1
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
2
|
Bruggemans A, Vansant G, Van de Velde P, Debyser Z. The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture. J Virus Erad 2023; 9:100343. [PMID: 37701289 PMCID: PMC10493508 DOI: 10.1016/j.jve.2023.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.
Collapse
Affiliation(s)
- Anne Bruggemans
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
3
|
Bekker LG, Beyrer C, Mgodi N, Lewin SR, Delany-Moretlwe S, Taiwo B, Masters MC, Lazarus JV. HIV infection. Nat Rev Dis Primers 2023; 9:42. [PMID: 37591865 DOI: 10.1038/s41572-023-00452-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
The AIDS epidemic has been a global public health issue for more than 40 years and has resulted in ~40 million deaths. AIDS is caused by the retrovirus, HIV-1, which is transmitted via body fluids and secretions. After infection, the virus invades host cells by attaching to CD4 receptors and thereafter one of two major chemokine coreceptors, CCR5 or CXCR4, destroying the host cell, most often a T lymphocyte, as it replicates. If unchecked this can lead to an immune-deficient state and demise over a period of ~2-10 years. The discovery and global roll-out of rapid diagnostics and effective antiretroviral therapy led to a large reduction in mortality and morbidity and to an expanding group of individuals requiring lifelong viral suppressive therapy. Viral suppression eliminates sexual transmission of the virus and greatly improves health outcomes. HIV infection, although still stigmatized, is now a chronic and manageable condition. Ultimate epidemic control will require prevention and treatment to be made available, affordable and accessible for all. Furthermore, the focus should be heavily oriented towards long-term well-being, care for multimorbidity and good quality of life. Intense research efforts continue for therapeutic and/or preventive vaccines, novel immunotherapies and a cure.
Collapse
Affiliation(s)
- Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, RSA, Cape Town, South Africa.
| | - Chris Beyrer
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | | | - Babafemi Taiwo
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Jeffrey V Lazarus
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Baliu-Piqué M, Tesselaar K, Borghans JAM. Are homeostatic mechanisms aiding the reconstitution of the T-cell pool during lymphopenia in humans? Front Immunol 2022; 13:1059481. [PMID: 36483556 PMCID: PMC9723355 DOI: 10.3389/fimmu.2022.1059481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
A timely recovery of T-cell numbers following haematopoietic stem-cell transplantation (HSCT) is essential for preventing complications, such as increased risk of infection and disease relapse. In analogy to the occurrence of lymphopenia-induced proliferation in mice, T-cell dynamics in humans are thought to be homeostatically regulated in a cell density-dependent manner. The idea is that T cells divide faster and/or live longer when T-cell numbers are low, thereby helping the reconstitution of the T-cell pool. T-cell reconstitution after HSCT is, however, known to occur notoriously slowly. In fact, the evidence for the existence of homeostatic mechanisms in humans is quite ambiguous, since lymphopenia is often associated with infectious complications and immune activation, which confound the study of homeostatic regulation. This calls into question whether homeostatic mechanisms aid the reconstitution of the T-cell pool during lymphopenia in humans. Here we review the changes in T-cell dynamics in different situations of T-cell deficiency in humans, including the early development of the immune system after birth, healthy ageing, HIV infection, thymectomy and hematopoietic stem cell transplantation (HSCT). We discuss to what extent these changes in T-cell dynamics are a side-effect of increased immune activation during lymphopenia, and to what extent they truly reflect homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Sper RB, Proctor J, Lascina O, Guo L, Polkoff K, Kaeser T, Simpson S, Borst L, Gleason K, Zhang X, Collins B, Murphy Y, Platt JL, Piedrahita JA. Allogeneic and xenogeneic lymphoid reconstitution in a RAG2 -/- IL2RG y/- severe combined immunodeficient pig: A preclinical model for intrauterine hematopoietic transplantation. Front Vet Sci 2022; 9:965316. [PMID: 36311661 PMCID: PMC9614384 DOI: 10.3389/fvets.2022.965316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated RAG2−/−IL2RGy/− immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34+ hematopoietic stem cells after in utero cell transplantation. Following intrauterine injection at day 42–45 of gestation, fetuses were allowed to gestate to term and analyzed postnatally for the presence of pig (allogeneic) and human (xenogeneic) B cells, T-cells and NK cells in peripheral blood and other lymphoid tissues. Engraftment of allogeneic hematopoietic cells was detected based on co-expression of pH2B-eGFP and various markers of differentiation. Analysis of spleen revealed robust generation and engraftment of pH2B-eGFP mature B cells (and IgH recombination) and mature T-cells (and TCR-β recombination), T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. The thymus revealed engraftment of pH2B-eGFP double negative precursors (CD4−CD8−) as well as double positive (CD4+, CD8+) precursors and single positive T-cells. After intrauterine administration of human CD34+ hematopoietic stem cells, analysis of peripheral blood and lymphoid tissues revealed the presence of human T-cells (CD3+CD4+ and CD3+CD8+) but no detectable B cells or NK cells. The frequency of human CD45+ cells in the circulation decreased rapidly and were undetectable within 2 weeks of age. The frequency of human CD45+ cells in the spleen also decreased rapidly, becoming undetectable at 3 weeks. In contrast, human CD45+CD3+T-cells comprised >70% of cells in the pig thymus at birth and persisted at the same frequency at 3 weeks. Most human CD3+ cells in the pig's thymus expressed CD4 or CD8, but few cells were double positive (CD4+ CD8+). In addition, human CD3+ cells in the pig thymus contained human T-cell excision circles (TREC), suggesting de novo development. Our data shows that the pig thymus provides a microenvironment conducive to engraftment, survival and development of human T-cells and provide evidence that the developing T-cell compartment can be populated to a significant extent by human cells in large animals.
Collapse
Affiliation(s)
- Renan B. Sper
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jessica Proctor
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Odessa Lascina
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ling Guo
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kathryn Polkoff
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tobias Kaeser
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sean Simpson
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Luke Borst
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Katherine Gleason
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Xia Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Bruce Collins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Yanet Murphy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey L. Platt
- Department of Surgery and Microbiology and Immunology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Jorge A. Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States,*Correspondence: Jorge A. Piedrahita
| |
Collapse
|
6
|
Hall BM, Verma ND, Tran GT, Hodgkinson SJ. Transplant Tolerance, Not Only Clonal Deletion. Front Immunol 2022; 13:810798. [PMID: 35529847 PMCID: PMC9069565 DOI: 10.3389/fimmu.2022.810798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection. These original observations are reassessed by considering T regulatory cells that are produced by thymus of neonates to prevent autoimmunity. Second, we review "operational tolerance" induced in adult rodents and larger animals such as pigs. This can occur spontaneously especially with liver allografts, but also can develop after short courses of a variety of rejection inhibiting therapies. Over time these animals develop alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts. These animals have a "split tolerance" as peripheral lymphocytes from these animals respond to donor alloantigen in graft versus host assays and in mixed lymphocyte cultures, indicating there is no clonal deletion. Investigation of this phenomenon excludes many mechanisms, including anti-donor antibody blocking rejection as well as anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred to a second immune-depleted host by T cells that retain the capacity to effect rejection of third-party grafts by the same host. Third, we review research on alloantigen specific inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The precise methods for inducing and diagnosing operational tolerance remain to be defined, but antigen specific T regulatory cells are key mediators.
Collapse
Affiliation(s)
- Bruce M. Hall
- Immune Tolerance Laboratory, School of Medicine, University of New South Wales (UNSW) Sydney, Ingham Institute, and Renal Service and Multiple Sclerosis Clinic, Liverpool Hospital, Liverpool, NSW, Australia
| | | | | | | |
Collapse
|
7
|
Auma AWN, Shive CL, Kostadinova L, Anthony DD. Variable Normalization of Naïve CD4+ Lymphopenia and Markers of Monocyte and T Cell Activation over the Course of Direct-Acting Anti-Viral Treatment of Chronic Hepatitis C Virus Infection. Viruses 2021; 14:50. [PMID: 35062255 PMCID: PMC8780994 DOI: 10.3390/v14010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is associated with naïve CD4+ T cell lymphopenia and long-standing/persistent elevation of cellular and soluble immune activation parameters, the latter heightened in the setting of HIV co-infection. The underlying mechanisms are not completely understood. However, we recently reported that accelerated peripheral cell death may contribute to naïve CD4+ T cell loss and that mechanistic relationships between monocyte activation, T cell activation, and soluble inflammatory mediators may also contribute. Chronic HCV infection can be cured by direct-acting anti-viral (DAA) therapy, and success is defined as sustained virological response (SVR, undetectable HCV RNA (ribonucleic acid) at 12 weeks after DAA treatment completion). However, there is no general consensus on the short-term and long-term immunological outcomes of DAA therapy. Here, we consolidate previous reports on the partial normalization of naïve CD4+ lymphopenia and T cell immune activation and the apparent irreversibility of monocyte activation following DAA therapy in HCV infected and HCV/HIV co-infected individuals. Further, advanced age and cirrhosis are associated with delayed or abrogation of immune reconstitution after DAA therapy, an indication that non-viral factors also likely contribute to host immune dysregulation in HCV infection.
Collapse
Affiliation(s)
- Ann W. N. Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
| | - Carey L. Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | | | - Donald D. Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Metro Health Medical Center, Division of Rheumatology, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Alrubayyi A, Gea-Mallorquí E, Touizer E, Hameiri-Bowen D, Kopycinski J, Charlton B, Fisher-Pearson N, Muir L, Rosa A, Roustan C, Earl C, Cherepanov P, Pellegrino P, Waters L, Burns F, Kinloch S, Dong T, Dorrell L, Rowland-Jones S, McCoy LE, Peppa D. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nat Commun 2021; 12:5839. [PMID: 34611163 PMCID: PMC8492866 DOI: 10.1038/s41467-021-26137-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). Here we show that the majority of PLWH with ART suppressed HIV viral load, mount a detectable adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleoprotein are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH.
Collapse
Affiliation(s)
| | | | - Emma Touizer
- Division of Infection and Immunity, University College London, London, UK
| | - Dan Hameiri-Bowen
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jakub Kopycinski
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Bethany Charlton
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Luke Muir
- Division of Infection and Immunity, University College London, London, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Chloe Roustan
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Pellegrino
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK
| | - Fiona Burns
- Institute for Global Health UCL, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Royal Free London NHS Foundation Trust, London, UK
- Department of Immunology, Royal Free Campus, UCL, London, UK
| | - Tao Dong
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK.
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Division of Infection and Immunity, University College London, London, UK.
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK.
| |
Collapse
|
9
|
Petkov S, Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection. Genomics 2021; 113:3487-3500. [PMID: 34425224 DOI: 10.1016/j.ygeno.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
We analyzed the whole transcriptome characteristics of blood CD4+ T naïve (TN) cells isolated from HIV-1 infected patients starting ART at acute (early ART = EA; n = 13) or chronic (late ART = LA; n = 11) phase of infection and controls (C; n = 15). RNA sequencing revealed 389 differentially expressed genes (DEGs) in EA and 810 in LA group in relation to controls. Comparison of the two groups of patients showed 183 DEGs. We focused on DEGs involved in apoptosis, inflammation and immune response. Clustering showed a poor separation of EA from C suggesting that these two groups present a similar transcriptomic profile of CD4+ TN cells. The comparison of EA and LA patients resulted in a high cluster purity revealing that different biological dysfunctions characterize EA and LA patients. The upregulated expression of several inflammatory chemokine genes distinguished the patient groups from C; CCL2 and CCL7, however, were downregulated in EA compared to LA patients. BCL2, an anti-apoptotic factor pivotal for naïve T cell homeostasis, distinguished both EA and LA from C. The expression of several DEGs involved in different inflammatory processes (TLR4, PTGS2, RAG1, IFNA16) was lower in EA compared LA. We conclude that although the transcriptome of CD4+ TN cells isolated from patients initiating ART at acute infection reveals a more quiescent phenotype, the survival profile of these cells still appears to be affected. Our results show that the detrimental process of inflammation is under more efficient control in EA patients.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
10
|
GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob Agents Chemother 2021; 65:AAC.02328-20. [PMID: 33619061 PMCID: PMC8092873 DOI: 10.1128/aac.02328-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
Collapse
|
11
|
Ayasoufi K, Pfaller CK, Evgin L, Khadka RH, Tritz ZP, Goddery EN, Fain CE, Yokanovich LT, Himes BT, Jin F, Zheng J, Schuelke MR, Hansen MJ, Tung W, Parney IF, Pease LR, Vile RG, Johnson AJ. Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators. Brain 2020; 143:3629-3652. [PMID: 33253355 PMCID: PMC7954397 DOI: 10.1093/brain/awaa343] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.
Collapse
Affiliation(s)
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
| | - Laura Evgin
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Benjamin T Himes
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Jiaying Zheng
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Matthew R Schuelke
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Immunology, Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, USA
| | | | - Wesley Tung
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Ian F Parney
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Richard G Vile
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Department of Neurology, Rochester, MN, USA
| |
Collapse
|
12
|
Vansant G, Chen HC, Zorita E, Trejbalová K, Miklík D, Filion G, Debyser Z. The chromatin landscape at the HIV-1 provirus integration site determines viral expression. Nucleic Acids Res 2020; 48:7801-7817. [PMID: 32597987 PMCID: PMC7641320 DOI: 10.1093/nar/gkaa536] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
HIV-1 persists lifelong in memory cells of the immune system as latent provirus that rebounds upon treatment interruption. Therefore, the latent reservoir is the main target for an HIV cure. Here, we studied the direct link between integration site and transcription using LEDGINs and Barcoded HIV-ensembles (B-HIVE). LEDGINs are antivirals that inhibit the interaction between HIV-1 integrase and the chromatin-tethering factor LEDGF/p75. They were used as a tool to retarget integration, while the effect on HIV expression was measured with B-HIVE. B-HIVE tracks insert-specific HIV expression by tagging a unique barcode in the HIV genome. We confirmed that LEDGINs retarget integration out of gene-dense and actively transcribed regions. The distance to H3K36me3, the marker recognized by LEDGF/p75, clearly increased. LEDGIN treatment reduced viral RNA expression and increased the proportion of silent provirus. Finally, silent proviruses obtained after LEDGIN treatment were located further away from epigenetic marks associated with active transcription. Interestingly, proximity to enhancers stimulated transcription irrespective of LEDGIN treatment, while the distance to H3K36me3 only changed after treatment with LEDGINs. The fact that proximity to these markers are associated with RNA expression support the direct link between provirus integration site and viral expression.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Heng-Chang Chen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain
| | - Eduard Zorita
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain
| | - Katerina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Dalibor Miklík
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Guillaume Filion
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain.,University Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
13
|
Kwok JSY, Cheung SKF, Ho JCY, Tang IWH, Chu PWK, Leung EYS, Lee PPW, Cheuk DKL, Lee V, Ip P, Lau YL. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front Immunol 2020; 11:1411. [PMID: 32765500 PMCID: PMC7378446 DOI: 10.3389/fimmu.2020.01411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
The clinical experience gathered throughout the years has raised awareness of primary immunodeficiency diseases (PIDD). T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) assays for thymic and bone marrow outputs measurement have been widely implemented in newborn screening (NBS) programs for Severe Combined Immunodeficiency. The potential applications of combined TREC and KREC assay in PIDD diagnosis and immune reconstitution monitoring in non-neonatal patients have been suggested. Given that ethnicity, gender, and age can contribute to variations in immunity, defining the reference intervals of TREC and KREC levels in the local population is crucial for setting up cut-offs for PIDD diagnosis. In this retrospective study, 479 healthy Chinese sibling donors (240 males and 239 females; age range: 1 month-74 years) from Hong Kong were tested for TREC and KREC levels using a simultaneous quantitative real-time PCR assay. Age-specific 5th-95th percentile reference intervals of TREC and KREC levels (expressed in copies per μL blood and copies per 106 cells) were established in both pediatric and adult age groups. Significant inverse correlations between age and both TREC and KREC levels were observed in the pediatric age group. A significant higher KREC level was observed in females than males after 9-12 years of age but not for TREC. Low TREC or KREC levels were detected in patients diagnosed with mild or severe PIDD. This assay with the established local reference intervals would allow accurate diagnosis of PIDD, and potentially monitoring immune reconstitution following haematopoietic stem cell transplantation or highly active anti-retroviral therapy in the future.
Collapse
Affiliation(s)
- Janette S. Y. Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Stephen K. F. Cheung
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Jenny C. Y. Ho
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Ivan W. H. Tang
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Patrick W. K. Chu
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Eric Y. S. Leung
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Pamela P. W. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel K. L. Cheuk
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vincent Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Y. L. Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Tong QY, Zhang JC, Guo JL, Li Y, Yao LY, Wang X, Yang YG, Sun LG. Human Thymic Involution and Aging in Humanized Mice. Front Immunol 2020; 11:1399. [PMID: 32733465 PMCID: PMC7358581 DOI: 10.3389/fimmu.2020.01399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Thymic involution is an important factor leading to the aging of the immune system. Most of what we know regarding thymic aging comes from mouse models, and the nature of the thymic aging process in humans remains largely unexplored due to the lack of a model system that permits longitudinal studies of human thymic involution. In this study, we sought to explore the potential to examine human thymic involution in humanized mice, constructed by transplantation of fetal human thymus and CD34+ hematopoietic stem/progenitor cells into immunodeficient mice. In these humanized mice, the human thymic graft first underwent acute recoverable involution caused presumably by transplantation stress, followed by an age-related chronic form of involution. Although both the early recoverable and later age-related thymic involution were associated with a decrease in thymic epithelial cells and recent thymic emigrants, only the latter was associated with an increase in adipose tissue mass in the thymus. Furthermore, human thymic grafts showed a dramatic reduction in FOXN1 and AIRE expression by 10 weeks post-transplantation. This study indicates that human thymus retains its intrinsic mechanisms of aging and susceptibility to stress-induced involution when transplanted into immunodeficient mice, offering a potentially useful in vivo model to study human thymic involution and to test therapeutic interventions.
Collapse
Affiliation(s)
- Qing-Yue Tong
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jue-Chao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jing-Long Guo
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yang Li
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Li-Yu Yao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Li-Guang Sun
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
15
|
Associations between recent thymic emigrants and CD4+ T-cell recovery after short-term antiretroviral therapy initiation. AIDS 2020; 34:501-511. [PMID: 31794524 PMCID: PMC7050791 DOI: 10.1097/qad.0000000000002458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text Objective: Around 20–30% of HIV-infected individuals (HIV+) on successful antiretroviral therapy (ART) fail to normalize their CD4+ T-cell counts. Various factors could contribute to the lack of immune reconstitution, one of them being thymic insufficiency. We aimed to explore associations between recent thymic emigrants (RTEs) and CD4+ T-cell recovery. Design: ART-naive HIV+ individuals who started ART with advanced AIDS were selected. Good versus poor immune reconstitution was defined by CD4+ gains above or below 100 CD4+ T cells/μl. The follow-up period was 6 months. Methods: Peripheral blood mononuclear cells were isolated and flow cytometry was used to characterize RTEs as the fraction of naive CD4+ T cells expressing CD31+, the platelet endothelial cell adhesion molecule. Markers of cellular activation, senescence, exhaustion and cycling were also assessed. Results: After 6 months on ART, HIV+ individuals with good immune reconstitution had higher absolute numbers of RTEs, compared with those with poor immune reconstitution, and these strongly correlated with CD4+ gains in those individuals with good immune reconstitution but not with poor immune reconstitution. We also found that CD8+ T-cell immune activation decreased as early as 2 months post-ART initiation in individuals with good immune reconstitution, but only at month 6 post-ART in individuals with poor immune reconstitution. Levels of immune activation were inversely correlated with the absolute numbers of RTEs in both groups, but more strongly so in individuals with poor immune reconstitution. Conclusion: We show that RTEs are linked to CD4+ T-cell recovery and that the degree of immune reconstitution is not directly linked to persistent immune activation.
Collapse
|
16
|
Levy A, Rangel-Santos A, Torres LC, Silveira-Abreu G, Agena F, Carneiro-Sampaio M. T cell receptor excision circles as a tool for evaluating thymic function in young children. ACTA ACUST UNITED AC 2019; 52:e8292. [PMID: 31241713 PMCID: PMC6596370 DOI: 10.1590/1414-431x20198292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
Abstract
The thymus is a primary lymphoid organ responsible for the maturation of T cells as well as the immunological central tolerance. It is in the antenatal period and infancy that it plays its major role. In clinical practice, T cell receptor excision circles (TRECs) are considered a direct and reliable measure of the thymic function. TRECs are a by-product of DNA formation in gene rearrangement of T cell receptors. They are stable and they do not duplicate during mitosis, representing the recent emigrant T cells from the thymus. Despite their importance, TRECs have been neglected by physicians and there is a lack of data regarding thymic function during infancy of healthy children. In order to evaluate thymic function in the first years of life, we propose measuring TRECs as a valuable tool. One hundred and three blood samples from children and adolescents between 3 months and 20 years of age were analyzed. The mean TRECs count was 136.77±96.7 copies of TRECs/μL of DNA. The individuals between 0 and 5 years of age had significantly higher TRECs values than those between 10 and 20 years of age. No significant difference was observed in TRECs values among age groups below 5 years of age. An inverse correlation between TRECs and age was found (r=0.3 P=0.003). These data highlight and validate the evidence of decreased thymus function with age, even during infancy. Awareness should be raised with this important albeit ignored organ.
Collapse
Affiliation(s)
- A Levy
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A Rangel-Santos
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L C Torres
- Laboratório de Pesquisa Translacional, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, PE, Brasil
| | - G Silveira-Abreu
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Agena
- Instituto Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M Carneiro-Sampaio
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
17
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
18
|
da Rocha LKA, Freschi de Barros S, Bandeira F, Bollini A, Testa LHDA, Simione AJ, Souza MDOE, Zanetti LP, de Oliveira LCS, Dos Santos ACF, de Souza MP, Colturado VAR, Kalil J, Machado CM, Guilherme L. Thymopoiesis in Pre- and Post-Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:1889. [PMID: 30245685 PMCID: PMC6137257 DOI: 10.3389/fimmu.2018.01889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an important therapeutic option for some hematological diseases. However, patients who undergo HSCT acquire a state of immunodeficiency that causes significant mortality. Reconstitution of thymic function is needed to support the immune system. One way to measure thymic function is through T-cell receptor excision circle (TREC) quantification. TRECs are generated by T-cell receptor gene rearrangements during T-cell maturation in the thymus and represent a reliable marker for thymic output. In this study, we aimed to assess aging and malignant hematological diseases as two important factors that may influence thymic output before HSCT. We observed that patients before HSCT presented signal joint TREC (sjTREC) numbers lower than 606.55 copies/μg DNA (low values) compared with healthy individuals, with an odds ratio (OR) of 12.88 [95% confidence interval (CI): 5.26–31.53; p < 0.001]. Our results showed that a group of older individuals (≥50 years old), comprising both healthy individuals and patients, had an OR of 10.07 (95% CI: 2.80–36.20) for low sjTREC values compared with younger individuals (≤24 years old; p < 0.001). Multiple logistic regression analysis confirmed that both older age (≥50 years old) and malignant hematological diseases and their treatments were important and independent risk factors related to thymic function impairment (p < 0.001). The median sjTREC value for patients of all ages was significantly lower than the sjTREC median for the subgroup of older healthy individuals (≥50 years old; p < 0.001). These data suggested that patients before HSCT and healthy individuals exhibited age-dependent thymic impairment, and that prior treatment for hematological diseases may exacerbate aging-related deterioration of natural thymic function. Furthermore, we analyzed these patients 9 months post-HSCT and compared patients who underwent autologous HSCT with those who underwent allogeneic HSCT. Both groups of patients achieved sjTREC copy numbers similar to those of healthy individuals. We did not find a close relationship between impaired thymic function prior to HSCT and worse thymic recovery after HSCT.
Collapse
Affiliation(s)
- Luis Klaus A da Rocha
- Laboratory of Immunology, Heart Institute (InCor), Clinical Hospital, University of São Paulo, São Paulo, Brazil
| | - Samar Freschi de Barros
- Laboratory of Immunology, Heart Institute (InCor), Clinical Hospital, University of São Paulo, São Paulo, Brazil
| | - Francine Bandeira
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | - Alexia Bollini
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | | | - Anderson João Simione
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | - Marina de O E Souza
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | - Lilian P Zanetti
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | | | | | - Mair Pedro de Souza
- Hematopoietic Stem Cell Transplantation Sector, Amaral Carvalho Hospital, Jaú, Brazil
| | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Clinical Hospital, University of São Paulo, São Paulo, Brazil
| | - Clarisse M Machado
- Laboratory of Virology, Tropical Medicine Institute (IMT), University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Laboratory of Immunology, Heart Institute (InCor), Clinical Hospital, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Zubakov D, Chamier-Ciemińska J, Kokmeijer I, Maciejewska A, Martínez P, Pawłowski R, Haas C, Kayser M. Introducing novel type of human DNA markers for forensic tissue identification: DNA copy number variation allows the detection of blood and semen. Forensic Sci Int Genet 2018; 36:112-118. [DOI: 10.1016/j.fsigen.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 12/28/2022]
|
20
|
Mannan T, Ahmed S, Akhtar E, Ahsan KB, Haq A, Kippler M, Vahter M, Raqib R. Associations of Arsenic Exposure With Telomere Length and Naïve T Cells in Childhood—A Birth Cohort Study. Toxicol Sci 2018; 164:539-549. [DOI: 10.1093/toxsci/kfy105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tania Mannan
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
- Department of Immunology, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | | | - Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE 171 77, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE 171 77, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| |
Collapse
|
21
|
Yamanoi E, Uchiyama S, Sakurada M, Ueno Y. sjTREC quantification using SYBR quantitative PCR for age estimation of bloodstains in a Japanese population. Leg Med (Tokyo) 2018; 32:71-74. [DOI: 10.1016/j.legalmed.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
|
22
|
|
23
|
Ferrando-Martinez S, De Pablo-Bernal RS, De Luna-Romero M, De Ory SJ, Genebat M, Pacheco YM, Parras FJ, Montero M, Blanco JR, Gutierrez F, Santos J, Vidal F, Koup RA, Muñoz-Fernández MÁ, Leal M, Ruiz-Mateos E. Thymic Function Failure Is Associated With Human Immunodeficiency Virus Disease Progression. Clin Infect Dis 2018; 64:1191-1197. [PMID: 28158588 DOI: 10.1093/cid/cix095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Thymic function has been mainly analyzed with surrogate peripheral markers affected by peripheral T-cell expansion, making it difficult to assess the role of thymic failure in human immunodeficiency virus (HIV) disease progression. The assay of signal-joint/DβJβ T-cell rearrangement excision circles (sj/β-TREC ratio) overcomes this limitation but has only been assayed in small cohorts. Thus, the aim of this study was to determine the role of thymic function, measured by the sj/β-TREC ratio, on CD4 T-cell maintenance in prospective HIV cohorts that include patients with a wide age range and different immunological phenotypes. Methods Seven hundred seventy-four patients including typical progressors, long-term nonprogressors (LTNPs), and vertically HIV-infected subjects were analyzed. Thymic function was quantified in peripheral blood samples using the sj/β-TREC ratio. Associations between thymic function and CD4 T-cell dynamics and combination antiretroviral therapy (cART) onset were analyzed using linear, logistic, and Cox proportional hazard models. Results Thymic function failure (sj/β-TREC ratio <10) was independently associated with HIV progression. In agreement, patients with distinctive high CD4 T-cell levels and low progression rates (vertically HIV-infected patients and LTNPs, including HIV controllers) had significantly higher thymic function levels whereas patients with thymic function failure had lower CD4 T-cell levels, lower nadir, and faster CD4 T-cell decay. Conclusions This work establishes the relevance of thymic function, measured by sj/β-TREC ratio, in HIV disease progression by analyzing a large number of patients in 3 cohorts with different HIV disease progression phenotypes. These results support and help to understand the mechanisms underlying the rationale of early cART onset.
Collapse
Affiliation(s)
- Sara Ferrando-Martinez
- Immunology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebeca S De Pablo-Bernal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Marta De Luna-Romero
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Santiago J De Ory
- Molecular Immunobiology Laboratory, General University Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Miguel Genebat
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Yolanda M Pacheco
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Francisco J Parras
- Infectious Disease Unit, General Universitary Hospital Gregorio Marañon, Madrid, Spain
| | - Marta Montero
- Infectious Disease Unit, Polytechnic and University Hospital La Fe, Valencia, Spain
| | - Jose Ramón Blanco
- Infectious Diseases Department, Hospital San Pedro, Center for Biomedical Research of La Rioja, Logrono, Spain
| | - Felix Gutierrez
- Hospital General de Elche and Universidad Miguel Hernández, Alicante, Spain
| | - Jesus Santos
- Infectious Diseases Unit, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga, Spain
| | - Francisco Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Spain
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - María Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General University Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| |
Collapse
|
24
|
Ayasoufi K, Fan R, Valujskikh A. Depletion-Resistant CD4 T Cells Enhance Thymopoiesis During Lymphopenia. Am J Transplant 2017; 17:2008-2019. [PMID: 28397358 PMCID: PMC5519419 DOI: 10.1111/ajt.14309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/08/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
Lymphoablation is routinely used in transplantation, and its success is defined by the balance of pathogenic versus protective T cells within reconstituted repertoire. While homeostatic proliferation and thymopoiesis may both cause T cell recovery during lymphopenia, the relative contributions of these mechanisms remain unclear. The goal of this study was to investigate the role of the thymus during T cell reconstitution in adult allograft recipients subjected to lymphoablative induction therapy. Compared with euthymic mice, thymectomized heart allograft recipients demonstrated severely impaired CD4 and CD8 T cell recovery and prolonged heart allograft survival after lymphoablation with murine anti-thymocyte globulin (mATG). The injection with agonistic anti-CD40 mAb or thymus transplantation only partially restored T cell reconstitution in mATG-treated thymectomized mice. After mATG depletion, residual CD4 T cells migrated into the thymus and enhanced thymopoiesis. Conversely, depletion of CD4 T cells before lymphoablation inhibited thymopoiesis at the stage of CD4- CD8- CD44hi CD25+ immature thymocytes. This is the first demonstration that the thymus and peripheral CD4 T cells cooperate to ensure optimal T cell reconstitution after lymphoablation. Targeting thymopoiesis through manipulating functions of depletion-resistant helper T cells may thus improve therapeutic benefits and minimize the risks of lymphoablation in clinical settings.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Ran Fan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
25
|
Cho S, Seo HJ, Lee JH, Kim MY, Lee SD. Influence of immunologic status on age prediction using signal joint T cell receptor excision circles. Int J Legal Med 2017; 131:1061-1067. [DOI: 10.1007/s00414-017-1540-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
26
|
Silva SL, Albuquerque AS, Matoso P, Charmeteau-de-Muylder B, Cheynier R, Ligeiro D, Abecasis M, Anjos R, Barata JT, Victorino RMM, Sousa AE. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity. Front Immunol 2017; 8:20. [PMID: 28154568 PMCID: PMC5243809 DOI: 10.3389/fimmu.2017.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Naive CD4 T-cell maintenance is critical for immune competence. We investigated here the fine-tuning of homeostatic mechanisms of the naive compartment to counteract the loss of de novo CD4 T-cell generation. Adults thymectomized in early childhood during corrective cardiac surgery were grouped based on presence or absence of thymopoiesis and compared with age-matched controls. We found that the preservation of the CD31- subset was independent of the thymus and that its size is tightly controlled by peripheral mechanisms, including prolonged cell survival as attested by Bcl-2 levels. Conversely, a significant contraction of the CD31+ naive subset was observed in the absence of thymic activity. This was associated with impaired responses of purified naive CD4 T-cells to IL-7, namely, in vitro proliferation and upregulation of CD31 expression, which likely potentiated the decline in recent thymic emigrants. Additionally, we found no apparent constraint in the differentiation of naive cells into the memory compartment in individuals completely lacking thymic activity despite upregulation of DUSP6, a phosphatase associated with increased TCR threshold. Of note, thymectomized individuals featuring some degree of thymopoiesis were able to preserve the size and diversity of the naive CD4 compartment, further arguing against complete thymectomy in infancy. Overall, our data suggest that robust peripheral mechanisms ensure the homeostasis of CD31- naive CD4 pool and point to the requirement of continuous thymic activity to the maintenance of IL-7-driven homeostatic proliferation of CD31+ naive CD4 T-cells, which is essential to secure T-cell diversity throughout life.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Adriana S Albuquerque
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Paula Matoso
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bénédicte Charmeteau-de-Muylder
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Dário Ligeiro
- Centro de Sangue e Tranplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP , Lisboa , Portugal
| | - Miguel Abecasis
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - Rui Anjos
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - João T Barata
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
27
|
Symons J, Chopra A, Malatinkova E, De Spiegelaere W, Leary S, Cooper D, Abana CO, Rhodes A, Rezaei SD, Vandekerckhove L, Mallal S, Lewin SR, Cameron PU. HIV integration sites in latently infected cell lines: evidence of ongoing replication. Retrovirology 2017; 14:2. [PMID: 28086908 PMCID: PMC5237276 DOI: 10.1186/s12977-016-0325-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. RESULTS We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. CONCLUSION Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.
Collapse
Affiliation(s)
- Jori Symons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Murdoch, WA, Australia
| | - Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Shay Leary
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Murdoch, WA, Australia
| | - Don Cooper
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Murdoch, WA, Australia
| | - Chike O Abana
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ajantha Rhodes
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Simin D Rezaei
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Murdoch, WA, Australia.,Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth St, Melbourne, VIC, 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, 792 Elizabeth St, Melbourne, VIC, 3000, Australia. .,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| |
Collapse
|
28
|
Holder A, Mella S, Palmer DB, Aspinall R, Catchpole B. An Age-Associated Decline in Thymic Output Differs in Dog Breeds According to Their Longevity. PLoS One 2016; 11:e0165968. [PMID: 27824893 PMCID: PMC5100965 DOI: 10.1371/journal.pone.0165968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
The age associated decline in immune function is preceded in mammals by a reduction in thymic output. Furthermore, there is increasing evidence of a link between immune competence and lifespan. One approach to determining thymic output is to quantify signal joint T cell receptor excision circles (sj-TRECs), a method which has been developed and used in several mammalian species. Life expectancy and the rate of aging vary in dogs depending upon their breed. In this study, we quantified sj-TRECs in blood samples from dogs of selected breeds to determine whether there was a relationship between longevity and thymic output. In Labrador retrievers, a breed with a median expected lifespan of 11 years, there was an age-associated decline in sj-TREC values, with the greatest decline occurring before 5 years of age, but with sj-TREC still detectable in some geriatric animals, over 13 years of age. In large short-lived breeds (Burnese mountain dogs, Great Danes and Dogue de Bordeaux), the decline in sj-TREC values began earlier in life, compared with small long-lived breeds (Jack Russell terriers and Yorkshire terriers), and the presence of animals with undetectable sj-TRECs occurred at a younger age in the short-lived breeds. The study findings suggest that age-associated changes in canine sj-TRECs are related to breed differences in longevity, and this research highlights the use of dogs as a potential model of immunosenescence.
Collapse
Affiliation(s)
- Angela Holder
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Stephanie Mella
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Donald B. Palmer
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Richard Aspinall
- Health and Wellbeing Academy, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, Essex, United Kingdom
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
29
|
Gaballa A, Sundin M, Stikvoort A, Abumaree M, Uzunel M, Sairafi D, Uhlin M. T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome. Int J Mol Sci 2016; 17:E1705. [PMID: 27727179 PMCID: PMC5085737 DOI: 10.3390/ijms17101705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established treatment modality for a variety of malignant diseases as well as for inborn errors of the metabolism or immune system. Regardless of disease origin, good clinical effects are dependent on proper immune reconstitution. T cells are responsible for both the beneficial graft-versus-leukemia (GVL) effect against malignant cells and protection against infections. The immune recovery of T cells relies initially on peripheral expansion of mature cells from the graft and later on the differentiation and maturation from donor-derived hematopoietic stem cells. The formation of new T cells occurs in the thymus and as a byproduct, T cell receptor excision circles (TRECs) are released upon rearrangement of the T cell receptor. Detection of TRECs by PCR is a reliable method for estimating the amount of newly formed T cells in the circulation and, indirectly, for estimating thymic function. Here, we discuss the role of TREC analysis in the prediction of clinical outcome after allogeneic HSCT. Due to the pivotal role of T cell reconstitution we propose that TREC analysis should be included as a key indicator in the post-HSCT follow-up.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Mikael Sundin
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
- Pediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation, Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Arwen Stikvoort
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Muhamed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, KSA-11461 Riyadh, Saudi Arabia.
| | - Mehmet Uzunel
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Darius Sairafi
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Michael Uhlin
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
30
|
Manjati T, Nkambule B, Ipp H. Immune activation is associated with decreased thymic function in asymptomatic, untreated HIV-infected individuals. South Afr J HIV Med 2016; 17:445. [PMID: 29568606 PMCID: PMC5843076 DOI: 10.4102/sajhivmed.v17i1.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
Background Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIV-positive treatment-naive individuals has thus far not been investigated. Aims and objectives To optimise a five-colour flow cytometric assay for measurement of thymic function by measuring recent thymic emigrants (RTEs) in treatment-naive HIV-infected patients and healthy controls and correlate results with levels of immune activation, CD4 counts and viral load. Methods Blood obtained from 53 consenting HIV-positive individuals and 32 controls recruited from HIV prevention and testing clinic in Cape Town, South Africa. RTEs were measured (CD3+/CD4+/CD45RA+/CD31+/CD62L+) and levels were correlated with CD4 counts of HIV-infected individuals, log viral load and levels of immune activation (CD8+/CD38+ T-cells). Results HIV-infected individuals had reduced frequencies of RTEs when compared to controls (p = 0.0035). Levels of immune activation were inversely correlated with thymic function (p = 0.0403), and the thymic function in HIV-infected individuals showed no significant correlation with CD4 counts (p = 0.31559) and viral load (p = 0.20628). Conclusions There was impaired thymic function in HIV-infected individuals, which was associated with increased levels of immune activation. The thymic dysfunction was not associated with CD4 counts and viral load. Immune activation may result in inflammatory damage to the thymus and subsequent thymic dysfunction, and CD4 counts and viral load may not necessarily reflect thymic dysfunction in HIV.
Collapse
Affiliation(s)
- Thandiwe Manjati
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Bongani Nkambule
- Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa.,Department of Physiology, School of Laboratory and Medical Sciences, University of KwaZulu-Natal, South Africa
| | - Hayley Ipp
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
31
|
Kayser C, Alberto FL, da Silva NP, Andrade LEC. Decreased number of T cells bearing TCR rearrangement excision circles (TREC) in active recent onset systemic lupus erythematosus. Lupus 2016; 13:906-11. [PMID: 15645744 DOI: 10.1191/0961203304lu2031oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by several T lymphocyte abnormalities. An indirect assessment of recent thymus emigrants (RTE) has been recently been made available by measuring the number of TCR recombination excision circles (TREC) in peripheral T cells. We studied TREC levels in peripheral blood mononuclear cells (PBMC) of 32 SLE patients with active disease and 32 normal age- and sex-matched controls. Signal-joint TREC concentration was determined by real-time quantitative-PCR as the number of TREC copies/μg PBMC DNA. SLE patients had lower TREC levels (4.1 ±3.9 ×104 TREC/μg DNA) than controls (8.9 ±7.9 ×104/μg DNA) ( P = 0.004). There was an inverse correlation between age and TREC levels in controls ( r = 20.41, P = 0.02) but not in SLE patients. No clinical association was observed between TREC levels and clinical and laboratory SLE manifestations. TREC levels tended to be lower in patients with SLEDAI above 20 than in the rest of the patients ( P = 0.08). The decreased PBMC TREC levels is indicative of a low proportion of RTE in SLE and could be caused by decreased RTE output and/or by increased peripheral T cell proliferation in this disease. The under-representation of RTE in the peripheral T cell pool may play a role in the immune tolerance abnormalities observed in SLE.
Collapse
Affiliation(s)
- C Kayser
- Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
32
|
Abstract
Mathematical and statistical methods enable multidisciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. We collect a representative sample of studies in T-cell biology that illustrate the benefits of modelling–experimental collaborations and that have proven valuable or even groundbreaking. We conclude that it is possible to find excellent examples of synergy between mathematical modelling and experiment in immunology, which have brought significant insight that would not be available without these collaborations, but that much remains to be discovered.
Collapse
Affiliation(s)
- Mario Castro
- Universidad Pontificia Comillas , E28015 Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics , University of Leeds , Leeds LS2 9JT , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics , University of Leeds , Leeds LS2 9JT , UK
| | - Ruy M Ribeiro
- Los Alamos National Laboratory , Theoretical Biology and Biophysics , Los Alamos, NM 87545 , USA
| |
Collapse
|
33
|
Drylewicz J, Vrisekoop N, Mugwagwa T, de Boer AB, Otto SA, Hazenberg MD, Tesselaar K, de Boer RJ, Borghans JAM. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS One 2016; 11:e0152513. [PMID: 27010200 PMCID: PMC4806918 DOI: 10.1371/journal.pone.0152513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022] Open
Abstract
Naive T cells in untreated HIV-1 infected individuals have a reduced T-cell receptor excision circle (TREC) content. Previous mathematical models have suggested that this is due to increased naive T-cell division. It remains unclear, however, how reduced naive TREC contents can be reconciled with a gradual loss of naive T cells in HIV-1 infection. We performed longitudinal analyses in humans before and after HIV-1 seroconversion, and used a mathematical model to investigate which processes could explain the observed changes in naive T-cell numbers and TRECs during untreated HIV-1 disease progression. Both CD4+ and CD8+ naive T-cell TREC contents declined biphasically, with a rapid loss during the first year and a much slower loss during the chronic phase of infection. While naive CD8+ T-cell numbers hardly changed during follow-up, naive CD4+ T-cell counts continually declined. We show that a fine balance between increased T-cell division and loss in the peripheral naive T-cell pool can explain the observed short- and long-term changes in TRECs and naive T-cell numbers, especially if T-cell turnover during the acute phase is more increased than during the chronic phase of infection. Loss of thymic output, on the other hand, does not help to explain the biphasic loss of TRECs in HIV infection. The observed longitudinal changes in TRECs and naive T-cell numbers in HIV-infected individuals are most likely explained by a tight balance between increased T-cell division and death, suggesting that these changes are intrinsically linked in HIV infection.
Collapse
Affiliation(s)
- Julia Drylewicz
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Nienke Vrisekoop
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tendai Mugwagwa
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Anne Bregje de Boer
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sigrid A. Otto
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mette D. Hazenberg
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - José A. M. Borghans
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Brief Report: Role of Thymic Reconstitution in the Outcome of AIDS-Related PML. J Acquir Immune Defic Syndr 2016; 70:357-61. [PMID: 26181821 DOI: 10.1097/qai.0000000000000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Implications of thymopoiesis in AIDS-related opportunistic infections remain unexplored. We used progressive multifocal leukoencephalopathy (PML), caused by JC virus (JCV), as an opportunistic infection model, and we simultaneously investigated thymic output and T-cell responses against JCV in 22 patients with PML treated with combined antiretroviral therapy. Thymic output was significantly associated with JCV-specific CD4⁺ and CD8⁺ T-cell responses and improved survival. Our data suggest that patients with AIDS-related PML and impaired thymopoiesis are less likely to develop a robust JCV-specific cellular immune response and consequently are at an increased risk for a poor clinical outcome.
Collapse
|
35
|
Ravkov E, Slev P, Heikal N. Thymic output: Assessment of CD4 + recent thymic emigrants and T-Cell receptor excision circles in infants. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:249-257. [PMID: 26566232 DOI: 10.1002/cyto.b.21341] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND CD4+ recent thymic emigrants (CD4+ RTEs) constitute a subset of T cells recently generated in the thymus and exported into peripheral blood. CD4+ RTEs have increased copy numbers of T-cell receptor excision circles (TREC). They are characterized by the expression of CD31 on naïve CD4 T-cells. We aimed to validate a flow-cytometry assay to enumerate CD4+ RTEs and assess its performance in relation to TREC measurement. METHODS CD4+ RTEs cell count in peripheral blood was measured to determine sample stability, precision, linearity, and to establish reference ranges. TRECs were measured using qPCR assay performed with DNA isolated from peripheral blood. CD4+ RTEs, TRECs, and flow cytometry results for major T-cell markers were assessed in 50 infants less than 2 years of age. RESULTS Inter-and intra-assay precisions (% CV) were 1.5-12.2 and 1.5-7.0, respectively. Linearity studies showed that the results are linear over a range of 0.7 to 403.0 CD4+ RTEs/μL of blood. There was 84% agreement (42 of 50) between CD4+ RTEs and TRECs qualitative results for the infant samples. CD4+ RTEs reference ranges in 17 healthy children was in agreement with published data, while that of the healthy adults were 51-609 cells/μL of blood. CONCLUSION The validation results provide acceptable measures of the CD4+ RTEs test performance within CAP/CLIA frameworks. CD4+ RTEs and TRECs assays show high agreement in the infant population. The CD4+ RTEs test can be used as a confirmation for the TREC results along with or as an alternative to T-cell phenotyping in infants with repeatedly low TRECs concentrations. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Eugene Ravkov
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Patricia Slev
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Nahla Heikal
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
36
|
Silva SL, Sousa AE. Establishment and Maintenance of the Human Naïve CD4 + T-Cell Compartment. Front Pediatr 2016; 4:119. [PMID: 27843891 PMCID: PMC5086629 DOI: 10.3389/fped.2016.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches.
Collapse
Affiliation(s)
- Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal; Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal
| |
Collapse
|
37
|
Baffelli R, Notarangelo LD, Imberti L, Hershfield MS, Serana F, Santisteban I, Bolda F, Porta F, Lanfranchi A. Diagnosis, Treatment and Long-Term Follow Up of Patients with ADA Deficiency: a Single-Center Experience. J Clin Immunol 2015; 35:624-37. [PMID: 26376800 DOI: 10.1007/s10875-015-0191-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE We carried out a retrospective analysis of 27 patients with Adenosine Deaminase (ADA) deficiency diagnosed in a single center from 1997 to the 2013, for evaluating whether data regarding types of disease-inducing mutations, biochemical and immunological features as well as clinical outcomes of patients treated with enzyme replacement or transplantation, were comparable to those obtained in multicenter studies. METHODS The ADA deficiency diagnosis was performed with biochemical, immunological and molecular techniques. Ten patients treated with hematopoietic stem cell transplantation and three in treatment with enzyme replacement were followed up in our center. RESULTS Twenty-four different mutations were identified and five were not previously reported. Identical mutations were found among patients from the same Romani ethnic group or from the same geographical region. A more rapid recovery was observed in enzyme replacement treated patients in comparison with those transplanted that, however, showed a continuous and long-lasting improvement both in terms of immune and metabolic recovery. CONCLUSION The data obtained in our single center are comparable with those that have been reported in multicenter surveys.
Collapse
Affiliation(s)
- Renata Baffelli
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Children's Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Lucia D Notarangelo
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Imberti
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
| | | | - Federico Serana
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
| | - Ines Santisteban
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Federica Bolda
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Children's Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Fulvio Porta
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Arnalda Lanfranchi
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Children's Hospital, Spedali Civili of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Politikos I, Kim HT, Nikiforow S, Li L, Brown J, Antin JH, Cutler C, Ballen K, Ritz J, Boussiotis VA. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One 2015; 10:e0132564. [PMID: 26177551 PMCID: PMC4503696 DOI: 10.1371/journal.pone.0132564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Recovery of thymopoiesis is critical for immune reconstitution after HSCT. IL-7 and SCF are two major thymotropic cytokines. We investigated whether the kinetics of circulating levels of these cytokines might provide insight into the prolonged immunodeficiency after double umbilical cord blood transplantation (dUCBT) in adults. We examined plasma levels of IL-7 and SCF, T-cell receptor rearrangement excision circle (TREC) levels and T cell subsets in 60 adult patients undergoing dUCBT. Median levels of IL-7 increased by more than 3-fold at 4 weeks and remained elevated through 100 days after dUCBT. SCF showed a less than 2-fold increase and more protracted elevation than IL-7. IL-7 levels inversely correlated with the reconstitution of various T cell subsets but not with TRECs. SCF levels inversely correlated with reconstitution of CD4+T cells, especially the naïve CD4+CD45RA+ subset, and with TRECs suggesting that SCF but not IL-7 had an effect on thymic regeneration. In Cox models, elevated levels of IL-7 and SCF were associated with higher non-relapse mortality (p = 0.03 and p = 0.01) and worse overall survival (p = 0.002 and p = 0.001). Elevated IL-7 but not SCF was also associated with development of GvHD (p = 0.03). Thus, IL-7 and SCF are elevated for a prolonged period after dUCBT and persistently high levels of these cytokines may correlate with worse clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Politikos
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Haesook T. Kim
- Department of Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Lequn Li
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Julia Brown
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Joseph H. Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Karen Ballen
- Bone Marrow Transplantation Unit, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Vassiliki A. Boussiotis
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kingkeow D, Srithep S, Praparattanapan J, Supparatpinyo K, Pornprasert S. Thymic Function during 12 Months of Highly Active Antiretroviral Therapy in Thai HIV-Infected Patients with Normal and Slow Immune Recovery. Jpn J Infect Dis 2015; 68:353-6. [PMID: 25720642 DOI: 10.7883/yoken.jjid.2014.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine and compare thymic output during 12 months of highly active antiretroviral therapy (HAART) in HIV-infected patients with different types of immune recovery. In total, 18 Thai HIV-infected patients with normal immune recovery (NR) and 13 Thai HIV-infected patients with slow immune recovery (SR) were enrolled. T-cell receptor rearrangement excision circle (TREC) levels in peripheral blood mononuclear cells (PBMCs) and CD4(+) T cells were quantified at baseline, and after 6 and 12 months of HAART. CD4(+) T-cell counts in NR patients were significantly higher than those in SR patients after 6 and 12 months of HAART. However, the median TREC levels in PBMCs and CD4(+) T cells in both groups were comparable. Moreover, TREC levels showed similar trends in PBMCs and CD4(+) T cells in both groups during 12 months of HAART. Only patients with SR had significant increases in median TREC levels in PBMCs and CD4(+) T-cells during the first 6 months of HAART. No correlations were found between CD4(+) T-cell count and TREC levels in PBMCs and CD4(+) T cells. These results imply that the increase in CD4(+) T-cell count in SR patients after 12 months of HAART is likely attributable to thymic output and other sources.
Collapse
|
40
|
Smith KN, Mailliard RB, Rinaldo CR. Programming T cell Killers for an HIV Cure: Teach the New Dogs New Tricks and Let the Sleeping Dogs Lie. ACTA ACUST UNITED AC 2015; 6:67-77. [PMID: 28344852 DOI: 10.1615/forumimmundisther.2016014160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the success of combination antiretroviral therapy (cART), a latent viral reservoir persists in HIV-1-infected persons. Unfortunately, endogenous cytotoxic T lymphocytes (CTLs) are unable to control viral rebound when patients are removed from cART. A "kick and kill" strategy has been proposed to eradicate this reservoir, whereby infected T cells are induced to express viral proteins via latency-inducing drugs followed by their elimination by CTLs. It has yet to be determined if stimulation of existing HIV-1-specific CTL will be sufficient, or if new CTLs should be primed from naïve T cells. In this review, we propose that dendritic cells (DCs), the most potent antigen presenting cells, act as dog trainers and can induce T cells (the dogs) to do magnificent tricks. We propose the hypothesis that an HIV-1 cure will require targeting of naïve T cells and will necessitate "teaching new dogs new tricks" while avoiding activation of potentially dysfunctional endogenous memory CTLs (letting the sleeping dogs lie).
Collapse
Affiliation(s)
- Kellie N Smith
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA; Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Robbie B Mailliard
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Charles R Rinaldo
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA; Pathology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
41
|
Long-lasting production of new T and B cells and T-cell repertoire diversity in patients with primary immunodeficiency who had undergone stem cell transplantation: a single-centre experience. J Immunol Res 2014; 2014:240453. [PMID: 25756054 PMCID: PMC4270024 DOI: 10.1155/2014/240453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 09/08/2014] [Indexed: 11/29/2022] Open
Abstract
Levels of Kappa-deleting recombination excision circles (KRECs), T-cell receptor excision circles (TRECs), and T-cell repertoire diversity were evaluated in 1038 samples of 124 children with primary immunodeficiency, of whom 102 (54 with severe combined immunodeficiency and 48 with other types of immunodeficiency) underwent hematopoietic stem cell transplantation. Twenty-two not transplanted patients with primary immunodeficiency were used as controls. Only data of patients from whom at least five samples were sent to the clinical laboratory for routine monitoring of lymphocyte reconstitutions were included in the analysis. The mean time of the follow-up was 8 years. The long-lasting posttransplantation kinetics of KREC and TREC production occurred similarly in patients with severe combined immunodeficiency and with other types of immunodeficiency and, in both groups, the T-cell reconstitution was more efficient than in nontransplanted children. Although thymic output decreased in older transplanted patients, the degree of T-cell repertoire diversity, after an initial increase, remained stable during the observation period. However, the presence of graft-versus-host disease and ablative conditioning seemed to play a role in the time-related shaping of T-cell repertoire. Overall, our data suggest that long-term B- and T-cell reconstitution was equally achieved in children with severe combined immunodeficiency and with other types of primary immunodeficiency.
Collapse
|
42
|
Bayesian immunological model development from the literature: example investigation of recent thymic emigrants. J Immunol Methods 2014; 414:32-50. [PMID: 25179832 DOI: 10.1016/j.jim.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 06/16/2014] [Accepted: 08/21/2014] [Indexed: 11/21/2022]
Abstract
Bayesian estimation techniques offer a systematic and quantitative approach for synthesizing data drawn from the literature to model immunological systems. As detailed here, the practitioner begins with a theoretical model and then sequentially draws information from source data sets and/or published findings to inform estimation of model parameters. Options are available to weigh these various sources of information differentially per objective measures of their corresponding scientific strengths. This approach is illustrated in depth through a carefully worked example for a model of decline in T-cell receptor excision circle content of peripheral T cells during development and aging. Estimates from this model indicate that 21 years of age is plausible for the developmental timing of mean age of onset of decline in T-cell receptor excision circle content of peripheral T cells.
Collapse
|
43
|
A randomized controlled trial of palifermin (recombinant human keratinocyte growth factor) for the treatment of inadequate CD4+ T-lymphocyte recovery in patients with HIV-1 infection on antiretroviral therapy. J Acquir Immune Defic Syndr 2014; 66:399-406. [PMID: 24815851 DOI: 10.1097/qai.0000000000000195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Poor CD4 lymphocyte recovery on antiretroviral therapy (ART) is associated with reduced function of the thymus. Palifermin (keratinocyte growth factor), by providing support to the thymic epithelium, promotes lymphopoiesis in animal models of bone marrow transplantation and graft-versus-host disease. METHODS In AIDS Clinical Trials Group A5212, a randomized, double-blind, placebo-controlled study, 99 HIV-infected patients on ART with plasma HIV-1 RNA levels ≤200 copies per milliliter for ≥6 months and CD4 lymphocyte counts <200 cells per cubic milliliter were randomized 1:1:1:1 to receive once daily intravenous administration of placebo or 20, 40, or 60 μg/kg of palifermin on 3 consecutive days. RESULTS The median change in the CD4 T-cell count from baseline to week 12 was not significantly different between the placebo arm [15 (-16, 23) cells/mm] and the 20-μg/kg dose [11 (2, 32) cells/mm], the 40-μg/kg dose [12 (-2, 25) cells/mm], or the 60-μg/kg dose arm [8 (-13, 35) cells/mm] of palifermin. No significant changes were observed in thymus size or in the number of naive T cells or recent thymic emigrants. CONCLUSIONS Palifermin in the doses studied was not effective in improving thymic function and did not raise CD4 lymphocyte counts in HIV-infected patients with low CD4 cell counts despite virologically effective ART.
Collapse
|
44
|
Buscone S, Garavello W, Pagni F, Gaini RM, Cattoretti G. Nasopharyngeal tonsils (adenoids) contain extrathymic corticothymocytes. PLoS One 2014; 9:e98222. [PMID: 24858437 PMCID: PMC4032319 DOI: 10.1371/journal.pone.0098222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Adenoidal tissue (also known as nasopharyngeal tonsils) of 58% of humans in the pediatric age group contains immature T-lymphoid cells with the phenotype of thymocytes (TdT+,CD1abc+, cytoplasmic CD3+, coexpressing CD4 and CD8, lacking an Intraepithelial Lymphocyte-associated phenotype). The notable difference in comparison to palatine tonsils is the clustering in groups and sheets, comprising hundreds or thousands of cells (1.7%±0.2 of total T cells). The thymic epithelium is morphologically and phenotypically absent. Adenoids share with tonsils and lymph nodes the presence of immature B cell precursors (TdT+, CD1a-, Pax5+, Surrogate light chain±), however in these latter the presence of TdT+, CD1a+, Pax5- precursors is absent or limited to individual cells. Human adenoids are distinct among the Waldeyer's ring lymphoid tissue because of the known embryogenic derivation from the third pharyngeal pouch, from which the thymus develops; in addition, they may display phenotypic incomplete features of a vestigial thymus.
Collapse
Affiliation(s)
- Serena Buscone
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Werner Garavello
- Otolaryngology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Fabio Pagni
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
- Pathology, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Renato Maria Gaini
- Otolaryngology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Giorgio Cattoretti
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
- Pathology, Azienda Ospedaliera San Gerardo, Monza, Italy
- * E-mail:
| |
Collapse
|
45
|
Cho S, Ge J, Seo SB, Kim K, Lee HY, Lee SD. Age estimation via quantification of signal-joint T cell receptor excision circles in Koreans. Leg Med (Tokyo) 2014; 16:135-8. [PMID: 24524944 DOI: 10.1016/j.legalmed.2014.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022]
Abstract
The estimation of age from biological samples (i.e., remains) at crime scenes could provide useful information about both victims and other persons related to criminal activities. Signal-joint T cell receptor excision circle (sjTREC) levels in peripheral blood decline with age, and negative correlations between sjTREC levels and age have been demonstrated in several ethnic groups. To validate the utility of sjTREC for age estimation in Koreans, Taqman qPCR was used to quantify the sjTREC level in samples obtained from 172 individuals ranging from 16 to 65 years old. We modified the previously reported method by using a shorter amplicon and confirmed the efficiency and utility of this method in this report. Our results showed that the linear negative regression curve between sjTREC levels and age was characterized by r=-0.807 and a standard error of 8.49 years. These results indicate that sjTREC level is an effective age estimation method in Koreans. The value of the standard error of quantification was not different from previous reports for other population groups.
Collapse
Affiliation(s)
- Sohee Cho
- Department of Forensic Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | - Jianye Ge
- Institute of Applied Genetics, Department of Forensics and Investigative Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Seung Bum Seo
- Institute of Applied Genetics, Department of Forensics and Investigative Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Kiha Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | - Hye Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea; Institute of Forensic Medicine, Seoul National University College of Medicine, 28, Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea.
| |
Collapse
|
46
|
Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol 2013; 4:485. [PMID: 24421780 PMCID: PMC3872652 DOI: 10.3389/fimmu.2013.00485] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
In order to recognize and combat a diverse array of pathogens the immune system has a large repertoire of T cells having unique T cell receptors (TCRs) with only a few clones specific for any given antigen. We discuss how the number of different possible TCRs encoded in the genome (the potential repertoire) and the number of different TCRs present in an individual (the realized repertoire) can be measured. One puzzle is that the potential repertoire greatly exceeds the realized diversity of naïve T cells within any individual. We show that the existing hypotheses fail to explain why the immune system has the potential to generate far more diversity than is used in an individual, and propose an alternative hypothesis of “evolutionary sloppiness.” Another immunological puzzle is why mice and humans have similar repertoires even though humans have over 1000-fold more T cells. We discuss how the idea of the “protecton,” the smallest unit of protection, might explain this discrepancy and estimate the size of “protecton” based on available precursor frequencies data. We then consider T cell cross-reactivity – the ability of a T cell clone to respond to more than one epitope. We extend existing calculations to estimate the extent of expected cross-reactivity between the responses to different pathogens. Our results are consistent with two observations: a low probability of observing cross-reactivity between the immune responses to two randomly chosen pathogens; and the ensemble of memory cells being sufficiently diverse to generate cross-reactive responses to new pathogens.
Collapse
Affiliation(s)
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University , Atlanta, GA , USA
| | - Louis N Schoettle
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Rustom Antia
- Department of Biology, Emory University , Atlanta, GA , USA
| |
Collapse
|
47
|
Blanche S, Scott-Algara D, Le Chenadec J, Didier C, Montange T, Avettand-Fenoel V, Rouzioux C, Melard A, Viard JP, Dollfus C, Bouallag N, Warszawski J, Buseyne F. Naive T Lymphocytes and Recent Thymic Emigrants Are Associated With HIV-1 Disease History in French Adolescents and Young Adults Infected in the Perinatal Period: The ANRS-EP38-IMMIP Study. Clin Infect Dis 2013; 58:573-87. [DOI: 10.1093/cid/cit729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
Falci C, Gianesin K, Sergi G, Giunco S, De Ronch I, Valpione S, Soldà C, Fiduccia P, Lonardi S, Zanchetta M, Keppel S, Brunello A, Zafferri V, Manzato E, De Rossi A, Zagonel V. Immune senescence and cancer in elderly patients: results from an exploratory study. Exp Gerontol 2013; 48:1436-42. [PMID: 24120567 DOI: 10.1016/j.exger.2013.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The challenge of immune senescence has never been addressed in elderly cancer patients. This study compares the thymic output and peripheral blood telomere length in ≥70year old cancer patients. PATIENTS AND METHODS Fifty-two elderly cancer patients and 39 age-matched controls without personal history of cancer were enrolled. All patients underwent a Comprehensive Geriatric Assessment (CGA), from which a multidimensional prognostic index (MPI) score was calculated. Peripheral blood samples were studied for naïve and recent thymic emigrant (RTE) CD4(+) and CD8(+) cells by flow cytometry. T-cell receptor rearrangement excision circle (TREC) levels, telomere length and telomerase activity in peripheral blood cells were quantified by real-time PCR. RESULTS The percentages of CD8(+) naïve and CD8(+) RTE cells and TREC levels were significantly lower in cancer patients than in controls (p=0.003, p=0.004, p=0.031, respectively). Telomere lengths in peripheral blood cells were significantly shorter in cancer patients than in controls (p=0.046) and did not correlate with age in patients, whereas it did in controls (r=-0.354, p=0.031). Short telomere (≤median)/low TREC (≤median) profile was associated with higher risk of cancer (OR=3.68 [95% CI 1.22-11.11]; p=0.021). Neither unfitness on CGA nor MPI score were significantly related to thymic output or telomere length in either group. CONCLUSIONS Immune senescence is significantly worse in elderly cancer patients than in age-matched controls. The low thymic output and the shorter telomeres in peripheral blood cells of cancer patients may reflect a pre-existing condition which facilitates the onset of malignancies in elderly people.
Collapse
Affiliation(s)
- Cristina Falci
- Medical Oncology Unit II, Istituto Oncologico Veneto (IOV), IRCCS, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Real-time PCR or quantitative PCR (QPCR) is a powerful technique that allows measurement of PCR product while the amplification reaction proceeds. It incorporates the fluorescent element into conventional PCR as the calculation standard to provide a quantitative result. In this sense, fluorescent chemistry is the key component in QPCR. Till now, two types of fluorescent chemistries have been adopted in the QPCR systems: one is nonspecific probe and the other is specific. As a brilliant invention by Kramer et al. in 1996, molecular beacon is naturally suited as the reporting element in real-time PCR and has been adapted for many molecular biology applications. In this chapter, we briefly introduce the working principle of QPCR and overview different fluorescent chemistries, and then we focus on the applications of molecular beacons-like gene expression study, single-nucleotide polymorphisms and mutation detection, and pathogenic detection.
Collapse
Affiliation(s)
- Chaoyong James Yang
- Department of Chemical Biology College of Chemistry and Chemical Xiamen University, Xiamen, Fujian China, People's Republic
| | - Weihong Tan
- Department of Biomedical Engineering and Department of Chemistry Hunan University, Changsha, China, People's Republic
| |
Collapse
|
50
|
The γδ T-cell receptor repertoire is reconstituted in HIV patients after prolonged antiretroviral therapy. AIDS 2013; 27:1557-62. [PMID: 23525030 DOI: 10.1097/qad.0b013e3283611888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Determine whether reconstitution of Vγ2Vδ2 T cells in patients with HIV is due to new cell synthesis with recovery of the T-cell receptor repertoire or proliferative expansion of residual cells from the time of treatment initiation. DESIGN Perform a cross-sectional analysis of the T-cell receptor complexity of Vγ2 chain in patients treated for HIV, natural virus suppressors who control viremia to undetectable levels, patients with chronic low-level viremia in the absence of therapy, and uninfected controls. Apply quantitative methods for repertoire analysis to assess the degree of Vδ2 repertoire loss or reconstitution. METHODS T-cell receptor Vγ2 chain DNA clones (up to 300 per patient sample) were sequenced and aligned to enumerate the antigen-reactive subset with Vγ2-Jγ1.2 rearrangements. Predominant shared (public) sequences in each patient were compared to a reference library of public sequences from uninfected controls to assess the extent of similarity. Repertoire comparisons were quantified through bioinformatics testing. RESULTS Patients with prolonged virus suppression due to antiretroviral therapy reconstituted the Vγ2 T-cell repertoire to near-normal levels. Natural virus suppressors were similar to the treatment group. Severe defects in the Vγ2 T-cell receptor repertoire were observed in patients with chronic viremia despite the absence of overt disease. CONCLUSION Prolonged HIV suppression with antiretroviral therapy leads to reconstitution of the Vγ2Vδ2 T-cell subset deleted in HIV disease. Direct evidence for repair of the T-cell receptor repertoire supports a view that treatment-associated immune reconstitution is due to new cell synthesis and not to expansion of residual cell populations.
Collapse
|