1
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
2
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Kim KM, Mura-Meszaros A, Tollot M, Krishnan MS, Gründl M, Neubert L, Groth M, Rodriguez-Fraticelli A, Svendsen AF, Campaner S, Andreas N, Kamradt T, Hoffmann S, Camargo FD, Heidel FH, Bystrykh LV, de Haan G, von Eyss B. Taz protects hematopoietic stem cells from an aging-dependent decrease in PU.1 activity. Nat Commun 2022; 13:5187. [PMID: 36057685 PMCID: PMC9440927 DOI: 10.1038/s41467-022-32970-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)—the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline. We identify Clca3a1 as a TAZ-induced gene that allows us to trace TAZ activity in vivo. Using CLCA3A1 as a marker, we can isolate “young-like” HSCs from old mice. Mechanistically, Taz acts as coactivator of PU.1 and to some extent counteracts the gradual loss of PU.1 expression during HSC aging. Our work thus uncovers an essential role for Taz in a previously undescribed fail-safe mechanism in aging HSCs. Immune system function declines with age, a consequence of defects in hematopoietic stem cells (HSCs). Here the authors show that TAZ buffers age-related loss of PU.1 activity to maintain HSC functionality and identify the surface protein Clca3a1 as a marker of “young-like” HSCs, even in old mice.
Collapse
Affiliation(s)
- Kyung Mok Kim
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Anna Mura-Meszaros
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marie Tollot
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Murali Shyam Krishnan
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marco Gründl
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Laura Neubert
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Alejo Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.,Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Am Leutragraben 3, 07743, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Am Leutragraben 3, 07743, Jena, Germany
| | - Steve Hoffmann
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Fernando D Camargo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Florian H Heidel
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany.,Internal Medicine II, Hematology and Oncology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Sauerbruchstrasse, 17475, Greifswald, Germany
| | - Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.,Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Björn von Eyss
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
4
|
Abstract
Hematopoietic stem cell (HSC) regeneration is the remarkable process by which extremely rare, normally inactive cells of the bone marrow can replace an entire organ if called to do so by injury or harnessed by transplantation. HSC research is arguably the first quantitative single-cell science and the foundation of adult stem cell biology. Bone marrow transplant is the oldest and most refined technique of regenerative medicine. Here we review the intertwined history of the discovery of HSCs and bone marrow transplant, the molecular and cellular mechanisms of HSC self-renewal, and the use of HSCs and their derivatives for cell therapy.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tannishtha Reya
- Department of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
5
|
Kimura K, Yamamori S, Hazawa M, Kobayashi-Sun J, Kondo M, Wong RW, Kobayashi I. Inhibition of canonical Wnt signaling promotes ex vivo maintenance and proliferation of hematopoietic stem cells in zebrafish. Stem Cells 2022; 40:831-842. [PMID: 35759948 DOI: 10.1093/stmcls/sxac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
The maintenance and proliferation of hematopoietic stem cells (HSCs) are tightly regulated by their niches in the bone marrow. The analysis of niche cells or stromal cell lines that can support HSCs has facilitated the finding of novel supporting factors for HSCs. Despite large efforts in the murine bone marrow, however, HSC expansion is still difficult ex vivo, highlighting the need for new approaches to elucidate the molecular elements that regulate HSCs. The zebrafish provides a unique model to study hematopoietic niches as HSCs are maintained in the kidney, allowing for a parallel view of hematopoietic niches over evolution. Here, using a stromal cell line from the zebrafish kidney, zebrafish kidney stromal (ZKS), we uncover that an inhibitor of canonical Wnt signaling, IWR-1-endo, is a potent regulator of HSCs. Co-culture assays revealed that ZKS cells were in part supportive of maintenance, but not expansion, of gata2a:GFP+runx1:mCherry+ (gata2a+runx1+) HSCs. Transcriptome analysis revealed that, compared to candidate niche cells in the kidney, ZKS cells weakly expressed HSC maintenance factor genes, thpo and cxcl12, but highly expressed canonical Wnt ligand genes, wnt1, 7bb, and 9a. Thpo supplementation in ZKS culture slightly increased, but inhibition of canonical Wnt signaling by IWR-1-endo treatment largely increased the number of gata2a+runx1+ cells (> 2-fold). Moreover, we found that gata2a+runx1+ cells can be maintained by supplementing both IWR-1-endo and Thpo without stromal cells. Collectively, our data provide evidence that IWR-1-endo can be used as a novel supporting factor for HSCs.
Collapse
Affiliation(s)
- Koki Kimura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Shiori Yamamori
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan.,Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Mao Kondo
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
6
|
Zhu X, Sun Q, Tan WS, Cai H. Removal of CD34− cells to increase self-renewal symmetric division and expansion ex vivo of cord blood CD34+ cells through reducing the TGF-β1. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
O'Neill A, Chin D, Tan D, Abdul Majeed ABB, Nakamura-Ishizu A, Suda T. Thrombopoietin maintains cell numbers of hematopoietic stem and progenitor cells with megakaryopoietic potential. Haematologica 2021; 106:1883-1891. [PMID: 32527954 PMCID: PMC8252958 DOI: 10.3324/haematol.2019.241406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Thrombopoietin has long been known to influence megakaryopoiesis and hematopoietic stem and progenitor cells, although the exact mechanisms through which it acts are unknown. Here we show that MPL expression correlates with megakaryopoietic potential of hematopoietic stem and progenitor cells and identify a population of quiescent hematopoietic stem and progenitor cells that show limited dependence on thrombopoietin signaling. We show that thrombopoietin is primarily responsible for maintenance of hematopoietic cells with megakaryocytic differentiation potential and their subsequent megakaryocyte differentiation and maturation. The loss of megakaryocytes in thrombopoietin knockout mouse models results in a reduction of megakaryocyte-derived chemokine platelet factor 4 (CXCL4/PF4) in the bone marrow and administration of recombinant CXCL4/PF4 rescues the loss of quiescence observed in these mice. CXCL4/PF4 treatment does not rescue reduced hematopoietic stem and progenitor cell numbers, suggesting that thrombopoietin maintains hematopoietic stem and progenitor cell numbers directly.
Collapse
Affiliation(s)
- Aled O'Neill
- Cancer Science Institute, National University of Singapore, Singapore
| | - Desmond Chin
- Cancer Science Institute, National University of Singapore, Singapore
| | - Darren Tan
- Cancer Science Institute, National University of Singapore, Singapore
| | | | - Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore and Kumamoto University, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore and Kumamoto University, Japan
| |
Collapse
|
8
|
Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood 2021; 136:1824-1836. [PMID: 32483624 DOI: 10.1182/blood.2019004113] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.
Collapse
|
9
|
Tak T, Prevedello G, Simon G, Paillon N, Benlabiod C, Marty C, Plo I, Duffy KR, Perié L. HSPCs display within-family homogeneity in differentiation and proliferation despite population heterogeneity. eLife 2021; 10:60624. [PMID: 34002698 PMCID: PMC8175087 DOI: 10.7554/elife.60624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
High-throughput single-cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell surface markers. Our analyses demonstrate that fate decisions of cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.
Collapse
Affiliation(s)
- Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Giulio Prevedello
- Institut Curie, PSL Research University, CNRS, Orsay, France.,Université Paris-Saclay, Saclay, France
| | - Gaël Simon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Noémie Paillon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Camélia Benlabiod
- INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université de Paris, Paris, France
| | - Caroline Marty
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Co Kildare, Ireland
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are in an inactive quiescent state for most of their life. To replenish the blood system in homeostasis and after injury, they activate and divide. HSC daughter cells must then decide whether to return to quiescence and metabolic inactivity or to activate further to proliferate and differentiate and replenish lost blood cells. Although the regulation of HSC activation is not well understood, recent discoveries shed new light on involved mechanisms including asymmetric cell division (ACD). RECENT FINDINGS HSC metabolism has emerged as a regulator of cell fates. Recent evidence suggests that cellular organelles mediating anabolic and catabolic processes can be asymmetrically inherited during HSC divisions. These include autophagosomes, mitophagosomes, and lysosomes, which regulate HSC quiescence. Their asymmetric inheritance has been linked to future metabolic and translational activity in HSC daughters, showing that ACD can regulate the balance between HSC (in)activity. SUMMARY We discuss recent insights and remaining questions in how HSCs balance activation and quiescence, with a focus on ACD.
Collapse
|
11
|
Zhu X, Sun Q, Tan WS, Cai H. Reducing TGF-β1 cooperated with StemRegenin 1 promoted the expansion ex vivo of cord blood CD34 + cells by inhibiting AhR signalling. Cell Prolif 2021; 54:e12999. [PMID: 33522060 PMCID: PMC7941221 DOI: 10.1111/cpr.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE As an inhibitor of the AhR signalling pathway, StemRegenin 1 (SR1) not only promotes the expansion of CD34+ cells but also increases CD34- cell numbers. These CD34- cells influenced the ex vivo expansion of CD34+ cells. In this work, the effects of periodically removing CD34- cells combined with SR1 addition on the ex vivo expansion and biological functions of HSCs were investigated. MATERIALS AND METHODS CD34- cells were removed periodically with SR1 addition to investigate cell subpopulations, cell expansion, biological functions, expanded cell division mode and supernatant TGF-β1 contents. RESULTS After 10-day culture, the expansion of CD34+ cells in the CD34- cell removal plus SR1 group was significantly higher than that in the control group and the SR1 group. Moreover, periodically removing CD34- cells with SR1 addition improved the biological function of expanded CD34+ cells and significantly increased the percentage of self-renewal symmetric division of CD34+ cells. In addition, the concentration of total TGF-β1 and activated TGF-β1 in the supernatant was significantly lower than those in the control group and the SR1 group. RT-qPCR results showed that the periodic removal of CD34- cells with cooperation from SR1 further reduced the expression of AhR-related genes. CONCLUSIONS Periodic removal of CD34- cells plus cooperation with SR1 improved the expansion of CD34+ cells, maintained better biological function of expanded CD34+ cells and reduced the TGF-β1 contents by downregulating AhR signalling.
Collapse
Affiliation(s)
- Xuejun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice. Stem Cells Int 2020; 2020:8885154. [PMID: 33381191 PMCID: PMC7755487 DOI: 10.1155/2020/8885154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.
Collapse
|
13
|
Yadav P, Vats R, Bano A, Bhardwaj R. Hematopoietic Stem Cells Culture, Expansion and Differentiation: An Insight into Variable and Available Media. Int J Stem Cells 2020; 13:326-334. [PMID: 32840223 PMCID: PMC7691860 DOI: 10.15283/ijsc19157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to differentiation and self-renewal capacity, hematopoietic stem cells clasp potentiality to engender all blood cell types, leading to their immense competence to play a diverse role in therapeutic applications. Although these stem cells are the most investigated and exploited until now, further research is still essential to comprehend their nature, fate, and potential. Enhanced usage of hematopoietic stem cells in research and therapeutics intensified the requirement of expansion and differentiation of hematopoietic stem cells under in vitro conditions. Since these cells remain in senescence for a prolonged period before isolation, selection of appropriate growth medium along with supplements and culture conditions are crucial to initiate their cell division and to designate their destiny. The precise equilibrium between self-renewal and differentiation of stem cells sustained by exclusive medium along with special growth or differentiation factors is accountable for generating diverse cell lineages. Maintenance of hematopoietic stem and progenitor cell lines along with the advancement of research work generate an inexorable demand for production and commercialization of specialized stem cell culture media, with or without serum along with specific growth factors and supplements. Media commercialization for precise stem cell types, culturing and differentiation is a cost-effective developing field. Here in this review, we are assembling various types of hematopoietic stem cell self-renewal, expansion and differentiation media along with supplements and culture conditions, either developed and used by various scientists or are available commercially.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
14
|
Lentiviral Transduction for Optimal LSC/HSC Manipulation. Methods Mol Biol 2020. [PMID: 33165856 DOI: 10.1007/978-1-0716-0810-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Historically, efficient transduction of hematopoietic stem cells (HSC) to study the role of specific genes on HSC function, as well as to broaden the potential of gene therapy for hematopoietic related diseases has relied on our ability to design vectors capable of delivering the gene of interest without affecting HSC function. While retroviruses have been used extensively for this purpose, HIV-derived lentiviruses prove superior for transduction of quiescent HSC due to their ability to infect nondividing cells. The design of the vector and the quality of the lentiviral preparation are the key elements to obtain reproducible consistent results that will eventually be translated into the clinic. This chapter describes the preparation of concentrated lentiviruses and the transduction of HSC to obtain long-term engraftment with persistent gene transfer and expression of the desired transgene.
Collapse
|
15
|
In Vivo Pre-Instructed HSCs Robustly Execute Asymmetric Cell Divisions In Vitro. Int J Mol Sci 2020; 21:ijms21218225. [PMID: 33153113 PMCID: PMC7663432 DOI: 10.3390/ijms21218225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) reside in specialized anatomical microenvironments within the bone marrow space, termed HSC niches. Different bone marrow imaging modalities have been utilized to visualize HSCs in situ, and unravel the cellular identity of bone marrow cell types located in their immediate proximity. However, despite extensive research, the exact identity of bone marrow populations that physically associate with HSCs remains controversial. RECENT FINDINGS Recent advances in volumetric imaging enable precise identification of bone marrow populations and their spatial distribution both at tissue-wide scale and single-cell resolution. In addition, single-cell RNA sequencing and mass-cytometry-based approaches dissect the complexity of the bone marrow microenvironment with unprecedented resolution. Here, we review current concepts regarding bone marrow populations that physically associate with HSCs and recent efforts to localize HSCs and their niche populations. SUMMARY Defining the bone marrow cell types in the immediate proximity of HSCs in homeostasis and stress is key to determine the cellular and molecular cues driving HSC maintenance and regeneration.
Collapse
|
17
|
Cai Y, Wang J, Zou K. The Progresses of Spermatogonial Stem Cells Sorting Using Fluorescence-Activated Cell Sorting. Stem Cell Rev Rep 2020; 16:94-102. [PMID: 31792769 DOI: 10.1007/s12015-019-09929-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the research on stem cells has been more and more in-depth, and many achievements have been made in application. However, due to the small number of spermatogonial stem cells (SSCs) and deficiency of efficient markers, it is difficult to obtain very pure SSCs, which results in the research on them being hindered. In fact, many methods have been developed to isolate and purify SSCs, but these methods have their shortcomings. Fluorescence-activated cell sorting (FACS), as a method to enrich SSCs with the help of specific surface markers, has the characteristics of high efficiency and accuracy in enrichment of SSCs, thus it is widely accepted as an effective method for purification of SSCs. This review summarizes the recent studies on the application of FACS in SSCs, and introduces some commonly used markers of effective SSCs sorting, aiming to further optimize the FACS sorting method for SSCs, so as to promote the research of germline stem cells and provide new ideas for the research of reproductive biology.
Collapse
Affiliation(s)
- Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, Dewitt MA, Vu JT, Kim WT, Hockemeyer D, Manz MG, Corn JE. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep 2020; 32:108093. [PMID: 32877675 PMCID: PMC7487781 DOI: 10.1016/j.celrep.2020.108093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
Collapse
Affiliation(s)
- Jiyung J Shin
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas L Bray
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark A Dewitt
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Won-Tae Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
19
|
Kobayashi H, Morikawa T, Okinaga A, Hamano F, Hashidate-Yoshida T, Watanuki S, Hishikawa D, Shindou H, Arai F, Kabe Y, Suematsu M, Shimizu T, Takubo K. Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo. Cell Rep 2020; 28:145-158.e9. [PMID: 31269436 DOI: 10.1016/j.celrep.2019.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/26/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis by remaining quiescent in the bone marrow niche. Recapitulation of a quiescent state in culture has not been achieved, as cells rapidly proliferate and differentiate in vitro. After exhaustive analysis of different environmental factor combinations and concentrations as a way to mimic physiological conditions, we were able to maintain engraftable quiescent HSCs for 1 month in culture under very low cytokine concentrations, hypoxia, and very high fatty acid levels. Exogenous fatty acids were required likely due to suppression of intrinsic fatty acid synthesis by hypoxia and low cytokine conditions. By contrast, high cytokine concentrations or normoxia induced HSC proliferation and differentiation. Our culture system provides a means to evaluate properties of steady-state HSCs and test effects of defined factors in vitro under near-physiological conditions.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Ayumi Okinaga
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Fumie Hamano
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| |
Collapse
|
20
|
Ikonomi N, Kühlwein SD, Schwab JD, Kestler HA. Awakening the HSC: Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway and Quiescence. Front Physiol 2020; 11:848. [PMID: 32848827 PMCID: PMC7411231 DOI: 10.3389/fphys.2020.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to in silico knockout simulations. Here, the model could recapitulate in vivo observed behaviors and thus sustains our results.
Collapse
Affiliation(s)
- Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
21
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
22
|
Costa MHG, Monteiro TS, Cardoso S, Cabral JMS, Ferreira FC, da Silva CL. Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. Methods Mol Biol 2020; 2002:101-119. [PMID: 30367359 DOI: 10.1007/7651_2018_181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The development of cellular therapies to treat hematological malignancies has motivated researchers to investigate ex vivo culture systems capable of expanding the number of hematopoietic stem/progenitor cells (HSPC) before transplantation. The strategies exploited to achieve relevant cell numbers have relied on culture systems that lack biomimetic niche cues thought to be essential to promote HSPC maintenance and proliferation. Although stromal cells adhered to 2-D surfaces can be used to support the expansion of HSPC ex vivo, culture systems aiming to incorporate cell-cell interactions in a more intricate 3-D environment can better contribute to recapitulate the bone marrow (BM) hematopoietic niche in vitro.Herein, we describe the development of a 3-D co-culture system of human umbilical cord blood (UCB)-derived CD34+ cells and BM mesenchymal stem/stromal cell (MSC) spheroids in a microwell-based platform that allows to attain large numbers of spheroids with uniform sizes. Further comparison with a traditional 2-D co-culture system exploiting the supportive features of feeder layers of MSC is provided, while functional in vitro assays to assess the features of HSPC expanded in the 2-D vs. 3-D MSC co-culture systems are suggested.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago S Monteiro
- Instituto de Engenharia de Sistemas de Computadores - Microsystems and Nanotechnology (INESC-MN), Lisboa, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas de Computadores - Microsystems and Nanotechnology (INESC-MN), Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
23
|
Mouse acute leukemia develops independent of self-renewal and differentiation potentials in hematopoietic stem and progenitor cells. Blood Adv 2020; 3:419-431. [PMID: 30733302 DOI: 10.1182/bloodadvances.2018022400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41-CD34-Lineage-Sca-1+c-Kit+ cells] and HSC2 [CD150-CD41-CD34-Lineage-Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34-Lineage-Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage-Sca-1+c-Kit+ cells], and HPC3 [CD150-CD41-CD34+Lineage-Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.
Collapse
|
24
|
Hinge A, He J, Bartram J, Javier J, Xu J, Fjellman E, Sesaki H, Li T, Yu J, Wunderlich M, Mulloy J, Kofron M, Salomonis N, Grimes HL, Filippi MD. Asymmetrically Segregated Mitochondria Provide Cellular Memory of Hematopoietic Stem Cell Replicative History and Drive HSC Attrition. Cell Stem Cell 2020; 26:420-430.e6. [PMID: 32059807 DOI: 10.1016/j.stem.2020.01.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
The metabolic requirements of hematopoietic stem cells (HSCs) change with their cell cycle activity. However, the underlying role of mitochondria remains ill-defined. Here we found that, after mitochondrial activation with replication, HSCs irreversibly remodel the mitochondrial network and that this network is not repaired after HSC re-entry into quiescence, contrary to hematopoietic progenitors. HSCs keep and accumulate dysfunctional mitochondria through asymmetric segregation during active division. Mechanistically, mitochondria aggregate and depolarize after stress because of loss of activity of the mitochondrial fission regulator Drp1 onto mitochondria. Genetic and pharmacological studies indicate that inactivation of Drp1 causes loss of HSC regenerative potential while maintaining HSC quiescence. Molecularly, HSCs carrying dysfunctional mitochondria can re-enter quiescence but fail to synchronize the transcriptional control of core cell cycle and metabolic components in subsequent division. Thus, loss of fidelity of mitochondrial morphology and segregation is one type of HSC divisional memory and drives HSC attrition.
Collapse
Affiliation(s)
- Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jingyi He
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China
| | - James Bartram
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jose Javier
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juying Xu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ellen Fjellman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiromi Sesaki
- Department of Cell Biology, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tingyu Li
- Child Nutrition Research Center in the Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R China
| | - Jie Yu
- Department of Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Yasen A, Aini A, Wang H, Li W, Zhang C, Ran B, Tuxun T, Maimaitinijiati Y, Shao Y, Aji T, Wen H. Progress and applications of single-cell sequencing techniques. INFECTION GENETICS AND EVOLUTION 2020; 80:104198. [PMID: 31958516 DOI: 10.1016/j.meegid.2020.104198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/06/2023]
Abstract
Single-cell sequencing (SCS) is a next-generation sequencing method that is mainly used to analyze differences in genetic and protein information between cells, to obtain genetic information on microorganisms that are difficult to cultivate at a single-cell level and to better understand their specific roles in the microenvironment. By sequencing the whole genome, transcriptome and epigenome of a single cell, the complex heterogeneous mechanisms involved in disease occurrence and progression can be revealed, further improving disease diagnosis, prognosis prediction and monitoring of the therapeutic effects of drugs. In this study, we mainly summarized the methods and application fields of SCS, which may provide potential references for its future clinical applications, including the analysis of embryonic and organ development, the immune system, cancer progression, and parasitic and infectious diseases as well as stem cell research, antibody screening, and therapeutic research and development.
Collapse
Affiliation(s)
- Aimaiti Yasen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; The first affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Abudusalamu Aini
- The first affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Wending Li
- The first affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Chuanshan Zhang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Bo Ran
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Tuerhongjiang Tuxun
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Yusufukadier Maimaitinijiati
- The first affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Yingmei Shao
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Tuerganaili Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China; Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, People's Republic of China.
| |
Collapse
|
26
|
Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Rep 2019; 29:4144-4158.e7. [DOI: 10.1016/j.celrep.2019.11.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/09/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
|
27
|
Interleukin-12 supports in vitro self-renewal of long-term hematopoietic stem cells. BLOOD SCIENCE 2019; 1:92-101. [PMID: 35402790 PMCID: PMC8974953 DOI: 10.1097/bs9.0000000000000002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) self-renew or differentiate through division. Cytokines are essential for inducing HSC division, but the optimal cytokine combination to control self-renewal of HSC in vitro remains unclear. In this study, we compared the effects of interleukin-12 (IL-12) and thrombopoietin (TPO) in combination with stem cell factor (SCF) on in vitro self-renewal of HSCs. Single-cell assays were used to overcome the heterogeneity issue of HSCs, and serum-free conditions were newly established to permit reproduction of data. In single-cell cultures, CD150+CD48−CD41−CD34−c-Kit+Sca-1+lineage− HSCs divided significantly more slowly in the presence of SCF+IL-12 compared with cells in the presence of SCF+TPO. Serial transplantation of cells from bulk and clonal cultures revealed that TPO was more effective than IL-12 at supporting in vitro self-renewal of short-term (<6 months) HSCs, resulting in a monophasic reconstitution wave formation, whereas IL-12 was more effective than TPO at supporting the in vitro self-renewal of long-term (>6 months) HSCs, resulting in a biphasic reconstitution wave formation. The control of division rate in HSCs appeared to be crucial for preventing the loss of self-renewal potential from their in vitro culture.
Collapse
|
28
|
Ema H. Successful ex vivo expansion of mouse hematopoietic stem cells. BLOOD SCIENCE 2019; 1:116-118. [PMID: 35402802 PMCID: PMC8974897 DOI: 10.1097/bs9.0000000000000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022] Open
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) is considered the holy grail in stem cell biology and therapy, as it has long been difficult to make this procedure possible. Yamazaki's research team has established new, polyvinyl alcohol-based culture conditions and shown a significant expansion of mouse HSCs from a small number of cells after a month of culture. Surprisingly, expanded HSCs were able to reconstitute unconditioned normal mice. There is generally a technical concern in limiting dilution assay to estimate a fold-expansion of HSCs. But, this work paves the way toward expansion of human HSCs useful for transplantation medicine.
Collapse
|
29
|
Single-Cell Assays Using Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2019. [PMID: 31273740 DOI: 10.1007/978-1-4939-9631-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Hematopoietic stem cells (HSCs) undergo division, making two daughter cells with unique fate decision choices, that is, whether to self-renew to maintain stemness or differentiate to committed progenitors. Since HSCs are heterogeneous in nature understanding this phenomenon at the single cell level is important. In vitro single-cell assays like the paired-daughter cell and myeloid multilineage differentiation are useful to understand this unique stem cell process. Both assays are performed using cytokine combination which allows four-lineage myeloid differentiation-neutrophil, erythroid, macrophage/monocyte, and megakaryocyte. Paired-daughter cell assay examines symmetric or asymmetric retention of four myeloid lineages after first cell division in the paired-daughter cells. Thus, it defines asymmetric versus symmetric division patterns in the paired daughter cells. Thus, this assay may provide HSC fate decision cues. Myeloid multilineage differentiation assay examines the ability of a single cell to form multipotent clones containing four or less myeloid lineages. Here, we discuss in detail methodology of these assays.
Collapse
|
30
|
Saka K, Lai CY, Nojima M, Kawahara M, Otsu M, Nakauchi H, Nagamune T. Dissection of Signaling Events Downstream of the c-Mpl Receptor in Murine Hematopoietic Stem Cells Via Motif-Engineered Chimeric Receptors. Stem Cell Rev Rep 2018; 14:101-109. [PMID: 28948469 PMCID: PMC5801400 DOI: 10.1007/s12015-017-9768-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) are a valuable resource in transplantation medicine. Cytokines are often used to culture HSCs aiming at better clinical outcomes through enhancement of HSC reconstitution capability. Roles for each signal molecule downstream of receptors in HSCs, however, remain puzzling due to complexity of the cytokine-signaling network. Engineered receptors that are non-responsive to endogenous cytokines represent an attractive tool for dissection of signaling events. We here tested a previously developed chimeric receptor (CR) system in primary murine HSCs, target cells that are indispensable for analysis of stem cell activity. Each CR contains tyrosine motifs that enable selective activation of signal molecules located downstream of the c-Mpl receptor upon stimulation by an artificial ligand. Signaling through a control CR with a wild-type c-Mpl cytoplasmic tail sufficed to enhance HSC proliferation and colony formation in cooperation with stem cell factor (SCF). Among a series of CRs, only one compatible with selective Stat5 activation showed similar positive effects. The HSCs maintained ex vivo in these environments retained long-term reconstitution ability following transplantation. This ability was also demonstrated in secondary recipients, indicating effective transmission of stem cell-supportive signals into HSCs via these artificial CRs during culture. Selective activation of Stat5 through CR ex vivo favored preservation of lymphoid potential in long-term reconstituting HSCs, but not of myeloid potential, exemplifying possible dissection of signals downstream of c-Mpl. These CR systems therefore offer a useful tool to scrutinize complex signaling pathways in HSCs.
Collapse
Affiliation(s)
- Koichiro Saka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Stem Cell Processing / Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masanori Nojima
- Division of Advanced Medicine Promotion, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Makoto Otsu
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,Division of Stem Cell Processing / Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
31
|
Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, Zhang S, Wang J, Ma S, Wu P, Gao Y, Dong J, Tang F, Cheng T, Ema H. TGF-β1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11:274-287. [PMID: 29937145 PMCID: PMC6067088 DOI: 10.1016/j.stemcr.2018.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a role in the maintenance of quiescent hematopoietic stem cells (HSCs) in vivo. We asked whether TGF-β1 controls the cell cycle status of HSCs in vitro to enhance the reconstitution activity. To examine the effect of TGF-β1 on the HSC function, we used an in vitro culture system in which single HSCs divide with the retention of their short- and long-term reconstitution ability. Extensive single-cell analyses showed that, regardless of its concentration, TGF-β1 slowed down the cell cycle progression of HSCs but consequently suppressed their self-renewal potential. Cycling HSCs were not able to go back to quiescence with TGF-β1. This study revealed a negative role of TGF-β1 in the regulation of the HSC number and reconstitution activity. TGF-β1 slows down the cell cycle progression of HSCs Cycling HSCs were unable to go back to the G0 state with TGF-β1 TGF-β1 suppresses the self-renewal potential in HSCs The reduced division rate with TGF-β1 is reversible
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Sen Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Wenying Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Zhao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shanshan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Yun Gao
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ji Dong
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China.
| |
Collapse
|
32
|
Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines 2018. [PMID: 29518044 PMCID: PMC5874688 DOI: 10.3390/biomedicines6010031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Danish Zaidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Tyler R Young
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
33
|
Sugiyama N, Sonay AY, Tussiwand R, Cohen BE, Pantazis P. Effective Labeling of Primary Somatic Stem Cells with BaTiO 3 Nanocrystals for Second Harmonic Generation Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703386. [PMID: 29356374 DOI: 10.1002/smll.201703386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/14/2017] [Indexed: 05/22/2023]
Abstract
While nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long-term tracking. Here, the use of second-harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported. Their long-term photostability enables to investigate quantitatively at the single cell level their cellular fate in hematopoietic stem cells (HSCs) using both multiphoton and electron microscopy. It is found that the concentration of nanocrystals in proliferative multipotent progenitors is over 2.5-fold greater compared to quiescent stem cells; this difference vanishes when HSCs enter a nonquiescent, proliferative state, while their potency remains unaffected. Understanding the nanoparticle stem cell interaction allows to establish an effective and safe nanoparticle labeling strategy into somatic stem cells that can critically contribute to an understanding of their in vivo therapeutic potential.
Collapse
Affiliation(s)
- Nami Sugiyama
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Ali Y Sonay
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Roxanne Tussiwand
- Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| |
Collapse
|
34
|
Wang Y, Tian H, Cai W, Lian Z, Bhavanasi D, Wu C, Sato T, Kurokawa M, Wu D, Fu L, Wang H, Shen H, Liang D, Huang J. Tracking hematopoietic precursor division ex vivo in real time. Stem Cell Res Ther 2018; 9:16. [PMID: 29361987 PMCID: PMC5781326 DOI: 10.1186/s13287-017-0767-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deciphering molecular mechanisms underlying the division of hematopoietic stem cells (HSCs) and malignant precursors would improve our understanding of the basis of stem cell-fate decisions and oncogenic transformation. METHODS Using a novel reporter of hematopoietic precursor, Evi1-GFP, we tracked the division of hematopoietic precursors in culture in real time. RESULTS First, we confirmed that Evi1-GFP is a faithful reporter of HSC activity and identified three dividing patterns of HSCs: symmetric renewal, symmetric differentiation, and asymmetric division. Moreover, we found that the cytokine and growth factor combination (STIF) promotes symmetric renewal, whereas OP9 stromal cells balance symmetric renewal and differentiation of HSCs ex vivo. Interestingly, we found that Tet2 knockout HSCs underwent more symmetric differentiation in culture compared with the wild-type control. Intriguingly, OP9 stromal cells reverse the phenotype of Tet2 knockout HSCs ex vivo. Furthermore, we demonstrated that Tet2 -/- ;Flt3ITD acute myeloid leukemia (AML) precursors primarily underwent symmetric renewal divisions in culture. Mechanistically, we demonstrated that inhibiting DNA methylation can reverse the aberrant division phenotypes of Tet2 -/- and Tet2 -/- ;FLT3ITD precursors, suggesting that abnormal DNA methylation plays an important role in controlling (pre-)leukemic precursor fate decision ex vivo. CONCLUSIONS Our study exploited a new system to explore the molecular mechanisms of the regulation of benign and malignant hematopoietic precursor division ex vivo. The knowledge learned from these studies will provide new insights into the molecular mechanisms of HSC fate decision and leukemogenesis.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Science, Peking University, Beijing, People's Republic of China.,Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hong Tian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wenzhi Cai
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chao Wu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tomohiko Sato
- Department of Hematology and Oncology, University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dong Liang
- Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
35
|
Zarrabi M, Afzal E, Asghari MH, Mohammad M, Es HA, Ebrahimi M. Inhibition of MEK/ERK signalling pathway promotes erythroid differentiation and reduces HSCs engraftment in ex vivo expanded haematopoietic stem cells. J Cell Mol Med 2017; 22:1464-1474. [PMID: 28994199 PMCID: PMC5824365 DOI: 10.1111/jcmm.13379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self‐renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway—PD0325901 (PD)—significantly reduces the expansion of CD34+ and CD34+ CD38− cells, while there is no change in the expression of stemness‐related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB‐MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst‐forming unit‐erythroid colony (BFU‐E) as well as enhancement of erythroid glycophorin‐A marker. These results are in total conformity with up‐regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down‐regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self‐renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB‐haematopoietic progenitor cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Hossein Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Monireh Mohammad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Hosokawa K, MacArthur BD, Ikushima YM, Toyama H, Masuhiro Y, Hanazawa S, Suda T, Arai F. The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nat Commun 2017; 8:804. [PMID: 28986560 PMCID: PMC5630588 DOI: 10.1038/s41467-017-00935-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Repeated cell divisions and aging impair stem cell function. However, the mechanisms by which this occurs are not fully understood. Here we show that protection of telomeres 1A (Pot1a), a component of the Shelterin complex that protects telomeres, improves haematopoietic stem cell (HSC) activity during aging. Pot1a is highly expressed in young HSCs, but declines with age. In mouse HSCs, Pot1a knockdown increases DNA damage response (DDR) and inhibits self-renewal. Conversely, Pot1a overexpression or treatment with POT1a protein prevents DDR, maintained self-renewal activity and rejuvenated aged HSCs upon ex vivo culture. Moreover, treatment of HSCs with exogenous Pot1a inhibits the production of reactive oxygen species, suggesting a non-telomeric role for Pot1a in HSC maintenance. Consistent with these results, treatment with exogenous human POT1 protein maintains human HSC activity in culture. Collectively, these results show that Pot1a/POT1 sustains HSC activity and can be used to expand HSC numbers ex vivo.Repeated cell divisions induce DNA damage in haematopoietic stem cells (HSC) and telomeres are sensitive to this damage. Here, the authors show in murine HSCs that the telomere binding protein POT1a inhibited the production of reactive oxygen species, and rejuvenated aged HSCs.
Collapse
Affiliation(s)
- Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Yoshiko Matsumoto Ikushima
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hirofumi Toyama
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshikazu Masuhiro
- Laboratory of Molecular and Cellular Physiology, Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa, 252-0880, Japan
| | - Shigemasa Hanazawa
- Laboratory of Molecular and Cellular Physiology, Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa, 252-0880, Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
37
|
Grb2 regulates the proliferation of hematopoietic stem and progenitors cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2449-2459. [PMID: 28964849 DOI: 10.1016/j.bbamcr.2017.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023]
Abstract
Although Hematopoietic Stem and Progenitor Cell (HSPC) proliferation, survival and expansion have been shown to be supported by the cooperative action of different cytokines, little is known about the intracellular signaling pathways that are activated by cytokines upon binding to their receptors. Our study showed that Growth factor receptor-bound protein 2 (Grb2) mRNAs are preferentially expressed in HSC compared to progenitors and differentiated cells of the myeloid and erythroid lineages. Conditional deletion of Grb2 induced a rapid decline of erythroid and myeloid progenitors and a progressive decline of HSC numbers in steady state conditions. We showed that when transplanted, Grb2 deleted bone marrow cells could not reconstitute irradiated recipients. Strinkingly, Grb2 deletion did not modify HSPC quiescence, but impaired LT-HSC and progenitors ability to respond a proliferative signal induced by 5FU in vivo and by various cytokines in vitro. We showed finally that Grb2 links IL3 signaling to the ERK/MAPK proliferative pathway and that both SH2 and SH3 domains of Grb2 are crucial for IL3 signaling in progenitor cells. Our findings position Grb2 as a key adaptor that integrates various cytokines response in cycling HSPC.
Collapse
|
38
|
Alonso-Ferrero ME, van Til NP, Bartolovic K, Mata MF, Wagemaker G, Moulding D, Williams DA, Kinnon C, Waddington SN, Milsom MD, Howe SJ. Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors. Exp Hematol 2017; 57:21-29. [PMID: 28911908 PMCID: PMC5731634 DOI: 10.1016/j.exphem.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 11/19/2022]
Abstract
Integration-deficient vectors (IdLVs) express genes transiently in dividing stem cells. Hematopoietic stem/progenitor cells (HSPCs) can be programmed using IdLVs. HOXB4 or Angptl3 expression from IdLVs improves engraftment of transplanted HSPCs. Short-term gene delivery avoids the side effects associated with constitutive expression.
Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs. Constitutive overexpression of either of these genes is likely to be undesirable, but the transient nature of IdLVs reduces this risk and those associated with unsolicited gene expression in daughter cells. Transient expression led to increased multilineage hematopoietic engraftment in in vivo competitive repopulation assays without the side effects reported in constitutive overexpression models. Adult stem cell fate has not been programmed previously using IdLVs, but we demonstrate that these transient gene expression tools can produce clinically relevant alterations or be applied to investigate basic biology.
Collapse
Affiliation(s)
- Maria E Alonso-Ferrero
- Molecular and Cellular Immunology, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerol Bartolovic
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Márcia F Mata
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Hacettepe University, Stem Cell Research and Development Center, Ankara, Turkey; Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Dale Moulding
- Molecular and Cellular Immunology, University College London Great Ormond Street Institute of Child Health, London, UK
| | - David A Williams
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Kinnon
- Molecular and Cellular Immunology, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London Institute for Women's Health, London, UK; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael D Milsom
- Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM) and the German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany.
| | - Steven J Howe
- Molecular and Cellular Immunology, University College London Great Ormond Street Institute of Child Health, London, UK; Gene Transfer Technology Group, University College London Institute for Women's Health, London, UK
| |
Collapse
|
39
|
Roch A, Giger S, Girotra M, Campos V, Vannini N, Naveiras O, Gobaa S, Lutolf MP. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nat Commun 2017; 8:221. [PMID: 28790449 PMCID: PMC5548907 DOI: 10.1038/s41467-017-00291-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/18/2017] [Indexed: 11/13/2022] Open
Abstract
The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell–cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems. Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.
Collapse
Affiliation(s)
- Aline Roch
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sonja Giger
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mukul Girotra
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Vasco Campos
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nicola Vannini
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Olaia Naveiras
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.,Department of Medicine, Centre Hospitaler Universitaire Vaudois (CHUV), CH-1015, Lausanne, Switzerland
| | - Samy Gobaa
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Matthias P Lutolf
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
40
|
Lunger I, Fawaz M, Rieger MA. Single-cell analyses to reveal hematopoietic stem cell fate decisions. FEBS Lett 2017; 591:2195-2212. [PMID: 28600837 DOI: 10.1002/1873-3468.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best studied adult stem cells with enormous clinical value. Most of our knowledge about their biology relies on assays at the single HSC level. However, only the recent advances in developing new single cell technologies allowed the elucidation of the complex regulation of HSC fate decision control. This Review will focus on current attempts to investigate individual HSCs at molecular and functional levels. The advantages of these technologies leading to groundbreaking insights into hematopoiesis will be highlighted, and the challenges facing these technologies will be discussed. The importance of combining molecular and functional assays to enlighten regulatory networks of HSC fate decision control, ideally at high temporal resolution, becomes apparent for future studies.
Collapse
Affiliation(s)
- Ilaria Lunger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Galán-Díez M, Kousteni S. The osteoblastic niche in hematopoiesis and hematological myeloid malignancies. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:53-62. [PMID: 29098141 PMCID: PMC5662025 DOI: 10.1007/s40610-017-0055-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review focuses on evidence highlighting the bidirectional crosstalk between the hematopoietic stem cell (HSC) and their surrounding stromal cells, with a particular emphasis on cells of the osteoblast lineage. The role and molecular functions of osteoblasts in normal hematopoiesis and in myeloid hematological malignancies is discussed. RECENT FINDINGS Cells of the osteoblast lineage have emerged as potent regulators of HSC expansion that regulate their recruitment and, depending on their stage of differentiation, their activity, proliferation and differentiation along the lymphoid, myeloid and erythroid lineages. In addition, mutations in mature osteoblasts or their progenitors induce myeloid malignancies. Conversely, signals from myelodysplastic cells can remodel the osteoblastic niche to favor self-perpetuation. SUMMARY Understanding cellular crosstalk between osteoblastic cells and HSCs in the bone marrow microenvironment is of fundamental importance for developing therapies against benign and malignant hematological diseases.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
42
|
Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture. Stem Cell Reports 2017; 8:1549-1562. [PMID: 28479304 PMCID: PMC5469869 DOI: 10.1016/j.stemcr.2017.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation. Expansion of HSC precursors is accompanied by increased proliferation Final steps of HSC maturation are accompanied by decelerating proliferation Proliferative architecture of intra-aortic clusters is maintained during HSC development c-Kit expression levels correlate with the proliferative status of HSC precursors
Collapse
Affiliation(s)
- Antoniana Batsivari
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Anahi Binagui-Casas
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - David Hills
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul Travers
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
43
|
p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat Commun 2017; 8:14382. [PMID: 28176763 PMCID: PMC5309857 DOI: 10.1038/ncomms14382] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The mechanisms regulating hematopoietic stem and progenitor cell (HSPC) fate choices remain ill-defined. Here, we show that a signalling network of p190-B RhoGAP-ROS-TGF-β-p38MAPK balances HSPC self-renewal and differentiation. Upon transplantation, HSPCs express high amounts of bioactive TGF-β1 protein, which is associated with high levels of p38MAPK activity and loss of HSC self-renewal in vivo. Elevated levels of bioactive TGF-β1 are associated with asymmetric fate choice in vitro in single HSPCs via p38MAPK activity and this is correlated with the asymmetric distribution of activated p38MAPK. In contrast, loss of p190-B, a RhoGTPase inhibitor, normalizes TGF-β levels and p38MAPK activity in HSPCs and is correlated with increased HSC self-renewal in vivo. Loss of p190-B also promotes symmetric retention of multi-lineage capacity in single HSPC myeloid cell cultures, further suggesting a link between p190-B-RhoGAP and non-canonical TGF-β signalling in HSPC differentiation. Thus, intracellular cytokine signalling may serve as ‘fate determinants' used by HSPCs to modulate their activity. The success of hematopoietic stem cell (HSC) transplantation relies on understanding what regulates the fate decision to self-renew. Here, the authors show using both in vitro assays and in vivo transplantation that loss of the RhoGAP p190-B enhances self-renewal by inhibiting TGFβ/p38 signalling.
Collapse
|
44
|
Yucel D, Kocabas F. Developments in Hematopoietic Stem Cell Expansion and Gene Editing Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:103-125. [DOI: 10.1007/5584_2017_114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Ishida T, Suzuki S, Lai CY, Yamazaki S, Kakuta S, Iwakura Y, Nojima M, Takeuchi Y, Higashihara M, Nakauchi H, Otsu M. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells. Stem Cells 2016; 35:989-1002. [PMID: 27753160 DOI: 10.1002/stem.2524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002.
Collapse
Affiliation(s)
- Takashi Ishida
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sachie Suzuki
- Department of Hematology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Medical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Masanori Nojima
- Division of Advanced Medicine Promotion, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Nephrology in Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Makoto Otsu
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification. Blood 2016; 128:1181-92. [DOI: 10.1182/blood-2016-03-705590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/14/2016] [Indexed: 12/11/2022] Open
Abstract
Key Points
AFT024-induced HSC maintenance correlates with early survival/proliferation whereas early death is a major reason for HSC loss in culture. Dermatopontin is required for ex vivo HSC maintenance, and also improves HSC clonogenicity in stroma-based and stroma-free cultures.
Collapse
|
47
|
Kent DG, Dykstra BJ, Eaves CJ. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:2A.4.1-2A.4.24. [PMID: 27532815 DOI: 10.1002/cpsc.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David G Kent
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, United Kingdom
| | - Brad J Dykstra
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
48
|
Ishida T, Takahashi S, Lai CY, Nojima M, Yamamoto R, Takeuchi E, Takeuchi Y, Higashihara M, Nakauchi H, Otsu M. Multiple allogeneic progenitors in combination function as a unit to support early transient hematopoiesis in transplantation. J Exp Med 2016; 213:1865-80. [PMID: 27503070 PMCID: PMC4995077 DOI: 10.1084/jem.20151493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Cord blood (CB) is a valuable donor source in hematopoietic cell transplantation. However, the initial time to engraftment in CB transplantation (CBT) is often delayed because of low graft cell numbers. This limits the use of CB. To overcome this cell dose barrier, we modeled an insufficient dose CBT setting in lethally irradiated mice and then added hematopoietic stem/progenitor cells (HSCs/HPCs; HSPCs) derived from four mouse allogeneic strains. The mixture of HSPCs rescued recipients and significantly accelerated hematopoietic recovery. Including T cells from one strain favored single-donor chimerism through graft versus graft reactions, with early hematopoietic recovery unaffected. Furthermore, using clinically relevant procedures, we successfully isolated a mixture of CD34(+) cells from multiple frozen CB units at one time regardless of HLA-type disparities. These CD34(+) cells in combination proved transplantable into immunodeficient mice. This work provides proof of concept that when circumstances require support of hematopoiesis, combined multiple units of allogeneic HSPCs are capable of early hematopoietic reconstitution while allowing single-donor hematopoiesis by a principal graft.
Collapse
Affiliation(s)
- Takashi Ishida
- Department of Hematology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Satoshi Takahashi
- Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Masanori Nojima
- Division of Advanced Medicine Promotion, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Emiko Takeuchi
- Department of Immunology, Kitasato University Graduate School of Medical Science, Kanagawa 252-0374, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Makoto Otsu
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| |
Collapse
|
49
|
Abstract
Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461; .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461; .,Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.,Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
50
|
Barriers to Effective Genome Editing of Haematopoietic Stem Cells. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|