATR) was previously shown to modulate expression of the mouse cytochrome c oxidase Vb gene during myogenesis. Here, we show that the GTG element is critical for transcription activation in both undifferentiated and differentiated myocytes. Mutations of the CATR motif abolished transcription repression in myoblasts while limiting transcription activation in differentiated myotubes, suggesting contrasting functional attributes of this DNA motif at different stages of myogenesis. Results show that the activity of the transcription suppressor motif is modulated by an orchestrated interplay between ubiquitous transcription factors: ZBP-89, YY-1, and a member of the heterogeneous nuclear ribonucleoprotein D-like protein (also known as JKTBP1) family. In undifferentiated muscle cells, GTG motif-bound ZBP-89 physically and functionally interacted with CATR motif-bound YY-1 to mediate transcription repression. In differentiated myotubes, heterogeneous nuclear ribonucleoprotein D-like protein/JKTBP1 bound to the CATR motif exclusive of YY-1 and interacted with ZBP-89 in attenuating repressor activity, leading to transcription activation. Our results show a novel mechanism of protein factor switching in transcription regulation of the cytochrome c oxidase Vb gene during myogenesis.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim J, Lee J, Yadav N, Wu Q, Carter C, Richard S, Richie E, Bedford MT. Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J Biol Chem 2004; 279:25339-44. [PMID: 15096520 DOI: 10.1074/jbc.m402544200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coactivator-associated arginine methyltransferase, CARM1, is a positive regulator of transcription. Using high density protein arrays, we have previously identified in vitro substrates for CARM1. One of these substrates, TARPP (thymocyte cyclic AMP-regulated phosphoprotein), is expressed specifically in immature thymocytes. Here, we have demonstrated that TARPP is arginine-methylated at a single residue, Arg(650), both in vitro and in vivo. In addition, recombinant TARPP is not methylated by extracts from Carm1(-/-) cells, indicating that there is no redundancy in this pathway. We show that thymi from Carm1(-/-) embryos (E18.5) have a 5-10-fold reduction in cellularity compared with wild type littermates. Flow cytometric analysis of thymocytes revealed a decrease in the relative proportion of double negative thymocytes in Carm1(-/-) embryos because of a partial developmental arrest in the earliest thymocyte progenitor subset. These results demonstrate that CARM1 plays a significant role in promoting the differentiation of early thymocyte progenitors, possibly through its direct action on TARPP.
Collapse
Affiliation(s)
- Jeesun Kim
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bai L, Logsdon C, Merchant JL. Regulation of epithelial cell growth by ZBP-89: potential relevance in pancreatic cancer. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2003; 31:79-88. [PMID: 12622418 DOI: 10.1385/ijgc:31:1-3:79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ZBP-89 (ZNF148) is a Zinc finger Binding Protein of 89 kDa that binds GC-rich DNA elements. Originally, it was expression cloned using a DNA element mediating EGF regulation of the gastrin promoter. ZBP-89 functions as both a transcriptional activator and repressor. A variety of extracellular regulators including TGFbeta, retinoic acid and butyrate stimulate ZBP-89 gene expression. Butyrate activation of p21WAF1 is potentiated by ZBP-89 through the recruitment of the co-activator p300, while chronic stimulation by butyrate increases ZBP-89 gene expression correlating with cell differentiation. ZBP-89 stimulates growth arrest and apoptosis through its ability to bind the p21WAF1 promoter or its ability to form protein-protein interactions with p53. ZBP-89 protein is elevated in a variety of gastrointestinal cancers as well as the pancreas. In particular, ZBP-89 is normally expressed in pancreatic islets and ducts and in about 30% of pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Martin CH, Aifantis I, Scimone ML, von Andrian UH, Reizis B, von Boehmer H, Gounari F. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat Immunol 2003; 4:866-73. [PMID: 12925850 DOI: 10.1038/ni965] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 07/15/2003] [Indexed: 11/09/2022]
Abstract
Using a human CD25 reporter transgene controlled by regulatory sequences from the gene encoding pre-T cell receptor alpha, we identified a common lymphocyte precursor (CLP-2) population that, in contrast to the previously identified CLP-1 population, was c-Kit-B220+. In short-term culture, the CLP-2 could be derived from the CLP-1 subset, and contained cells that in clonogenic assays were assessed to be bipotent precursors of T and B cells. Intravenous injection of bone marrow cells yielded a selective accumulation of CLP-2 thymic immigrants that in thymic organ culture generated mature alphabeta T cells. Although the CLP-2 subset may represent the most differentiated population with T cell potential before commitment to the B cell lineage, other subsets of thymic immigrants capable of generating T cells may exist.
Collapse
Affiliation(s)
- Colin H Martin
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute Boston, Massachusetts, 02115, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(Waf1) transcription is mediated through its proximal GC-rich sites. Prior studies have shown that Sp1, Sp3 and the histone acetyltransferase coactivator p300 are components of the complexes that bind to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. Zinc-finger binding protein-89 (ZBP-89, also known as BFCOL1, BERF-1 and ZNF-148) is a Krüppel-type zinc-finger transcription factor that binds to the same GC-rich sequences as Sp1. We sought to determine whether ZBP-89 is a target of p300 during butyrate induction of p21(Waf1). This review summarizes the evidence that supports a crucial role for ZBP-89 in butyrate regulation of p21(Waf1). Adenovirus-mediated expression of ZBP-89 in HT-29 cells reveals that ZBP-89 potentiates butyrate induction of endogenous p21(Waf1) gene expression. DNA-protein interaction assays demonstrate that Sp1, Sp3 and ZBP-89 bind the p21(Waf1) promoter at -245 to -215. Coprecipitation assays reveal that p300 preferentially binds to the N-terminus of ZBP-89. ZBP-89 also induces p21(Waf1) through stabilization of p53. Although ZBP-89 binds mutant and wild-type p53, only wild-type p53 is stabilized. Moreover, mutant p53 shifts the subnuclear location of ZBP-89 to the nuclear periphery, which is a domain rich in heterochromatin. This finding led to the conclusion that mutant p53 exerts a dominant negative effect on ZBP-89. We propose that gene silencing by mutant p53 might be mediated by sequestering ZBP-89 within heterochromatin regions at the nuclear periphery. Overall, ZBP-89 is a butyrate-regulated coactivator of p53 and is able to induce p21(Waf1) gene expression through both p53-dependent and -independent mechanisms to inhibit cell growth.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
24
|
Zhang X, Diab IH, Zehner ZE. ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucleic Acids Res 2003; 31:2900-14. [PMID: 12771217 PMCID: PMC156715 DOI: 10.1093/nar/gkg380] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vimentin, a member of the intermediate filament protein family, is regulated both developmentally and tissue specifically. It is also a marker of the metastatic potential of many tumor cells. Pre viously, the human vimentin promoter has been shown to contain multiple elements for the binding of both positive- and negative-acting regulatory factors. Transient transfection analysis of various vimentin 5'-end promoter sequences and mutants thereof fused to a reporter gene further defined two regulatory elements, a positive element that binds Sp1 and a negative element that binds the protein ZBP-89. ZBP-89 has been shown to be either a repressor or an activator of gene expression, depending on the promoter. Here, we show that for vimentin, both ZBP-89 and ZBP-99 repress reporter gene expression in Schneider (S2) cells. Deletion constructs confirm that the glutamine-rich region of Sp1 is required to enhance vimentin transcription, whereas the N-terminus of ZBP-89 is required to interact with Sp1 and repress gene expression. The overexpression of hTAF(II)130 can alleviate ZBP-89 repression in S2 cells, suggesting how ZBP-89 might serve to block gene expression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
25
|
Tremblay M, Herblot S, Lecuyer E, Hoang T. Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem 2003; 278:12680-7. [PMID: 12566462 DOI: 10.1074/jbc.m209870200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the pT alpha gene is required for effective selection, proliferation, and survival of beta T-cell receptor (beta TCR)-expressing immature thymocytes. Here, we have identified two phylogenetically conserved E-boxes within the pT alpha enhancer sequence that are required for optimal enhancer activity and for its stage-specific activity in immature T cells. We have shown that the transcription factors E2A and HEB associate with high affinity to these E-boxes. Moreover, we have identified pT alpha as a direct target of E2A-HEB heterodimers in immature thymocytes because they specifically occupy the enhancer in vivo. In these cells, pT alpha mRNA levels are determined by the presence of one or two functional E2A or HEB alleles. Furthermore, E2A/HEB transcriptional activity is repressed by heterodimerization with SCL, a transcription factor that is turned off in differentiating thymocytes exactly at a stage when pT alpha is up-regulated. Taken together, our observations suggest that the dosage of E2A, HEB, and SCL determines pT alpha gene expression in immature T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors
- Cell Line
- Consensus Sequence
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Enhancer Elements, Genetic
- Flow Cytometry
- Helix-Loop-Helix Motifs
- Humans
- Membrane Glycoproteins/genetics
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Homology, Amino Acid
- T-Cell Acute Lymphocytic Leukemia Protein 1
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Mathieu Tremblay
- Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | |
Collapse
|
26
|
Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL, Akashi K. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002; 3:137-47. [PMID: 12110174 DOI: 10.1016/s1534-5807(02)00201-0] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate here that "promiscuous" expression of myeloid or lymphoid genes precedes lineage commitment in hematopoiesis. Prospectively purified single common myeloid progenitors (CMPs) coexpress myelo-erythroid but not lymphoid genes, whereas single common lymphoid progenitors (CLPs) coexpress T and B lymphoid but not myeloid genes. Genes unrelated to the adopted lineage are downregulated in bipotent and monopotent descendants of CMPs and CLPs. Promiscuous gene expression does not alter the biological potential of multipotent progenitors: CMPs with an activated endogenous M lysozyme locus yield normal proportions of myelo-erythroid colonies, and CLPs expressing the pre-T cell receptor alpha gene differentiate into normal numbers of B cells. Thus, the accessibility for multiple myeloid or lymphoid programs promiscuously may allow flexibility in fate commitments at these multipotent stages.
Collapse
Affiliation(s)
- Toshihiro Miyamoto
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Lymphocytes arise from hematopoietic stem cells through the coordinated action of transcription factors. The E proteins (E12, E47, HEB and E2-2) have emerged as key regulators of both B and T lymphocyte differentiation. This review summarizes the current data and examines the various functions of E proteins and their antagonists, Id2 and Id3, throughout lymphoid maturation. Beyond an established role in B and T lineage commitment, E proteins continue to be essential at subsequent stages of development. E protein activity regulates the expression of surrogate and antigen receptor genes, promotes Ig and TCR rearrangements, and coordinates cell survival and proliferation with developmental progression in response to TCR signaling. Finally, this review also discusses the role of E47 as a tumor suppressor.
Collapse
Affiliation(s)
- Melanie W Quong
- Division of Biology, University of California, San Diego, 9500 Gilman Drive, MC 0366, La Jolla, California 92093-0366, USA.
| | | | | |
Collapse
|
28
|
Gounari F, Aifantis I, Martin C, Fehling HJ, Hoeflinger S, Leder P, von Boehmer H, Reizis B. Tracing lymphopoiesis with the aid of a pTalpha-controlled reporter gene. Nat Immunol 2002; 3:489-96. [PMID: 11927910 DOI: 10.1038/ni778] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A transgenic reporter mouse strain, which expressed the human CD25 (hCD25) surface marker as a reporter under the control of the pre-T cell receptor alpha(pTalpha) promoter, was used to identify lymphoid precursors that expressed pTalpha intracellularly. The hCD25 reporter marked intra- and extrathymic precursors of lymphocytes but not myeloid cells. The earliest intrathymic precursors were CD4(lo)CD8(-)CD25(-)CD44(+)c-Kit(+) cells that expressed elevated levels of Notch-1 mRNA. Clonogenic assays showed that the extrathymic precursors were common lymphoid progenitors (CLPs) that included CD19(-), B220(+), Thy1(+) and CD4(+) cells. Thus, the pTalpha reporter can be used to trace lymphopoiesis between CLPs and alphabeta T cells. The slower extinction of the hCD25 reporter compared to pTalpha enabled us to define points at which pTalpha(-) lineages branched off.
Collapse
MESH Headings
- Animals
- Flow Cytometry
- Gene Expression Regulation
- Hematopoiesis/immunology
- Humans
- Lymphocytes/cytology
- Lymphocytes/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Proteins/analysis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta
- Receptors, Cell Surface
- Receptors, Interleukin-2/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cells
- Transcription Factors
Collapse
Affiliation(s)
- Fotini Gounari
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aifantis I, Borowski C, Gounari F, Lacorazza HD, Nikolich-Zugich J, von Boehmer H. A critical role for the cytoplasmic tail of pTalpha in T lymphocyte development. Nat Immunol 2002; 3:483-8. [PMID: 11927911 DOI: 10.1038/ni779] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signals that emanate from the pre-T cell receptor (pre-TCR) regulate multiple processes required for the development of the alphabeta T cell lineage. In contrast to the gammadelta TCR, the pre-TCR localizes cell-autonomously to membrane rafts, where it appears to signal in a constitutive and ligand-independent manner. We addressed here the role played by structural features specific to the cytoplasmic domain of the pre-TCRalpha chain (pTalpha). More specifically, we examined a COOH-terminal proline-rich sequence that might play a role in signal transduction and a juxtamembrane cysteine residue that could be a target for palmitoylation, thus allowing spontaneous raft localization. Expression of pTalpha mutants in transgenic mice, retrovirally transduced T cell precursors and cell lines showed that the pTalpha cytoplasmic tail, in particular the proline-rich domain, plays a crucial role in pre-TCR signaling and T cell development. In contrast, the pTalpha juxtamembrane cysteine appeared to be dispensable for pre-TCR function.
Collapse
MESH Headings
- Animals
- Cell Division/immunology
- Cytoplasm/immunology
- Flow Cytometry
- Gene Expression Regulation
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Transgenic
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Carleton M, Haks MC, Smeele SAA, Jones A, Belkowski SM, Berger MA, Linsley P, Kruisbeek AM, Wiest DL. Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1649-58. [PMID: 11823493 DOI: 10.4049/jimmunol.168.4.1649] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progression of immature CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint to the CD4(+)CD8(+) stage requires activation of the pre-TCR complex; however, few of the DNA-binding proteins that serve as molecular effectors of those pre-TCR signals have been identified. We demonstrate in this study that members of the early growth response (Egr) family of transcription factors are critical effectors of the signals that promote this developmental transition. Specifically, the induction of three Egr family members (Egr1, 2, and 3) correlates with pre-TCR activation and development of CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint. Enforced expression of each of these Egr factors is able to bypass the block in thymocyte development associated with defective pre-TCR function. However, Egr family members may play somewhat distinct roles in promoting thymocyte development, because there are differences in the genes modulated by enforced expression of particular Egr factors. Finally, interfering with Egr function using dominant-negative proteins disrupts thymocyte development from the CD4(-)CD8(-) to the CD4(+)CD8(+) stage. Taken together, these data demonstrate that the Egr proteins play an essential role in executing the differentiation program initiated by pre-TCR signaling.
Collapse
Affiliation(s)
- Michael Carleton
- Immunobiology Working Group, Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16:295-300. [PMID: 11825871 PMCID: PMC155334 DOI: 10.1101/gad.960702] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor alpha (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Abstract
Helix-loop-helix proteins are essential factors for lymphocyte development and function. In particular, E-proteins are crucial for commitment of lymphoid progenitors to the B- and T-cell lineages. E-proteins are negatively regulated by the Id class of helix-loop-helix proteins. The Id proteins function as dominant-negative inhibitors of E-proteins by inhibiting their ability to bind DNA. Here, we review the role of E-proteins and their Id protein antagonists in lymphocyte proliferation and developmental progression. In addition, we discuss how E-protein activity and Id gene expression are regulated by T-cell receptor (TCR) and pre-TCR-mediated signalling.
Collapse
Affiliation(s)
- I Engel
- Division of Biology, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
33
|
Keates AC, Keates S, Kwon JH, Arseneau KO, Law DJ, Bai L, Merchant JL, Wang TC, Kelly CP. ZBP-89, Sp1, and nuclear factor-kappa B regulate epithelial neutrophil-activating peptide-78 gene expression in Caco-2 human colonic epithelial cells. J Biol Chem 2001; 276:43713-22. [PMID: 11559712 DOI: 10.1074/jbc.m107838200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that human colonic epithelial cells produce the C-X-C chemokine epithelial neutrophil-activating peptide-78 (ENA-78) and that its expression is up-regulated in ulcerative colitis. The aim of this study was to investigate the transcriptional regulation of ENA-78 gene expression in Caco-2 intestinal epithelial cells. Reporter gene transfection and electrophoretic mobility shift assay studies demonstrated that cooperation between two regions of the ENA-78 promoter were required for maximal gene expression in interleukin-1beta-stimulated Caco-2 cells. Binding of activated p50/p65 nuclear factor-kappaB to nucleotides -82 to -91 was essential for interleukin-1beta-dependent gene transcription, whereas binding of constitutively expressed zinc-requiring nuclear factors to nucleotides -125 to -134 (site A) was required for basal gene expression. Scanning mutagenesis of site A demonstrated overlapping binding elements at this locus. One site (CTCCCCC) bound Sp1 and Sp3, and overexpression of Sp1 (but not Sp3) up-regulated basal ENA-78 transcription. Another site (CCCCTCCCCC) was found to bind the zinc finger nuclear factor ZBP-89, and overexpression of this protein significantly repressed ENA-78 reporter gene activity. This study demonstrates that ENA-78 gene expression in Caco-2 intestinal epithelial cells is subject to complex regulation involving the coordinate binding of ZBP-89, Sp1, and nuclear factor-kappaB to the ENA-78 promoter.
Collapse
Affiliation(s)
- A C Keates
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reizis B, Leder P. The upstream enhancer is necessary and sufficient for the expression of the pre-T cell receptor alpha gene in immature T lymphocytes. J Exp Med 2001; 194:979-90. [PMID: 11581319 PMCID: PMC2193489 DOI: 10.1084/jem.194.7.979] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The expression of the pre-T cell receptor alpha (pTa) gene occurs exclusively in immature T lymphocytes and is regulated by poorly defined mechanisms. We have analyzed the role of the upstream enhancer in pTa expression using conventional and bacterial artificial chromosome (BAC) reporter transgenes. The deletion of the enhancer completely abolished the expression of pTa BAC reporter in transgenic mice. Conversely, the combination of pTa enhancer and promoter targeted transgenes specifically to immature thymocytes, recapitulating the expression pattern of pTa. The core enhancer is conserved between mice and humans and contains a critical binding site for the transcription factor c-Myb. We also show that pTa promoter contains a conserved tandem E box site activated by E protein, HEB. These data establish the enhancer as a critical element regulating pTa gene expression and identify additional targets for c-Myb and E proteins in T cell development.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes, Artificial, Bacterial
- Conserved Sequence
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genes, T-Cell Receptor alpha
- Hematopoietic Stem Cells/immunology
- Humans
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Promoter Regions, Genetic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Homology, Nucleic Acid
- T-Lymphocytes/immunology
- Transgenes
Collapse
Affiliation(s)
- Boris Reizis
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Philip Leder
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
35
|
Takeuchi A, Yamasaki S, Takase K, Nakatsu F, Arase H, Onodera M, Saito T. E2A and HEB activate the pre-TCR alpha promoter during immature T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2157-63. [PMID: 11490000 DOI: 10.4049/jimmunol.167.4.2157] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pre-TCRalpha (pTalpha) is exclusively expressed in immature thymocytes and constitutes the pre-TCR complex with TCRbeta, which regulates early T cell differentiation. Despite the recent identification of the pTalpha enhancer, the contribution of the promoter region, the direct DNA-protein interaction, and the regulation of such interaction along with T cell development have not been investigated. We analyzed the pTalpha promoter region and identified the critical elements for transcription of the pTalpha gene. The pTalpha promoter was found to contain two consecutive E-box elements that are critical for pTalpha transcription. The E-box elements in the promoter region formed the specific DNA-protein complex that was exclusively observed in immature thymocytes, not in mature thymocytes and T cells. The E proteins in this complex were identified as E2A and HeLa E-box binding protein (HEB), and overexpression of E2A and HEB resulted in activation of the pTalpha promoter. The binding complex in the consecutive E-boxes in the pTalpha promoter changed along with T cell development, as a distinct DNA-binding complex was observed in mature T cells. Comparing the E-box regions in the enhancer and the promoter, those in the promoter appear to make a greater contribution to pTalpha gene transcription.
Collapse
Affiliation(s)
- A Takeuchi
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Ficzycz A, Eskiw C, Meyer D, Marley KE, Hurt M, Ovsenek N. Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos. J Biol Chem 2001; 276:22819-25. [PMID: 11294833 DOI: 10.1074/jbc.m011188200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that acts as an activator, repressor, or initiator of transcription of numerous cellular and viral genes. Previous studies in tissue culture model systems suggest YY1 plays a role in development and differentiation in multiple cell types, but the biological role of YY1 in vertebrate oocytes and embryos is not well understood. Here we analyzed expression, activity, and subcellular localization profiles of YY1 during Xenopus laevis development. Abundant levels of YY1 mRNA and protein were detected in early stage oocytes and in all subsequent stages of oocyte and embryonic development through to swimming larval stages. The DNA binding activity of YY1 was detected only in early oocytes (stages I and II) and in embryos after the midblastula transition (MBT), which suggested that its potential to modulate gene expression may be specifically repressed in the intervening period of development. Experiments to determine transcriptional activity showed that addition of YY1 recognition sites upstream of the thymidine kinase promoter had no stimulatory or repressive effect on basal transcription in oocytes and post-MBT embryos. Although the apparent transcriptional inactivity of YY1 in oocytes could be explained by the absence of DNA binding activity at this stage of development, the lack of transcriptional activity in post-MBT embryos was not expected given the ability of YY1 to bind its recognition elements. Subsequent Western blot and immunocytochemical analyses showed that YY1 is localized in the cytoplasm in oocytes and in cells of developing embryos well past the MBT. These findings suggest a novel mode of YY1 regulation during early development in which the potential transcriptional function of the maternally expressed factor is repressed by cytoplasmic localization.
Collapse
Affiliation(s)
- A Ficzycz
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K. Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem 2001; 276:18082-9. [PMID: 11278409 DOI: 10.1074/jbc.m008387200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lck gene encodes a protein-tyrosine kinase that plays a key role in signaling mediated through T cell receptor (TCR) and pre-TCR complexes. Transcription of the lck gene is regulated by two independent promoter elements: the proximal and distal promoters. Previous studies employing transgenic mice demonstrated that the sequence between -584 and -240 from the transcription start site in the mouse lck proximal promoter is required for its tissue-specific expression in the thymus. In this study, we demonstrate that a Krüppel-like zinc finger protein, mtbeta (BFCOL1, BERF-1, ZBP-89, ZNF148), previously cloned as a protein that binds to the CD3delta gene enhancer, binds to the -365 to -328 region of the lck proximal promoter. mtbeta is ubiquitously expressed in various cell lines and mouse tissues. Overexpressed mtbeta is more active in T-lineage cells than B-lineage cells for transactivating an artificial promoter consisting of the mtbeta binding site and a TATA box. Activity of the lck proximal promoter was significantly impaired by mutating the mtbeta binding site or by reducing mtbeta protein expression level by using antisense mRNA. Our results indicate that mtbeta activity is regulated in a tissue-specific manner and that mtbeta is a critical transactivator for the lck proximal promoter.
Collapse
Affiliation(s)
- A Yamada
- Division of Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Feo S, Antona V, Cammarata G, Cavaleri F, Passantino R, Rubino P, Giallongo A. Conserved structure and promoter sequence similarity in the mouse and human genes encoding the zinc finger factor BERF-1/BFCOL1/ZBP-89. Biochem Biophys Res Commun 2001; 283:209-18. [PMID: 11322790 DOI: 10.1006/bbrc.2001.4753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the genomic structure of the mouse Zfp148 gene encoding Beta-Enolase Repressor Factor-1 (BERF-1), a Kruppel-like zinc finger protein involved in the transcriptional regulation of several genes, which is also termed ZBP-89, BFCOL1. The cloned Zfp148 gene spans 110 kb of genomic DNA encompassing the 5'-end region, 9 exons, 8 introns, and the 3'-untranslated region. The promoter region displays the typical features of a housekeeping gene: a high G+C content and the absence of canonical TATA and CAAT boxes consistent with the multiple transcription initiation sites determined by primary extension analysis. Computer-assisted search in the human genome database allowed us to determine that the same genomic structure with identical intron-exon organization is conserved in the human homologue ZNF 148. Functional analysis of the 5'-flanking sequence of the mouse gene indicated that the region from nucleotide -205 to +144, relative to the major transcription start site, contains cis-regulatory elements that promote basal expression. Such sequences and the overall promoter architecture are highly conserved in the human gene. Furthermore, we show that the complex transcription pattern of the Zfp148 gene might be due to a combination of alternative splicing and differential polyadenylation sites utilization.
Collapse
Affiliation(s)
- S Feo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Centro di Oncobiologia Sperimentale, Viale delle Scienze, Palermo, 90128, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
von Boehmer H, Aifantis I, Azogui O, Saint-Ruf C, Grassi F. The impact of pre-T-cell receptor signals on gene expression in developing T cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:283-9. [PMID: 11232298 DOI: 10.1101/sqb.1999.64.283] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H von Boehmer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U373 Hôpital Necker-Enfants Malades, F-75730 Paris, France
| | | | | | | | | |
Collapse
|
40
|
Bai L, Merchant JL. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 2000; 275:30725-33. [PMID: 10899165 DOI: 10.1074/jbc.m004249200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(waf1) transcription is mediated through proximal GC-rich sites. Prior studies have shown that Sp1, Sp3, and the histone acetylase co-activator p300 are components of the complexes binding to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. This study sought to determine whether ZBP-89 rather than Sp1 is the direct target of p300 during butyrate induction of p21(waf1). ZBP-89 (BFCOL1, BERF-1, ZNF 148) is a Krüppel-type zinc finger transcription factor that binds to GC-rich elements and represses or activates known target genes. Adenoviral-mediated expression of ZBP-89 in HT-29 cells revealed that ZBP-89 potentiates butyrate induction of endogenous p21(waf1) gene expression. Further, cotransfection of a ZBP-89 expression vector with a 2.3-kilobase p21(waf1) reporter recapitulated the potentiation by butyrate. DNase I footprinting analysis of the human p21(waf1) promoter with recombinant ZBP-89 identified a binding site at -245 to -215. Electrophoretic mobility shift assays confirmed that both recombinant and endogenous ZBP-89 and Sp1 bind to this element. The potentiation was abolished in the presence of adenoviral protein E1A. Deletion of the N-terminal domain of ZBP-89 abolished the potentiation mediated by butyrate treatment. This same deletion mutant abolished the ZBP-89 interaction with p300. Cotransfection of p300 with ZBP-89 stimulated the p21(waf1) promoter in the absence of butyrate. p300 co-precipitated with ZBP-89 but not with Sp1, whereas ZBP-89 co-precipitated with Sp1. Together, these findings demonstrate that ZBP-89 also plays a critical role in butyrate activation of the p21(waf1) promoter and reveals preferential cooperation of this four-zinc finger transcription factor with p300.
Collapse
Affiliation(s)
- L Bai
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Physiology, University of Michigan, Ann Arbor, Mighican 48109, USA
| | | |
Collapse
|
41
|
Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1:138-44. [PMID: 11248806 DOI: 10.1038/77819] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cooperation between the stem cell leukemia (SCL) transcription factor and its nuclear partners LMO1 or LMO2 induces aggressive T cell acute lymphoblastic leukemia when inappropriately expressed in T cells. This study examined the cellular and molecular targets of the SCL-LMO complex at the preleukemic stage. We show that SCL and its partners are coexpressed in the most primitive thymocytes. Maturation to the pre-T cell stage is associated with a down-regulation of SCL and LMO1 and LMO2, and a concomitant up-regulation of E2A and HEB expression. Moreover, enforced expression of SCL-LMO1 inhibits T cell differentiation and recapitulates a loss of HEB function, causing a deregulation of the transition checkpoint from the CD4-CD8- to CD4+CD8+ stages. Finally, we identify the gene encoding pT alpha as a downstream target of HEB that is specifically repressed by the SCL-LMO complex.
Collapse
Affiliation(s)
- S Herblot
- Clinical Research Institute of Montréal, Montréal, Québec, Canada H2W1R7
| | | | | | | | | |
Collapse
|
42
|
Reizis B, Lee JT, Leder P. Homologous genomic fragments in the mouse pre-T cell receptor alpha (pTa) and Xist loci. Genomics 2000; 63:149-52. [PMID: 10662556 DOI: 10.1006/geno.1999.6068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently characterized a genomic region located upstream of the mouse pre-T cell receptor alpha (pTa) gene, which controls pTa expression in pre-T cells. We now report an unexpected homology between this region and a region in the mouse X chromosome inactivation center between the 3' end of the Xist gene and the start of an antisense transcript Tsix. The homology is extended over 4 kb of genomic sequence split by an expanded repeat region and is observed only in the mouse, not in the rat. Despite high sequence similarity to the pTa transcriptional enhancer, the homologous X chromosome fragment appears to have lost its enhancer activity. These data underscore the complex organization of the mouse genome and, in particular, of the X chromosome inactivation center.
Collapse
Affiliation(s)
- B Reizis
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Law DJ, Du M, Law GL, Merchant JL. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem Biophys Res Commun 1999; 262:113-20. [PMID: 10448078 DOI: 10.1006/bbrc.1999.1180] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among transcription factors that regulate ornithine decarboxylase (ODC) gene expression are those that interact with GC-rich promoters, including Sp1 and ZBP-89. Sp1 functions as a transactivator and ZBP-89 as a transrepressor of both the ODC and gastrin promoters. This study reports the cloning and characterization of a second member of the ZBP family that also binds GC boxes. ZBP-99 contains four Krüppel-type zinc fingers that collectively share 91% amino acid sequence similarity and 79% sequence identity with those found in ZBP-89. In addition, there are highly conserved amino acid sequences in the carboxy-terminal segments of the two genes. In spite of their structural similarities, the two proteins are encoded at distinct loci, ZBP-89 on chromosome 3q21 and ZBP-99 on 1q32.1. The predicted open reading frame of ZBP-99 cDNA encodes a 99-kDa protein. Electrophoretic mobility shift assays showed that ZBP-99 protein specifically binds to the GC-rich promoter elements of gastrin and ODC genes. Northern blot analysis showed that a major ZBP-99 transcript of 5.6 kb is expressed ubiquitously at low levels, with elevated expression levels in placenta and in adult kidney, liver, and lymphocytes. Cotransfection of AGS gastric adenocarcinoma and HT-29 colon adenocarcinoma cells with a ZBP-99 expression construct and with an ODC reporter construct show that ZBP-99 repressed basal expression in the two cell lines by 80 and 60%, respectively. Collectively, the data suggest that ZBP-99 binds GC-rich promoters and may complement the activities mediated by ZBP-89.
Collapse
Affiliation(s)
- D J Law
- Department of Internal Medicine, Department of Physiology, University of Michigan, Michigan, Ann Arbor 48109-0650, USA
| | | | | | | |
Collapse
|