1
|
Li YR, Wilson M, Yang L. Target tumor microenvironment by innate T cells. Front Immunol 2022; 13:999549. [PMID: 36275727 PMCID: PMC9582148 DOI: 10.3389/fimmu.2022.999549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) remains one of the most prevailing barriers obstructing the implementation of effective immunotherapy against solid-state cancers. Eminently composed of immunosuppressive tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) among others, the TME attenuates the effects of immune checkpoint blockade and adoptive cell therapies, mandating a novel therapy capable of TME remediation. In this review we explore the potential of three innate-like T cell subsets, invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT) cells, and gamma delta T (γδT) cells, that display an intrinsic anti-TAM/MDSC capacity. Exhibiting both innate and adaptive properties, innate-like T cell types express a subset-specific TCR with distinct recombination, morphology, and target cell recognition, further supplemented by a variety of NK activating receptors. Both NK activating receptor and TCR activation result in effector cell cytotoxicity against targeted immunosuppressive cells for TME remediation. In addition, innate-like T cells showcase moderate levels of tumor cell killing, providing dual antitumor and anti-TAM/MDSC function. This latent antitumor capacity can be further bolstered by chimeric antigen receptor (CAR) engineering for recognition of tumor specific antigens to enhance antitumor targeting. In contrast with established CAR-T cell therapies, adoption of these innate-like cell types provides an enhanced safety profile without the risk of graft versus host disease (GvHD), due to their non-recognition of mismatched major histocompatibility complex (MHC) molecules, for use as widely accessible, allogeneic “off-the-shelf” cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Lili Yang,
| |
Collapse
|
2
|
Xiao R, Mansour AG, Huang W, Hassan QN, Wilkins RK, Komatineni SV, Bates R, Ali S, Chrislip LA, Queen NJ, Ma S, Yu J, Lordo MR, Mundy-Bosse BL, Caligiuri MA, Cao L. Adipocyte CD1d Gene Transfer Induces T Cell Expansion and Adipocyte Inflammation in CD1d Knockout Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2109-2121. [PMID: 35418470 PMCID: PMC9050908 DOI: 10.4049/jimmunol.2100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
CD1d, a lipid Ag-presenting molecule for invariant NKT (iNKT) cells, is abundantly expressed on adipocytes and regulates adipose homeostasis through iNKT cells. CD1d gene expression was restored in visceral adipose tissue adipocytes of CD1d knockout (KO) mice to investigate the interactions between adipocytes and immune cells within adipose tissue. We developed an adipocyte-specific targeting recombinant adeno-associated viral vector, with minimal off-target transgene expression in the liver, to rescue CD1d gene expression in visceral adipose tissue adipocytes of CD1d KO mice, followed by assessment of immune cell alternations in adipose tissue and elucidation of the underlying mechanisms of alteration. We report that adeno-associated virus-mediated gene transfer of CD1d to adipocytes in CD1d KO mice fails to rescue iNKT cells but leads to massive and selective expansion of T cells within adipose tissue, particularly CD8+ T effector cells, that is associated with adipocyte NLRP3 inflammasome activation, dysregulation of adipocyte functional genes, and upregulation of apoptotic pathway proteins. An NLRP3 inhibitor has no effect on T cell phenotypes whereas depletion of CD8+ T cells significantly attenuates inflammasome activation and abolishes the dysregulation of adipocyte functional genes induced by adipocyte CD1d. In contrast, adipocyte overexpression of CD1d fails to induce T cell activation in wild-type mice or in invariant TCR α-chain Jα18 KO mice that have a normal lymphocyte repertoire except for iNKT cells. Our studies uncover an adipocyte CD1d → CD8+ T cell → adipocyte inflammasome cascade, in which CD8+ T cells function as a key mediator of adipocyte inflammation likely induced by an allogeneic response against the CD1d molecule.
Collapse
Affiliation(s)
- Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Anthony G Mansour
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Quais N Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Medical Scientist Training Program, The Ohio State University, Columbus, OH; and
| | - Ryan K Wilkins
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Suraj V Komatineni
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Medical Scientist Training Program, The Ohio State University, Columbus, OH; and
| | - Logan A Chrislip
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Shoubao Ma
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA
| | - Matthew R Lordo
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Medical Scientist Training Program, The Ohio State University, Columbus, OH; and
| | - Bethany L Mundy-Bosse
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael A Caligiuri
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA;
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH;
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| |
Collapse
|
3
|
Yoo HJ, Kim NY, Kim JH. Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System. Mol Cells 2021; 44:310-317. [PMID: 33980746 PMCID: PMC8175153 DOI: 10.14348/molcells.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Na Young Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Abstract
Cellular metabolism is critical for generating energy and macromolecules for cell growth and survival. In recent years, the importance of metabolism in mediating T cell differentiation, proliferation, and function has been a hot topic of investigation. However, very little is known about metabolic regulation in invariant natural killer T (iNKT) cells. In this viewpoint, we will discuss what is currently known about immunometabolism in iNKT cells and how these findings relate to CD4 T cells.
Collapse
|
5
|
Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR. Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Front Immunol 2020; 11:610010. [PMID: 33312179 PMCID: PMC7708336 DOI: 10.3389/fimmu.2020.610010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (SA) bacteremia is responsible for over 10,000 deaths in the hospital setting each year. Both conventional CD4+ T cells and γδ T cells play protective roles in SA infection through secretion of IFN-γ and IL-17. However, the role of other unconventional T cells in SA infection is largely unknown. Natural killer T (NKT) cells, a subset of innate-like T cells, are activated rapidly in response to a wide range of self and microbial lipid antigens presented by MHC I-like molecule CD1d. NKT cells are divided into two groups, invariant NKT (iNKT) and type II NKT cells, based on TCR usage. Using mice lacking either iNKT cells or both types of NKT cells, we show that both NKT cell subsets are activated after systemic SA infection and produce IFN-γ in response to SA antigen, however type II NKT cells are sufficient to control bacterial burden and inflammatory infiltrate in infected organs. This protective capacity was specific for NKT cells, as mice lacking mucosal associated invariant T (MAIT) cells, another innate-like T cell subset, had no increased susceptibility to SA systemic infection. We identify polar lipid species from SA that induce IFN-γ production from type II NKT cells, which requires both CD1d-TCR engagement and IL-12 production by antigen presenting cells. We also demonstrate that a population of T cells enriched for type II NKT cells are increased in PBMC of SA bacteremic patients compared to healthy controls. Therefore, type II NKT cells perform effector functions that enhance control of SA infection prior to conventional T cell activation and recognize SA-derived lipid antigens. As CD1d is highly conserved in humans, these CD1d-restricted SA lipid antigens could be used in the design of next generation SA vaccines targeting cell-mediated immunity.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Raynor J, Lin A, Hummel SA, Lampe K, Jordan M, Hoebe K, Hildeman DA. The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Front Immunol 2020; 11:197. [PMID: 32153566 PMCID: PMC7044186 DOI: 10.3389/fimmu.2020.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points to a key role for NK cells in controlling adaptive immune responses. In studies examining the role of CD1d on CD4+ T cell responses, we found that a line of CD1d-deficient mice on the C57BL/6J background had a homozygous 129 locus on chromosome 6 containing the entire NK cell gene cluster. Mice possessing this locus (C57BL/6.NKC129) displayed a >10-fold reduction in antigen-specific CD4+ T cell responses after intracranial infection with lymphocytic choriomeningitis virus (LCMV). Neither parental strain displayed defects in viral-specific CD4+ T cell responses. Interestingly, following infection, increased numbers of NK cells accumulated in the lymph nodes of C57BL/6.NKC129 mice and displayed enhanced in vivo functionality. Moreover, depletion of NK cells with anti-asialo-GM-1 antibody in C57BL/6.NKC129 mice resulted in a >20-fold increase in viral-specific CD4+ T cell responses. Mechanistically, we found that dendritic cell antigen presentation and early type I IFN production were significantly decreased in C57BL/6.NKC129 mice, but were restored in perforin-deficient C57BL/6.NKC129 mice or following NK depletion. Together, these data reveal that the variable genomic regions containing the activating/inhibitory NK cell receptors are key determinants of antigen-specific CD4+ T cell responses, controlling type I IFN production and the antigen-presenting capacity of dendritic cells.
Collapse
Affiliation(s)
- Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Adora Lin
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah A Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristin Lampe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kasper Hoebe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Almeida CF, Sundararaj S, Le Nours J, Praveena T, Cao B, Burugupalli S, Smith DGM, Patel O, Brigl M, Pellicci DG, Williams SJ, Uldrich AP, Godfrey DI, Rossjohn J. Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors. Nat Commun 2019; 10:5242. [PMID: 31748533 PMCID: PMC6868179 DOI: 10.1038/s41467-019-12941-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F’-pocket-docking mode that contrasts sharply with the previously determined A’-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens. Natural killer T (NKT) cells include type I that express semi-invariant T cell receptor (TCR), and type II that cover a broader repertoire. Here the authors describe the crystal structure of a type II NKT TCR complexed with CD1d/antigen to propose that type II NKT TCRs may adapt multiple CD1d docking modes to maximise antigen recognition efficacy.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Srinivasan Sundararaj
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - T Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Benjamin Cao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Satvika Burugupalli
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Onisha Patel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Manfred Brigl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel G Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.,School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia. .,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
9
|
Singh AK, Rhost S, Löfbom L, Cardell SL. Defining a novel subset of CD1d-dependent type II natural killer T cells using natural killer cell-associated markers. Scand J Immunol 2019; 90:e12794. [PMID: 31141185 PMCID: PMC6851763 DOI: 10.1111/sji.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are αβ T cell receptor (TCR) expressing innate‐like T cells that display natural killer (NK) cell markers. Based on TCR characteristics, they are divided into two groups restricted to the MHC class I‐like molecule CD1d. Type I NKT cells, most extensively studied, are identified by a semi‐invariant Vα14‐Jα18 (mouse, Vα24‐Jα18 in humans) TCR reactive to the prototypic ligand α‐galactosylceramide presented on CD1d. In contrast, type II NKT cells display diverse TCR reacting to different CD1d‐presented ligands. There are no reagents that identify all type II NKT cells, limiting their exploration. Here, we searched for novel type II NKT cells by comparing Jα18−/−MHCII−/− mice that harbour type II but not type I NKT cells, and CD1d−/−MHCII−/− mice, lacking all NKT cells. We identified significantly larger populations of CD4+ and CD4−CD8− (double negative, DN) TCRβ+ cells expressing NKG2D or NKG2A/C/E in Jα18−/−MHCII−/− mice compared with CD1d−/−MHCII−/− mice, suggesting that 30%‐50% of these cells were type II NKT cells. They expressed CD122, NK1.1, CXCR3 and intermediate/low levels of CD45RB. Further, the CD4+ subset was CD69+, while the DN cells were CD49b+ and CD62L+. Both subsets expressed the NKT cell‐associated promyelocytic leukaemia zinc finger (PLZF) transcription factor and Tbet, while fewer cells expressed RORγt. NKG2D+ CD4+ and DN populations were producers of IFN‐γ, but rarely IL‐4 and IL‐17. Taken together, we identify a novel subset of primary CD4+ and DN type II NKT cells that expresses NKG2 receptors have typical NKT cell phenotypes and a TH1‐like cytokine production.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Bonney EA, Johnson MR. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta 2019; 79:53-61. [PMID: 30929747 DOI: 10.1016/j.placenta.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The role of the immune system in term (TL) and preterm labor (PTL) is unknown. Despite the fact that globally, PTL remains the most important cause of childhood mortality. Infection, typically of the fetal membranes, termed chorioamnionitis, is the best-understood driver of PTL, but the mechanisms underpinning other causes, including idiopathic and stretch-induced PTL, are unclear, but may well involve activation of the maternal immune system. The final common pathway of placental dysfunction, fetal membrane rupture, cervical dilation and uterine contractions are highly complex processes. At term, choriodecidual rather than myometrial inflammation is thought to drive the onset of labor and similar findings are present in different types of PTL including idiopathic PTL. Although accumulated data has confirmed an association between the immune response and preterm birth, there is yet a need to understand if this response is an initiator or a consequence of tissue-level dysregulation. This review focuses on the potential role of macrophages and T cells in innate and adaptive immunity relevant to preterm birth in humans and animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| | - Mark R Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
11
|
Abstract
Regulatory T cells are central mediators of immune regulation and play an essential role in the maintenance of immune homeostasis in the steady state and under pathophysiological conditions. Disruption of CD8 Treg-dependent recognition of Qa-1-restricted self-antigens can result in dysregulated immune responses, tissue damage, autoimmune disease and cancer. Recent progress in studies on regulatory T cells of the CD8 lineage has provided new biological insight into this specialized regulatory T cell subpopulation. Identification of the Helios transcription factor as an essential control element for the differentiation and function of CD8 regulatory T cells has led to a better understanding of the unique genetic program of these cells. Recent analyses of T-cell receptor usage and antigen recognition by Qa-1-restricted CD8 Treg have provided additional insight into the unusual biological function of this regulatory CD8 lineage. Here we summarize recent advances in our understanding of CD8 regulatory T cells with emphasis on lineage commitment, differentiation and stability.
Collapse
Affiliation(s)
- Hidetoshi Nakagawa
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States.
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Schattgen SA, Thomas PG. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Immunol Rev 2018; 284:79-90. [PMID: 29944761 PMCID: PMC6128411 DOI: 10.1111/imr.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last several decades, novel populations of unconventional T cells have been identified; defined by an invariant (or nearly invariant) T cell receptor (TCR) with a fixed specificity to non-canonical antigens and major histocompatibility (MHC) molecules, they form large, functionally monoclonal populations tasked with surveying for their specific antigens. With residence in both lymphoid and non-lymphoid tissues coupled with their ability to rapidly produce a spectrum of cytokines and effector molecules, the unconventional T cells are poised as some of the first responders to infection/damage and are thought to provide critical coverage before more focused, conventional T cell responses are mobilized. However, new technologies for the measurement and characterization of TCR repertoires have identified an underappreciated amount of TCR diversity in the unconventional T cells. In many cases, the specificities of these diverse TCRs converge on the same or similar antigens as their invariant counterparts, while others have yet to be defined. Here, we will review the current knowledge of the TCR repertoires of unconventional T cells and discuss how repertoires might be used as a framework for their organization, and further our understanding of their role not only during an immune response, but also their contribution in maintaining homeostasis.
Collapse
Affiliation(s)
| | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
13
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
14
|
Pereira CS, Ribeiro H, Macedo MF. From Lysosomal Storage Diseases to NKT Cell Activation and Back. Int J Mol Sci 2017; 18:ijms18030502. [PMID: 28245613 PMCID: PMC5372518 DOI: 10.3390/ijms18030502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.
Collapse
Affiliation(s)
- Cátia S Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Helena Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Fatima Macedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago Agra do crasto-edifício 30, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity. J Immunol Res 2016; 2016:2876275. [PMID: 28070524 PMCID: PMC5192300 DOI: 10.1155/2016/2876275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/13/2016] [Indexed: 11/17/2022] Open
Abstract
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
Collapse
|
16
|
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13:277-92. [PMID: 27041638 PMCID: PMC4856800 DOI: 10.1038/cmi.2015.112] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the "liver tolerance effect". Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| |
Collapse
|
17
|
Govindarajan S, Elewaut D, Drennan M. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen. J Vis Exp 2015:e53256. [PMID: 26555769 DOI: 10.3791/53256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Dirk Elewaut
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Michael Drennan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University;
| |
Collapse
|
18
|
|
19
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Wolf BJ, Tatituri RVV, Almeida CF, Le Nours J, Bhowruth V, Johnson D, Uldrich AP, Hsu FF, Brigl M, Besra GS, Rossjohn J, Godfrey DI, Brenner MB. Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2540-51. [PMID: 26254340 DOI: 10.4049/jimmunol.1501019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023]
Abstract
Semi-invariant/type I NKT cells are a well-characterized CD1d-restricted T cell subset. The availability of potent Ags and tetramers for semi-invariant/type I NKT cells allowed this population to be extensively studied and revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse/type II NKT (dNKT) cells are poorly understood because the lipid Ags that they recognize are largely unknown. We sought to identify dNKT cell lipid Ag(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol as a microbial Ag that was significantly more potent than a previously characterized dNKT cell Ag, mammalian phosphatidylglycerol. Further, although mammalian phosphatidylglycerol-loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived phosphatidylglycerol-loaded tetramers did. The structure of Listeria phosphatidylglycerol was distinct from mammalian phosphatidylglycerol because it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d-binding lipid-displacement studies revealed that the microbial phosphatidylglycerol Ag binds significantly better to CD1d than do counterparts with the same headgroup. These data reveal a highly potent microbial lipid Ag for a subset of dNKT cells and provide an explanation for its increased Ag potency compared with the mammalian counterpart.
Collapse
Affiliation(s)
- Benjamin J Wolf
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raju V V Tatituri
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Catarina F Almeida
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jérôme Le Nours
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Veemal Bhowruth
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Darryl Johnson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, MO 63110
| | - Manfred Brigl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging at University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
21
|
Macho-Fernandez E, Brigl M. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Front Immunol 2015; 6:362. [PMID: 26284062 PMCID: PMC4517383 DOI: 10.3389/fimmu.2015.00362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Brigl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Delovitch TL. Imaging of NKT Cell Recirculation and Tissue Migration during Antimicrobial Immunity. Front Immunol 2015; 6:356. [PMID: 26236312 PMCID: PMC4500992 DOI: 10.3389/fimmu.2015.00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/30/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Terry L. Delovitch
- Laboratory of Autoimmune Diabetes, Department of Microbiology and Immunology, Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
23
|
Marrero I, Ware R, Kumar V. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front Immunol 2015; 6:316. [PMID: 26136748 PMCID: PMC4470258 DOI: 10.3389/fimmu.2015.00316] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Randle Ware
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
24
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
25
|
Liew PX, Kubes P. Intravital imaging - dynamic insights into natural killer T cell biology. Front Immunol 2015; 6:240. [PMID: 26042123 PMCID: PMC4438604 DOI: 10.3389/fimmu.2015.00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer T (NKT) cells were first recognized more than two decades ago as a separate and distinct lymphocyte lineage that modulates an expansive range of immune responses. As innate immune cells, NKT cells are activated early during inflammation and infection, and can subsequently stimulate or suppress the ensuing immune response. As a result, researchers hope to harness the immunomodulatory properties of NKT cells to treat a variety of diseases. However, many questions still remain unanswered regarding the biology of NKT cells, including how these cells traffic from the thymus to peripheral organs and how they play such contrasting roles in different immune responses and diseases. In this new era of intravital fluorescence microscopy, we are now able to employ this powerful tool to provide quantitative and dynamic insights into NKT cell biology including cellular dynamics, patrolling, and immunoregulatory functions with exquisite resolution. This review will highlight and discuss recent studies that use intravital imaging to understand the spectrum of NKT cell behavior in a variety of animal models.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary , Calgary, AB , Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
26
|
Kang BH, Park HJ, Yum HI, Park SP, Park JK, Kang EH, Lee JI, Lee EB, Park CG, Jung KC, Park SH. Thymic low affinity/avidity interaction selects natural Th1 cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5861-71. [PMID: 25972479 DOI: 10.4049/jimmunol.1401628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Identification of intrathymic eomesodermin(+) (Eomes(+)) CD4 T cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. Promyelocytic leukemia zinc finger protein(+) T cells and natural Th17 cells are known to be generated by sensing a high and persistent TCR strength, whereas this is not the case for Eomes(+) CD4 T cells. These cells go through low-level signal during the entire maturation pathway, which subsequently leads to induction of high susceptibility to cytokine IL-4. This event seems to be a major determinant for the generation of this type of cell. These T cells are functionally equivalent to Th1 cells that are present in the periphery, and this event takes place both in transgenic and in wild-type mice. There is additional evidence that this type of Eomes(+) innate CD4 T cell is also present in human cord blood.
Collapse
Affiliation(s)
- Byung Hyun Kang
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hyo Jin Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Hye In Yum
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Seung Pyo Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jin Kyun Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Eun Ha Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Jae-Il Lee
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Chung-Gyu Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; and
| | - Kyeong Cheon Jung
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Hospital, Seoul 110-744, Korea
| | - Seong Hoe Park
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea;
| |
Collapse
|
27
|
Kim N, Lee H, Shin J, Nam YS, Im KI, Lim JY, Lee ES, Kang YN, Park SH, Cho SG. Immune Reconstitution Kinetics following Intentionally Induced Mixed Chimerism by Nonmyeloablative Transplantation. PLoS One 2015; 10:e0126318. [PMID: 25961559 PMCID: PMC4427480 DOI: 10.1371/journal.pone.0126318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.
Collapse
Affiliation(s)
- Nayoun Kim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Hyunji Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Junghoon Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Young-Sun Nam
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Keon-Il Im
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jung-Yeon Lim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun-Sol Lee
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young-Nam Kang
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Se-Ho Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Seok-Goo Cho
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea
- Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
28
|
Abstract
The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Committee on Immunology and Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
29
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Weng X, Liao CM, Bagchi S, Cardell SL, Stein PL, Wang CR. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma. Eur J Immunol 2014; 44:3646-57. [PMID: 25236978 DOI: 10.1002/eji.201444848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022]
Abstract
CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.
Collapse
Affiliation(s)
- Xiufang Weng
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 2014; 142:321-36. [PMID: 24428389 DOI: 10.1111/imm.12247] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
32
|
Maricic I, Girardi E, Zajonc DM, Kumar V. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:4580-9. [PMID: 25261475 DOI: 10.4049/jimmunol.1400699] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
33
|
Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci U S A 2014; 111:2674-9. [PMID: 24550295 DOI: 10.1073/pnas.1323845111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP(+)TCRβ(+) phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy.
Collapse
|
34
|
Kadri N, Blomqvist M, Cardell SL. Type II natural killer T cells: a new target for immunomodulation? Expert Rev Clin Immunol 2014; 4:615-27. [DOI: 10.1586/1744666x.4.5.615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
36
|
Verykokakis M, Krishnamoorthy V, Iavarone A, Lasorella A, Sigvardsson M, Kee BL. Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5973-83. [PMID: 24244015 PMCID: PMC3864619 DOI: 10.4049/jimmunol.1301521] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cells display characteristics of both adaptive and innate lymphoid cells (ILCs). Like other ILCs, iNKT cells constitutively express ID proteins, which antagonize the E protein transcription factors that are essential for adaptive lymphocyte development. However, unlike ILCs, ID2 is not essential for thymic iNKT cell development. In this study, we demonstrated that ID2 and ID3 redundantly promoted iNKT cell lineage specification involving the induction of the signature transcription factor PLZF and that ID3 was critical for development of TBET-dependent NKT1 cells. In contrast, both ID2 and ID3 limited iNKT cell numbers by enforcing the postselection checkpoint in conventional thymocytes. Therefore, iNKT cells show both adaptive and innate-like requirements for ID proteins at distinct checkpoints during iNKT cell development.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Department of Pathology, University of Chicago, Chicago, IL, 60637
- Committee on Immunology, University of Chicago, Chicago, IL, 60637
| | | | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, 10032
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032
- Department of Pathology, Columbia University Medical Center, New York, NY, 10032
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, 10032
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032
- Department of Pathology, Columbia University Medical Center, New York, NY, 10032
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty for Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Barbara L. Kee
- Department of Pathology, University of Chicago, Chicago, IL, 60637
- Committee on Immunology, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
37
|
Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 2013; 39:1032-42. [PMID: 24239091 PMCID: PMC3875342 DOI: 10.1016/j.immuni.2013.11.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
Abstract
The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, CD1d/chemistry
- Antigens, CD1d/metabolism
- Crystallography, X-Ray
- Epitopes
- Humans
- Jurkat Cells
- Lipids/immunology
- Major Histocompatibility Complex/immunology
- Models, Molecular
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sulfoglycosphingolipids/chemistry
- Sulfoglycosphingolipids/metabolism
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adrienne M Luoma
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Toufic Mayassi
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Leslie A Bembinster
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Li Bai
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Damien Picard
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Brian Anderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Louise Scharf
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer E Kung
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Leah V Sibener
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Zeissig S, Blumberg RS. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 2013; 25:690-6. [PMID: 24210255 PMCID: PMC3867259 DOI: 10.1016/j.coi.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Abstract
Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Li J, Wu D, Jiang N, Zhuang Y. Combined deletion of Id2 and Id3 genes reveals multiple roles for E proteins in invariant NKT cell development and expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5052-64. [PMID: 24123680 PMCID: PMC3837387 DOI: 10.4049/jimmunol.1301252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The invariant NKT (iNKT) cells represent a unique group of αβ T cells that have been classified based on their exclusive usage of the invariant Vα14Jα18 TCRα-chain and their innate-like effector function. Thus far, the transcriptional programs that control Vα14Jα18 TCRα rearrangements and the population size of iNKT cells are still incompletely defined. E protein transcription factors have been shown to play necessary roles in the development of multiple T cell lineages, including iNKT cells. In this study, we examined E protein functions in T cell development through combined deletion of genes encoding E protein inhibitors Id2 and Id3. Deletion of Id2 and Id3 in T cell progenitors resulted in a partial block at the pre-TCR selection checkpoint and a dramatic increase in numbers of iNKT cells. The increase in iNKT cells is accompanied with a biased rearrangement involving Vα14 to Jα18 recombination at the double-positive stage and enhanced proliferation of iNKT cells. We further demonstrate that a 50% reduction of E proteins can cause a dramatic switch from iNKT to innate-like γδ T cell fate in Id2- and Id3-deficient mice. Collectively, these findings suggest that Id2- and Id3-mediated inhibition of E proteins controls iNKT development by restricting lineage choice and population expansion.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Di Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
40
|
Pereira P, Berthault C, Burlen-Defranoux O, Boucontet L. Critical Role of TCR Specificity in the Development of Vγ1Vδ6.3+ Innate NKTγδ Cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1716-23. [DOI: 10.4049/jimmunol.1203168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Bondarenko S, Catapano AL, Norata GD. The CD1d-natural killer T cell axis in atherosclerosis. J Innate Immun 2013; 6:3-12. [PMID: 23774666 DOI: 10.1159/000351034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
A key role for 'lipid-sensing' CD1-restricted natural killer T (NKT) cells in the pathogenesis of atherosclerosis has been suggested. However, the biology of NKT cells remains poorly characterized, as in different experimental settings their activation was reported to both stimulate and suppress innate and adaptive immune responses. Most of the data from experimental models suggest that NKT cells are proatherogenic; however, it is debated whether the increase in atherosclerosis observed following NKT cell stimulation is a consequence of the inability to induce functional NKT cells rather than the proatherogenic nature of NKT cells. CD1d-expressing antigen-presenting cells and NKT cells were detected in mouse and human atherosclerotic lesions. Furthermore, several lysophospholipids and glycosphingolipids, known to accumulate in atherosclerotic plaques, are antigenic for human NKT cell clones. Lipid transfer proteins, such as apolipoprotein E and microsomal triglyceride transfer protein, are central to NKT cell responses. All these data suggest a profound relation between lipid metabolism, CD1d-NKT cell axis activation and atherosclerosis. In this review, we summarize the advances and gaps in our knowledge of NKT cell biology in the context of atherosclerosis as well as the possibility of influencing NKT cell polarization toward an atheroprotective phenotype.
Collapse
Affiliation(s)
- Sergey Bondarenko
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
42
|
Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition. Proc Natl Acad Sci U S A 2013; 110:5097-102. [PMID: 23493550 DOI: 10.1073/pnas.1302923110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells recognize self lipid antigens presented by CD1d molecules. The nature of the self-antigens involved in the development and maturation of iNKT cells is poorly defined. Lysophospholipids are self-antigens presented by CD1d that are generated through the action of phospholipases A1 and A2. Lysosomal phospholipase A2 (LPLA2, group XV phospholipase A2) resides in the endocytic system, the main site where CD1d antigen acquisition occurs, suggesting that it could be particularly important in CD1d function. We find that Lpla2(-/-) mice show a decrease in iNKT cell numbers that is neither the result of a general effect on the development of lymphocyte populations nor of effects on CD1d expression. However, endogenous lipid antigen presentation by CD1d is reduced in the absence of LPLA2. Our data suggest that LPLA2 plays a role in the generation of CD1d complexes with thymic lipids required for the normal selection and maturation of iNKT cells.
Collapse
|
43
|
Abstract
Natural killer T (NKT) cells were first recognized more than two decades ago as a distinct lymphocyte lineage that regulates a broad range of immune responses. The activation of NKT cells paradoxically can lead to either suppression or stimulation of immune responses, but despite this uncertainty, many investigators are hopeful that immune therapies can be developed based on NKT cell modulation. To date, the biology of NKT cells is not well characterized and details of their development have only just started to emerge. It remains unclear how NKT cells migrate from the thymus to the peripheral organs and tissues, and in turn play such diverse roles from one type of immune response to another. Despite this, recent advances in intravital microscopy represent a powerful tool for revealing new insights into NKT cellular dynamics, their patrolling and immunoregulatory functions, which could not have been gained by non-microscopy means. Indeed, imaging has revolutionized the way we visualize with exceptional resolution the cells of the immune system. Instead of seeking a comprehensive review of NKT cell biology, this review attempts to highlight some of the recent studies that use in vivo imaging technologies to address NKT cell responses in a variety of animal models.
Collapse
|
44
|
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13:101-17. [PMID: 23334244 DOI: 10.1038/nri3369] [Citation(s) in RCA: 633] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invariant natural killer T (iNKT) cells exist in a 'poised effector' state, which enables them to rapidly produce cytokines following activation. Using a nearly monospecific T cell receptor, they recognize self and foreign lipid antigens presented by CD1d in a conserved manner, but their activation can catalyse a spectrum of polarized immune responses. In this Review, we discuss recent advances in our understanding of the innate-like mechanisms underlying iNKT cell activation and describe how lipid antigens, the inflammatory milieu and interactions with other immune cell subsets regulate the functions of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
45
|
Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A 2013; 110:1827-32. [PMID: 23307809 DOI: 10.1073/pnas.1220601110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CD1d-restricted natural killer T (NKT) cells include two major subgroups. The most widely studied are Vα14Jα18(+) invariant NKT (iNKT) cells that recognize the prototypical α-galactosylceramide antigen, whereas the other major group uses diverse T-cell receptor (TCR) α-and β-chains, does not recognize α-galactosylceramide, and is referred to as diverse NKT (dNKT) cells. dNKT cells play important roles during infection and autoimmunity, but the antigens they recognize remain poorly understood. Here, we identified phosphatidylglycerol (PG), diphosphatidylglycerol (DPG, or cardiolipin), and phosphatidylinositol from Mycobacterium tuberculosis or Corynebacterium glutamicum as microbial antigens that stimulated various dNKT, but not iNKT, hybridomas. dNKT hybridomas showed distinct reactivities for diverse antigens. Stimulation of dNKT hybridomas by microbial PG was independent of Toll-like receptor-mediated signaling by antigen-presenting cells and required lipid uptake and/or processing. Furthermore, microbial PG bound to CD1d molecules and plate-bound PG/CD1d complexes stimulated dNKT hybridomas, indicating direct recognition by the dNKT cell TCR. Interestingly, despite structural differences in acyl chain composition between microbial and mammalian PG and DPG, lipids from both sources stimulated dNKT hybridomas, suggesting that presentation of microbial lipids and enhanced availability of stimulatory self-lipids may both contribute to dNKT cell activation during infection.
Collapse
|
46
|
Abstract
Natural killer T (NKT) cells are innate-like T cells that rapidly produce a variety of cytokines following T cell receptor (TCR) activation and can shape the immune response in many different settings. There are two main NKT cell subsets: type I NKT cells are typically characterized by the expression of a semi-invariant TCR, whereas the TCRs expressed by type II NKT cells are more diverse. This Review focuses on the defining features and emerging generalities regarding how NKT cells specifically recognize self, microbial and synthetic lipid-based antigens that are presented by CD1d. Such information is vitally important to better understand, and fully harness, the therapeutic potential of NKT cells.
Collapse
|
47
|
Viale R, Ware R, Maricic I, Chaturvedi V, Kumar V. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation. ACTA ACUST UNITED AC 2012; 8:287-296. [PMID: 25288922 DOI: 10.2174/157339512804806224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans. While most type I NKT cells can recognize αGalCer and express a semi-invariant T cell receptor (TCR), a major population of type II NKT cells reactive to sulfatide utilizes an oligoclonal TCR. Furthermore TCR recognition features of NKT subsets are also distinctive with almost parallel as opposed to perpendicular footprints on the CD1d molecules for the type I and type II NKT cells respectively. Here we present a view based upon the recent studies in different clinical and experimental settings that while type I NKT cells are more often pathogenic, they may also be regulatory. On the other hand, sulfatide-reactive type II NKT cells mostly play an inhibitory role in the control of autoimmune and inflammatory diseases. Since the activity and cytokine secretion profiles of NKT cell subsets can be modulated differently by lipid ligands or their analogs, novel immunotherapeutic strategies are being developed for their differential activation for potential intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Rachael Viale
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Randle Ware
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Varun Chaturvedi
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| |
Collapse
|
48
|
Girardi E, Zajonc DM. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 2012; 250:167-79. [PMID: 23046129 PMCID: PMC3471380 DOI: 10.1111/j.1600-065x.2012.01166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Binding Sites
- Epitopes
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lipids/chemistry
- Lipids/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA, USA
| | | |
Collapse
|
49
|
Rhost S, Sedimbi S, Kadri N, Cardell SL. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol 2012; 76:246-55. [PMID: 22724893 DOI: 10.1111/j.1365-3083.2012.02750.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer T (NKT) lymphocytes are αβ T cells activated by lipid-based ligands presented on the non-polymorphic CD1d-molecule. Type I NKT cells that carry an invariant Vα14 (in the mouse) or Vα24 (in humans) T cell receptor α-chain rearrangement have received significant attention for their involvement in a diversity of immune reactions. Their sister population, CD1d-restricted type II NKT cells, has been more difficult to study because of the lack of molecular markers that specify these cells. In the last few years, however, significant progress has been made, demonstrating that type II NKT cells have unique functions in immune responses to tumours and infections, in autoimmunity, obesity and graft-versus-host disease. Type II NKT cells appear more frequent than type I NKT cells in humans and accumulate in certain diseases such as ulcerative colitis, hepatitis and multiple myeloma. Recently, novel type II NKT cell ligands have been identified, and it is becoming clear that the type II NKT cell population may be oligoclonal. Here, we review the recent progress in the study of type II NKT cells, supporting the view that type II NKT cells may be attractive targets for immunotherapy.
Collapse
Affiliation(s)
- S Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
50
|
Girardi E, Maricic I, Wang J, Mac TT, Iyer P, Kumar V, Zajonc DM. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol 2012; 13:851-6. [PMID: 22820602 PMCID: PMC3442777 DOI: 10.1038/ni.2371] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/30/2012] [Indexed: 12/14/2022]
Abstract
Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Autoantigens/immunology
- Crystallization
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Mice
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Sulfoglycosphingolipids/immunology
- Surface Plasmon Resonance
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|