1
|
Sahu I, Sahoo MP, Kleifeld O, Glickman MH. Isolation of Proteasome-Trapped Peptides (PTPs) for Degradome Analysis. Methods Mol Biol 2023; 2602:229-241. [PMID: 36446979 DOI: 10.1007/978-1-0716-2859-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analyzing intracellular peptides generated by proteasomes is highly informative to understand the spatiotemporal regulation of protein homeostasis. A large portion of eukaryotic proteins is proteolyzed within the 20S core particle of the 26S holoenzyme, where proteins are cleaved into peptides of varying lengths. A small percentage of these peptides are presented to the immune system as a representation of the proteome content of the cell. Therefore, understanding the rules that govern proteolytic specificity and product diversity is of relevance not only to biochemistry and proteostasis but also to physiology and immunology. One of the greatest challenges is to separate such proteasome-generated peptides from the total intracellular peptidome due to the susceptibility of short unstructured peptides to myriad proteases and peptidases that are activated upon cell lysis. Here, we describe a simple and rapid method to isolate peptides that are closely associated with proteasomes or trapped inside the core particle of proteasomes in eukaryotic cells. This approach termed PTPs, for proteasome-trapped peptides, requires a limited number of cells as starting materials compared to other published methods yet still provides sufficient yields for mass spectrometry-based proteomic analysis. A single sample obtained from cultured mammalian cells allowed the identification of 1000-2000 different PTPs following LC-MS analysis with high-resolution mass spectrometer.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Cancer Biology, Dana-Farber Cancer Institute, Massachusetts, Boston, US.
| | | | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Weeder BR, Wood MA, Li E, Nellore A, Thompson RF. pepsickle rapidly and accurately predicts proteasomal cleavage sites for improved neoantigen identification. Bioinformatics 2021; 37:3723-3733. [PMID: 34478497 DOI: 10.1093/bioinformatics/btab628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Proteasomal cleavage is a key component in protein turnover, as well as antigen processing and presentation. Although tools for proteasomal cleavage prediction are available, they vary widely in their performance, options, and availability. RESULTS Herein we present pepsickle, an open-source tool for proteasomal cleavage prediction with better in vivo prediction performance (AUC) and computational speed than current models available in the field and with the ability to predict sites based on both constitutive and immunoproteasome profiles. Post-hoc filtering of predicted patient neoepitopes using pepsickle significantly enriches for immune-responsive epitopes and may improve current epitope prediction and vaccine development pipelines. AVAILABILITY pepsickle is open source and available at https://github.com/pdxgx/pepsickle. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Ellysia Li
- Pacific University, Forest Grove, OR, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon, USA
| |
Collapse
|
3
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
4
|
Iyer SP, Hunt CR, Pandita TK. Cross Talk between Radiation and Immunotherapy: The Twain Shall Meet. Radiat Res 2017; 189:219-224. [PMID: 29261410 DOI: 10.1667/rr14941.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been increased interest in the immune stimulatory properties of ionizing radiation based on several preclinical models and recently completed clinical studies performed in combination with checkpoint inhibitors. This is a paradigm shift in that it considers the role of radiation beyond its direct cytotoxic effects, however, the factors that promote or limit radiation-induced immunogenicity are still unclear. Here we review the role of radiation in modulating the various aspects of the tumor immune microenvironment and discuss in particular the direct effects of radiation on the DNA damage response and its immediate consequences to neighboring cells. The latter "danger response" in particular can enhance recruitment of dendritic and macrophage cells to the tumor microenvironment, which in turn can activate or diminish subsequent T-cell priming. Identification of the critical factors that modulate the interaction between radiation-induced cell damage and the immune system will allow for rational combinational therapy design and the development of biomarkers that predict effective immune responses.
Collapse
Affiliation(s)
- Swaminathan P Iyer
- a Department of Hematology, Houston Methodist Cancer Center, Weil Cornell Medical College, Houston Texas 77030
| | - Clayton R Hunt
- b Department of Radiation Oncology, The Houston Methodist Research Institute, Weil Cornell Medical College, Houston Texas 77030
| | - Tej K Pandita
- b Department of Radiation Oncology, The Houston Methodist Research Institute, Weil Cornell Medical College, Houston Texas 77030
| |
Collapse
|
5
|
Serena M, Giorgetti A, Busato M, Gasparini F, Diani E, Romanelli MG, Zipeto D. Molecular characterization of HIV-1 Nef and ACOT8 interaction: insights from in silico structural predictions and in vitro functional assays. Sci Rep 2016; 6:22319. [PMID: 26927806 PMCID: PMC4772117 DOI: 10.1038/srep22319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/11/2016] [Indexed: 11/29/2022] Open
Abstract
HIV-1 Nef interacts with several cellular proteins, among which the human peroxisomal thioesterase 8 (ACOT8). This interaction may be involved in the endocytosis regulation of membrane proteins and might modulate lipid composition in membrane rafts. Nef regions involved in the interaction have been experimentally characterized, whereas structural details of the ACOT8 protein are unknown. The lack of structural information hampers the comprehension of the functional consequences of the complex formation during HIV-1 infection. We modelled, through in silico predictions, the ACOT8 structure and we observed a high charge complementarity between Nef and ACOT8 surfaces, which allowed the identification of the ACOT8 putative contact points involved in the interaction. The predictions were validated by in vitro assays through the development of ACOT8 deletion mutants. Coimmunoprecipitation and immunofluorescence analyses showed that ACOT8 Arg45-Phe55 and Arg86-Pro93 regions are involved in Nef association. In addition, K91S mutation abrogated the interaction with Nef, indicating that Lys91 plays a key role in the interaction. Finally, when associated with ACOT8, Nef may be preserved from degradation. These findings improve the comprehension of the association between HIV-1 Nef and ACOT8, helping elucidating the biological effect of their interaction.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Mirko Busato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesca Gasparini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.,Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Erica Diani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
6
|
Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, Bracho-Sanchez E, Chu D, Su H, Zhang SC, Le Gall S. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 2015; 11:e1004725. [PMID: 25781895 PMCID: PMC4364612 DOI: 10.1371/journal.ppat.1004725] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. Pathogens such as HIV can enter cells by fusion at the plasma membrane for delivery in the cytosol, or by internalization in endolysosomal vesicles. Pathogens can be degraded in these various compartments into peptides (epitopes) displayed at the cell surface by MHC-I. The presentation of pathogen-derived peptides triggers the activation of T cell immune responses and the clearance of infected cells. How the diversity of compartments in which HIV traffics combined with the diversity of HIV sequences affects the degradation of HIV and the recognition of infected cells by immune cells is not understood. We compared the degradation of HIV proteins in subcellular compartments of dendritic cells and macrophages, two cell types targeted by HIV and the subsequent presentation of epitopes to T cells. We show variable degradation patterns of HIV according to compartments, and the preferential production and superior intracellular stability of immunodominant epitopes corresponding to stronger T cell responses. Frequent mutations in immunodominant epitopes during acute infection resulted in decreased production and intracellular stability of these epitopes. Together these results demonstrate the importance of protein degradation patterns in shaping immunodominant epitopes and the contribution of impaired epitope production in all cellular compartments to immune escape during HIV infection.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicole Y. Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Matthew J. Berberich
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Duong Chu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hang Su
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
8
|
Kim S, Pinto AK, Myers NB, Hawkins O, Doll K, Kaabinejadian S, Netland J, Bevan MJ, Weidanz JA, Hildebrand WH, Diamond MS, Hansen TH. A novel T-cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus epitope in mice. Eur J Immunol 2014; 44:1936-46. [PMID: 24723377 DOI: 10.1002/eji.201444450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
We used a newly generated T-cell receptor mimic monoclonal antibody (TCRm MAb) that recognizes a known nonself immunodominant peptide epitope from West Nile virus (WNV) NS4B protein to investigate epitope presentation after virus infection in C57BL/6 mice. Previous studies suggested that peptides of different length, either SSVWNATTAI (10-mer) or SSVWNATTA (9-mer) in complex with class I MHC antigen H-2D(b) , were immunodominant after WNV infection. Our data establish that both peptides are presented on the cell surface after WNV infection and that CD8(+) T cells can detect 10- and 9-mer length variants similarly. This result varies from the idea that a given T-cell receptor (TCR) prefers a single peptide length bound to its cognate class I MHC. In separate WNV infection studies with the TCRm MAb, we show that in vivo the 10-mer was presented on the surface of uninfected and infected CD8α(+) CD11c(+) dendritic cells, which suggests the use of direct and cross-presentation pathways. In contrast, CD11b(+) CD11c(-) cells bound the TCRm MAb only when they were infected. Our study demonstrates that TCR recognition of peptides is not limited to certain peptide lengths and that TCRm MAbs can be used to dissect the cell-type specific mechanisms of antigen presentation in vivo.
Collapse
Affiliation(s)
- Sojung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue’s electronic and steric properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal cleavage sites.
Collapse
|
10
|
Hashimoto M, Akahoshi T, Murakoshi H, Ishizuka N, Oka S, Takiguchi M. CTL recognition of HIV-1-infected cells via cross-recognition of multiple overlapping peptides from a single 11-mer Pol sequence. Eur J Immunol 2012; 42:2621-31. [PMID: 22740036 DOI: 10.1002/eji.201242483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 01/19/2023]
Abstract
It is known that overlapping HIV-1 peptides of different lengths can be presented by a given HLA class I molecule. However, the role of those peptides in CD8(+) T cells recognition of HIV-1-infected cells remains unclear. Here we investigated the recognition of overlapping 8-mer to 11-mer peptides of Pol 155-165 by HLA-B*54:01-restricted CD8(+) T cells. The analysis of ex vivo T cells using ELISPOT and tetramer binding assays showed that there were different patterns of CD8(+) T-cell responses to these peptides among chronically HIV-1-infected HLA-B*54:01(+) individuals, though the response to the 9-mer peptide was the strongest among them. CD8(+) T-cell clones with TCRs specific for the 9-mer, 10-mer, and/or 11-mer peptides effectively killed HIV-1-infected cells. Together, these results suggest that the 9-mer and 10-mer peptides could be predominantly presented by HLA-B*54:01, though it remains possible that the 11-mer peptide was also presented by this HLA allele. The present study demonstrates effective CD8(+) T-cell recognition of HIV-1-infected cells via presentation of multiple overlapping HIV-1 peptides and cross-recognition by the CD8(+) T cells.
Collapse
Affiliation(s)
- Masao Hashimoto
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Urban S, Textoris-Taube K, Reimann B, Janek K, Dannenberg T, Ebstein F, Seifert C, Zhao F, Kessler JH, Halenius A, Henklein P, Paschke J, Cadel S, Bernhard H, Ossendorp F, Foulon T, Schadendorf D, Paschen A, Seifert U. The efficiency of human cytomegalovirus pp65(495-503) CD8+ T cell epitope generation is determined by the balanced activities of cytosolic and endoplasmic reticulum-resident peptidases. THE JOURNAL OF IMMUNOLOGY 2012; 189:529-38. [PMID: 22706083 DOI: 10.4049/jimmunol.1101886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Control of human CMV (HCMV) infection depends on the cytotoxic activity of CD8(+) CTLs. The HCMV phosphoprotein (pp)65 is a major CTL target Ag and pp65(495-503) is an immunodominant CTL epitope in infected HLA-A*0201 individuals. As immunodominance is strongly determined by the surface abundance of the specific epitope, we asked for the components of the cellular Ag processing machinery determining the efficacy of pp65(495-503) generation, in particular, for the proteasome, cytosolic peptidases, and endoplasmic reticulum (ER)-resident peptidases. In vitro Ag processing experiments revealed that standard proteasomes and immunoproteasomes generate the minimal 9-mer peptide epitope as well as N-terminal elongated epitope precursors of different lengths. These peptides are largely degraded by the cytosolic peptidases leucine aminopeptidase and tripeptidyl peptidase II, as evidenced by increased pp65(495-503) epitope presentation after leucine aminopeptidase and tripeptidyl peptidase II knockdown. Additionally, with prolyl oligopeptidase and aminopeptidase B we identified two new Ag processing machinery components, which by destroying the pp65(495-503) epitope limit the availability of the specific peptide pool. In contrast to cytosolic peptidases, silencing of ER aminopeptidases 1 and 2 strongly impaired pp65(495-503)-specific T cell activation, indicating the importance of ER aminopeptidases in pp65(495-503) generation. Thus, cytosolic peptidases primarily interfere with the generation of the pp65(495-503) epitope, whereas ER-resident aminopeptidases enhance such generation. As a consequence, our experiments reveal that the combination of cytosolic and ER-resident peptidase activities strongly shape the pool of specific antigenic peptides and thus modulate MHC class I epitope presentation efficiency.
Collapse
Affiliation(s)
- Sabrina Urban
- Institut für Biochemie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Camargo ACM, Fernandes BL, Cruz L, Ferro ES. Bioactive Peptides Produced by Limited Proteolysis. ACTA ACUST UNITED AC 2012. [DOI: 10.4199/c00056ed1v01y201204npe002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Cell type-specific proteasomal processing of HIV-1 Gag-p24 results in an altered epitope repertoire. J Virol 2010; 85:1541-53. [PMID: 21106750 DOI: 10.1128/jvi.01790-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are critical for the processing of antigens for presentation through the major histocompatibility complex (MHC) class I pathway. HIV-1 Gag protein is a component of several experimental HIV-1 vaccines. Therefore, understanding the processing of HIV-1 Gag protein and the resulting epitope repertoire is essential. Purified proteasomes from mature dendritic cells (DC) and activated CD4(+) T cells from the same volunteer were used to cleave full-length Gag-p24 protein, and the resulting peptide fragments were identified by mass spectrometry. Distinct proteasomal degradation patterns and peptide fragments were unique to either mature DC or activated CD4(+) T cells. Almost half of the peptides generated were cell type specific. Two additional differences were observed in the peptides identified from the two cell types. These were in the HLA-B35-Px epitope and the HLA-B27-KK10 epitope. These epitopes have been linked to HIV-1 disease progression. Our results suggest that the source of generation of precursor MHC class I epitopes may be a critical factor for the induction of relevant epitope-specific cytotoxic T cells.
Collapse
|
14
|
Nunoya JI, Nakashima T, Kawana-Tachikawa A, Kiyotani K, Ito Y, Sugimura K, Iwamoto A. Short communication: generation of recombinant monoclonal antibodies against an immunodominant HLA-A*2402-restricted HIV type 1 CTL epitope. AIDS Res Hum Retroviruses 2009; 25:897-904. [PMID: 19689201 DOI: 10.1089/aid.2009.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular interaction between the peptide/MHC class I complexes (pMHCs) and T cell receptor (TCR) is fundamental to the effector function of cytotoxic T lymphocytes (CTLs). Monoclonal antibody against pMHC with TCR-like specificity is a possible research tool for the antigen presentation. However, it is notoriously difficult to isolate monoclonal antibodies against pMHCs by the conventional hybridoma technique. To isolate monoclonal antibodies against an immunodominant HIV-1-derived CTL epitope in the nef gene, we panned phage clones from a human scFv phage display library. Eight Nef138-10/HLA-A*24(A24)-specific scFv clones were isolated and two of them (scFv#3 and scFv#27) were selected for further analysis. The clones stained A24-positive cells pulsed with Nef138-10 peptides specifically. We reconstituted humanized immunoglobulin Gs (IgGs) using a baculovirus expression system. Reconstituted IgGs kept the original specificities of the parental scFvs. The dissociation constants were 23 microM and 20 microM by Biacore, respectively. This is the first report of a successful generation of monoclonal antibodies against an HIV-1 CTL epitope loaded on an MHC class I molecule.
Collapse
Affiliation(s)
- Jun-Ichi Nunoya
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Nakashima
- Division 2, First Research Department, Kikuchi Research Center, The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Ai Kawana-Tachikawa
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Kiyotani
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Ito
- Department of Bioengineering, Faculty of Engineering, Kagoshima University, Kagoshima, Japan
| | - Kazuhisa Sugimura
- Department of Bioengineering, Faculty of Engineering, Kagoshima University, Kagoshima, Japan
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Lévy F, Colombetti S. Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines. Int Rev Immunol 2009; 25:269-95. [PMID: 17169777 DOI: 10.1080/08830180600992407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However, the results of human antitumor vaccination trials have been rather disappointing thus far. This review summarizes the different experimental approaches used in mice to induce antitumor T-cell responses and identifies some critical parameters that should be considered when evaluating results from murine models.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
16
|
Schatz MM, Peters B, Akkad N, Ullrich N, Martinez AN, Carroll O, Bulik S, Rammensee HG, van Endert P, Holzhütter HG, Tenzer S, Schild H. Characterizing the N-terminal processing motif of MHC class I ligands. THE JOURNAL OF IMMUNOLOGY 2008; 180:3210-7. [PMID: 18292545 DOI: 10.4049/jimmunol.180.5.3210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most peptide ligands presented by MHC class I molecules are the product of an intracellular pathway comprising protein breakdown in the cytosol, transport into the endoplasmic reticulum, and successive N-terminal trimming events. The efficiency of each of these processes depends on the amino acid sequence of the presented ligand and its precursors. Thus, relating the amino acid composition N-terminal of presented ligands to the sequence specificity of processes in the pathway gives insight into the usage of ligand precursors in vivo. Examining the amino acid composition upstream the true N terminus of MHC class I ligands, we demonstrate the existence of a distinct N-terminal processing motif comprising approximately seven residues and matching the known preferences of proteasome and TAP, two key players in ligand processing. Furthermore, we find that some residues, which are preferred by both TAP and the proteasome, are underrepresented at positions immediately preceding the N terminus of MHC class I ligands. Based on experimentally determined aminopeptidase activities, this pattern suggests trimming next to the final N terminus to take place predominantly in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Mark M Schatz
- Institut für Immunologie, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asemissen AM, Keilholz U, Tenzer S, Müller M, Walter S, Stevanovic S, Schild H, Letsch A, Thiel E, Rammensee HG, Scheibenbogen C. Identification of a Highly Immunogenic HLA-A*01-Binding T Cell Epitope of WT1. Clin Cancer Res 2006; 12:7476-82. [PMID: 17189421 DOI: 10.1158/1078-0432.ccr-06-1337] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The transcription factor Wilms tumor protein 1 (WT1) belongs to a new generation of tumor antigens, as it is essential for tumor cell proliferation and is highly expressed in various hematologic and solid malignancies. The aim of this study was to apply a modified reverse immunology strategy to identify immunogenic epitopes of WT1 which could be useful for immunotherapy. EXPERIMENTAL DESIGN Potential HLA-A*01 epitopes predicted by a MHC binding algorithm were screened for recognition by peripheral blood mononuclear cells (PBMC) from patients with spontaneous T cell responses using intracellular cytokine cytometry. Epitope processing was shown by proteasomal cleavage. Epitope-specific T cells were generated from CD4+CD25+ regulatory T cell-depleted PBMC. RESULTS One of five predicted HLA-A*01-binding candidate epitopes showed high immunogenicity as 5 of 14 patients with hematologic malignancies had WT1.317-327-reactive T cells ranging from 0.4% to 1.5% of CD3+CD8+ T cells. Proteasomal degradation assays indicated the cleavage of WT1.317-327. The depletion of regulatory T cells from PBMCs enabled the rapid expansion of WT1.317-327-specific CTL, whereas no CTL could be generated from unfractionated PBMC. WT1.317-327-specific CTL efficiently lysed an autologous WT1-expressing tumor cell line but not HLA-A*01-negative WT1-expressing tumor cells. Immunogenicity of the epitope across histologies was verified by the demonstration of spontaneous ex vivo WT1.317-327-specific T cell responses in two of six patients with HLA-A*01-positive melanoma or lung cancer. CONCLUSION In this study, a modified reverse immunology strategy was employed to identify a first immunogenic HLA-A*01-restricted T cell epitope of the tumor antigen WT1, which is of considerable interest for use in vaccination trials.
Collapse
Affiliation(s)
- Anne Marie Asemissen
- Medizinische Klinik III, Hematology, Oncology, and Transfusion Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Altrich-VanLith ML, Ostankovitch M, Polefrone JM, Mosse CA, Shabanowitz J, Hunt DF, Engelhard VH. Processing of a Class I-Restricted Epitope from Tyrosinase Requires Peptide N-Glycanase and the Cooperative Action of Endoplasmic Reticulum Aminopeptidase 1 and Cytosolic Proteases. THE JOURNAL OF IMMUNOLOGY 2006; 177:5440-50. [PMID: 17015730 DOI: 10.4049/jimmunol.177.8.5440] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although multiple components of the class I MHC processing pathway have been elucidated, the participation of nonproteasomal cytosolic enzymes has been largely unexplored. In this study, we provide evidence for multiple cytosolic mechanisms in the generation of an HLA-A*0201-associated epitope from tyrosinase. This epitope is presented in two isoforms containing either Asn or Asp, depending on the structure of the tyrosinase precursor. We show that deamidation of Asn to Asp is dependent on glycosylation in the endoplasmic reticulum (ER), and subsequent deglycosylation by peptide-N-glycanase in the cytosol. Epitope precursors with N-terminal extensions undergo a similar process. This is linked to an inability of ER aminopeptidase 1 to efficiently remove N-terminal residues, necessitating processing by nonproteasomal peptidases in the cytosol. Our work demonstrates that processing of this tyrosinase epitope involves recycling between the ER and cytosol, and an obligatory interplay between enzymes involved in proteolysis and glycosylation/deglycosylation located in both compartments.
Collapse
Affiliation(s)
- Michelle L Altrich-VanLith
- Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22908-1386, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Samino Y, López D, Guil S, Saveanu L, van Endert PM, Del Val M. A long N-terminal-extended nested set of abundant and antigenic major histocompatibility complex class I natural ligands from HIV envelope protein. J Biol Chem 2006; 281:6358-65. [PMID: 16407287 DOI: 10.1074/jbc.m512263200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral antigens complexed with major histocompatibility complex (MHC) class I molecules are recognized by cytotoxic T lymphocytes on infected cells. Assays with synthetic peptides identify optimal MHC class I ligands often used for vaccines. However, when natural peptides are analyzed, more complex mixtures including long peptides bulging in the middle of the binding site or with carboxyl extensions are found, reflecting lack of exposure to carboxypeptidases in the antigen processing pathway. In contrast, precursor peptides are exposed to extensive cytosolic aminopeptidase activity, and fewer than 1% survive, only to be further trimmed in the endoplasmic reticulum. We show here a striking example of a nested set of at least three highly antigenic and similarly abundant natural MHC class I ligands, 15, 10, and 9 amino acids in length, derived from a single human immunodeficiency virus gp160 epitope. Antigen processing, thus, gives rise to a rich pool of possible ligands from which MHC class I molecules can choose. The natural peptide set includes a 15-residue-long peptide with unprecedented 6 N-terminal residues that most likely extend out of the MHC class I binding groove. This 15-mer is the longest natural peptide known recognized by cytotoxic T lymphocytes and is surprisingly protected from aminopeptidase trimming in living cells.
Collapse
Affiliation(s)
- Yolanda Samino
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Saveanu L, Carroll O, Hassainya Y, van Endert P. Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol Rev 2005; 207:42-59. [PMID: 16181326 DOI: 10.1111/j.0105-2896.2005.00313.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vast majority of the peptides produced during protein degradation by the cytosolic proteasome-ubiquitin system are consecutively hydrolyzed to single amino acids by multiple cytosolic peptidases preferring intermediate length or short substrates. The small fraction of peptides surviving the aggressive cytosolic environment can be recruited for presentation by major histocompatibility complex (MHC) class I molecules. However, such peptides may frequently have to be adapted to the strict MHC class I-binding requirements by one or several N-terminal-trimming steps. A recent model proposes that an initial step, in which peptides of 15 or more residues are shortened by cytosolic tripeptidylpeptidase II, is followed by additional trimming by cytosolic or endoplasmic reticulum (ER) aminopeptidases. In humans, at least two ER resident aminopeptidases, ERAP1 and ERAP2, contribute to trimming of human leukocyte antigen class I ligands. These interferon-gamma-regulated metallopeptidases show distinct substrate preferences and may have to act in a concerted fashion to remove some complex or longer N-terminal extensions and to trim the full spectrum of precursor peptides. This task is likely facilitated by the formation of presumably heterodimeric ERAP1-2 complexes. RNA interference experiments suggest that both enzymes are important for normal antigen presentation, but precise determination of the extent and the cellular context of their requirement will be left to future experimentation.
Collapse
|
21
|
Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F, Dubois-Laforgue D, Caillat-Zucman S, Guillet JG, Carel JC, Muller S, Choppin J, Boitard C. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci U S A 2005; 102:10581-6. [PMID: 16030147 PMCID: PMC1180789 DOI: 10.1073/pnas.0504230102] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 11/18/2022] Open
Abstract
Proinsulin is a key autoantigen in type 1 diabetes. Evidence in the mouse has underscored the importance of the insulin B chain region in autoimmunity to pancreatic beta cells. In man, a majority of proteasome cleavage sites are predicted by proteasome cleavage algorithms within this region. To study CD8+ T cell responses to the insulin B chain and adjacent C peptide, we selected 8- to 11-mer peptides according to proteasome cleavage patterns obtained by digestion of two peptides covering proinsulin residues 28 to 64. We studied their binding to purified HLA class I molecules and their recognition by T cells from diabetic patients. Peripheral blood mononuclear cells from 17 of 19 recent-onset and 12 of 13 long-standing type 1 diabetic patients produced IFN-gamma in response to proinsulin peptides as shown by using an ELISPOT assay. In most patients, the response was against several class I-restricted peptides. Nine peptides were recognized within the proinsulin region covering residues 34 to 61. Four yielded a high frequency of recognition in HLA-A1 and -B8 patients. Three peptides located in the proinsulin region 41-51 were shown to bind several HLA molecules and to be recognized in a high percentage of diabetic patients.
Collapse
Affiliation(s)
- Andréa Toma
- Institut National de la Santé et de la Recherche Médicale U561, Hôpital Cochin-Saint Vincent de Paul, Université Paris V, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Inwoley A, Recordon-Pinson P, Dupuis M, Gaston J, Genête M, Minga A, Letourneur F, Rouet F, Choppin J, Fleury H, Guillet JG, Andrieu M. Cross-clade conservation of HIV type 1 Nef immunodominant regions recognized by CD8+ T cells of HIV type 1 CRF02_AG-infected Ivorian (West Africa). AIDS Res Hum Retroviruses 2005; 21:620-8. [PMID: 16060833 DOI: 10.1089/aid.2005.21.620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most HIV vaccine trials in the world are conducted with clade B while most circulating viral strains in Africa are non-B subtypes. We determined whether CD8+ T cells from HIV-1 intersubtype CRF02_AG-infected Ivorian individuals were able to recognize clade B epitopes. CD8+ T cell responses of nine HIV-1 intersubtype CRF02_AG-infected Ivorian patients and nine HIV-1 subtype B-infected French patients were studied using pools of HIV-1 clade B peptides (110 well-defined HIV CD8+ T cell epitopes) in an ELISPOT IFN-gamma assay. There was no difference in the number of recognized peptide pools between Ivorian and French cohorts (mean of four pools in both cases). Ivorian individuals had generated CD8+ T cell responses cross-reactive against HIV-1 subtype B and some individual peptides had been identified. Furthermore, sequence analysis of nef HIV genes of the Ivorian patients and nef cloning in two patients revealed very few variations between HIV- 1 intersubtype CRF02_AG and subtype B in nef immunodominant regions included in HIV clade B lipopeptide vaccines, currently tested in France.
Collapse
Affiliation(s)
- André Inwoley
- CeDReS/PAC-CI, CHU Treichville, Abidjan, Côte d'Ivoire
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eiz-Vesper B, Seltsam A, Blasczyk R. ABO glycosyltransferases as potential source of minor histocompatibility antigens in allogeneic peripheral blood progenitor cell transplantation. Transfusion 2005; 45:960-8. [PMID: 15934995 DOI: 10.1111/j.1537-2995.2005.04370.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Most studies indicate that the incidence of graft-versus-host disease (GVHD) is not increased in ABO-mismatched allogeneic peripheral blood progenitor cell transplantation. These studies exclusively looked at ABO phenotypes without considering the fact that different genotypes hide behind identical phenotypes that encode for different sets of glycosyltransferases, thus providing a source for minor histocompatibility antigens (mHags). STUDY DESIGN AND METHODS Therefore, whether peptides derived from ABO glycosyltransferases are capable of stimulating peptide-specific T cells was investigated. T-cell responses were identified by measuring intracellular interleukin-2 expression. RESULTS Individuals with ABO genotypes encoding glycosyltransferases lacking the peptide sequences used for stimulation showed T-cell responses, whereas those expressing glycosyltransferases containing the respective peptide sequences proved to be tolerant, indicating that ABO peptides are allogeneic and may act as mHags. Interestingly, even ABO*O individuals were tolerant to O glycosyltransferase-derived peptides, which strongly suggests that truncated O transferases are expressed. CONCLUSION Considering allelic ABO sequences, at least 15 percent of all phenotypically ABO-matched transplant pairs can be expected to have genotype constellations relevant to GVHD. Therefore, the genotype behind the ABO blood group phenotype should be considered to answer the question of whether ABO mismatch is a risk factor of GVHD.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
24
|
Gahery H, Choppin J, Bourgault I, Fischer E, Maillère B, Guillet JG. HIV Preventive Vaccine Research at the ANRS: The Lipopeptide Vaccine Approach. Therapie 2005; 60:243-8. [PMID: 16128266 DOI: 10.2515/therapie:2005031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HIV (human immunodeficiency virus)/AIDS epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the ANRS (Agence Nationale de Recherches sur le SIDA) has been committed to an original programme combining basic science and clinical research. The HIV preventive vaccine research programme includes upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. In 2004, most researchers believed that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, 15 phase I and II clinical trials have been established with the aim of evaluating the safety of candidate vaccines and their capacity to induce cellular immune responses. The candidate vaccines tested were recombinant canarypox viruses (ALVAC) containing sequences coding for certain viral proteins, utilised alone or combined with other immunogens (whole or truncated envelope proteins). An original strategy, based on the use of lipopeptides, is also under development. These vaccines comprise synthetic fragments of HIV proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches have within a short time allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides.
Collapse
Affiliation(s)
- Hanne Gahery
- INSERM U567, Cochin Institute, Immunology Department, CNRS UMR 8104, Paris V University, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Burlet-Schiltz O, Claverol S, Gairin JE, Monsarrat B. The Use of Mass Spectrometry to Identify Antigens from Proteasome Processing. Methods Enzymol 2005; 405:264-300. [PMID: 16413318 DOI: 10.1016/s0076-6879(05)05011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.
Collapse
|
26
|
Chapatte L, Servis C, Valmori D, Burlet-Schiltz O, Dayer J, Monsarrat B, Romero P, Lévy F. Final Antigenic Melan-A Peptides Produced Directly by the Proteasomes Are Preferentially Selected for Presentation by HLA-A*0201 in Melanoma Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:6033-40. [PMID: 15528338 DOI: 10.4049/jimmunol.173.10.6033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanoma-associated protein Melan-A contains the immunodominant CTL epitope Melan-A(26/27-35)/HLA-A*0201 against which a high frequency of T lymphocytes has been detected in many melanoma patients. In this study we show that the in vitro degradation of a polypeptide encompassing Melan-A(26/27-35) by proteasomes produces both the final antigenic peptide and N-terminally extended intermediates. When human melanoma cells expressing the corresponding fragments were exposed to specific CTL, those expressing the minimal antigenic sequence were recognized more efficiently than those expressing the N-terminally extended intermediates. Using a tumor-reactive CTL clone, we confirmed that the recognition of melanoma cells expressing an N-terminally extended intermediate of Melan-A is inefficient. We demonstrated that the inefficient cytosolic trimming of N-terminally extended intermediates could offer a selective advantage for the preferred presentation of Melan-A peptides directly produced by the proteasomes. These results imply that both the proteasomes and postproteasomal peptidases limit the availability of antigenic peptides and that the efficiency of presentation may be affected by conditions that alter the ratio between fully and partially processed proteasomal products.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Line
- Cell Line, Tumor
- Cytosol/enzymology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- HLA-A Antigens/biosynthesis
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Hydrolysis
- Intracellular Fluid/enzymology
- MART-1 Antigen
- Melanoma/immunology
- Melanoma/metabolism
- Mice
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptide Hydrolases/metabolism
- Proteasome Endopeptidase Complex/immunology
- Proteasome Endopeptidase Complex/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Laurence Chapatte
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004; 78:9458-73. [PMID: 15308739 PMCID: PMC506933 DOI: 10.1128/jvi.78.17.9458-9473.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The existence of reservoirs of cells latently infected with human immunodeficiency virus (HIV) is a major obstacle to the elimination of HIV infection. We studied the changes in cellular gene expression that accompany the reactivation and completion of the lytic viral cycle in cell lines chronically infected with HIV-1. We found that several genes exhibited altered expression in the chronically infected cells compared to the uninfected parental cells prior to induction into lytic replication. A number of gene classes showed increased expression in the chronically infected cells, notably including genes encoding proteasomes, histone deacetylases, and many transcription factors. Following induction of the lytic replication cycle, we observed ordered, time-dependent changes in the cellular gene expression pattern. Approximately 1,740 genes, many of which fall into 385 known pathways, were differentially expressed (P < 0.001), indicating that completion of the HIV replication cycle is associated with distinct, temporally ordered changes in host cell gene expression. Maximum changes were observed in the early and intermediate phases of the lytic replication cycle. Since the changes in gene expression in chronically infected cells suggested that cells latently infected with HIV have a different gene expression profile than corresponding uninfected cells, we studied the expression profiles of three different chronically infected cell lines to determine whether they showed similar changes in common cellular genes and pathways. Thirty-two genes showed significant differential expression in all cell lines studied compared to their uninfected parental cell lines. Notable among them were cdc42 and lyn, which were downregulated and are required for HIV Nef binding and viral replication. Other genes previously unrelated to HIV latency or pathogenesis were also differentially expressed. To determine the effects of targeting products of the genes that were differentially expressed in latently infected cells, we treated the latently infected cells with a proteasome inhibitor, clastolactacystin-beta-lactone (CLBL), and an Egr1 activator, resveratrol. We found that treatment with CLBL and resveratrol stimulated lytic viral replication, suggesting that treatment of cells with agents that target cellular genes differentially expressed in latently infected cells can stimulate lytic replication. These findings may offer new insights into the interaction of the latently infected host cell and HIV and suggest therapeutic approaches for inhibiting HIV infection and for manipulating cells latently infected with HIV so as to trigger lytic replication.
Collapse
Affiliation(s)
- Vyjayanthi Krishnan
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1868, USA
| | | |
Collapse
|
28
|
Shinoda K, Xin KQ, Jounai N, Kojima Y, Tamura Y, Okada E, Kawamoto S, Okuda K, Klinman D, Okuda K. Polygene DNA vaccine induces a high level of protective effect against HIV-vaccinia virus challenge in mice. Vaccine 2004; 22:3676-90. [PMID: 15315847 DOI: 10.1016/j.vaccine.2004.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Accepted: 03/14/2004] [Indexed: 11/21/2022]
Abstract
Single HIV-1 subtype DNA vaccine is unlikely to provide reactive protection across a wide range of HIV strains since the HIV virus changes the antigenic sites, particularly, in env gene. To overcome these issues, we constructed a multivalent poly-epitope DNA vaccine. A polygenic DNA vaccine encoding 20 antigenic epitopes from the HIV-1 Env, Gag, and Pol proteins of several clades was constructed using humanized and optimized codons and it was named here hDNA vaccine. In mice, this hDNA vaccine stimulated the following strong (1) antigen-specific serum antibody (Ab) responses, (2) delayed-type hypersensitivity, (3) the activation of IFN-gamma secretion cells targeting gp120 and synthetic antigenic peptides, in addition (4) a significant level of several peptide specific cytotoxic T lymphocytes (CTL) responses. Challenged with modified vaccinia viruses vPE16 and vP1206 expressing HIV-1 env and gag.pol genes, respectively, demonstrated the viral titers in the ovary of the mice vaccinated with hDNA significantly less compared to the unvaccinated mice. Thus, the use of polygene DNA vaccine appears to induce a high level of HIV-specific immune responses and is very effective against challenge with recombinant HIV-vaccinia viruses.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- AIDS Vaccines/therapeutic use
- Amino Acid Sequence
- Animals
- Antibody Formation/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Gene Products, gag/immunology
- HIV Antibodies/analysis
- HIV Antibodies/biosynthesis
- HIV Envelope Protein gp120/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Hypersensitivity, Delayed/immunology
- Image Processing, Computer-Assisted
- Immunity, Cellular/immunology
- Immunization
- Interferon-gamma/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plasmids/genetics
- Plasmids/immunology
- Promoter Regions, Genetic/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Kaori Shinoda
- Department of Bacteriology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kan-Mitchell J, Bisikirska B, Wong-Staal F, Schaubert KL, Bajcz M, Bereta M. The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. THE JOURNAL OF IMMUNOLOGY 2004; 172:5249-61. [PMID: 15100263 DOI: 10.4049/jimmunol.172.9.5249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CTL response to the HLA-A*0201-restricted, HIV-1 p17 Gag(77-85) epitope (SLYNTVATL; SL9) has been extensively studied in patients. Although this reactivity is exceptionally prominent in chronically infected patients and inversely correlated to viral load, SL9-specific CTLs (SL9-CTLs) are rarely detected in acute infection. To explore the cellular basis for this unusual manifestation, SL9-CTLs primed ex vivo from naive circulating CD8(+) T cells of healthy, seronegative donors were generated and characterized. SL9 appeared to differ from other well-studied A*0201-restricted epitopes in several significant respects. In contrast to published reports for influenza and melanoma peptides and the HIV gag IV9 epitope studied here in parallel, SL9-CTLs were primed by immature but not mature autologous dendritic cells. Highly activated SL9-CTLs produce sufficient autocrine mediators to sustain clonal expansion and CTL differentiation for months without CD4(+) T cells or exogenous IL-2. Moreover, SL9-CTLs were sensitive to paracrine IL-2-induced apoptosis. IL-2 independence and sensitivity to paracrine IL-2 were also characteristic of SL9-CTLs immunized by dendritic cells transduced by a nonreplicating lentiviral vector encoding full-length Gag. In vitro-primed SL9-CTLs resembled those derived from patients in degeneracy of recognition and functional avidities for both SL9 and its natural mutations. Together, these data show that SL9 is a highly immunogenic, help-independent HIV epitope. The scarcity of SL9-CTLs in acute infection may result from cytokine-induced apoptosis with the intense activation of the innate immunity. In contrast, SL9-CTLs that constitutively produce autocrine help would predominate during CD4-diminished chronic infection.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Cell Differentiation/immunology
- Cell Division/immunology
- Clone Cells
- Cytokines/physiology
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Gene Products, gag/immunology
- Genes, T-Cell Receptor beta
- Genetic Vectors
- HIV Antigens/immunology
- HIV-1/genetics
- HIV-1/immunology
- HLA-A Antigens/immunology
- HLA-A2 Antigen/immunology
- Humans
- Interleukin-2/pharmacology
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mutation
- Paracrine Communication/immunology
- Peptide Fragments
- Peptides/immunology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transduction, Genetic
- Viral Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- June Kan-Mitchell
- Karmanos Cancer Institute, Department of Pathology and Immunology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Burroughs NJ, de Boer RJ, Keşmir C. Discriminating self from nonself with short peptides from large proteomes. Immunogenetics 2004; 56:311-20. [PMID: 15322777 DOI: 10.1007/s00251-004-0691-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 05/26/2004] [Indexed: 10/26/2022]
Abstract
We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 10(7) distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.
Collapse
|
31
|
Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 2004; 5:670-7. [PMID: 15224092 DOI: 10.1038/ni1089] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptides presented by major histocompatibility complex class I molecules are derived mainly from cytosolic oligopeptides generated by proteasomes during the degradation of intracellular proteins. Proteasomal cleavages generate the final C terminus of these epitopes. Although proteasomes may produce mature epitopes that are eight to ten residues in length, they more often generate N-extended precursors that are too long to bind to major histocompatibility complex class I molecules. Such precursors are trimmed in the cytosol or in the endoplasmic reticulum by aminopeptidases that generate the N terminus of the presented epitope. Peptidases can also destroy epitopes by trimming peptides to below the size needed for presentation. In the cytosol, endopeptidases, especially thimet oligopeptidase, and aminopeptidases degrade many proteasomal products, thereby limiting the supply of many antigenic peptides. Thus, the extent of antigen presentation depends on the balance between several proteolytic processes that may generate or destroy epitopes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical Center, Worcester, MA 01655, USA
| | | | | |
Collapse
|
32
|
Hopkins LM, Schall M, Leykam JF, Gerlach JA. Characterization of major histocompatibility complex-associated peptides from a small volume of whole blood. Anal Biochem 2004; 328:155-61. [PMID: 15113691 DOI: 10.1016/j.ab.2004.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Indexed: 11/18/2022]
Abstract
Class I major histocompatibility complex (MHC) presents intracellular-derived peptides on the majority of cells within the human body. Intracellular proteins are degraded into peptides of 8-11 amino acids, allowing them to fit into the groove of an empty MHC class I molecule. Detection of MHC-associated peptides can be challenging with the major difficulty being the ability to obtain peptides in adequate concentration. Published protocols require a large sample size that is unrealistic for a clinically available sample. Based on calculations, it should be possible to characterize MHC-associated peptides from cells obtained from 30 ml of whole blood. A citric acid wash of whole platelets was implemented to release the peptides with sample cleanup by reversed-phase high-performance liquid chromatography on a peptide trap. Peptides were analyzed by liquid chromatography tandem mass spectrometry. Four peptides were identified from an individual's platelets. The binding motifs of the peptides were consistent with the published MHC binding motif of the individual. Since red blood cells do not express MHC, they were used as a negative control. Using citric acid wash of whole cells and a peptide trap, the more abundant MHC-associated peptides can be identified. This report demonstrates the identification of peptides from a sample volume compatible with reasonable clinical availability.
Collapse
Affiliation(s)
- Leann M Hopkins
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
33
|
Teoh CY, Davies KJA. Potential roles of protein oxidation and the immunoproteasome in MHC class I antigen presentation: the 'PrOxI' hypothesis. Arch Biochem Biophys 2004; 423:88-96. [PMID: 14871471 DOI: 10.1016/j.abb.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/01/2003] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) class I (MHC-I) antigen presentation system is responsible for the cell-surface presentation of self-proteins and intracellular viral proteins. This pathway is important in screening between self, and non-self or infected cells. In this pathway, proteins are partially degraded to peptides in the cytosol and targeted to the cell surface bound to an MHC-I receptor protein. At the cell surface, T cells bypass cells displaying self-peptides but destroy others displaying foreign antigens. Cells contain several isoforms of the proteasome, but it is thought that the immunoproteasome is the major form involved in generating peptides for the MHC-I pathway. How all intracellular proteins are targeted for MHC-I processing is unclear. Oxidative stress is experienced by all cells, and all proteins are exposed to oxidation. We propose that oxidative modification makes proteins susceptible to degradation by the immunoproteasome. This could be called the protein oxidation and immunoproteasome or 'PrOxI' hypothesis of MHC-I antigen processing. Protein oxidation may, thus, be a universal mechanism for peptide generation and presentation in the MHC-I pathway.
Collapse
Affiliation(s)
- Cheryl Y Teoh
- Ethel Percy Andrus Gerontology Center and Division of Molecular and Computational Biology, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
34
|
Samino Y, Lopez D, Guil S, de León P, Del Val M. An endogenous HIV envelope-derived peptide without the terminal NH3+ group anchor is physiologically presented by major histocompatibility complex class I molecules. J Biol Chem 2003; 279:1151-60. [PMID: 14583622 DOI: 10.1074/jbc.m305343200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) recognize viral peptidic antigens presented by major histocompatibility complex (MHC) class I molecules on the surface of infected cells. The CTL response is critical in clearance and prevention of HIV infection. Yet, there are no descriptions of physiological peptides derived from the viral envelope protein. In the few reports on endogenous MHC class I viral peptidic ligands from HIV internal proteins, definitive positive identification by mass spectrometry is lacking. The HIV-1 envelope glycoprotein gp160 induces a strong specific CTL response restricted by several human and murine MHC class I molecules, including H-2Dd. Previous analyses showed that this response can be optimally mimicked with the synthetic decameric peptide 318RGPGRAFVTI327. We aim to identify the endogenous natural peptides mediating the response to this epitope. Our data indicate the presence of, at least, two peptidic species of different length and sharing the same antigenic core, which are associated with the Dd presenting molecule in infected cells. One species is at least, probably, the optimal decapeptide. The second species, identified by mass spectrometry for the first time in HIV, is, unexpectedly, a nonamer, which lacks the correctly positioned N-terminal group to bind to Dd. And yet, it is present in similar amounts and, notably, is equally antigenic. Thus, the physiological set of HIV-derived MHC class I ligands is richer and different than expected from studies with synthetic peptides. This may help raise the plasticity and thus the effectiveness of the immune response against the viral infection. These data have implications for HIV vaccine development.
Collapse
Affiliation(s)
- Yolanda Samino
- Centro Nacional de Microbiología. Instituto de Salud Carlos III, E-28220 Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Gahéry-Ségard H, Pialoux G, Figueiredo S, Igéa C, Surenaud M, Gaston J, Gras-Masse H, Lévy JP, Guillet JG. Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. J Virol 2003; 77:11220-31. [PMID: 14512570 PMCID: PMC224965 DOI: 10.1128/jvi.77.20.11220-11231.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4(+)-T-cell responses. To better characterize the CD8(+)-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8(+)-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8(+)-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8(+)-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8(+)-T-cell epitope recognition after the boost.
Collapse
Affiliation(s)
- Hanne Gahéry-Ségard
- Département d'Immunologie-Membre de l'IFR 116-INSERM U567, Institut Cochin, 75014 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, Tsujimoto M. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 2003; 278:32275-83. [PMID: 12799365 DOI: 10.1074/jbc.m305076200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Toshihiro Tanioka
- Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Sabbaj S, Bansal A, Ritter GD, Perkins C, Edwards BH, Gough E, Tang J, Szinger JJ, Korber B, Wilson CM, Kaslow RA, Mulligan MJ, Goepfert PA. Cross-reactive CD8+ T cell epitopes identified in US adolescent minorities. J Acquir Immune Defic Syndr 2003; 33:426-38. [PMID: 12869831 DOI: 10.1097/00126334-200308010-00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vaccines designed to bring forth CD8+ T cell responses in different racial and ethnic groups will require inclusion of T cell epitopes presented by various MHC class I molecules. This study was designed to identify new CD8+ T cell epitopes in HIV-infected African American and Hispanic youth as well as to determine the frequency of responses to both novel and previously described HIV-1 epitopes in a cohort of racially and ethnically diverse individuals. We found 8 MHC class I-restricted CD8+ T cell epitopes that had not been previously described, another 8 epitopes that were restricted by class I alleles not previously associated with these epitopes, and 8 additional epitopes that have been described previously. In a larger cohort, we demonstrated that 11 (69%) of these 16 newly described immunogens were recognized by individuals of different race or ethnicity. Most HIV-1-specific CD8+ T cell epitopes identified were either novel or restricted by alternative MHC class I alleles. Frequent recognition of several of these CTL epitopes in persons of diverse racial backgrounds bodes well for the development of a broadly reactive HIV-1 vaccine.
Collapse
Affiliation(s)
- Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saxová P, Buus S, Brunak S, Keşmir C. Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 2003; 15:781-7. [PMID: 12807816 DOI: 10.1093/intimm/dxg084] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteasome plays an essential role in the immune responses of vertebrates. By degrading intercellular proteins from self and non-self, the proteasome produces the majority of the peptides that are presented to cytotoxic T cells (CTL). There is accumulating evidence that the C-terminal, in particular, of CTL epitopes is cleaved precisely by the proteasome, whereas the N-terminal is produced with an extension, and later trimmed by peptidases in the cytoplasm and in the endoplasmic reticulum. Recently, three publicly available methods have been developed for prediction of the specificity of the proteasome. Here, we compare the performance of these methods on a large set of CTL epitopes. The best method, NetChop at www.cbs.dtu.dk/Services/NetChop, can capture approximately 70% of the C-termini correctly. This result suggests that the predictions can still be improved, particularly if more quantitative degradation data become available.
Collapse
Affiliation(s)
- Patricia Saxová
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
39
|
Lucchiari-Hartz M, Lindo V, Hitziger N, Gaedicke S, Saveanu L, van Endert PM, Greer F, Eichmann K, Niedermann G. Differential proteasomal processing of hydrophobic and hydrophilic protein regions: contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Proc Natl Acad Sci U S A 2003; 100:7755-60. [PMID: 12810958 PMCID: PMC164660 DOI: 10.1073/pnas.1232228100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Indexed: 11/18/2022] Open
Abstract
HIV proteins contain a multitude of naturally processed cytotoxic T lymphocyte (CTL) epitopes that concentrate in clusters. The molecular basis of epitope clustering is of interest for understanding HIV immunogenicity and for vaccine design. We show that the CTL epitope clusters of HIV proteins predominantly coincide with hydrophobic regions, whereas the noncluster regions are predominantly hydrophilic. Analysis of the proteasomal degradation products of full-length HIV-Nef revealed a differential sensitivity of cluster and noncluster regions to proteasomal processing. Compared with the epitope-scarce noncluster regions, cluster regions are digested by proteasomes more intensively and with greater preference for hydrophobic P1 residues, resulting in substantially greater numbers of fragments with the sizes and COOH termini typical of epitopes and their precursors. Indeed, many of these fragments correspond to endogenously processed Nef epitopes and/or their potential precursors. The results suggest that differential proteasomal processing contributes importantly to the clustering of CTL epitopes in hydrophobic regions.
Collapse
Affiliation(s)
- Maria Lucchiari-Hartz
- Department of Cellular Immunology, Max Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Seifert U, Marañón C, Shmueli A, Desoutter JF, Wesoloski L, Janek K, Henklein P, Diescher S, Andrieu M, de la Salle H, Weinschenk T, Schild H, Laderach D, Galy A, Haas G, Kloetzel PM, Reiss Y, Hosmalin A. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat Immunol 2003; 4:375-9. [PMID: 12598896 DOI: 10.1038/ni905] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/06/2003] [Indexed: 11/09/2022]
Abstract
Most of the peptides presented by major histocompatibility complex (MHC) class I molecules require processing by proteasomes. Tripeptidyl peptidase II (TPPII), an aminopeptidase with endoproteolytic activity, may also have a role in antigen processing. Here, we analyzed the processing and presentation of the immunodominant human immunodeficiency virus epitope HIV-Nef(73-82) in human dendritic cells. We found that inhibition of proteasome activity did not impair Nef(73-82) epitope presentation. In contrast, specific inhibition of TPPII led to a reduction of Nef(73-82) epitope presentation. We propose that TPPII can act in combination with or independent of the proteasome system and can generate epitopes that evade generation by the proteasome-system.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institut für Biochemie-Charité, Medical Faculty of the Humboldt-University Berlin, Monbijoustr. 2, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL, Tsujimoto M, Goldberg AL. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 2002; 3:1169-76. [PMID: 12436109 DOI: 10.1038/ni859] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Accepted: 10/18/2002] [Indexed: 11/09/2022]
Abstract
Precursors to major histocompatibility complex (MHC) class I-presented peptides with extra NH2-terminal residues can be efficiently trimmed to mature epitopes in the endoplasmic reticulum (ER). Here, we purified from liver microsomes a lumenal, soluble aminopeptidase that removes NH2-terminal residues from many antigenic precursors. It was identified as a metallopeptidase named "adipocyte-derived leucine" or "puromycin-insensitive leucine-specific" aminopeptidase. However, because we localized it to the ER, we propose it be renamed ER-aminopeptidase 1 (ERAP1). ERAP1 is inhibited by agents that block precursor trimming in ER vesicles and although it trimmed NH2-extended precursors, it spared presented peptides of 8 amino acid and less. Like other proteins involved in antigen presentation, ERAP1 is induced by interferon-gamma. When overexpressed in vivo, we found that ERAP1 stimulates the processing and presentation of an antigenic precursor in the ER.
Collapse
Affiliation(s)
- Tomo Saric
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL, Rock KL. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol 2002; 3:1177-84. [PMID: 12436110 DOI: 10.1038/ni860] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Accepted: 10/28/2002] [Indexed: 11/08/2022]
Abstract
Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) appears to be specialized to produce peptides presented on class I major histocompatibility complex molecules. We found that purified ERAP1 trimmed peptides that were ten residues or longer, but spared eight-residue peptides. In vivo, ERAP1 enhanced production of an eight-residue ovalbumin epitope from precursors extended on the NH2 terminus that were generated either in the ER or cytosol. Purified ERAP1 also trimmed nearly half the nine-residue peptides tested. By destroying such nine-residue peptides in normal human cells, ERAP1 reduced the overall supply of antigenic peptides. However, after interferon-gamma treatment, which causes proteasomes to produce more NH2-extended antigenic precursors, ERAP1 increased the supply of peptides for MHC class I antigen presentation.
Collapse
Affiliation(s)
- Ian A York
- Department of Pathology, University of Massachusetts Medical Center, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
44
|
Lévy F, Burri L, Morel S, Peitrequin AL, Lévy N, Bachi A, Hellman U, Van den Eynde BJ, Servis C. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4161-71. [PMID: 12370345 DOI: 10.4049/jimmunol.169.8.4161] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sewell AK, Booth BL, Cerundolo V, Phillips RE, Price DA. Differential processing of HLA A2-restricted HIV type 1 cytotoxic T lymphocyte epitopes. Viral Immunol 2002; 15:193-6. [PMID: 11952141 DOI: 10.1089/088282402317340332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a key role in the control of persistent viral infections. Differences in the quality of this cellular immune response influence the long-term outcome of such infections, but the factors that determine which virus-derived peptide epitopes are targeted by CTLs remain poorly understood. Here, we examine the antigen-processing requirements of three human leukocyte antigen (HLA) A*0201-restricted HIV-1 CTL epitopes. Each of these three peptides appears to be generated by a distinct proteolytic pathway, despite presentation on the cell surface in association with the same HLA class I molecule. Presentation of the commonly immunodominant SLYNTVATL (HIV-1 p17 Gag; residues 77-85) epitope was unaffected by inhibition of the proteasome with lactacystin, but was dependent on the presence of the beta-subunit LMP7. These findings are consistent with emerging data on the complexity of peptide epitope generation, and suggest that differences in antigen processing might contribute to patterns of CTL recognition in vivo.
Collapse
Affiliation(s)
- Andrew K Sewell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
46
|
Ramos M, Alvarez I, Sesma L, Logean A, Rognan D, López de Castro JA. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 2002; 277:37573-81. [PMID: 12122005 DOI: 10.1074/jbc.m205470200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HLA-B27 is strongly associated with spondyloarthropathies, including ankylosing spondylitis and reactive arthritis. The latter disease is triggered by various Gram-negative bacteria. A dodecamer derived from the intracytoplasmic tail of HLA-B27 was a natural ligand of three disease-associated subtypes (B*2702, B*2704, and B*2705) but not of two (B*2706 and B*2709), weakly or not associated to spondyloarthropathy. This peptide was strikingly homologous to protein sequences from arthritogenic bacteria, particularly to a region of the DNA primase from Chlamydia trachomatis. A synthetic peptide with this bacterial sequence bound in vitro disease-associated subtypes equally as the natural B27-derived ligand. The chlamydial peptide was generated by the 20 S proteasome from a synthetic 28-mer with the sequence of the corresponding region of the bacterial DNA primase. Molecular modeling suggested that the B27-derived and chlamydial peptides adopt very similar conformations in complex with B*2705. The results demonstrate that an HLA-B27-derived peptide mimicking arthritogenic bacterial sequences is a natural ligand of disease-associated HLA-B27 subtypes and suggest that the homologous chlamydial peptide might be presented by HLA-B27 on Chlamydia-infected cells.
Collapse
Affiliation(s)
- Manuel Ramos
- Centro de Biologia Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Cohen WM, Bianco A, Connan F, Camoin L, Dalod M, Lauvau G, Ferriès E, Culmann-Penciolelli B, van Endert PM, Briand JP, Choppin J, Guillet JG. Study of antigen-processing steps reveals preferences explaining differential biological outcomes of two HLA-A2-restricted immunodominant epitopes from human immunodeficiency virus type 1. J Virol 2002; 76:10219-25. [PMID: 12239297 PMCID: PMC136577 DOI: 10.1128/jvi.76.20.10219-10225.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses directed to different human immunodeficiency virus (HIV) epitopes vary in their protective efficacy. In particular, HIV-infected cells are much more sensitive to lysis by anti-Gag/p17(77-85)/HLA-A2 than to that by anti-polymerase/RT(476-484)/HLA-A2 CTL, because of a higher density of p17(77-85) complexes. This report describes multiple processing steps favoring the generation of p17(77-85) complexes: (i) the exact COOH-terminal cleavage of epitopes by cellular proteases occurred faster and more frequently for p17(77-85) than for RT(476-484), and (ii) the binding efficiency of the transporter associated with antigen processing was greater for p17(77-85) precursors than for the RT(476-484) epitope. Surprisingly, these peptides, which differed markedly in their antigenicity, displayed qualitatively and quantitatively similar immunogenicity, suggesting differences in the mechanisms governing these phenomena. Here, we discuss the mechanisms responsible for such differences.
Collapse
Affiliation(s)
- W M Cohen
- Institut National de la Santé et de la Recherche Médicale Unité 445, Institut Cochin de Génétique Moléculaire, Hôpital Cochin, 27 rue du faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Burri L, Servis C, Chapatte L, Lévy F. A recyclable assay to analyze the NH(2)-terminal trimming of antigenic peptide precursors. Protein Expr Purif 2002; 26:19-27. [PMID: 12356466 DOI: 10.1016/s1046-5928(02)00507-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.
Collapse
Affiliation(s)
- Lena Burri
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
49
|
Saveanu L, Fruci D, van Endert P. Beyond the proteasome: trimming, degradation and generation of MHC class I ligands by auxiliary proteases. Mol Immunol 2002; 39:203-15. [PMID: 12200051 DOI: 10.1016/s0161-5890(02)00102-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proteasome is now recognized to be implicated in the generation of the vast majority of MHC class I ligands. Moreover, it is probably the only cytosolic protease generating their carboxyterminals. However, solid evidence documents a role of additional and only partly identified proteases in MHC class I antigen processing. Cytosolic tripeptidyl peptidase (TTP II) may be able to carry out some functions normally ascribed to the proteasome, including that of generating antigenic peptides. Several cytosolic enzymes, including bleomycin hydrolase (BH) and puromycin-sensitive aminopeptidase (PSA), but especially the IFNgamma-inducible leucyl aminopeptidase (LAP), can trim the aminoterminal ends of class I ligands. The vast majority of cytosolic peptides is degraded, a process likely to limit antigen presentation, in which thimet oligopeptidase (TOP) may play an important role. Proteolytic activity in the secretory pathway, though much more limited than in the cytosol, also contributes to class I antigen presentation. Signal peptide fragments and peptides at the carboxyterminal end of various proteins targeted to the endoplasmic reticulum can be highly efficient TAP-independent class I ligands. However, an as yet unidentified luminal trimming aminopeptidase may eventually turn out to play the most important role for class I ligand generation in the secretory pathway. Defining the extent of the involvement of cytosolic and luminal peptidases in class I antigen processing will be a challenging task for the future.
Collapse
|
50
|
Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39:147-64. [PMID: 12200047 DOI: 10.1016/s0161-5890(02)00098-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|