1
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
2
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 PMCID: PMC11869204 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D. Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
3
|
Zheng R, Wei W, Liu S, Zeng D, Yang Z, Tang J, Tan J, Huang Z, Gao M. The FABD domain is critical for the oncogenicity of BCR/ABL in chronic myeloid leukaemia. Cell Commun Signal 2024; 22:314. [PMID: 38849885 PMCID: PMC11157785 DOI: 10.1186/s12964-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Animals
- Humans
- Mice
- Cell Proliferation
- Apoptosis/genetics
- Actins/metabolism
- Carcinogenesis/genetics
- Protein Domains
- Cell Line, Tumor
Collapse
Affiliation(s)
- Renren Zheng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dachuan Zeng
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinfeng Tan
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Hu S, Jabbour EJ, Hu CY, Tang G, Wang W, Medeiros LJ, Bueso-Ramos C. Recurrent lymphoid and myeloid relapses due to treatment cessations reveal natural history of Ph-positive B-ALL and pose a diagnostic challenge. Am J Hematol 2024; 99:721-726. [PMID: 38240333 DOI: 10.1002/ajh.27210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Collin Y Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
6
|
Stanger BZ, Wahl GM. Cancer as a Disease of Development Gone Awry. ANNUAL REVIEW OF PATHOLOGY 2024; 19:397-421. [PMID: 37832945 PMCID: PMC11486542 DOI: 10.1146/annurev-pathmechdis-031621-025610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
In the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.
Collapse
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Abramson Family Cancer Research Institute, and Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
7
|
Pinnenti M, Sami MA, Hassan U. Enabling biomedical technologies for chronic myelogenous leukemia (CML) biomarkers detection. BIOMICROFLUIDICS 2024; 18:011501. [PMID: 38283720 PMCID: PMC10817778 DOI: 10.1063/5.0172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.
Collapse
Affiliation(s)
- Meenakshi Pinnenti
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
8
|
Singh AK, Vidyadhari A, Bhurani D, Agrawal N, Ahmed R, Sharma M. Effect of Imatinib treatment on renal anaemia in chronic myeloid leukemia patients. J Oncol Pharm Pract 2023; 29:1928-1934. [PMID: 36862651 DOI: 10.1177/10781552231160113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE In this study, we investigate renal function and anaemia during imatinib treatment in patients with chronic myeloid leukaemia. METHODS The patients with chronic myeloid leukaemia with chronic phase who had been treated with only imatinib for 12 months at Rajiv Gandhi Cancer Institute and Research Centre (New Delhi, India) were enrolled and prospectively analysed. The chronic renal impairment parameters, including estimated glomerular filtration rate and haemoglobin levels for anaemia from June 2020 to June 2022, were monitored in newly diagnosed in patients with chronic myeloid leukaemia-chronic phase. The data were analysed by SPSS software version 22. RESULTS In total 55 patients with chronic myeloid leukaemia chronic phase who had been on imatinib for 12 months were monitored. The mean estimated glomerular filtration rate was significantly decreased (74 ± 14 to 59 ± 12 mL/min/1.73m2, p < 0.001) with a decrease in mean haemoglobin levels after 12 months (10.9 ± 2.01 to 9.0 ± 1.02, p < 0.004). The decreased estimated glomerular filtration rate was negatively correlated with haemoglobin levels after 1 year of imatinib administration (correlation coefficient = 0.892, R2 = 0.7976, p < 0.05). CONCLUSION We recommended close monitoring of renal function and haemoglobin levels in patients with chronic myeloid leukaemia patients.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Hematology & Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Arya Vidyadhari
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hematology & Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Narendra Agrawal
- Department of Hematology & Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Rayaz Ahmed
- Department of Hematology & Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
10
|
Hayes B, van der Geer P. STS-1 and STS-2, Multi-Enzyme Proteins Equipped to Mediate Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24119214. [PMID: 37298164 DOI: 10.3390/ijms24119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
STS-1 and STS-2 form a small family of proteins that are involved in the regulation of signal transduction by protein-tyrosine kinases. Both proteins are composed of a UBA domain, an esterase domain, an SH3 domain, and a PGM domain. They use their UBA and SH3 domains to modify or rearrange protein-protein interactions and their PGM domain to catalyze protein-tyrosine dephosphorylation. In this manuscript, we discuss the various proteins that have been found to interact with STS-1 or STS-2 and describe the experiments used to uncover their interactions.
Collapse
Affiliation(s)
- Barbara Hayes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| |
Collapse
|
11
|
Yang Q, Liu HR, Yang S, Wei YS, Zhu XN, Zhi Z, Zhu D, Chen GQ, Yu Y. ANP32B suppresses B-cell acute lymphoblastic leukemia through activation of PU.1 in mice. Cancer Sci 2023. [PMID: 37137487 DOI: 10.1111/cas.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 kDa (ANP32) family of proteins, is critical for normal development because its constitutive knockout mice are perinatal lethal. It is also shown that ANP32B acts as a tumor-promoting gene in some kinds of cancer such as breast cancer and chronic myelogenous leukemia. Herein, we observe that ANP32B is lowly expressed in B-cell acute lymphoblastic leukemia (B-ALL) patients, which correlates with poor prognosis. Furthermore, we utilized the N-myc or BCR-ABLp190 -induced B-ALL mouse model to investigate the role of ANP32B in B-ALL development. Intriguingly, conditional deletion of Anp32b in hematopoietic cells significantly promotes leukemogenesis in two B-ALL mouse models. Mechanistically, ANP32B interacts with purine rich box-1 (PU.1) and enhances the transcriptional activity of PU.1 in B-ALL cells. Overexpression of PU.1 dramatically suppresses B-ALL progression, and highly expressed PU.1 significantly reverses the accelerated leukemogenesis in Anp32b-deficient mice. Collectively, our findings identify ANP32B as a suppressor gene and provide novel insight into B-ALL pathogenesis.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Shuo Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
12
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Liu Y, Klein J, Bajpai R, Dong L, Tran Q, Kolekar P, Smith JL, Ries RE, Huang BJ, Wang YC, Alonzo TA, Tian L, Mulder HL, Shaw TI, Ma J, Walsh MP, Song G, Westover T, Autry RJ, Gout AM, Wheeler DA, Wan S, Wu G, Yang JJ, Evans WE, Loh M, Easton J, Zhang J, Klco JM, Meshinchi S, Brown PA, Pruett-Miller SM, Ma X. Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication. Nat Commun 2023; 14:1739. [PMID: 37019972 PMCID: PMC10076316 DOI: 10.1038/s41467-023-37438-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin J Huang
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and the Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Qiu Q, yang L, Feng Y, Zhu Z, Li N, Zheng L, Sun Y, Pan C, Qiu H, Cui X, He W, Wang F, Yi Y, Tang M, Yang Z, Yang Y, Li Z, Chen L, Hu Y. HDAC I/IIb selective inhibitor Purinostat Mesylate combined with GLS1 inhibition effectively eliminates CML stem cells. Bioact Mater 2023; 21:483-498. [PMID: 36185739 PMCID: PMC9486186 DOI: 10.1016/j.bioactmat.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Purinostat Mesylate (PM) is a novel highly selective and active HDAC I/IIb inhibitor, and the injectable formulation of PM (PMF) based on the compound prescription containing cyclodextrin completely can overcome PM's poor solubility and improves its stability and pharmacokinetic properties. Here, we showed that PM effectively repressed the survival of Ph+ leukemia cells and CD34+ leukemia cells from CML patients in vitro. In vivo studies demonstrated that PMF significantly prevented BCR-ABL(T315I) induced CML progression by restraining leukemia stem cells (LSCs), which are insensitive to chemotherapy and responsible for CML relapse. Mechanism studies revealed that targeting HDAC I/IIb repressed several important factors for LSCs survival including c-Myc, β-Catenin, E2f, Ezh2, Alox5, and mTOR, as well as interrupted some critical biologic processes. Additionally, PMF increased glutamate metabolism in LSCs by increasing GLS1. The combination of PMF and glutaminase inhibitor BPTES synergistically eradicated LSCs by altering multiple key proteins and signaling pathways which are critical for LSC survival and self-renewal. Overall, our findings represent a new therapeutic strategy for eliminating LSCs by targeting HDAC I/IIb and glutaminolysis, which potentially provides a guidance for PMF clinical trials in the future for TKI resistance CML patients. PM is a novel HDACI/IIb inhibitor with better selectivity and inhibitory activity than currently marketed HDAC inhibitors. PMF completely overcomes the problem of PM's poor solubility, and improved PM stability and pharmacokinetic properties. PMF effectively inhibits disease progression and abrogates leukemia stem cells survival in TKI-resistant CML mouse model. Simultaneous targeting of I/IIb HDACs and glutaminolysis could sufficiently eradicated LSCs in the mouse model.
Collapse
|
15
|
Yin Z, Su R, Ge L, Wang X, Yang J, Huang G, Li C, Liu Y, Zhang K, Deng L, Fei J. Single-cell resolution reveals RalA GTPase expanding hematopoietic stem cells and facilitating of BCR-ABL1-driven leukemogenesis in a CRISPR/Cas9 gene editing mouse model. Int J Biol Sci 2023; 19:1211-1227. [PMID: 36923939 PMCID: PMC10008703 DOI: 10.7150/ijbs.76993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/14/2023] [Indexed: 03/13/2023] Open
Abstract
BCR-ABL oncogene-mediated Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) is suggested to originate from leukemic stem cells (LSCs); however, factors regulating self-renewal of LSC and normal hematopoietic stem cells (HSCs) are largely unclear. Here, we show that RalA, a small GTPase in the Ras downstream signaling pathway, has a critical effect on regulating the self-renewal of LSCs and HSCs. A RalA knock-in mouse model (RalARosa26-Tg/+) was initially constructed on the basis of the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) assay to analyze normal hematopoietic differentiation frequency using single-cell resolution and flow cytometry. RalA overexpression promoted cell cycle progression and increased the frequency of granulocyte-monocyte progenitors (GMPs), HSCs and multipotent progenitors (MPPs). The uniform manifold approximation and projection (UMAP) plot revealed heterogeneities in HSCs and progenitor cells (HSPCs) and identified the subclusters of HSCs and GMPs with a distinct molecular signature. RalA also promoted BCR-ABL-induced leukemogenesis and self-renewal of primary LSCs and shortened the survival of leukemic mice. RalA knockdown prolonged survival and promoted sensitivity to imatinib in a patient-derived tumor xenograft model. Immunoprecipitation plus single-cell RNA sequencing of the GMP population confirmed that RalA induced this effect by interacting with RAC1. RAC1 inhibition by azathioprine effectively reduced the self-renewal, colony formation ability of LSCs and prolonged the survival in BCR-ABL1-driven RalA overexpression CML mice. Collectively, RalA was detected to be a vital factor that regulates the abilities of HSCs and LSCs, thus facilitating BCR-ABL-triggered leukemia in mice. RalA inhibition serves as the therapeutic approach to eradicate LSCs in CML.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou 510317, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China.,Department of pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lan Deng
- Department of Hematology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.,Guangzhou Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
16
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
17
|
Witkowski MT, Lee S, Wang E, Lee AK, Talbot A, Ma C, Tsopoulidis N, Brumbaugh J, Zhao Y, Roberts KG, Hogg SJ, Nomikou S, Ghebrechristos YE, Thandapani P, Mullighan CG, Hochedlinger K, Chen W, Abdel-Wahab O, Eyquem J, Aifantis I. NUDT21 limits CD19 levels through alternative mRNA polyadenylation in B cell acute lymphoblastic leukemia. Nat Immunol 2022; 23:1424-1432. [PMID: 36138187 PMCID: PMC9611506 DOI: 10.1038/s41590-022-01314-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023]
Abstract
B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.
Collapse
Affiliation(s)
- Matthew T Witkowski
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - Soobeom Lee
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Department of Biology, New York University (NYU), New York, NY, USA
| | - Eric Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - Anna K Lee
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Alexis Talbot
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
- Department of Biomedical Engineering, New York University, New York, NY, USA
| | - Nikolaos Tsopoulidis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Yaqi Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Yohana E Ghebrechristos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
- Department of Biomedical Engineering, New York University, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute of Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
| | - Iannis Aifantis
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Yang C, Cui X, Xu L, Zhang Q, Tang S, Zhang M, Xie N. Highly precise breakpoint detection of chromosome balanced translocation in chronic myelogenous leukaemia: Case series. J Cell Mol Med 2022; 26:4721-4726. [PMID: 35903038 PMCID: PMC9443941 DOI: 10.1111/jcmm.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be identified. Low‐coverage whole genome sequencing (LCWGS) could not only detect the previously unknown chromosomal translocation, but also provide the breakpoint candidate small region (with an accuracy of ±200 bases). Importantly, the sequencing cost of LCWGS is about US$300. Then, with the Sanger DNA sequencing, the precise breakpoint can be determined at a single base level. In our project, with LCWGS, BCR and ABL1 are successfully identified to be disrupted in three CML patients (at chr22:23,632,356 and chr9:133,590,450; chr22:23,633,748 and chr9:133,635,781; chr22: 23,631,831 and chr9:133,598,513, respectively). Due to the reconnection after chromosome breakage, classical fusion gene (BCR::ABL1) was found in bone marrow and peripheral blood. The precise breakpoints were helpful to investigate the pathogenic mechanism of CML and could better guide the classification of CML subtypes. This LCWGS method is universal and can be used to detect all diseases related to chromosome variation, such as solid tumours, liquid tumours and birth defects.
Collapse
Affiliation(s)
- Chuanchun Yang
- Guangdong Medical University, Zhanjiang, China.,CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Xiaoli Cui
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Lei Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qian Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shanmei Tang
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Mengmeng Zhang
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Ni Xie
- Guangdong Medical University, Zhanjiang, China.,Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Zhang H, Cai B, Liu Y, Chong Y, Matsunaga A, Mori SF, Fang X, Kitamura E, Chang CS, Wang P, Cowell JK, Hu T. RHOA-regulated IGFBP2 promotes invasion and drives progression of BCR-ABL1 chronic myeloid leukemia. Haematologica 2022; 108:122-134. [PMID: 35833297 PMCID: PMC9827165 DOI: 10.3324/haematol.2022.280757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
The Philadelphia 9;22 chromosome translocation has two common isoforms that are preferentially associated with distinct subtypes of leukemia. The p210 variant is the hallmark of chronic myeloid leukemia (CML) whereas p190 is frequently associated with B-cell acute lymphoblastic leukemia. The only sequence difference between the two isoforms is the guanidine exchange factor domain. This guanidine exchange factor is reported to activate RHO family GTPases in response to diverse extracellular stimuli. It is not clear whether and, if so, how RHOA contributes to progression of p210 CML. Here we show that knockout of RHOA in the K562 and KU812, p210-expressing cell lines leads to suppression of leukemogenesis in animal models in vivo. RNA-sequencing analysis of the mock control and null cells demonstrated a distinct change in the gene expression profile as a result of RHOA deletion, with significant downregulation of genes involved in cell activation and cell adhesion. Cellular analysis revealed that RHOA knockout leads to impaired cell adhesion and migration and, most importantly, the homing ability of leukemia cells to the bone marrow, which may be responsible for the attenuated leukemia progression. We also identified IGFBP2 as an important downstream target of RHOA. Further mechanistic investigation showed that RHOA activation leads to relocation of the serum response factor (SRF) into the nucleus, where it directly activates IGFBP2. Knockout of IGFBP2 in CML cells suppressed cell adhesion/invasion, as well as leukemogenesis in vivo. This elevated IGFBP2 expression was confirmed in primary CML samples. Thus, we demonstrate one mechanism whereby the RHOA-SRF-IGFBP2 signaling axis contributes to the development of leukemia in cells expressing the p210 BCR-ABL1 fusion kinase.
Collapse
Affiliation(s)
- Hualei Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Baohuan Cai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | | - Xuexiu Fang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,J. K. Cowell
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,T. Hu
| |
Collapse
|
20
|
Chronic phase CML with sole P190 (e1a2) BCR::ABL1: long-term outcome among ten consecutive cases. Blood Cancer J 2022; 12:103. [PMID: 35794090 PMCID: PMC9259673 DOI: 10.1038/s41408-022-00696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
|
21
|
Shi T, Xie M, Chen L, Yuan W, Wang Y, Huang X, Xie W, Meng H, Lou Y, Yu W, Tong H, Ye X, Huang J, Jin J, Zhu H. Distinct outcomes, ABL1 mutation profile, and transcriptome features between p190 and p210 transcripts in adult Philadelphia-positive acute lymphoblastic leukemia in the TKI era. Exp Hematol Oncol 2022; 11:13. [PMID: 35277197 PMCID: PMC8915539 DOI: 10.1186/s40164-022-00265-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The differential signaling and outcome of patients with p190 or p210 transcripts of BCR-ABL1 have been systematically investigated in chronic myeloid leukemia rather than in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). METHODS We analyzed the outcomes and ABL1 mutation profiles in 305 consecutive adult patients with Ph+ ALL treated with chemotherapy plus tyrosine kinase inhibitors. We also studied transcriptome features in two newly diagnosed patients with p190 and p210 using single-cell RNA sequencing (scRNA-seq). RESULTS P190 and p210 were found in 199 (65%) and 106 (35%) patients, respectively. Compared to patients with p190, a higher white blood cell count (p = 0.05), platelet count (p = 0.047), BCR-ABL1 transcript level (p < 0.001), and lower bone marrow blasts (p = 0.003) were found in patients with p210. Patients with p210 had fewer types of ABL1 mutations (4 vs. 16) and a higher prevalence of T315I and E225K/V mutations (91.3% vs. 68.6%; p = 0.031). Patients with p210 had a similar complete remission rate (91.0% vs. 90.1%; p = 0.805) but a lower complete molecular remission rate at 1 month (9.9% vs. 22.0%; p = 0.031) compared with p190. Patients with p210 had lower 3-year overall survival (OS) and disease-free survival (DFS) rates than those with p190 (3-year DFS: 10.4% vs. 9.2%, p = 0.069, 3-year OS: 44.3% vs. 38.2%, p = 0.018, respectively). Multivariate analysis revealed that p210 was independently associated with worse OS [HR 1.692 (95% CI 1.009-2.838), p = 0.046]. Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) was associated with a better prognosis in patients with p210 (p < 0.0001). In addition, scRNA-seq data showed distinct molecular and cellular heterogeneity between bone marrow cells of the two transcripts. CONCLUSIONS Ph+ ALL patients with p190 and p210 had different clinical characteristics, outcomes, ABL1 mutation profiles, and transcriptome features. Allo-HSCT could improve the outcomes of patients with p210.
Collapse
Affiliation(s)
- Ting Shi
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China.,Program in Clinical Medicine, School of Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Mixue Xie
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Li Chen
- Bio-Med Big Data Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yuan
- Department of Physiology, Medical College of Three Gorges University, Yichang, Hubei, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China. .,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China.
| | - Jinyan Huang
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China. .,Bio-Med Big Data Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China. .,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
22
|
Zhang Z, Hasegawa Y, Hashimoto D, Senjo H, Kikuchi R, Chen X, Yoneda K, Sekiguchi T, Kawase T, Tsuzuki H, Ishio T, Ara T, Ohigashi H, Nakagawa M, Teshima T. Gilteritinib enhances graft-versus-leukemia effects against FLT3-ITD mutant leukemia after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2022; 57:775-780. [PMID: 35228711 DOI: 10.1038/s41409-022-01619-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a potentially curative therapy for FLT3 internal tandem duplication mutant (FLT3-ITD+) acute myeloid leukemia, but relapse rate is high. A recent study showed that sorafenib, a first generation FLT3 and multikinase inhibitor, enhanced graft-versus-leukemia (GVL) effects against FLT3-ITD+ leukemia via interleukin-15 (IL-15) production. However, it remains to be clarified whether this effect could be mediated by selective FLT3 inhibition. We investigated whether gilteritinib, a selective FLT3 inhibitor, could enhance GVL effects against FLT3-ITD transfected Ba/F3 leukemia (Ba/F3-FLT3-ITD) in mice. Oral administration of gilteritinib from day +5 to +14 after allo-SCT reduced expression of the co-inhibitory receptors PD-1 and TIGIT on donor CD8+ T cells and enhanced IL-15 expression in Ba/F3-FLT3-ITD. Bioluminescent imaging using luciferase-transfected Ba/F3-FLT3-ITD demonstrated that gilteritinib significantly suppressed leukemia expansion after allo-SCT, whereas it did not impact the morbidity or mortality of graft-versus-host disease (GVHD), resulting in significant improvement of overall survival. In conclusion, short-term administration of gilteritinib after allo-SCT enhanced GVL effects against FLT3-ITD+ leukemia without exacerbating GVHD.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Yuta Hasegawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan.
| | - Hajime Senjo
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Ryo Kikuchi
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Xuanzhong Chen
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kazuki Yoneda
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Tomoko Sekiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, 060-8638, Japan
| |
Collapse
|
23
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2022; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
24
|
Challenging Cutaneous T-Cell Lymphoma: What Animal Models Tell us So Far. J Invest Dermatol 2022; 142:1533-1540. [PMID: 35000751 DOI: 10.1016/j.jid.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Cutaneous T-cell lymphomas are characterized by heterogeneity of clinical variants, further complicated by genomic and microenvironmental variables. Furthermore, in vitro experiments are hampered by the low culture efficiency of these malignant cells. Animal models are essential for understanding the pathogenetic mechanisms underlying malignancy and for discovering new anticancer treatments. They are divided into two main categories: those in which tumors arise in the host owing to genetic modifications and those that use tumor cell transplantation. In this review, we summarize the attempts to decipher the complexity of the pathogenesis of cutaneous T-cell lymphoma by exploiting genetically modified and xenograft models.
Collapse
|
25
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2021; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 08/28/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
26
|
Zanetti C, Kumar R, Ender J, Godavarthy PS, Hartmann M, Hey J, Breuer K, Weissenberger ES, Minciacchi VR, Karantanou C, Gu Z, Roberts KG, Metzler M, Stock W, Mullighan CG, Bloomfield CD, Filmann N, Bankov K, Hartmann S, Hasserjian RP, Cousins AF, Halsey C, Plass C, Lipka DB, Krause DS. The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13. Blood 2021; 138:1870-1884. [PMID: 34424946 PMCID: PMC8767790 DOI: 10.1182/blood.2021011557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) occurs most commonly in children, whereas chronic myeloid leukemia is more frequent in adults. The myeloid bias of hematopoiesis in elderly individuals has been considered causative, but the age of the bone marrow microenvironment (BMM) may be contributory. Using various murine models of B-ALL in young vs old mice, we recapitulated B-ALL preponderance in children vs adults. We showed differential effects of young vs old BM macrophages on B-ALL cell function. Molecular profiling using RNA- and ATAC-sequencing revealed pronounced differences in young vs old BMM-derived macrophages and enrichment for gene sets associated with inflammation. In concordance with the role of C-X-C motif chemokine (CXCL) 13 for disease-associated B-cell chemoattraction, we found CXCL13 to be highly expressed in young macrophages on a translational compared with a transcriptional level. Inhibition of CXCL13 in BM macrophages impaired leukemia cell migration and decreased the proliferation of cocultured B-ALL cells, whereas recombinant CXCL13 increased pAKT and B-ALL cell expansion. Pretreatment of B-ALL-initiating cells with CXCL13 accelerated B-ALL progression. Deficiency of Cxcr5, the receptor for CXCL13, on B-ALL-initiating cells prolonged murine survival, whereas high expression of CXCR5 in pediatric B-ALL may predict central nervous system relapse. CXCL13 staining was increased in bone sections from pediatric compared with adult patients with B-ALL. Taken together, our study shows that the age of the BMM and, in particular, BM macrophages influence the leukemia phenotype. The CXCR5-CXCL13 axis may act as prognostic marker and an attractive novel target for the treatment of B-ALL.
Collapse
Affiliation(s)
- Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Joscha Ender
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Parimala S Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mark Hartmann
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German-Israeli Helmholtz Research School in Cancer Biology, Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Kersten Breuer
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eva S Weissenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Zhaohui Gu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago, Chicago, IL
| | | | | | | | - Katrin Bankov
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Antony F Cousins
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christoph Plass
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Daniel B Lipka
- Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany; and
- Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Luong A, Cerignoli F, Abassi Y, Heisterkamp N, Abdel-Azim H. Analysis of acute lymphoblastic leukemia drug sensitivity by changes in impedance via stromal cell adherence. PLoS One 2021; 16:e0258140. [PMID: 34591931 PMCID: PMC8483355 DOI: 10.1371/journal.pone.0258140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
The bone marrow is a frequent location of primary relapse after conventional cytotoxic drug treatment of human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Because stromal cells have a major role in promoting chemotherapy resistance, they should be included to more realistically model in vitro drug treatment. Here we validated a novel application of the xCELLigence system as a continuous co-culture to assess long-term effects of drug treatment on BCP-ALL cells. We found that bone marrow OP9 stromal cells adhere to the electrodes but are progressively displaced by dividing patient-derived BCP-ALL cells, resulting in reduction of impedance over time. Death of BCP-ALL cells due to drug treatment results in re-adherence of the stromal cells to the electrodes, increasing impedance. Importantly, vincristine inhibited proliferation of sensitive BCP-ALL cells in a dose-dependent manner, correlating with increased impedance. This system was able to discriminate sensitivity of two relapsed Philadelphia chromosome (Ph) positive ALLs to four different targeted kinase inhibitors. Moreover, differences in sensitivity of two CRLF2-drivenBCP-ALL cell lines to ruxolitinib were also seen. These results show that impedance can be used as a novel approach to monitor drug treatment and sensitivity of primary BCP-ALL cells in the presence of protective microenvironmental cells.
Collapse
Affiliation(s)
- Annie Luong
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Fabio Cerignoli
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Yama Abassi
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, United States of America
| | - Hisham Abdel-Azim
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
28
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Kohla S, El Kourashy S, Nawaz Z, Youssef R, Al-Sabbagh A, Ibrahim FA. P190 BCR-ABL1 in a Patient with Philadelphia Chromosome Positive T-Cell Acute Lymphoblastic Leukemia: A Rare Case Report and Review of Literature. Case Rep Oncol 2021; 14:1040-1050. [PMID: 34326740 PMCID: PMC8299423 DOI: 10.1159/000516270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
T-acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) is rare and aggressive leukemia. Philadelphia chromosome positive (Ph+) is the most common cytogenetic abnormality in chronic myeloid leukemia (CML) and B-acute lymphoblastic leukemia (B-ALL). Ph+ T-ALL is exceeding rare and has a therapeutic and prognostic significance. The incidence and outcome of Ph+ T-ALL are unknown. Differentiation between Ph+ T-ALL/LBL and T-cell lymphoblastic crises of CML may be difficult. We report a rare case of adult de novo T-ALL with significant monocytosis, having Ph+ with (P190 BCR-ABL1) as a cytogenetic abnormality. He was treated with ALL induction chemotherapy and imatinib and achieved complete remission, then relapsed twice and expired shortly after the last CNS relapse.
Collapse
Affiliation(s)
- Samah Kohla
- Department of Lab Medicine and Pathology, Hematology Division, Hamad Medical Corporation, Doha, Qatar.,Department of Clinical Pathology, Hematology Division, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.,Weill Cornell Medicine, Doha, Qatar
| | - Sarah El Kourashy
- Department of Hematology-Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Zafar Nawaz
- Department of Lab Medicine and Pathology, Cytogenetic Division, Hamad Medical Corporation, Doha, Qatar
| | - Reda Youssef
- Weill Cornell Medicine, Doha, Qatar.,Department of clinical Imaging, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Al-Sabbagh
- Department of Lab Medicine and Pathology, Hematology Division, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine, Doha, Qatar
| | - Feryal A Ibrahim
- Department of Lab Medicine and Pathology, Hematology Division, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
30
|
Hao T, Zhang C, Wang Z, Buck A, Vonderfecht SL, Ermel R, Kim Y, Chen W. An aging mouse model of human chronic myeloid leukemia. Oncogene 2021; 40:3152-3163. [PMID: 33824471 PMCID: PMC8087641 DOI: 10.1038/s41388-021-01770-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Chronic myeloid leukemia (CML) is an age-dependent blood malignancy. Like many other age-dependent human diseases, laboratory animal research of CML uses young mice that do not factor in the influence of aging. To understand how aging may impact animal modeling of human age-dependent diseases, we established the first aging mouse model of human CML in BALB/c mice in the advanced age defined by 75% survival. This model was developed by noncytotoxic depletion of bone marrow lineage-positive cells followed by BCR-ABL retroviral transduction and transplantation. CML developed in aging mice shared many similarities to that in young mice, but had increased incidence of anemia that is often seen in human CML. Importantly, we showed that aging of both donor hematopoietic stem cells and recipient bone marrow niche impacted BCR-ABL mediated leukemogenesis and leukemia spectrum. Optimal CML induction relied on age-matching for donors and recipients, and cross-transplantation between young and old mice produced a mixture of different leukemia. Therefore, our model provides initial evidence of the feasibility and merit of CML modeling in aging mice and offers a new tool for future studies of CML stem cell drug resistance and therapeutic intervention in which aging would be taken into consideration as an influencing factor.
Collapse
Affiliation(s)
- Taisen Hao
- Department of Cancer Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Chunxiao Zhang
- Department of Cancer Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhiqiang Wang
- Department of Cancer Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Alison Buck
- Eugene and Ruth Roberts Summer Student Academy of City of Hope, Duarte, CA, USA
| | | | - Richard Ermel
- Center for Comparative Medicine, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Young Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - WenYong Chen
- Department of Cancer Biology, The Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
31
|
Cerchione C, Locatelli F, Martinelli G. Dasatinib in the Management of Pediatric Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:632231. [PMID: 33842339 PMCID: PMC8027101 DOI: 10.3389/fonc.2021.632231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemia is the most common cancer in childhood; in particular, acute lymphoblastic leukemia (ALL) represents roughly up to 80% of all cases of acute leukemias in children. Survival of children with ALL has dramatically improved over the last few decades, and is now over 90% (versus 40% of adult patients) in developed countries, except for in infants (i.e., children < 1 year), where no significant improvement was registered. Philadelphia positive ALL (Ph+ALL) accounts for around 3% of cases of childhood ALL, its incidence increasing with patient's age. Before the era of tyrosine-kinase inhibitors (TKIs), pediatric Ph+ALL showed a worse prognosis in comparison to other forms of ALL, and was managed with intensive chemotherapy, followed, whenever possible, by allogenic hematopoietic stem cell transplantation (HSCT) in first morphological complete remission. TKIs have revolutionized the current clinical approach, which involves combinations of imatinib plus standard chemotherapy that can abrogate the negative prognostic impact conferred by the presence of BCR/ABL1 rearrangement, resulting in the probability of event-free survival (EFS) being significantly better than that recorded in the pre-TKI era. Long-term follow-up confirms these data, questioning the role of a real advantage offered by HSCT over intensive chemotherapy plus TKI in all Ph+ALL pediatric patients. Imatinib was the first generation TKI and the prototype of targeted therapy, but over the years second- (dasatinib, nilotinib, bosutinib) and third-generation (ponatinib) TKIs showed a capacity to overcome resistance to imatinib in Ph+ hematological neoplasms. Given the effectiveness of the first-in-class TKI, imatinib, also the second-generation TKI dasatinib was incorporated in the treatment regimens of Ph+ALL. In this manuscript, we will discuss the role of this drug in pediatric Ph+ALL, analyzing the available data published to date.
Collapse
Affiliation(s)
- Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatrics, University of Rome, Sapienza, Rome, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
32
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
33
|
Lu T, Cao J, Zou F, Li X, Wang A, Wang W, Liang H, Liu Q, Hu C, Chen C, Hu Z, Wang W, Li L, Ge J, Shen Y, Ren T, Liu J, Xia R, Liu Q. Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML). Eur J Pharmacol 2021; 897:173944. [PMID: 33581133 DOI: 10.1016/j.ejphar.2021.173944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50: 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50: 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.
Collapse
Affiliation(s)
- Tingting Lu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Huamin Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yang Shen
- The First Hospital of Jiaxing, 1882 Zhonghuan South Rd, Jiaxing, Zhejiang, 314000, PR China
| | - Tao Ren
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a rare hematologic malignancy. Advances in multi-agent chemotherapy have resulted in dramatic improvements in the number of pediatric cases that result in a cure; however, until recently, treatment options for older adults or patients with relapsed and refractory disease were extremely limited. This review seeks to describe in greater detail a number of emerging novel treatment modalities recently approved for this cancer. RECENT FINDINGS In this review, we discuss a number of recently approved novel therapies for ALL, including new approaches with targeted tyrosine kinase inhibitors, novel immune-based therapies including the bispecific antibody blinatumomab and the antibody-drug conjugate inotuzumab ozogamicin, and the role of cellular therapeutics such as chimeric antigen receptor (CAR) T cells. We also discuss the impact that advances in diagnostics and disease classification and monitoring have had on treatment. A number of advances in ALL have resulted in dramatic changes to the treatment landscape and therapeutic options both at the time of diagnosis and in salvage. These findings are reshaping our treatment paradigms throughout the course of disease.
Collapse
|
35
|
Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia 2020; 35:1964-1975. [PMID: 33168949 PMCID: PMC8257498 DOI: 10.1038/s41375-020-01082-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.
Collapse
|
36
|
Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020; 49:102063. [PMID: 33137568 PMCID: PMC7849931 DOI: 10.1016/j.scr.2020.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis. We further discuss the benefits and challenges accompanying the use of hPSC models for cancer research and discuss their broad applicability in drug discovery, biomarker identification, decoding molecular mechanisms, and the deconstruction of clonal and intra-tumoral heterogeneity. In summary, hPSC-derived organoids provide powerful models to recapitulate the pathogenic states in cancer and to perform drug discovery.
Collapse
|
37
|
Ma C, Witkowski MT, Harris J, Dolgalev I, Sreeram S, Qian W, Tong J, Chen X, Aifantis I, Chen W. Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. SCIENCE ADVANCES 2020; 6:eaba5536. [PMID: 33127669 PMCID: PMC7608809 DOI: 10.1126/sciadv.aba5536] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/10/2020] [Indexed: 05/16/2023]
Abstract
B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM "niches," facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic "leukemia-on-a-chip" model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance. We revealed the heterogeneous chemoresistance mechanisms across various B-ALL cell lines and patient-derived samples. We showed that the leukemic perivascular, endosteal, and hematopoietic niche-derived factors maintain B-ALL survival and quiescence (e.g., CXCL12 cytokine signal, VCAM-1/OPN adhesive signals, and enhanced downstream leukemia-intrinsic NF-κB pathway). Furthermore, we demonstrated the preclinical use of our model to test niche-cotargeting regimens, which may translate to patient-specific therapy screening and response prediction.
Collapse
Affiliation(s)
- Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Matthew T Witkowski
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Jacob Harris
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Igor Dolgalev
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Sheetal Sreeram
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Xin Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
38
|
Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia Chromosome-Positive Leukemia in the Lymphoid Lineage-Similarities and Differences with the Myeloid Lineage and Specific Vulnerabilities. Int J Mol Sci 2020; 21:E5776. [PMID: 32806528 PMCID: PMC7460962 DOI: 10.3390/ijms21165776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Philadelphia chromosome (Ph) results from a translocation between the breakpoint cluster region (BCR) gene on chromosome 9 and ABL proto-oncogene 1 (ABL1) gene on chromosome 22. The fusion gene, BCR-ABL1, is a constitutively active tyrosine kinase which promotes development of leukemia. Depending on the breakpoint site within the BCR gene, different isoforms of BCR-ABL1 exist, with p210 and p190 being the most prevalent. P210 isoform is the hallmark of chronic myeloid leukemia (CML), while p190 isoform is expressed in majority of Ph-positive B cell acute lymphoblastic leukemia (Ph+ B-ALL) cases. The crucial component of treatment protocols of CML and Ph+ B-ALL patients are tyrosine kinase inhibitors (TKIs), drugs which target both BCR-ABL1 isoforms. While TKIs therapy is successful in great majority of CML patients, Ph+ B-ALL often relapses as a drug-resistant disease. Recently, the high-throughput genomic and proteomic analyses revealed significant differences between CML and Ph+ B-ALL. In this review we summarize recent discoveries related to differential signaling pathways mediated by different BCR-ABL1 isoforms, lineage-specific genetic lesions, and metabolic reprogramming. In particular, we emphasize the features distinguishing Ph+ B-ALL from CML and focus on potential therapeutic approaches exploiting those characteristics, which could improve the treatment of Ph+ B-ALL.
Collapse
Affiliation(s)
- Lukasz Komorowski
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiry Gandhi 14, 02-776 Warsaw, Poland;
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
| |
Collapse
|
39
|
Tusa I, Cheloni G, Poteti M, Silvano A, Tubita A, Lombardi Z, Gozzini A, Caporale R, Scappini B, Dello Sbarba P, Rovida E. In Vitro Comparison of the Effects of Imatinib and Ponatinib on Chronic Myeloid Leukemia Progenitor/Stem Cell Features. Target Oncol 2020; 15:659-671. [PMID: 32780298 PMCID: PMC7568716 DOI: 10.1007/s11523-020-00741-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The development of molecularly tailored therapeutic agents such as the BCR/ABL-active tyrosine kinase inhibitors (TKi) resulted in an excellent treatment option for chronic myeloid leukemia (CML) patients. However, following TKi discontinuation, disease relapses in 40–60% of patients, an occurrence very likely due to the persistence of leukemic stem cells that are scarcely sensitive to TKi. Nevertheless, TKi are still the only current treatment option for CML patients. Objective The aim of this study was to compare the effects of TKi belonging to different generations, imatinib and ponatinib (first and third generation, respectively), on progenitor/stem cell expansion potential and markers. Patients and Methods We used stabilized CML cell lines (KCL22, K562 and LAMA-84 cells), taking advantage of the previous demonstration of ours that cell lines contain cell subsets endowed with progenitor/stem cell properties. Primary cells explanted from CML patients were also used. The effects of TKi on the expression of stem cell related genes were compared by quantitative PCR. Flow cytometry was performed to evaluate aldehyde-dehydrogenase (ALDH) activity and the expression of cluster of differentiation (CD) cell surface hematopoietic stem cell markers. Progenitor/stem cell potential was estimated by serial colony formation ability (CFA) assay. Results Ponatinib was more effective than imatinib for the reduction of cells with ALDH activity and progenitor/stem cell potential of CML patient-derived cells and cell lines. Furthermore, ponatinib was more effective than imatinib in reducing the percentage of CD26-expressing cells in primary CML cells, whereas imatinib and ponatinib showed similar efficacy on KCL22 cells. Both drugs strongly upregulated NANOG and SOX2 in CML cell lines, but in KCL22 cells this upregulation was significantly lower with ponatinib than with imatinib, an outcome compatible with a lower level of enrichment of the stem cell compartment upon ponatinib treatment. Conclusion Ponatinib seems to target CML progenitor/stem cells better than imatinib. Electronic supplementary material The online version of this article (10.1007/s11523-020-00741-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Angela Silvano
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | | | - Roberto Caporale
- Dipartimento DAI Oncologico e di Chirurgia ad Indirizzo Robotico SOD Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Florence, Italy
| | | | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
40
|
Yin Z, Huang G, Gu C, Liu Y, Yang J, Fei J. Discovery of Berberine that Targetedly Induces Autophagic Degradation of both BCR-ABL and BCR-ABL T315I through Recruiting LRSAM1 for Overcoming Imatinib Resistance. Clin Cancer Res 2020; 26:4040-4053. [PMID: 32098768 DOI: 10.1158/1078-0432.ccr-19-2460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Imatinib, the breakpoint cluster region protein (BCR)/Abelson murine leukemia viral oncogene homolog (ABL) inhibitor, is widely used to treat chronic myeloid leukemia (CML). However, imatinib resistance develops in many patients. Therefore, new drugs with improved therapeutic effects are urgently needed. Berberine (BBR) is a potent BCR-ABL inhibitor for imatinib-sensitive and -resistant CML. EXPERIMENTAL DESIGN Protein structure analysis and virtual screening were used to identify BBR targets in CML. Molecular docking analysis, surface plasmon resonance imaging, nuclear magnetic resonance assays, and thermoshift assays were performed to confirm the BBR target. The change in BCR-ABL protein expression after BBR treatment was assessed by Western blotting. The effects of BBR were assessed in vitro in cell lines, in vivo in mice, and in human CML bone marrow cells as a potential strategy to overcome imatinib resistance. RESULTS We discovered that BBR bound to the protein tyrosine kinase domain of BCR-ABL. BBR inhibited the activity of BCR-ABL and BCR-ABL with the T315I mutation, and it also degraded these proteins via the autophagic lysosome pathway by recruiting E3 ubiquitin-protein ligase LRSAM1. BBR inhibited the cell viability and colony formation of CML cells and prolonged survival in CML mouse models with imatinib sensitivity and resistance. CONCLUSIONS The results show that BBR directly binds to and degrades BCR-ABL and BCR-ABL T315I via the autophagic lysosome pathway by recruiting LRSAM1. The use of BBR is a new strategy to improve the treatment of patients with CML with imatinib sensitivity or resistance.See related commentary by Elf, p. 3899.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China. .,Institute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou, China.,Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangdong, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
41
|
Kumar R, Pereira RS, Zanetti C, Minciacchi VR, Merten M, Meister M, Niemann J, Dietz MS, Rüssel N, Schnütgen F, Tamai M, Akahane K, Inukai T, Oellerich T, Kvasnicka HM, Pfeifer H, Nicolini FE, Heilemann M, Van Etten RA, Krause DS. Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia 2020; 34:2087-2101. [PMID: 32439895 PMCID: PMC7387317 DOI: 10.1038/s41375-020-0866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022]
Abstract
Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1, the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models, that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native (BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin β3, integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin β3/ILK-mediated signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via modulation of the ECM may be a feasible therapeutic approach to consider in this setting.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Maximilian Merten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Melanie Meister
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Julian Niemann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Marina S Dietz
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nina Rüssel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Thomas Oellerich
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Michael Kvasnicka
- Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Heike Pfeifer
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Franck E Nicolini
- Department of Hematology and INSERM U 1052, CRCL, Centre Léon Bérard, 69373, Lyon Cedex, France
| | - Mike Heilemann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany.
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
42
|
Bajaj J, Diaz E, Reya T. Stem cells in cancer initiation and progression. J Cell Biol 2020; 219:133538. [PMID: 31874116 PMCID: PMC7039188 DOI: 10.1083/jcb.201911053] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Bajaj et al. review how cancers originate, how their heterogeneity is linked to cancer stem cells, and the signals fundamental to driving these processes. While standard therapies can lead to an initial remission of aggressive cancers, they are often only a transient solution. The resistance and relapse that follows is driven by tumor heterogeneity and therapy-resistant populations that can reinitiate growth and promote disease progression. There is thus a significant need to understand the cell types and signaling pathways that not only contribute to cancer initiation, but also those that confer resistance and drive recurrence. Here, we discuss work showing that stem cells and progenitors may preferentially serve as a cell of origin for cancers, and that cancer stem cells can be key in driving the continued growth and functional heterogeneity of established cancers. We also describe emerging evidence for the role of developmental signals in cancer initiation, propagation, and therapy resistance and discuss how targeting these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Jeevisha Bajaj
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Emily Diaz
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Tannishtha Reya
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
43
|
Witkowski MT, Dolgalev I, Evensen NA, Ma C, Chambers T, Roberts KG, Sreeram S, Dai Y, Tikhonova AN, Lasry A, Qu C, Pei D, Cheng C, Robbins GA, Pierro J, Selvaraj S, Mezzano V, Daves M, Lupo PJ, Scheurer ME, Loomis CA, Mullighan CG, Chen W, Rabin KR, Tsirigos A, Carroll WL, Aifantis I. Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia. Cancer Cell 2020; 37:867-882.e12. [PMID: 32470390 PMCID: PMC7341535 DOI: 10.1016/j.ccell.2020.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.
Collapse
Affiliation(s)
- Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Igor Dolgalev
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Nikki A Evensen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 11202, USA; Department of Biomedical Engineering, New York University, New York, NY 11202, USA
| | - Tiffany Chambers
- Division of Pediatric Hematology/Oncology, College of Medicine, Baylor University, Houston, TX 77030, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Sreeram
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Yuling Dai
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Anastasia N Tikhonova
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deqing Pei
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheng Cheng
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel A Robbins
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Joanna Pierro
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Shanmugapriya Selvaraj
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Experimental Pathology Research Laboratory, New York University School of Medicine, New York, NY 10016, USA
| | - Valeria Mezzano
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Experimental Pathology Research Laboratory, New York University School of Medicine, New York, NY 10016, USA
| | - Marla Daves
- Division of Pediatric Hematology/Oncology, College of Medicine, Baylor University, Houston, TX 77030, USA
| | - Philip J Lupo
- Division of Pediatric Hematology/Oncology, College of Medicine, Baylor University, Houston, TX 77030, USA
| | - Michael E Scheurer
- Division of Pediatric Hematology/Oncology, College of Medicine, Baylor University, Houston, TX 77030, USA
| | - Cynthia A Loomis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Experimental Pathology Research Laboratory, New York University School of Medicine, New York, NY 10016, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 11202, USA; Department of Biomedical Engineering, New York University, New York, NY 11202, USA
| | - Karen R Rabin
- Division of Pediatric Hematology/Oncology, College of Medicine, Baylor University, Houston, TX 77030, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
He Wu Z. Milestone Histories and Paradigmatic Genetic Discoveries of Chronic Myeloid Leukemia (CML). Rare Dis 2020. [DOI: 10.5772/intechopen.90938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Sarno F, Pepe G, Termolino P, Carafa V, Massaro C, Merciai F, Campiglia P, Nebbioso A, Altucci L. Trifolium Repens Blocks Proliferation in Chronic Myelogenous Leukemia via the BCR-ABL/STAT5 Pathway. Cells 2020; 9:cells9020379. [PMID: 32041350 PMCID: PMC7072565 DOI: 10.3390/cells9020379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022] Open
Abstract
Some species of clover are reported to have beneficial effects in human diseases. However, little is known about the activity of the forage plant Trifolium repens, or white clover, which has been recently found to exert a hepatoprotective action. Scientific interest is increasingly focused on identifying new drugs, especially natural products and their derivatives, to treat human diseases including cancer. We analyzed the anticancer effects of T. repens in several cancer cell lines. The phytochemical components of T. repens were first extracted in a methanol solution and then separated into four fractions by ultra-high-performance liquid chromatography. The effects of the total extract and each fraction on cancer cell proliferation were analyzed by MTT assay and Western blotting. T. repens and, more robustly, its isoflavonoid-rich fraction showed high cytotoxic effects in chronic myelogenous leukemia (CML) K562 cells, with IC50 values of 1.67 and 0.092 mg/mL, respectively. The block of cell growth was associated with a total inhibition of BCR-ABL/STAT5 and activation of the p38 signaling pathways. In contrast, these strongly cytotoxic effects did not occur in normal cells. Our findings suggest that the development of novel compounds derived from phytochemical molecules contained in Trifolium might lead to the identification of new therapeutic agents active against CML.
Collapse
Affiliation(s)
- Federica Sarno
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Giacomo Pepe
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Fabrizio Merciai
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
- Correspondence: (A.N.); (L.A.); Tel.: +39-0815665682 (A.N.); +39-0815667569 (L.A.); Fax: +39-081450169 (A.N. & L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
- Correspondence: (A.N.); (L.A.); Tel.: +39-0815665682 (A.N.); +39-0815667569 (L.A.); Fax: +39-081450169 (A.N. & L.A.)
| |
Collapse
|
46
|
Neckles C, Sundara Rajan S, Caplen NJ. Fusion transcripts: Unexploited vulnerabilities in cancer? WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1562. [PMID: 31407506 PMCID: PMC6916338 DOI: 10.1002/wrna.1562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Gene fusions are an important class of mutations in several cancer types and include genomic rearrangements that fuse regulatory or coding elements from two different genes. Analysis of the genetics of cancers harboring fusion oncogenes and the proteins they encode have enhanced cancer diagnosis and in some cases patient treatment. However, the effect of the complex structure of fusion genes on the biogenesis of the resulting chimeric transcripts they express is not well studied. There are two potential RNA-related vulnerabilities inherent to fusion-driven cancers: (a) the processing of the fusion precursor messenger RNA (pre-mRNA) to the mature mRNA and (b) the mature mRNA. In this study, we discuss the effects that the genetic organization of fusion oncogenes has on the generation of translatable mature RNAs and the diversity of fusion transcripts expressed in different cancer subtypes, which can fundamentally influence both tumorigenesis and treatment. We also discuss functional genomic approaches that can be utilized to identify proteins that mediate the processing of fusion pre-mRNAs. Furthermore, we assert that an enhanced understanding of fusion transcript biogenesis and the diversity of the chimeric RNAs present in fusion-driven cancers will increase the likelihood of successful application of RNA-based therapies in this class of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carla Neckles
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| |
Collapse
|
47
|
Abstract
Molecular diagnosis and measurement of minimal residual disease (MRD) in patients with chronic myeloid leukemia (CML) is essential for clinical management. In the era of tyrosine kinase inhibitor therapy molecular tests including BCR-ABL1 transcript monitoring and kinase domain mutation analysis are the main tools used to inform choice of treatment, appropriate dosage and even whether therapy can be safely withdrawn. Quantitation of BCR-ABL1 oncogene transcript by real-time quantitative PCR (qPCR) is currently the gold-standard method for monitoring as it provides superior sensitivity over karyotyping and fluorescent in situ hybridization (FISH). Here we describe step-by-step methods of RNA conversion to cDNA along with the qPCR protocol which is used in one of the main reference laboratories for this test.
Collapse
MESH Headings
- Bone Marrow/pathology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Profiling/methods
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Multiplex Polymerase Chain Reaction/methods
- Neoplasm, Residual
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Real-Time Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Katherine Dominy
- Imperial Molecular Pathology, Hammersmith Hospital, Imperial College Healthcare, London, UK
| | - Katya Mokretar
- Imperial Molecular Pathology, Hammersmith Hospital, Imperial College Healthcare, London, UK
| | - Alistair G Reid
- Imperial Molecular Pathology, Hammersmith Hospital, Imperial College Healthcare, London, UK
| | - Jamshid S Khorashad
- Imperial Molecular Pathology, Hammersmith Hospital, Imperial College Healthcare, London, UK.
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
48
|
Demographics and Outcome of Philadelphia-positive ALL in a Pediatric Population in North India: a Single-center Experience. J Pediatr Hematol Oncol 2019; 41:376-381. [PMID: 31033785 DOI: 10.1097/mph.0000000000001492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) in children had a worse outcome before the use of tyrosine kinase inhibitors. We have evaluated the demographics and outcome of Ph+ ALL patients treated with imatinib without blood marrow transplantation. Of the 206 children with ALL registered for treatment, the demographic data of 15 Ph+ ALL patients were compared with the remaining Ph- patients. Imatinib (340 mg/m) was started on day 5 (D5) of induction in Ph+ patients, and their overall survival was compared with Ph- high-risk patients treated on similar protocols. Statistical analysis was carried out by the Fisher exact test and the t test. The Kaplan-Meier test was used for survival analysis. Philadelphia positivity noted in 15/206 (7.28%) ALL patients was higher than reported earlier. Median initial total leukocyte count and central nervous system positivity were significantly higher in Ph+ patients. Myeloid markers, CD13 and CD33, were also positive in 33.3% Ph+ patients. D15 and D35 marrow showed remissions in a larger proportion of Ph+ ALL, as compared with Ph- patients, but chemotherapy interruptions and neutropenic deaths were significantly higher after starting imatinib, as compared with Philadelphia high-risk patients. Overall survival was similar in Ph+ and Ph- high-risk ALL patients. Ph+ ALL, noted in 7.28%, presented with high initial white blood cell counts, high central nervous system positivity, poor steroid response, and higher induction deaths, as compared with high-risk Ph- ALL, and raised the question about the appropriate dose and time of introduction of imatinib to prevent toxicity.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW In this review, we emphasize up-to-date practical cytogenetic and molecular aspects of chronic myeloid leukemia (CML) and summarize current knowledge on tyrosine kinase inhibitor (TKI) resistance and treatment response monitoring of CML. RECENT FINDINGS The introduction of TKIs has changed the natural course of CML and markedly improved patient survival. Over the past decades, many research efforts were devoted to elucidating the leukemogenic mechanisms of BCR-ABL1 and developing novel TKIs. More recent studies have attempted to answer new questions that have emerged in the TKI era, such as the cytogenetic and molecular bases of treatment failure and disease progression, the clinical impact of genetic aberrations in Philadelphia chromosome (Ph)-positive and Ph-negative cells, and the biological significance of Ph secondarily acquired during therapy of other hematological neoplasms. Recent progresses in the understanding of the cytogenetic and molecular mechanisms underlying therapeutic failure and disease progression have improved the risk stratification of CML and will be helpful in the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0072, Houston, TX, 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0072, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Yu X, Zhang H, Yuan M, Zhang P, Wang Y, Zheng M, Lv Z, Odhiambo WO, Li C, Liu C, Ma Y, Ji Y. Identification and characterization of a murine model of BCR‑ABL1+ acute B‑lymphoblastic leukemia with central nervous system metastasis. Oncol Rep 2019; 42:521-532. [PMID: 31173268 PMCID: PMC6610040 DOI: 10.3892/or.2019.7184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Breakpoint cluster region (BCR)-Abelson murine leukemia (ABL)1+ acute B-lymphoblastic leukemia (B-ALL) is a disease associated with a dismal prognosis and a high incidence of central nervous system (CNS) metastasis. However, BCR-ABL1+ B-ALL with CNS infiltration has not been previously characterized, at least to the best of our knowledge. In the present study, a murine model of BCR-ABL1+ B-ALL with CNS metastasis was established using retroviral transduction. The vast majority of BCR-ABL1+ leukemic cells were found to be immature B cells with a variable proportion of pro-B and pre-B populations. The present results indicated that the BCR-ABL1+ B-leukemic cells expressed high levels integrin subunit alpha 6 (Itga6) and L-selectin adhesion molecules, and have an intrinsic ability to disseminate and accumulate in CNS tissues, predominantly in meninges. On the whole, these results provide an approach for addressing the mechanisms of BCR-ABL1+ B-ALL with CNS metastasis and may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Zhuangwei Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Woodvine Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Canyu Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Liu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|