1
|
Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, Chauhan J, Di Meo A, Stewart A, Kalliolia E, Alberts E, Adams R, Harris RJ, Mele S, Pellizzari G, Black ABM, Bax HJ, Cheung A, Nakamura M, Hoffmann RM, Terranova-Barberio M, Ali N, Batruch I, Soosaipillai A, Prassas I, Ulndreaj A, Chatanaka MK, Nuamah R, Kannambath S, Dhami P, Geh JLC, MacKenzie Ross AD, Healy C, Grigoriadis A, Kipling D, Karagiannis P, Dunn-Walters DK, Diamandis EP, Tsoka S, Spicer J, Lacy KE, Fraternali F, Karagiannis SN. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun 2023; 14:3378. [PMID: 37291228 PMCID: PMC10249578 DOI: 10.1038/s41467-023-39042-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.
Collapse
Affiliation(s)
- Silvia Crescioli
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Zena N Willsmore
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Alicia Chenoweth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eleni Kalliolia
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Elena Alberts
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anna B M Black
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ricarda M Hoffmann
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miyo K Chatanaka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rosamund Nuamah
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Shichina Kannambath
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Genomics Facility, Institute of Cancer Research, London, UK
| | - Pawan Dhami
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jenny L C Geh
- St John's Institute of Dermatology, Guy's, King's, and St. Thomas' Hospitals NHS Foundation Trust, London, UK
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - David Kipling
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Panagiotis Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
2
|
Vergani S, Bagnara D, Agathangelidis A, Ng AKY, Ferrer G, Mazzarello AN, Palacios F, Yancopoulos S, Yan XJ, Barrientos JC, Rai KR, Stamatopoulos K, Chiorazzi N. CLL stereotyped B-cell receptor immunoglobulin sequences are recurrent in the B-cell repertoire of healthy individuals: Apparent lack of central and early peripheral tolerance censoring. Front Oncol 2023; 13:1112879. [PMID: 37007084 PMCID: PMC10063922 DOI: 10.3389/fonc.2023.1112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionThe leukemic cells of patients with chronic lymphocytic leukemia (CLL) are often unique, expressing remarkably similar IGHV-IGHD-IGHJ gene rearrangements, “stereotyped BCRs”. The B-cell receptors (BCRs) on CLL cells are also distinctive in often deriving from autoreactive B lymphocytes, leading to the assumption of a defect in immune tolerance.ResultsUsing bulk and single-cell immunoglobulin heavy and light chain variable domain sequencing, we enumerated CLL stereotype-like IGHV-IGHD-IGHJ sequences (CLL-SLS) in B cells from cord blood (CB) and adult peripheral blood (PBMC) and bone marrow (BM of healthy donors. CLL-SLS were found at similar frequencies among CB, BM, and PBMC, suggesting that age does not influence CLL-SLS levels. Moreover, the frequencies of CLL-SLS did not differ among B lymphocytes in the BM at early stages of development, and only re-circulating marginal zone B cells contained significantly higher CLL-SLS frequencies than other mature B-cell subpopulations. Although we identified CLL-SLS corresponding to most of the CLL major stereotyped subsets, CLL-SLS frequencies did not correlate with those found in patients. Interestingly, in CB samples, half of the CLL-SLS identified were attributed to two IGHV-mutated subsets. We also found satellite CLL-SLS among the same normal samples, and they were also enriched in naïve B cells but unexpectedly, these were ~10-fold higher than standard CLL-SLS. In general, IGHV-mutated CLL-SLS subsets were enriched among antigen-experienced B-cell subpopulations, and IGHV-unmutated CLL-SLS were found mostly in antigen-inexperienced B cells. Nevertheless, CLL-SLS with an IGHV-mutation status matching that of CLL clones varied among the normal B-cell subpopulations, suggesting that specific CLL-SLS could originate from distinct subpopulations of normal B cells. Lastly, using single-cell DNA sequencing, we identified paired IGH and IGL rearrangements in normal B lymphocytes resembling those of stereotyped BCRs in CLL, although some differed from those in patients based on IG isotype or somatic mutation.DiscussionCLL-SLS are present in normal B-lymphocyte populations at all stages of development. Thus, despite their autoreactive profile they are not deleted by central tolerance mechanisms, possibly because the level of autoreactivity is not registered as dangerous by deletion mechanisms or because editing of L-chain variable genes occurred which our experimental approach could not identify.
Collapse
Affiliation(s)
- Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andreas Agathangelidis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anita Kar Yun Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrea N. Mazzarello
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jaqueline C. Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kanti R. Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- *Correspondence: Nicholas Chiorazzi,
| |
Collapse
|
3
|
Worth AN, Palmer VL, Schabla NM, Perry GA, Fraser-Philbin AN, Swanson PC. Receptor editing constrains development of phosphatidyl choline-specific B cells in V H12-transgenic mice. Cell Rep 2022; 39:110899. [PMID: 35705027 DOI: 10.1016/j.celrep.2022.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022] Open
Abstract
B1 B cells reactive to phosphatidyl choline (PtC) exhibit restricted immunoglobulin heavy chain (HC) and light chain (LC) combinations, exemplified by VH12/Vκ4/5H. Two checkpoints are thought to focus PtC+ B cell maturation in VH12-transgenic mice (VH12 mice): V-J rearrangements encoding a "permissive" LC capable of VH12 HC pairing are selected first, followed by positive selection based on PtC binding, often requiring LC receptor editing to salvage PtC- B cells and acquire PtC reactivity. However, evidence obtained from breeding VH12 mice to editing-defective dnRAG1 mice and analyzing LC sequences from PtC+ and PtC- B cell subsets instead suggests that receptor editing functions after initial positive selection to remove PtC+ B cells in VH12 mice. This offers a mechanism to constrain natural, polyreactive B cells to limit their frequency. Sequencing also reveals occasional in-frame hybrid LC genes, reminiscent of type 2 gene replacement, that, testing suggests, arise via a recombination-activating gene (RAG)-independent mechanism.
Collapse
Affiliation(s)
- Alexandra N Worth
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; Shoreline Biosciences, San Diego, CA 92121, USA
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Anna N Fraser-Philbin
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
4
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
5
|
Steele EJ, Lindley RA. Regulatory T cells and co-evolution of allele-specific MHC recognition by the TCR. Scand J Immunol 2019; 91:e12853. [PMID: 31793005 PMCID: PMC7064991 DOI: 10.1111/sji.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
What is the evolutionary mechanism for the TCR-MHC-conserved interaction? We extend Dembic's model (Dembic Z. In, Scand J Immunol e12806, 2019) of thymus positive selection for high-avidity anti-self-MHC Tregs among double (CD4 + CD8+)-positive (DP) developing thymocytes. This model is based on competition for self-MHC (+ Pep) complexes presented on cortical epithelium. Such T cells exit as CD4 + CD25+FoxP3 + thymic-derived Tregs (tTregs). The other positively selected DP T cells are then negatively selected on medulla epithelium removing high-avidity anti-self-MHC + Pep as T cells commit to CD4 + or CD8 + lineages. The process is likened to the competitive selection and affinity maturation in Germinal Centre for the somatic hypermutation (SHM) of rearranged immunoglobulin (Ig) variable region (V[D]Js) of centrocytes bearing antigen-specific B cell receptors (BCR). We now argue that the same direct SHM processes for TCRs occur in post-antigenic Germinal Centres, but now occurring in peripheral pTregs. This model provides a potential solution to a long-standing problem previously recognized by Cohn and others (Cohn M, Anderson CC, Dembic Z. In, Scand J Immunol e12790, 2019) of how co-evolution occurs of species-specific MHC alleles with the repertoire of their germline TCR V counterparts. We suggest this is not by 'blind', slow, and random Darwinian natural selection events, but a rapid structured somatic selection vertical transmission process. The pTregs bearing somatic TCR V mutant genes then, on arrival in reproductive tissues, can donate their TCR V sequences via soma-to-germline feedback as discussed in this journal earlier. (Steele EJ, Lindley RA. In, Scand J Immunol e12670, 2018) The high-avidity tTregs also participate in the same process to maintain a biased, high-avidity anti-self-MHC germline V repertoire.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, Australia.,CYO'Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A Lindley
- GMDxCo Pty Ltd, Melbourne, Vic, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
6
|
Lange MD, Waldbieser GC, Lobb CJ. The proliferation and clonal migration of B cells in the systemic and mucosal tissues of channel catfish suggests there is an interconnected mucosal immune system. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1134-1144. [PMID: 30414491 PMCID: PMC6335153 DOI: 10.1016/j.fsi.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
IgM transcripts from different mucosal and systemic tissues from a single adult channel catfish have been evaluated. Arrayed heavy chain cDNA libraries from each of these different mucosal and systemic tissues were separately constructed, hybridized with VH family specific probes and a variety of approaches were used to define their structural relationships. Baseline hybridization studies indicated that the tissue libraries had different VH expression patterns, and sequencing studies indicated this was not simply due to varying proportions of the same B cell population. In the systemic tissues of PBL, spleen, and anterior kidney >95% of the sequenced clones in the arrayed libraries represented different heavy chain rearrangements. Diversity was also found in the mucosal libraries of skin, gill lamellae, and two non-adjoining regions of the intestine, but additional populations were identified which indicated localized clonal expansion. Various clonal sets were characterized in detail, and their genealogies indicated somatic mutation accompanied localized clonal expansion with some members undergoing additional mutations and expansion after migration to different mucosal sites. PCR analyses indicated these mucosal clonal sets were more abundant within different mucosal tissues rather than in the systemic tissues. These studies indicate that the mucosal immune system in fish can express B cell transcripts differently from those found systemically. These studies further indicate that the mucosal immune system is interconnected with clonal B cells migrating between different mucosal tissues, results which yield new insight into immune diversity in early vertebrate phylogeny.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| | - Geoffrey C Waldbieser
- United States Department of Agriculture, Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS, 38776, USA
| | - Craig J Lobb
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| |
Collapse
|
7
|
Funck T, Barnkob MB, Holm N, Ohm-Laursen L, Mehlum CS, Möller S, Barington T. Nucleotide Composition of Human Ig Nontemplated Regions Depends on Trimming of the Flanking Gene Segments, and Terminal Deoxynucleotidyl Transferase Favors Adding Cytosine, Not Guanosine, in Most VDJ Rearrangements. THE JOURNAL OF IMMUNOLOGY 2018; 201:1765-1774. [PMID: 30097530 DOI: 10.4049/jimmunol.1800100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
Collapse
Affiliation(s)
- Tina Funck
- Department of Clinical Biochemistry, Zealand University Hospital, Roskilde 4000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxfordshire OX3 9DS, United Kingdom
| | - Nanna Holm
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Camilla Slot Mehlum
- Department of Otorhinolaryngology-Head and Neck Surgery, Odense University Hospital, Odense 5000, Denmark
| | - Sören Möller
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense 5000, Denmark; and.,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark; .,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
8
|
Abstract
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given datasets. This procedure is well developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper, we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency but also discrete objects such as B-cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective, the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B-cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Collapse
Affiliation(s)
- Branden Olson
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| | - Frederick A. Matsen
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| |
Collapse
|
9
|
D'Angelo S, Ferrara F, Naranjo L, Erasmus MF, Hraber P, Bradbury ARM. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol 2018; 9:395. [PMID: 29568296 PMCID: PMC5852061 DOI: 10.3389/fimmu.2018.00395] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.
Collapse
Affiliation(s)
| | | | | | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | |
Collapse
|
10
|
Ralph DK, Matsen FA. Likelihood-Based Inference of B Cell Clonal Families. PLoS Comput Biol 2016; 12:e1005086. [PMID: 27749910 PMCID: PMC5066976 DOI: 10.1371/journal.pcbi.1005086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called “rearrangement” forming progenitor B cells, then a Darwinian process of lineage diversification and selection called “affinity maturation.” The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem “clonal family inference.” In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM) framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets. Antibodies must recognize a great diversity of antigens to protect us from infectious disease. The binding properties of antibodies are determined by the DNA sequences of their corresponding B cell receptors (BCRs). These BCR sequences are created in naive form by VDJ recombination, which randomly selects and trims the ends of V, D, and J genes, then joins the resulting segments together with additional random nucleotides. If they pass initial screening and bind an antigen, these sequences then undergo an evolutionary process of reproduction, mutation, and selection, revising the BCR to improve binding to its cognate antigen. It has recently become possible to determine the BCR sequences resulting from this process in high throughput. Although these sequences implicitly contain a wealth of information about both antigen exposure and the process by which we learn to resist pathogens, this information can only be extracted using computer algorithms. In this paper we describe a likelihood-based statistical method to determine, given a collection of BCR sequences, which of them are derived from the same recombination events. It is based on a hidden Markov model (HMM) of VDJ rearrangement which is able to calculate likelihoods for many sequences at once.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- Clone Cells/immunology
- Computer Simulation
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- High-Throughput Nucleotide Sequencing/methods
- Models, Genetic
- Models, Immunological
- Models, Statistical
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Duncan K. Ralph
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Antigen nature and complexity influence human antibody light chain usage and specificity. Vaccine 2016; 34:2813-20. [PMID: 27113164 DOI: 10.1016/j.vaccine.2016.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 01/03/2023]
Abstract
Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.
Collapse
|
12
|
Frost SDW, Murrell B, Hossain ASMM, Silverman GJ, Pond SLK. Assigning and visualizing germline genes in antibody repertoires. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0240. [PMID: 26194754 PMCID: PMC4528417 DOI: 10.1098/rstb.2014.0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying the germline genes involved in immunoglobulin rearrangements is an essential first step in the analysis of antibody repertoires. Based on our prior work in analysing diverse recombinant viruses, we present IgSCUEAL (Immunoglobulin Subtype Classification Using Evolutionary ALgorithms), a phylogenetic approach to assign V and J regions of immunoglobulin sequences to their corresponding germline alleles, with D regions assigned using a simple pairwise alignment algorithm. We also develop an interactive web application for viewing the results, allowing the user to explore the frequency distribution of sequence assignments and CDR3 region length statistics, which is useful for summarizing repertoires, as well as a detailed viewer of rearrangements and region alignments for individual query sequences. We demonstrate the accuracy and utility of our method compared with sequence similarity-based approaches and other non-phylogenetic model-based approaches, using both simulated data and a set of evaluation datasets of human immunoglobulin heavy chain sequences. IgSCUEAL demonstrates the highest accuracy of V and J assignment amongst existing approaches, even when the reassorted sequence is highly mutated, and can successfully cluster sequences on the basis of shared V/J germline alleles.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, Cambridgeshire CB3 0ES, UK
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - A S Md Mukarram Hossain
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, Cambridgeshire CB3 0ES, UK
| | - Gregg J Silverman
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
Utilities for High-Throughput Analysis of B-Cell Clonal Lineages. J Immunol Res 2015; 2015:323506. [PMID: 26527585 PMCID: PMC4617424 DOI: 10.1155/2015/323506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/12/2015] [Indexed: 01/02/2023] Open
Abstract
There are at present few tools available to assist with the determination and analysis of B-cell lineage trees from next-generation sequencing data. Here we present two utilities that support automated large-scale analysis and the creation of publication-quality results. The tools are available on the web and are also available for download so that they can be integrated into an automated pipeline. Critically, and in contrast to previously published tools, these utilities can be used with any suitable phylogenetic inference method and with any antibody germline library and hence are species-independent.
Collapse
|
14
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
15
|
Yu L, Guan Y. Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-1. Front Immunol 2014; 5:250. [PMID: 24917864 PMCID: PMC4040451 DOI: 10.3389/fimmu.2014.00250] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
A large number of potent broadly neutralizing antibodies (bnAbs) against HIV-1 have been reported in recent years, raising hope for the possibility of an effective vaccine based on epitopes recognized by these protective antibodies. However, many of these bnAbs contain the long heavy chain complementarity-determining region 3 (HCDR3), which is viewed as an obstacle to the development of an HIV-1 vaccine targeting the bnAb responses. This mini-review summarizes the current literature and discusses the different potential immunologic mechanisms for generating long HCDR3, including D–D fusion, VH replacement, long N region addition, and skewed D–J gene usage, among which potential VH replacement products appear to be significant contributors. VH replacement occurs through recombinase activated gene-mediated secondary recombination and contributes to the diversified naïve B cell repertoire. During VH replacement, a short stretch of nucleotides from previously rearranged VH genes remains within the newly formed HCDR3, thus elongating its length. Accumulating evidence suggests that long HCDR3s are present in significant numbers in the human mature naïve B cell repertoire and are primarily generated by recombination during B cell development. These new observations indicate that long HCDR3s, though low in frequency, are a normal feature of the human antibody naïve repertoire and they appear to be selected to target conserved epitopes located in deep, partially obscured regions of the HIV-1 envelope trimer. Therefore, the presence of long HCDR3 sequences should not necessarily be viewed as an obstacle to the development of an HIV-1 vaccine based upon bnAb responses.
Collapse
Affiliation(s)
- Lei Yu
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
16
|
Ouled-Haddou H, Ghamlouch H, Regnier A, Trudel S, Herent D, Lefranc MP, Marolleau JP, Gubler B. Characterization of a new V gene replacement in the absence of activation-induced cytidine deaminase and its contribution to human B-cell receptor diversity. Immunology 2014; 141:268-75. [PMID: 24134819 DOI: 10.1111/imm.12192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022] Open
Abstract
In B cells, B-cell receptor (BCR) immunoglobulin revision is a common route for modifying unwanted antibody specificities via a mechanism called VH replacement. This in vivo process, mostly affecting heavy-chain rearrangement, involves the replacement of all or part of a previously rearranged IGHV gene with another germline IGHV gene located upstream. Two different mechanisms of IGHV replacement have been reported: type 1, involving the recombination activating genes complex and requiring a framework region 3 internal recombination signal; and type 2, involving an unidentified mechanism different from that of type 1. In the case of light-chain loci, BCR immunoglobulin editing ensures that a second V-J rearrangement occurs. This helps to maintain tolerance, by generating a novel BCR with a new antigenic specificity. We report that human B cells can, surprisingly, undergo type 2 replacement associated with κ light-chain rearrangements. The de novo IGKV-IGKJ products result from the partial replacement of a previously rearranged IGKV gene by a new germline IGKV gene, in-frame and without deletion or addition of nucleotides. There are wrcy/rgyw motifs at the 'IGKV donor-IGKV recipient chimera junction' as described for type 2 IGHV replacement, but activation-induced cytidine deaminase (AID) expression was not detected. This unusual mechanism of homologous recombination seems to be a variant of gene conversion-like recombination, which does not require AID. The recombination phenomenon described here provides new insight into immunoglobulin locus recombination and BCR immunoglobulin repertoire diversity.
Collapse
Affiliation(s)
- Hakim Ouled-Haddou
- Unité EA4666, SFR CAP Santé, Université Picardie Jules Verne, Amiens, France; Unité Inserm U925, Université Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Meng W, Jayaraman S, Zhang B, Schwartz GW, Daber RD, Hershberg U, Garfall AL, Carlson CS, Luning Prak ET. Trials and Tribulations with VH Replacement. Front Immunol 2014; 5:10. [PMID: 24523721 PMCID: PMC3906580 DOI: 10.3389/fimmu.2014.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 11/13/2022] Open
Abstract
VH replacement (VHR) is a type of antibody gene rearrangement in which an upstream heavy chain variable gene segment (VH) invades a pre-existing rearrangement (VDJ). In this Hypothesis and Theory article, we begin by reviewing the mechanism of VHR, its developmental timing and its potential biological consequences. Then we explore the hypothesis that specific sequence motifs called footprints reflect VHR versus other processes. We provide a compilation of footprint sequences from different regions of the antibody heavy chain, and include data from the literature and from a high throughput sequencing experiment to evaluate the significance of footprint sequences. We conclude by discussing the difficulties of attributing footprints to VHR.
Collapse
Affiliation(s)
- Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sahana Jayaraman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Bochao Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Gregory W Schwartz
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Robert D Daber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA ; Center for Personalized Diagnostics, University of Pennsylvania Health System , Philadelphia, PA , USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA ; Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, PA , USA
| | - Alfred L Garfall
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Christopher S Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA , USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
18
|
Abstract
One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA ; Department of Mathematics & Statistics, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
19
|
Briney BS, Jr. JEC. Secondary mechanisms of diversification in the human antibody repertoire. Front Immunol 2013; 4:42. [PMID: 23483107 PMCID: PMC3593266 DOI: 10.3389/fimmu.2013.00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/05/2013] [Indexed: 12/25/2022] Open
Abstract
V(D)J recombination and somatic hypermutation (SHM) are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(D)J recombination efficiently generate a virtually limitless diversity through random recombination of variable (V), diversity (D), and joining (J) genes with diverse non-templated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs), which form the bulk of the antigen recognition site. While V(D)J recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DD)J recombination (or D-D fusion), SHM-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.
Collapse
Affiliation(s)
- Bryan S. Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - James E. Crowe Jr.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
20
|
Sun Y, Liu Z, Li Z, Lian Z, Zhao Y. Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the VH genes of jawed vertebrates. Front Immunol 2012; 3:392. [PMID: 23267360 PMCID: PMC3526766 DOI: 10.3389/fimmu.2012.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/05/2012] [Indexed: 11/13/2022] Open
Abstract
The VH replacement process is a RAG-mediated secondary recombination in which the variable region of a rearranged VHDJH is replaced by a different germline VH gene. In almost all human and mouse VH genes, two sequence features appear to be crucial for VH replacement. First, an embedded heptamer, which is located near the 3' end of the rearranged VH gene, serves as a cryptic recombination signal sequence (3'cRSS) for the VH replacement process. Second, a short stretch of nucleotides located downstream of the 3'cRSS serve as a footprint of the original VH region, frequently encoding charged amino acids. In this review, we show that both of these two features are conserved in the VH genes of all jawed vertebrates, which suggests that the VH replacement process may be a conserved mechanism.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University Beijing, China
| | | | | | | | | |
Collapse
|
21
|
Pauli NT, Henry Dunand CJ, Wilson PC. Exploiting human memory B cell heterogeneity for improved vaccine efficacy. Front Immunol 2011; 2:77. [PMID: 22566866 PMCID: PMC3342318 DOI: 10.3389/fimmu.2011.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/29/2011] [Indexed: 01/21/2023] Open
Abstract
The major goal in vaccination is establishment of long-term, prophylactic humoral memory to a pathogen. Two major components to long-lived humoral memory are plasma cells for the production of specific immunoglobulin and memory B cells that survey for their specific antigen in the periphery for later affinity maturation, proliferation, and differentiation. The study of human B cell memory has been aided by the discovery of a general marker for B cell memory, expression of CD27; however, new data suggests the existence of CD27⁻ memory B cells as well. These recently described non-canonical memory populations have increasingly pointed to the heterogeneity of the memory compartment. The novel B memory subsets in humans appear to have unique origins, localization, and functions compared to what was considered to be a "classical" memory B cell. In this article, we review the known B cell memory subsets, the establishment of B cell memory in vaccination and infection, and how understanding these newly described subsets can inform vaccine design and disease treatment.
Collapse
Affiliation(s)
- Noel T. Pauli
- Committee on Immunology, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of ChicagoChicago, IL, USA
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of ChicagoChicago, IL, USA
| | - Carole J. Henry Dunand
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of ChicagoChicago, IL, USA
| | - Patrick C. Wilson
- Committee on Immunology, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of ChicagoChicago, IL, USA
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of ChicagoChicago, IL, USA
| |
Collapse
|
22
|
Zimmerman AM, Romanowski KE, Maddox BJ. Targeted annotation of immunoglobulin light chain (IgL) genes in zebrafish from BAC clones reveals kappa-like recombining/deleting elements within IgL constant regions. FISH & SHELLFISH IMMUNOLOGY 2011; 31:697-703. [PMID: 20933599 DOI: 10.1016/j.fsi.2010.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
Genomic organization, composition, and microsynteny of immunoglobulin light chain (IgL) gene segments in the zebrafish were analyzed through the identification and annotation of overlapping BAC clone insert sequences and an Illumina de novo assembly. The resultant gap-free IgL annotation confirmed a number of previous conclusions about teleost IgL including: suites of (V(L)-J(L)-C(L)) clusters on multiple chromosomes; V(L) in the same or opposite transcriptional orientation as J(L) and C(L); and the apparent absence of lambda IgL in the zebrafish model. In addition, palindromic heptamers (CACAGTG or CACTGTG) within the 3' region of zebrafish C(L) were identified. In mammals, heptamers within J(κ)-C(κ) introns can recombine with downstream kappa deleting elements (Kde) to ablate C(κ) regions prior to rearrangements of V(λ)-J(λ) gene segments. The presence of palindromic heptamers within zebrafish C(L) is intriguing as their recombination with intact RSS might result in the deletion of a large portion of the C(L) thereby permanently silencing C(L) exons within the IgL locus. Given that bony fish have appreciably more C(L) spread over more chromosomes than mice and humans, it is plausible the presence of recombining sequences within C(L) may be tied to a need for heightened mechanisms to facilitate allelic exclusion or receptor editing. Collectively, with this report, gap-free annotations of the heavy and light chain Ig loci have now been completed for Danio rerio, the only teleost for which this has been accomplished, thereby strengthening the overall utility of zebrafish as a model organism for both comparative immunology and biomedical research.
Collapse
Affiliation(s)
- Anastasia M Zimmerman
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| | | | | |
Collapse
|
23
|
Ghiotto F, Marcatili P, Tenca C, Calevo MG, Yan XJ, Albesiano E, Bagnara D, Colombo M, Cutrona G, Chu CC, Morabito F, Bruno S, Ferrarini M, Tramontano A, Fais F, Chiorazzi N. Mutation pattern of paired immunoglobulin heavy and light variable domains in chronic lymphocytic leukemia B cells. Mol Med 2011; 17:1188-95. [PMID: 21785810 DOI: 10.2119/molmed.2011.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV-diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥ 2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation.
Collapse
Affiliation(s)
- Fabio Ghiotto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alternative mechanisms of receptor editing in autoreactive B cells. Proc Natl Acad Sci U S A 2011; 108:7125-30. [PMID: 21471456 DOI: 10.1073/pnas.1019389108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic anti-DNA antibodies expressed in systemic lupus erythematosis bind DNA mainly through electrostatic interactions between the positively charged Arg residues of the antibody complementarity determining region (CDR) and the negatively charged phosphate groups of DNA. The importance of Arg in CDR3 for DNA binding has been shown in mice with transgenes coding for anti-DNA V(H) regions; there is also a close correlation between arginines in CDR3 of antibodies and DNA binding. Codons for Arg can readily be formed by V(D)J rearrangement; thereby, antibodies that bind DNA are part of the preimmune repertoire. Anti-DNAs in healthy mice are regulated by receptor editing, a mechanism that replaces κ light (L) chains compatible with DNA binding with κ L chains that harbor aspartic residues. This negatively charged amino acid is thought to neutralize Arg sites in the V(H). Editing by replacement is allowed at the κ locus, because the rearranged VJ is nested between unrearranged Vs and Js. However, neither λ nor heavy (H) chain loci are organized so as to allow such second rearrangements. In this study, we analyze regulation of anti-DNA H chains in mice that lack the κ locus, κ-/κ- mice. These mice show that the endogenous preimmune repertoire does indeed include a high frequency of antibodies with Arg in their CDR3s (putative anti-DNAs) and they are associated mainly with the editor L chain λx. The editing mechanisms in the case of λ-expressing B cells include L chain allelic inclusion and V(H) replacement.
Collapse
|
25
|
Integrated mimicry of B cell antibody mutagenesis using yeast homologous recombination. Mol Biotechnol 2011; 47:57-69. [PMID: 20645027 DOI: 10.1007/s12033-010-9312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies.
Collapse
|
26
|
Sukumar S, Schlissel MS. Receptor editing as a mechanism of B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2011; 186:1301-2. [PMID: 21248267 DOI: 10.4049/jimmunol.1090129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Selvakumar Sukumar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
27
|
Rogosch T, Kerzel S, Sikula L, Gentil K, Liebetruth M, Schlingmann KP, Maier RF, Zemlin M. Plasma Cells and Nonplasma B Cells Express Differing IgE Repertoires in Allergic Sensitization. THE JOURNAL OF IMMUNOLOGY 2010; 184:4947-54. [DOI: 10.4049/jimmunol.0900859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Wang JH, Gostissa M, Yan CT, Goff P, Hickernell T, Hansen E, Difilippantonio S, Wesemann DR, Zarrin AA, Rajewsky K, Nussenzweig A, Alt FW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 2009; 460:231-6. [PMID: 19587764 DOI: 10.1038/nature08159] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/25/2009] [Indexed: 01/08/2023]
Abstract
Variable, diversity and joining gene segment (V(D)J) recombination assembles immunoglobulin heavy or light chain (IgH or IgL) variable region exons in developing bone marrow B cells, whereas class switch recombination (CSR) exchanges IgH constant region exons in peripheral B cells. Both processes use directed DNA double-strand breaks (DSBs) repaired by non-homologous end-joining (NHEJ). Errors in either V(D)J recombination or CSR can initiate chromosomal translocations, including oncogenic IgH locus (Igh) to c-myc (also known as Myc) translocations of peripheral B cell lymphomas. Collaboration between these processes has also been proposed to initiate translocations. However, the occurrence of V(D)J recombination in peripheral B cells is controversial. Here we show that activated NHEJ-deficient splenic B cells accumulate V(D)J-recombination-associated breaks at the lambda IgL locus (Igl), as well as CSR-associated Igh breaks, often in the same cell. Moreover, Igl and Igh breaks are frequently joined to form translocations, a phenomenon associated with specific Igh-Igl co-localization. Igh and c-myc also co-localize in these cells; correspondingly, the introduction of frequent c-myc DSBs robustly promotes Igh-c-myc translocations. Our studies show peripheral B cells that attempt secondary V(D)J recombination, and determine a role for mechanistic factors in promoting recurrent translocations in tumours.
Collapse
|
29
|
Yunk L, Meng W, Cohen PL, Eisenberg RA, Luning Prak ET. Antibodies in a heavy chain knock-in mouse exhibit characteristics of early heavy chain rearrangement. THE JOURNAL OF IMMUNOLOGY 2009; 183:452-61. [PMID: 19542457 DOI: 10.4049/jimmunol.0804060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies in autoantibody transgenic mice have demonstrated receptor editing rearrangements at Ab H and L chain loci. However, the physiologic role of H chain editing (V(H) replacement and rearrangement on the second allele) has been called into question. It is unclear if additional rounds of H chain rearrangement are driven by BCR specificity. In this study, we analyze the manner in which B cells undergo additional H chain rearrangements in an anti-DNA H chain knock-in mouse, B6.56R. We find that rearrangements in 56R(+) B cells tend to involve the D gene locus on both alleles and the most J(H)-proximal V(H) gene segments on the endogenous allele. As a result, some B cells exhibit V(D)J rearrangements on both H chain alleles, yet allelic exclusion is tightly maintained in mature 56R B cells. As B cells mature, a higher proportion expresses the nontransgenic H chain allele. Rearrangements on both H chain alleles exhibit junctional diversity consistent with TdT-mediated N-addition, and TdT RNA is expressed exclusively at the pro-B cell stage in B6.56R. Collectively, these findings favor a single, early window of H chain rearrangement in B6.56R that precedes the expression of a functional BCR. B cells that happen to successfully rearrange another H chain may be favored in the periphery.
Collapse
Affiliation(s)
- Lenka Yunk
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Kobrin C, Cha SC, Qin H, Raffeld M, Fend F, Quintanilla-Martinez L, Grove S, Jaffe ES, Kwak LW. Molecular analysis of light-chain switch and acute lymphoblastic leukemia transformation in two follicular lymphomas: Implications for lymphomagenesis. Leuk Lymphoma 2009; 47:1523-34. [PMID: 16966263 DOI: 10.1080/10428190600612909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We observed novel transformations of follicular lymphoma (FL), first, a switch in immunoglobulin (Ig) light chain, and second, transformation of FL to acute lymphoblastic leukemia (ALL). Each set of tumors shared a common clonal origin, as demonstrated by expression of identical, unique CDR IIIH sequences, shared somatic mutations in JH, and identical bcl-2 translocation breakpoints of microdissected ALL cells. Molecular analysis of lambda V-gene expression demonstrated lambda-bearing cells in the original kappa tumor, while expansion of the lambda subclone at relapse occurred after active immunotherapy targeting the Ig receptor. These exceptional cases are compatible with a more contemporary model of lymphomagenesis in which critical events originate from genetic mechanisms which normally occur in germinal center (GC) B cells and challenge the current paradigm of parallel generation of subclones from an early, pre-GC precursor. It is also possible that the outgrowth of these variants was a consequence of immunoselection.
Collapse
Affiliation(s)
- Carol Kobrin
- Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lieberman AE, Kuraoka M, Davila M, Kelsoe G, Cowell LG. Conserved cryptic recombination signals in Vkappa gene segments are cleaved in small pre-B cells. BMC Immunol 2009; 10:37. [PMID: 19555491 PMCID: PMC2711918 DOI: 10.1186/1471-2172-10-37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 06/25/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The cleavage of recombination signals (RS) at the boundaries of immunoglobulin V, D, and J gene segments initiates the somatic generation of the antigen receptor genes expressed by B lymphocytes. RS contain a conserved heptamer and nonamer motif separated by non-conserved spacers of 12 or 23 nucleotides. Under physiologic conditions, V(D)J recombination follows the "12/23 rule" to assemble functional antigen-receptor genes, i.e., cleavage and recombination occur only between RS with dissimilar spacer types. Functional, cryptic RS (cRS) have been identified in VH gene segments; these VH cRS were hypothesized to facilitate self-tolerance by mediating VH --> VHDJH replacements. At the Igkappa locus, however, secondary, de novo rearrangements can delete autoreactive VkappaJkappa joins. Thus, under the hypothesis that V-embedded cRS are conserved to facilitate self-tolerance by mediating V-replacement rearrangements, there would be little selection for Vkappa cRS. Recent studies have demonstrated that VH cRS cleavage is only modestly more efficient than V(D)J recombination in violation of the 12/23 rule and first occurs in pro-B cells unable to interact with exogenous antigens. These results are inconsistent with a model of cRS cleavage during autoreactivity-induced VH gene replacement. RESULTS To test the hypothesis that cRS are absent from Vkappa gene segments, a corollary of the hypothesis that the need for tolerizing VH replacements is responsible for the selection pressure to maintain VH cRS, we searched for cRS in mouse Vkappa gene segments using a statistical model of RS. Scans of 135 mouse Vkappa gene segments revealed highly conserved cRS that were shown to be cleaved in the 103/BCL2 cell line and mouse bone marrow B cells. Analogous to results for VH cRS, we find that Vkappa cRS are conserved at multiple locations in Vkappa gene segments and are cleaved in pre-B cells. CONCLUSION Our results, together with those for VH cRS, support a model of cRS cleavage in which cleavage is independent of BCR-specificity. Our results are inconsistent with the hypothesis that cRS are conserved solely to support receptor editing. The extent to which these sequences are conserved, and their pattern of conservation, suggest that they may serve an as yet unidentified purpose.
Collapse
Affiliation(s)
- Anne E Lieberman
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Marco Davila
- Department of Medicine, Division of Medical Oncology, Memorial Sloan-Kettering, New York, NY, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC, USA
| | - Lindsay G Cowell
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Lange MD, Waldbieser GC, Lobb CJ. Patterns of receptor revision in the immunoglobulin heavy chains of a teleost fish. THE JOURNAL OF IMMUNOLOGY 2009; 182:5605-22. [PMID: 19380808 DOI: 10.4049/jimmunol.0801013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H chain cDNA libraries were constructed from the RNA derived from seven different organs and tissues from the same individual catfish. Sequence analysis of >300 randomly selected clones identified clonal set members within the same or different tissues, and some of these represented mosaic or hybrid sequences. These hybrids expressed V(H) members of the same or different V(H) families within different regions of the same clone. Within some clonal sets multiple hybrids were identified, and some of these represented the products of sequential V(H) replacement events. Different experimental methods confirmed that hybrid clones identified in the cDNA library from one tissue could be reisolated in the cDNA pool or from the total RNA derived from the same or a different tissue, indicating that these hybrids likely represented the products of in vivo receptor revision events. Murine statistical recombination models were used to evaluate cryptic recombination signal sequences (cRSS), and significant cRSS pairs in the predicted V(H) donor and recipient were identified. These models supported the hypothesis that seamless revisions may have occurred via hybrid joint formation. The heptamers of the cRSS pairs were located at different locations within the coding region, and different events resulted in the replacement of one or both CDR as well as events that replaced the upstream untranslated region and the leader region. These studies provide phylogenetic evidence that receptor revision may occur in clonally expanded B cell lineages, which supports the hypothesis that additional levels of somatic H chain diversification may exist.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
33
|
Matejuk A, Beardall M, Xu Y, Tian Q, Phillips D, Alabyev B, Mannoor K, Chen C. Exclusion of Natural Autoantibody-Producing B Cells from IgG Memory B Cell Compartment during T Cell-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2009; 182:7634-43. [DOI: 10.4049/jimmunol.0801562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Nakajima PB, Kiefer K, Price A, Bosma GC, Bosma MJ. Two distinct populations of H chain-edited B cells show differential surrogate L chain dependence. THE JOURNAL OF IMMUNOLOGY 2009; 182:3583-96. [PMID: 19265137 DOI: 10.4049/jimmunol.0802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing autoreactive B cells may edit (change) their specificity by secondary H or L chain gene rearrangement. Recently, using mice hemizygous for a site-directed VDJH and VJkappa transgene (tg) encoding an autoreactive Ab, we reported ongoing L chain editing not only in bone marrow cells with a pre-B/immature B cell phenotype but also in immature/transitional splenic B cells. Using the same transgenic model, we report here that editing at the H chain locus appears to occur exclusively in bone marrow cells with a pro-B phenotype. H chain editing is shown to involve VH replacement at the tg allele or VH rearrangement at the wild-type (wt) allele when the tg is inactivated by nonproductive VH replacement. VH replacement/rearrangement at the tg/wt alleles was found to entail diverse usage of VH genes. Whereas the development of edited B cells expressing the wt allele was dependent on the lambda5 component of the surrogate L chain, the development of B cells expressing the tg allele, including those with VH replacement, appeared to be lambda5 independent. We suggest that the unique CDR3 region of the tg-encoded muH chain is responsible for the lambda5 independence of tg-expressing B cells.
Collapse
|
35
|
Longo NS, Grundy GJ, Lee J, Gellert M, Lipsky PE. An activation-induced cytidine deaminase-independent mechanism of secondary VH gene rearrangement in preimmune human B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7825-34. [PMID: 19017972 DOI: 10.4049/jimmunol.181.11.7825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(H) replacement is a form of IgH chain receptor editing that is believed to be mediated by recombinase cleavage at cryptic recombination signal sequences (cRSS) embedded in V(H) genes. Whereas there are several reports of V(H) replacement in primary and transformed human B cells and murine models, it remains unclear whether V(H) replacement contributes to the normal human B cell repertoire. We identified V(H)-->V(H)(D)J(H) compound rearrangements from fetal liver, fetal bone marrow, and naive peripheral blood, all of which involved invading and recipient V(H)4 genes that contain a cryptic heptamer, a 13-bp spacer, and nonamer in the 5' portion of framework region 3. Surprisingly, all pseudohybrid joins lacked the molecular processing associated with typical V(H)(D)J(H) recombination or nonhomologous end joining. Although inefficient compared with a canonical recombination signal sequences, the V(H)4 cRSS was a significantly better substrate for in vitro RAG-mediated cleavage than the V(H)3 cRSS. It has been suggested that activation-induced cytidine deamination (AICDA) may contribute to V(H) replacement. However, we found similar secondary rearrangements using V(H)4 genes in AICDA-deficient human B cells. The data suggest that V(H)4 replacement in preimmune human B cells is mediated by an AICDA-independent mechanism resulting from inefficient but selective RAG activity.
Collapse
Affiliation(s)
- Nancy S Longo
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Diabetes andDigestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1560, USA
| | | | | | | | | |
Collapse
|
36
|
Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, Mathias M, Garman L, Helms C, Nakken B, Smith K, Farris AD, Wilson PC. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. ACTA ACUST UNITED AC 2008; 206:139-51. [PMID: 19103878 PMCID: PMC2626668 DOI: 10.1084/jem.20080611] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Self-reactive B cells not controlled by receptor editing or clonal deletion may become anergic. We report that fully mature human B cells negative for surface IgM and retaining only IgD are autoreactive and functionally attenuated (referred to as naive IgD+IgM− B cells [BND]). These BND cells typically make up 2.5% of B cells in the peripheral blood, have antibody variable region genes in germline (unmutated) configuration, and, by all current measures, are fully mature. Analysis of 95 recombinant antibodies expressed from the variable genes of single BND cells demonstrated that they are predominantly autoreactive, binding to HEp-2 cell antigens and DNA. Upon B cell receptor cross-linkage, BND cells have a reduced capacity to mobilize intracellular calcium or phosphorylate tyrosines, demonstrating that they are anergic. However, intense stimulation causes BND cells to fully respond, suggesting that these cells could be the precursors of autoantibody secreting plasma cells in autoimmune diseases such as systemic lupus erythematosus or rheumatoid arthritis. This is the first identification of a distinct mature human B cell subset that is naturally autoreactive and controlled by the tolerizing mechanism of functional anergy.
Collapse
Affiliation(s)
- J Andrew Duty
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang YH, Diamond B. B cell receptor revision diminishes the autoreactive B cell response after antigen activation in mice. J Clin Invest 2008; 118:2896-907. [PMID: 18636122 DOI: 10.1172/jci35618] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022] Open
Abstract
Autoreactive B cells are regulated in the BM during development through mechanisms, including editing of the B cell receptor (BCR), clonal deletion, and anergy. Peripheral B cell tolerance is also important for protection from autoimmune damage, although the mechanisms are less well defined. Here we demonstrated, using a mouse model of SLE-like serology, that during an autoimmune response, RAG was reinduced in antigen-activated early memory or preplasma B cells. Expression of RAG was specific to antigen-reactive B cells, required the function of the IL-7 receptor (IL-7R), and contributed to maintenance of humoral tolerance. We also showed that soluble antigen could diminish a non-autoreactive antibody response through induction of BCR revision. These data suggest that tolerance induction operates in B cells at a postactivation checkpoint and that BCR revision helps regulate autoreactivity generated during an ongoing immune response.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Department of Microbiology, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
38
|
Mierau M, Drexler GA, Kutzera A, Braunschmidt K, Ellwart J, Eckardt-Schupp F, Fritz E, Bachl J, Jungnickel B. Non-conservative homologous recombination in human B lymphocytes is promoted by activation-induced cytidine deaminase and transcription. Nucleic Acids Res 2008; 36:5591-601. [PMID: 18757891 PMCID: PMC2553578 DOI: 10.1093/nar/gkn542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During secondary immunoglobulin (Ig) diversification in vertebrates, the sequence of the variable region of Ig genes may be altered by templated or non-templated mechanisms. In both cases, cytidine deamination by activation-induced cytidine deaminase (AID) in the transcribed Ig loci leads to DNA lesions, which are repaired by conservative homologous recombination (HR) during Ig gene conversion, or by non-templated mutagenesis during somatic hypermutation. The molecular basis for the differential use of these two pathways in different species is unclear. While experimental ablation of HR in avian cells performing Ig gene conversion may promote a switch to somatic hypermutation, the activity of HR processes in intrinsically hypermutating mammalian cells has not been measured to date. Employing a functional HR assay in human germinal centre like B cell lines, we detect elevated HR activity that can be enhanced by transcription and AID. Products of such recombination events mostly arise through non-conservative HR pathways, while the activity of conservative HR is low to absent. Our results identify non-conservative HR as a novel DNA transaction pathway promoted by AID and suggest that somatic hypermutation in germinal centre B cells may be based on a physiological suppression of conservative HR.
Collapse
Affiliation(s)
- Maren Mierau
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Guido A. Drexler
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - André Kutzera
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Kerstin Braunschmidt
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Joachim Ellwart
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Friederike Eckardt-Schupp
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Eberhard Fritz
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Jürgen Bachl
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Berit Jungnickel
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Institute of Radiobiology, Helmholtz Center Munich, National Research Center for Environmental Health, D-85764 Neuherberg, Radiobiological Institute, Ludwig-Maximilians-University, D-80336 Munich, Institute of Molecular Immunology, Helmholtz Center Munich, National Research Center for Environmental Health, D-81377 Munich, Leibniz Institute for Age Research, Fritz Lipmann Institute, D-07745 Jena and 4-Antibody, WRO-1096.3, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
- *To whom correspondence should be addressed. Tel: +49 89 7099 209; Fax: +49 89 7099 500;
| |
Collapse
|
39
|
Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, Zheng NY, Mays I, Garman L, Helms C, James J, Air GM, Capra JD, Ahmed R, Wilson PC. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 2008; 453:667-71. [PMID: 18449194 PMCID: PMC2515609 DOI: 10.1038/nature06890] [Citation(s) in RCA: 829] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/04/2008] [Indexed: 12/23/2022]
Abstract
Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14-21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.
Collapse
Affiliation(s)
- Jens Wrammert
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Davies JM, O'Hehir RE. Immunogenetic characteristics of immunoglobulin E in allergic disease. Clin Exp Allergy 2008; 38:566-78. [DOI: 10.1111/j.1365-2222.2008.02941.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zouali M. Receptor editing and receptor revision in rheumatic autoimmune diseases. Trends Immunol 2008; 29:103-9. [DOI: 10.1016/j.it.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022]
|
42
|
Pascual V, Roberts WC. Virginia Pascual, MD: a conversation with the editor. Proc AMIA Symp 2008; 21:57-67. [PMID: 18209757 PMCID: PMC2190553 DOI: 10.1080/08998280.2008.11928360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- Stephen M Jackson
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
44
|
Davila M, Liu F, Cowell LG, Lieberman AE, Heikamp E, Patel A, Kelsoe G. Multiple, conserved cryptic recombination signals in VH gene segments: detection of cleavage products only in pro B cells. ACTA ACUST UNITED AC 2007; 204:3195-208. [PMID: 18056287 PMCID: PMC2150985 DOI: 10.1084/jem.20071224] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Receptor editing is believed to play the major role in purging newly formed B cell compartments of autoreactivity by the induction of secondary V(D)J rearrangements. In the process of immunoglobulin heavy (H) chain editing, these secondary rearrangements are mediated by direct VH-to-JH joining or cryptic recombination signals (cRSs) within VH gene segments. Using a statistical model of RS, we have identified potential cRSs within VH gene segments at conserved sites flanking complementarity-determining regions 1 and 2. These cRSs are active in extrachromosomal recombination assays and cleaved during normal B cell development. Cleavage of multiple VH cRSs was observed in the bone marrow of C57BL/6 and RAG2:GFP and μMT congenic animals, and we determined that cRS cleavage efficiencies are 30–50-fold lower than a physiological RS. cRS signal ends are abundant in pro–B cells, including those recovered from μMT mice, but undetectable in pre– or immature B cells. Thus, VH cRS cleavage regularly occurs before the generation of functional preBCR and BCR. Conservation of cRSs distal from the 3′ end of VH gene segments suggests a function for these cryptic signals other than VH gene replacement.
Collapse
Affiliation(s)
- Marco Davila
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Significant progress has been made over recent years in uncovering the B-cell tolerance mechanisms that control development of autoreactive antibodies. This review examines current knowledge on the regulation and selection of autoreactive B cells in mouse models, and in healthy humans and patients with autoimmune disorders. RECENT FINDINGS Autoreactive B cells undergo stringent selection either in the bone marrow or peripheral circulation by deletion, induction of anergy, or receptor editing. There is growing evidence that receptor editing represents the primary physiologic B-cell tolerance mechanism. Several checkpoints against autoreactive B cells have been established in bone marrow and peripheral blood of healthy humans. Recent studies demonstrate that some autoimmune disorders are associated with several alterations in B-cell tolerance checkpoints and often lead to a greater number of autoreactive B cells in the circulation. SUMMARY Discovering the precise nature of B-cell tolerance alterations in patients with autoimmune diseases will lead to the identification of new targets for therapeutic interventions in patients with these disorders.
Collapse
Affiliation(s)
- Sergey Yurasov
- Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
46
|
Jackson SM, Harp N, Patel D, Henderson M, Roy NM, Courtney MA, Johnson A, Capra JD. CD45RO: A Marker for BCR-mediated Selection. Scand J Immunol 2007; 66:249-60. [PMID: 17635802 DOI: 10.1111/j.1365-3083.2007.01985.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously showed that IgH sequence alone minimally influenced germinal centre (GC) B-cell survival fate. As end-stage effector B cells are typically more mutated than founder GC B cells, we worked to develop an assay that would enrich for populations of GC B cells with progressively increasing numbers of somatic mutations, which could potentially be used as an indicator of positive selection. We targeted CD45 as it has been shown to influence activation-induced cytidine deaminase (AID) expression. In this study, anti-CD77 and anti-CD45RO (RO) were used to subdivide CD19(+)IgD(-)CD38(+)CD77(+) centroblasts (CB) and CD19(+)IgD(-)CD38(+)CD77(-) centrocytes (CC) into three contiguous RO fractions (RO(-), RO(+/-) and RO(+)) and assessed whether mutation frequency and characteristics associated with selection varied with respect to increasing RO expression. Here, we show that the average number of mutations per IgV(H)4 transcript increased concordantly with RO for CC, but not for CB. CC also exhibited an RO-associated increase in replacement mutations. Comparative analysis of clonally related sequences revealed that increased mutations were not due to the exclusive persistence of surface RO on highly mutated cells. RO-expressing CC and CB pools showed increased signs of activation (CD69(+)) and were enriched for surface Ig(+) cells. BCR-crosslinking induced a significant increase in surface RO on total tonsillar and GC B cells, which collectively suggests that the RO-associated increase in mutations is attributable, at least in part, to the cycling of cells that may have recently undergone BCR-mediated selection, or are potentially in developmental transition between CC and CB stages.
Collapse
Affiliation(s)
- S M Jackson
- Molecular Immunogenetics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Koelsch K, Zheng NY, Zhang Q, Duty A, Helms C, Mathias MD, Jared M, Smith K, Capra JD, Wilson PC. Mature B cells class switched to IgD are autoreactive in healthy individuals. J Clin Invest 2007; 117:1558-65. [PMID: 17510706 PMCID: PMC1866247 DOI: 10.1172/jci27628] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/27/2007] [Indexed: 11/17/2022] Open
Abstract
Determination of the origin and fate of autoreactive B cells is critical to understanding and treating autoimmune diseases. We report that, despite being derived from healthy people, antibodies from B cells that have class switched to IgD via genetic recombination (and thus become class switched to C delta [C delta-CS] cells) are highly reactive to self antigens. Over half of the antibodies from C delta-CS B cells bind autoantigens on human epithelioma cell line 2 (HEp-2) cells or antinuclear antigens, and a quarter bind double-stranded DNA; both groups of antibodies are frequently polyreactive. Intriguingly, some C delta-CS B cells have accumulated basic residues in the antibody variable regions that mediate anti-DNA reactivity via somatic hypermutation and selection, while other C delta-CS B cells are naturally autoreactive. Though the total percentage was appreciably less than for C delta-CS cells, a surprising 31% of IgG memory cell antibodies were somewhat autoreactive, and as expected, about 24% of naive cell antibodies were autoreactive. We interpret these findings to indicate either that autoreactive B cells can be induced to class switch to IgD or that autoreactive B cells that use IgD as the B cell receptor are not effectively deleted. Determination of the mechanism by which the majority of C delta-CS B cells are autoreactive may be important in understanding peripheral tolerance mechanisms and may provide insight into the enigmatic function of the IgD antibody.
Collapse
Affiliation(s)
- Kristi Koelsch
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nai-Ying Zheng
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Qingzhao Zhang
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew Duty
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christina Helms
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Melissa D. Mathias
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mathew Jared
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kenneth Smith
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - J. Donald Capra
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Patrick C. Wilson
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
48
|
Rochas C, Hillion S, Youinou P, Jamin C, Devauchelle-Pensec V. RAG-mediated secondary rearrangements of B-cell antigen receptors in rheumatoid synovial tissue. Autoimmun Rev 2007; 7:155-9. [PMID: 18035327 DOI: 10.1016/j.autrev.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) induces major changes in synovial tissue (ST) and cartilage and bone destruction. Still, its pathogenesis is poorly understood. Accumulating evidence points to an important role for B lymphocytes. Rheumatoid-ST is characterized by activation of the synoviocytes and infiltrated by various inflammatory cells such as B and T lymphocytes. The infiltrate is diffuse or organized as germinal centers (GCs). These accommodate the immune response and favor self-tolerance breakdown. Receptor revision in B cells results from re-expression of the recombination activating genes (RAGs) which reinitiate immunoglobulin gene recombination, and modify the B-cell antigen receptor accordingly. In rheumatoid ST, secondary VDJ rearrangements occur and RAG proteins are detected. The mechanism that triggers and controls this revision remains elusive. We favor the hypothesis that such an uncontrolled process leads to autoimmunity.
Collapse
Affiliation(s)
- Caroline Rochas
- Laboratory of Immunology, Brest University Medical School Hospital, BP 824, F 29609 Brest, France
| | | | | | | | | |
Collapse
|
49
|
Andersen PS, Haahr-Hansen M, Coljee VW, Hinnerfeldt FR, Varming K, Bregenholt S, Haurum JS. Extensive restrictions in the VH sequence usage of the human antibody response against the Rhesus D antigen. Mol Immunol 2007; 44:412-22. [PMID: 16581131 DOI: 10.1016/j.molimm.2006.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/21/2006] [Indexed: 11/16/2022]
Abstract
Anti-Rhesus D immunoglobulin purified from human sera is used as a prophylactic reagent in Rhesus D negative women at risk of alloimmunization during pregnancy. We are currently developing a Rhesus D antigen-specific recombinant polyclonal antibody drug lead for replacing the existing blood derived-products. By analyzing the RhD-specific antibody VH repertoires from eight alloimmunized women we found, in agreement with previous studies, a strong preference for the VH 3-33 "superspecies" gene segments which encompasses the IGHV3-30-3*01, IGHV3-30*18, and IGHV3-33*01 VH alleles. Even more extensive genetic restriction was observed among five donors, which produced antibodies of identical V-D-J usage and CDR3 loop length and joining regions of similar amino acid composition. In addition, we find a high degree of sequence relatedness to previously isolated anti-Rhesus D antibodies. Such close homology in VH domains indicates that significant structural restrictions are operating in the selection of antibodies recognizing RhD as seen for T cell receptors. Moreover, some VH domains were isolated in their germline configuration indicating that anti-RhD antibodies of relatively high affinity are present in the naïve antibody repertoire of Rhesus negative individuals which offers an explanation for the strong and clinically significant immunogenicity of the Rhesus D.
Collapse
|
50
|
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B‐Cell Intrinsic Immunoglobulin Class Switch Recombination Deficiencies. Adv Immunol 2007; 94:275-306. [PMID: 17560278 DOI: 10.1016/s0065-2776(06)94009-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
Collapse
|