1
|
Suzuki E, Fukuda T. Multifaceted Functions of TWSG1: From Embryogenesis to Cancer Development. Int J Mol Sci 2022; 23:12755. [PMID: 36361543 PMCID: PMC9657663 DOI: 10.3390/ijms232112755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.
Collapse
Affiliation(s)
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
2
|
Abstract
The transforming growth factor-β (TGF-β) family includes cytokines controlling cell behavior, differentiation and homeostasis of various tissues including components of the immune system. Despite well recognized importance of TGF-β in controlling T cell functions, the immunomodulatory roles of many other members of the TGF-β cytokine family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone Morphogenic Protein Receptor 1α (BMPR1α) is upregulated by activated effector and Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell types. BMPR1α inhibits generation of proinflammatory Th17 cells and sustains peripheral Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell plasticity and transition between Treg and Th cells. BMPR1α deficiency in in vitro induced and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a (p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1α may represent regulatory modules shaping epigenetic landscape and controlling proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP receptors and their crosstalk with receptors for TGF-β will contribute to our understanding of peripheral immunoregulation.
Collapse
Affiliation(s)
- Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
3
|
Xiao G, Gao X, Li L, Liu C, Liu Z, Peng H, Xia X, Yi X, Zhou R. An Immune-Related Prognostic Signature for Predicting Clinical Outcomes and Immune Landscape in IDH-Mutant Lower-Grade Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:3766685. [PMID: 34961815 PMCID: PMC8710162 DOI: 10.1155/2021/3766685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and treatment options needs to be investigated. METHODS A six-gene immune-related prognostic signature in IDH-mutant LGGs was constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. RESULTS Stratification and multivariate Cox analysis unveiled that the six-gene signature was an independent prognostic factor. The signature (0.806/0.795/0.822) showed a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and 1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells, inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the survival in IDH-mutant LGGs patients. CONCLUSION The six-gene signature could be a promising prognostic biomarker, which is promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. The study also refined the current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and overall survival.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen 518122, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102205, China
| | - Chao Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiqin Peng
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102205, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Cismaru AC, Soritau O, Jurj AM, Raduly LZ, Pop B, Bocean C, Miclea D, Baldasici O, Moldovan C, Urian L, Braicu C, Chira S, Cojocneanu R, Pop LA, Burz C, Berindan Neagoe I. Human Chorionic Gonadotropin Improves the Proliferation and Regenerative Potential of Bone Marrow Adherent Stem Cells and the Immune Tolerance of Fetal Microchimeric Stem Cells In Vitro. Stem Cell Rev Rep 2021; 16:524-540. [PMID: 32020407 DOI: 10.1007/s12015-020-09957-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nongonadal tissues express luteinizing hormone-chorionic gonadotropin receptors (LHCG-R) which are essential for their growth during fetal development. Adult mesenchymal stem/stromal cells (MSCs) have been shown to express functional LHCG-R outside pregnancy conditions, making them susceptible to hCG stimulation. In the present study we tested the effect of hCG treatment on bone marrow (BM) derived adherent stem cells in vitro, isolated from a parous women, mother of male sons, in order to evaluate its effect on maternal MSCs and in the same time on fetal microchimeric stem cells (FMSCs), to better understand the outcomes of this safe and affordable treatment on cell proliferation and expression of pluripotency genes. Our study highlights the beneficial effects of hCG exposure on gene regulation in bone marrow adherent stem cells through the upregulation of pluripotency genes and selection of more primitive mesenchymal stem cells with a better differentiation potential. Validation of these effects on MSCs and FMSCs long after parturition in vivo represents a close perspective as it could set the premises of a new mobilization strategy for the stem cell transplantation procedures in the clinical setting.
Collapse
Affiliation(s)
- Andrei Cosmin Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Olga Soritau
- Radiotherapy, Radio-biology and Tumor Biology Laboratory, The Oncology Institute "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ancuta Maria Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Pop
- Pathology Department, The Oncology Institute "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Cosmina Bocean
- Pathology Department, The Oncology Institute "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Diana Miclea
- Genetics Department, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Baldasici
- Functional Genomics, Proteomics and Experimental Pathology Laboratory, The Oncology Institute "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFUTURE, the Research Center for Advanced Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Urian
- Hematology Department, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudia Burz
- Immunology Department, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Consequences of BMPR2 Deficiency in the Pulmonary Vasculature and Beyond: Contributions to Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092499. [PMID: 30149506 PMCID: PMC6165502 DOI: 10.3390/ijms19092499] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its association with familial pulmonary arterial hypertension (PAH) in 2000, Bone Morphogenetic Protein Receptor II (BMPR2) and its related signaling pathway have become recognized as a key regulator of pulmonary vascular homeostasis. Herein, we define BMPR2 deficiency as either an inactivation of the receptor, decreased receptor expression, or an impairment of the receptor’s downstream signaling pathway. Although traditionally the phenotypic consequences of BMPR2 deficiency in PAH have been thought to be limited to the pulmonary vasculature, there is evidence that abnormalities in BMPR2 signaling may have consequences in many other organ systems and cellular compartments. Revisiting how BMPR2 functions throughout health and disease in cells and organs beyond the lung vasculature may provide insight into the contribution of these organ systems to PAH pathogenesis as well as the potential systemic manifestation of PAH. Here we review our knowledge of the consequences of BMPR2 deficiency across multiple organ systems.
Collapse
|
6
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
8
|
Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front Immunol 2015; 6:442. [PMID: 26441956 PMCID: PMC4564722 DOI: 10.3389/fimmu.2015.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil ; Graduate Program in Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Larissa Vasconcelos-Fontes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| |
Collapse
|
9
|
Targeted Mutation of Nuclear Bone Morphogenetic Protein 2 Impairs Secondary Immune Response in a Mouse Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:975789. [PMID: 26491697 PMCID: PMC4603606 DOI: 10.1155/2015/975789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Abstract
We recently identified a nuclear variant of the BMP2 growth factor, called nBMP2. In an effort to understand the function of this variant protein, we generated a mouse line in which BMP2 is expressed and functions normally, but nBMP2 is excluded from the nucleus. This novel mutation allows the study of nBMP2 without compromising BMP2 function. To determine whether nBMP2 plays a role in immune function, we performed a series of experiments in which we compared mouse survival, organ weights, immune cells numbers, and bacterial load in wild type and nBmp2NLStm mice following primary and secondary challenges with Staphylococcus aureus. Following primary challenge with S. aureus, wild type and nBmp2NLStm mice showed no differences in survival or bacterial load and generated similar numbers and types of leukocytes, although mutant spleens were smaller than wild type. Secondary bacterial challenge with S. aureus, however, produced differences in survival, with increased mortality seen in nBmp2NLStm mice. This increased mortality corresponded to higher levels of bacteremia in nBmp2NLStm mice and to a reduced enlargement of mutant spleens in response to the secondary infection. Together, these results suggest that the recently described nuclear variant of BMP2 is necessary for efficient secondary immune responses.
Collapse
|
10
|
Nagel S, Ehrentraut S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Repressed BMP signaling reactivates NKL homeobox gene MSX1 in a T-ALL subset. Leuk Lymphoma 2014; 56:480-91. [PMID: 24844359 DOI: 10.3109/10428194.2014.924119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), several members of the NK-like (NKL) homeobox genes are aberrantly expressed. Here, we have analyzed the activity of NKL homeobox gene MSX1 using pediatric T-ALL in silico data, detecting overexpression in 11% of patients. Quantification of MSX1 transcripts in a panel of 24 T-ALL cell lines demonstrated overexpression in two examples. Comparative expression profiling indicated inhibition of the bone morphogenetic protein (BMP) signaling pathway, which was shown to inhibit MSX1 transcription. In the LOUCY cell line we identified conspicuous expression of CHRDL1 encoding a BMP inhibitor which mediated activation of MSX1. Promoter analyses demonstrated activation of CHRDL1 by oncogenic PITX1. Furthermore, knockdown and overexpression studies of hematopoietic transcription factors demonstrated that GATA2 and FOXC1 mediate activation and GATA3, LEF1, TAL1 and TOX repression of MSX1 transcription. Collectively, our findings suggest that MSX1 is physiologically restricted to lymphoid progenitors. The identification of deregulated BMP signaling may provide novel therapeutic options for the treatment of T-ALL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | | | | | | | | | | |
Collapse
|
11
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. ACTA ACUST UNITED AC 2014; 211:943-59. [PMID: 24752301 PMCID: PMC4010901 DOI: 10.1084/jem.20130790] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interaction between the inhibitory molecule PD-L2 on dendritic cells and repulsive guidance molecule b (RGMb) on lung macrophages is required to establish respiratory tolerance. We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb–PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2–deficient mice showed that PD-L2 expression on non–T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH, DeKruyff RH, Freeman GJ. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. Mol Immunol 2014; 48:1292-300. [PMID: 24752301 DOI: 10.1016/j.molimm.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/17/2010] [Accepted: 12/08/2010] [Indexed: 12/30/2022]
Abstract
We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb-PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2-deficient mice showed that PD-L2 expression on non-T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Collapse
Affiliation(s)
- Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute; 2 Division of Immunology and Department of Pediatrics, Boston Children's Hospital; 3 Department of Microbiology and Immunobiology and 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Outram SV, Chen D, Umukoro C. BMP signals: Mediated by stroma or thymocytes? Cell Cycle 2014; 13:505-6. [PMID: 24496332 DOI: 10.4161/cc.27860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susan V Outram
- School of Health, Sport, and Bioscience; University of East London; London, UK
| | - Dawei Chen
- School of Health, Sport, and Bioscience; University of East London; London, UK
| | - Cynthia Umukoro
- School of Health, Sport, and Bioscience; University of East London; London, UK
| |
Collapse
|
14
|
Kuczma M, Kurczewska A, Kraj P. Modulation of bone morphogenic protein signaling in T-cells for cancer immunotherapy. J Immunotoxicol 2013; 11:319-27. [PMID: 24350726 DOI: 10.3109/1547691x.2013.864736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is becoming an increasingly attractive therapeutic alternative for conventional cancer therapy. In recent years Foxp3(+) regulatory T-cells (T(R)) were identified as the major obstacle to effective cancer immunotherapy. The abundance of these cells in peripheral blood is increased in patients with multiple types of cancer and their prevalence among tumor-infiltrating lymphocytes correlated with poor clinical prognosis. In contrast, removal or inactivation of T(R) cells led to enhanced anti-tumor immune response and better efficacy of cancer vaccines. This study reports that Bone Morphogenic Protein Receptor 1α (BMPR1α, Alk-3) is expressed by activated effector CD4(+) and T(R) cells and modulates functions of both cell types. Bone Morphogenic Proteins (BMPs) belong to the transforming growth factor (TGF)-β family of cytokines that also include TGFβ and activins. BMPs play crucial roles in embryonic development, tissue differentiation and homeostasis, and development of cancer. It was demonstrated that BMPs and activins synergize with TGFβ to regulate thymic T-cell development, maintain T(R) cells, and control peripheral tolerance. Inactivation of BMPR1α in T-cells results in impaired thymic and peripheral generation of T(R) cells. BMPR1α-deficient activated T-cells produced a higher level of interferon (IFN)-γ than BMPR1α-sufficient T-cells. Moreover, transplanted B16 melanoma tumors grew smaller in mice lacking expression of BMPR1α in T-cells and tumors had few infiltrating TR cells and a higher proportion of CD8(+) T-cells than wild-type mice.
Collapse
Affiliation(s)
- Michal Kuczma
- Department of Medicine, Georgia Regents University, Center for Biotechnology and Genomic Medicine , Augusta, GA , USA
| | | | | |
Collapse
|
15
|
Hager-Theodorides AL, Ross SE, Sahni H, Mishina Y, Furmanski AL, Crompton T. Direct BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell. Cell Cycle 2013; 13:324-33. [PMID: 24240189 PMCID: PMC3906248 DOI: 10.4161/cc.27118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BMP2/4 signaling is required for embryogenesis and involved in thymus morphogenesis and T-lineage differentiation. In vitro experiments have shown that treatment of thymus explants with exogenous BMP4 negatively regulated differentiation of early thymocyte progenitors and the transition from CD4−CD8− (DN) to CD4+CD8+ (DP). Here we show that in vivo BMP2/4 signaling is required for fetal thymocyte progenitor homeostasis and expansion, but negatively regulates differentiation from DN to DP cell. Unexpectedly, conditional deletion of BMPRIA from fetal thymocytes (using the Cre-loxP system and directing excision to hematopoietic lineage cells with the Vav promoter) demonstrated that physiological levels of BMP2/4 signaling directly to thymocytes through BMPRIA are required for normal differentiation and expansion of early fetal DN thymocytes. In contrast, the arrest in early thymocyte progenitor differentiation caused by exogenous BMP4 treatment of thymus explants is induced in part by direct signaling to thymocytes through BMPRIA, and in part by indirect signaling through non-hematopoietic cells. Analysis of the transition from fetal DN to DP cell, both by ex vivo analysis of conditional BMPRIA-deficient thymocytes and by treatment of thymus explants with the BMP4-inhibitor Noggin demonstrated that BMP2/4 signaling is a negative regulator at this stage. We showed that at this stage of fetal T-cell development BMP2/4 signals directly to thymocytes through BMPRIA.
Collapse
Affiliation(s)
- Ariadne L Hager-Theodorides
- Department of Animal Science and Aquaculture; Laboratory of Animal Breeding and Husbandry; Agricultural University of Athens; Athens, Greece
| | - Susan E Ross
- Immunobiology Unit; UCL Institute of Child Health; London, UK
| | - Hemant Sahni
- Immunobiology Unit; UCL Institute of Child Health; London, UK
| | - Yuji Mishina
- University of Michigan; School of Dentistry; Department of Biologic and Materials Sciences; Ann Arbor, MI USA
| | | | - Tessa Crompton
- Immunobiology Unit; UCL Institute of Child Health; London, UK
| |
Collapse
|
16
|
Aleman-Muench GR, Mendoza V, Stenvers K, Garcia-Zepeda EA, Lopez-Casillas F, Raman C, Soldevila G. Betaglycan (TβRIII) is expressed in the thymus and regulates T cell development by protecting thymocytes from apoptosis. PLoS One 2012; 7:e44217. [PMID: 22952931 PMCID: PMC3430661 DOI: 10.1371/journal.pone.0044217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
TGF-β type III receptor (TβRIII) is a coreceptor for TGFβ family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-β [1]–[3], bone morphogenetic proteins (BMP2/4) and inhibins regulate different checkpoints during T cell differentiation. Although TβRIII is expressed on hematopoietic cells, the role of this receptor in the immune system remains elusive. Here, we provide the first evidence that TβRIII is developmentally expressed during T cell ontogeny, and plays a crucial role in thymocyte differentiation. Blocking of endogenous TβRIII in fetal thymic organ cultures led to a delay in DN-DP transition. In addition, in vitro development of TβRIII−/− thymic lobes also showed a significant reduction in absolute thymocyte numbers, which correlated with increased thymocyte apoptosis, resembling the phenotype reported in Inhibin α −/− thymic lobes. These data suggest that Inhibins and TβRIII may function as a molecular pair regulating T cell development.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cytoprotection
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fetus/metabolism
- Gene Expression Regulation, Developmental
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- Proteoglycans/antagonists & inhibitors
- Proteoglycans/deficiency
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Thymocytes/cytology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- German R. Aleman-Muench
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Valentin Mendoza
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, México
| | - Kaye Stenvers
- Reproductive Development and Cancer laboratory, Prince Henry′s Institute of Medical Research, Clayton, Victoria, Australia
| | - Eduardo A. Garcia-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Fernando Lopez-Casillas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, México
| | - Chander Raman
- Departments of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology University of Alabama at Birmingham, Alabama, United States of America
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
- * E-mail:
| |
Collapse
|
17
|
Kuypers E, Collins JJP, Jellema RK, Wolfs TGAM, Kemp MW, Nitsos I, Pillow JJ, Polglase GR, Newnham JP, Germeraad WTV, Kallapur SG, Jobe AH, Kramer BW. Ovine fetal thymus response to lipopolysaccharide-induced chorioamnionitis and antenatal corticosteroids. PLoS One 2012; 7:e38257. [PMID: 22693607 PMCID: PMC3365024 DOI: 10.1371/journal.pone.0038257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022] Open
Abstract
Rationale Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. Methods Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. Results Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. Conclusion Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jennifer J. P. Collins
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthew W. Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Ilias Nitsos
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - J. Jane Pillow
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Graeme R. Polglase
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - John P. Newnham
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Wilfred T. V. Germeraad
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suhas G. Kallapur
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alan H. Jobe
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Expression of BMPRIA on human thymic NK cell precursors: role of BMP signaling in intrathymic NK cell development. Blood 2011; 119:1861-71. [PMID: 22210872 DOI: 10.1182/blood-2011-07-370650] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates survival, proliferation, and differentiation of several cell types in multiple tissues, including the thymus. Previous reports have shown that BMP signaling negatively regulates T-cell development. Here, we study the subpopulation of early human intrathymic progenitors expressing the type IA BMP receptor (BMPRIA) and provide evidence that CD34(+)CD1a(-)BMPRIA(+) precursor cells mostly express surface cell markers and transcription factors typically associated with NK cell lineage. These CD34(+) cells mostly differentiate into functional CD56(+) natural killer (NK) cells when they are cocultured with thymic stromal cells in chimeric human-mouse fetal thymic organ cultures and also in the presence of SCF and IL-15. Moreover, autocrine BMP signaling can promote the differentiation of thymic NK cells by regulating the expression of key transcription factors required for NK cell lineage (eg, Id3 and Nfil3) as well as one of the components of IL-15 receptor, CD122. Subsequently, the resulting population of IL-15-responsive NK cell precursors can be expanded by IL-15, whose action is mediated by BMP signaling during the last steps of thymic NK cell differentiation. Our results strongly suggest that BMPRIA expression identifies human thymic NK cell precursors and that BMP signaling is relevant for NK cell differentiation in the human thymus.
Collapse
|
19
|
Yoshioka Y, Ono M, Osaki M, Konishi I, Sakaguchi S. Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation. Eur J Immunol 2011; 42:749-59. [PMID: 22144105 DOI: 10.1002/eji.201141702] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/07/2011] [Accepted: 11/21/2011] [Indexed: 01/28/2023]
Abstract
Bone morphogenetic proteins (BMPs) are involved in patterning and cellular fate in various organs including the thymus. However, the redundancy of BMPs and their receptors have made it difficult to analyse their physiological roles. Here, we investigated the role of BMP signalling in peripheral CD4(+) T cells by analysing the effects of an inhibitor of BMP signalling, dorsomorphin. Dorsomorphin suppressed phosphorylation of SMAD1/5/8, suggesting that BMP signalling naturally occurs in T cells. At high doses, dorsomorphin suppressed proliferation of T cells in a dose-dependent manner, inducing G1 arrest. Also, dorsomorphin suppressed Th17 and induced Treg-cell differentiation, while preserving Th2 differentiation. Dorsomorphin efficiently suppressed IL-2 production even at low doses in mouse CD4(+) T cells, suggesting that the BMP-Smad signalling physiologically regulates IL-2 transcription in these cells. In addition, recombinant BMP2 induced a dose-dependent multiphasic pattern of IL-2 production, while Noggin suppressed IL-2 production at higher doses in Jurkat cells. Notably, BMP signalling controlled the phosphorylation of RUNX1, revealing the molecular nature of its effect. Collectively, we describe multiple effects of dorsomorphin and Noggin on T-cell activation and differentiation, demonstrating a physiological role for BMP signalling in these processes.
Collapse
Affiliation(s)
- Yumiko Yoshioka
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
20
|
Passa O, Tsalavos S, Belyaev NN, Petryk A, Potocnik AJ, Graf D. Compartmentalization of bone morphogenetic proteins and their antagonists in lymphoid progenitors and supporting microenvironments and functional implications. Immunology 2011; 134:349-59. [PMID: 21978004 DOI: 10.1111/j.1365-2567.2011.03495.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) signalling regulates lymphopoiesis in bone marrow and thymus via the interaction of haemato-lymphoid progenitors with the stroma microenvironment. Despite increasing functional evidence for the role of BMP signalling in lymphopoiesis, little is known of the spatial distribution of BMP/BMP antagonists in the thymus and of how BMP signals exert specific functions in developing lymphocytes. We analysed expression of BMP/BMP antagonists in the thymus and bone marrow and determined the topology of BMP/BMP antagonist expression using lacZ reporter mice. Bmp4, Bmp7, Gremlin and Twisted gastrulation (Twsg1) are all expressed in the thymus and expression was clearly different for each gene investigated. Expression was seen both in cortical and medullary regions suggesting that BMP signals regulate all stages of T-cell development. Two genes in particular, Bmp7 and Twsg1, were dynamically expressed in developing T and B lymphocytes. Their conditional ablation in all haematopoietic cells surprisingly did not affect the steady state of B-cell and T-cell development. This indicates that both lymphoid cell-derived BMP7 and TWSG1 are dispensable for normal lymphopoiesis and that bone-marrow stroma-derived TWSG1 is responsible for the lymphoid defects observed in Twsg1 null mice. In summary our data demonstrate a complex network of lymphoid and stroma derived BMP signals involved in the orchestration of lymphopoiesis in both bone marrow and thymus.
Collapse
Affiliation(s)
- Ourania Passa
- Institute of Immunology, Biomedical Sciences Research Centre Alexander Fleming, Vari, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Tsalavos S, Segklia K, Passa O, Petryk A, O'Connor MB, Graf D. Involvement of Twisted Gastrulation in T Cell-Independent Plasma Cell Production. THE JOURNAL OF IMMUNOLOGY 2011; 186:6860-70. [PMID: 21572028 DOI: 10.4049/jimmunol.1001833] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sotiris Tsalavos
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | | | | | | | | | | |
Collapse
|
22
|
The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 2010; 89:610-8. [PMID: 21102536 DOI: 10.1038/icb.2010.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β superfamily, are multifunctional polypeptides regulating a broad spectrum of functions in embryonic and adult tissues. Recent reports have demonstrated that BMPs regulate the survival, proliferation and differentiation of several cell types in the immune system. In this study, we investigate the effects of BMP signaling activation on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human DCs express type I and type II BMP receptors (BMPRIA, BMPRIB, type IA activin receptor, BMPRII) and BMP signal transduction molecules (Smad1, 5, and 8, as well as Smad4). On BMP stimulation, Id1-3 (inhibitor of differentiation 1-3/DNA binding) mRNA expression is upregulated and this effect can be blocked with the inhibitor dorsomorphin, showing that the canonical BMP signal transduction pathway is functionally active in DCs. BMP signaling activation promotes the phenotypic maturation of human DCs by increasing the expression of co-stimulatory molecules and also CD83, programmed cell death ligand 1 (PD-L1) and PD-L2, and stimulates cytokine secretion, mainly interleukin-8 and tumor necrosis factor-α. Accordingly, BMP-treated DCs exhibit an enhanced T-cell stimulatory capacity. BMP signaling also enhances the survival of human DCs increasing the Bcl-2/Bax ratio. Finally, the expression of Runx transcription factors is increased in mature DCs, and the mRNA levels of Runx1-3 are upregulated in response to BMP stimulation, indicating that Runx transcription factor family may mediate the effects of BMP signaling in human DC maturation.
Collapse
|
23
|
Mitsiadis TA, Graf D. Cell fate determination during tooth development and regeneration. ACTA ACUST UNITED AC 2009; 87:199-211. [PMID: 19750524 DOI: 10.1002/bdrc.20160] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest-derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to elucidate how signaling factors work together in a defined number of cells to generate the diverse and precise patterned structures of the mature functional teeth. Over the last decade, substantial research efforts have been directed toward elucidating the molecular mechanisms that control cell fate decisions during tooth development. These efforts have contributed toward the increased knowledge on dental stem cells, and observation of the molecular similarities that exist between tooth development and regeneration.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland.
| | | |
Collapse
|
24
|
Varas A, Martínez VG, Hernández-López C, Hidalgo L, Entrena A, Valencia J, Zapata A, Sacedón R, Vicente A. Role of BMP signalling in peripheral CD4+ T cell proliferation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0213-9626(09)70035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 2009; 114:181-6. [PMID: 19414861 DOI: 10.1182/blood-2008-12-195503] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In thalassemia and other iron loading anemias, ineffective erythropoiesis and erythroid signaling molecules are thought to cause inappropriate suppression of a small peptide produced by hepatocytes named hepcidin. Previously, it was reported that the erythrokine GDF15 is expressed at very high levels in thalassemia and suppresses hepcidin expression. In this study, erythroblast expression of a second molecule named twisted gastrulation (TWSG1) was explored as a potential erythroid regulator of hepcidin. Transcriptome analyses suggest TWSG1 is produced during the earlier stages of erythropoiesis. Hepcidin suppression assays demonstrated inhibition by TWSG1 as measured by quantitative polymerase chain reaction (PCR) in dosed assays (1-1000 ng/mL TWSG1). In human cells, TWSG1 suppressed hepcidin indirectly by inhibiting the signaling effects and associated hepcidin up-regulation by bone morphogenic proteins 2 and 4 (BMP2/BMP4). In murine hepatocytes, hepcidin expression was inhibited by murine Twsg1 in the absence of additional BMP. In vivo studies of Twsg1 expression were performed in healthy and thalassemic mice. Twsg1 expression was significantly increased in the spleen, bone marrow, and liver of the thalassemic animals. These data demonstrate that twisted gastrulation protein interferes with BMP-mediated hepcidin expression and may act with GDF15 to dysregulate iron homeostasis in thalassemia syndromes.
Collapse
|
26
|
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated at various stages, and extracellulary, mainly regulated by certain classes of molecules termed as BMP antagonists and pro-BMP factors. BMP antagonists inhibit BMP function by prohibiting them from binding their cognate receptors, whereas pro-BMP factors stimulate BMP function. In this review, the functions of these BMP regulators will be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Motoko Yanagita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Licona-Limón P, Alemán-Muench G, Chimal-Monroy J, Macías-Silva M, García-Zepeda EA, Matzuk MM, Fortoul TI, Soldevila G. Activins and inhibins: novel regulators of thymocyte development. Biochem Biophys Res Commun 2009; 381:229-35. [PMID: 19338778 DOI: 10.1016/j.bbrc.2009.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/08/2009] [Indexed: 11/26/2022]
Abstract
Activins and inhibins are members of the transforming growth factor-beta superfamily that act on different cell types and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis. Here, we provide the first evidence that activins and inhibins regulate specific checkpoints during thymocyte development. We demonstrate that both activin A and inhibin A promote the DN3-DN4 transition in vitro, although they differentially control the transition to the DP stage. Whereas activin A induces the accumulation of a CD8+CD24(hi)TCRbeta(lo) intermediate subpopulation, inhibin A promotes the differentiation of DN4 to DP. In addition, both activin A and inhibin A appear to promote CD8+SP differentiation. Moreover, inhibin alpha null mice have delayed in vitro T cell development, showing both a decrease in the DN-DP transition and reduced thymocyte numbers, further supporting a role for inhibins in the control of developmental signals taking place during T cell differentiation in vivo.
Collapse
Affiliation(s)
- Paula Licona-Limón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, México, DF 04510, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gene expression profile of the third pharyngeal pouch reveals role of mesenchymal MafB in embryonic thymus development. Blood 2009; 113:2976-87. [PMID: 19164599 DOI: 10.1182/blood-2008-06-164921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The thymus provides a microenvironment that induces the differentiation of T-progenitor cells into functional T cells and that establishes a diverse yet self-tolerant T-cell repertoire. However, the mechanisms that lead to the development of the thymus are incompletely understood. We report herein the results of screening for genes that are expressed in the third pharyngeal pouch, which contains thymic primordium. Polymerase chain reaction (PCR)-based cDNA subtraction screening for genes expressed in microdissected tissues of the third pharyngeal pouch rather than the second pharyngeal arch yielded one transcription factor, MafB, which was predominantly expressed in CD45(-)IA(-)PDGFRalpha(+) mesenchymal cells and was detectable even in the third pharyngeal pouch of FoxN1-deficient nude mice. Interestingly, the number of CD45(+) cells that initially accumulated in the embryonic thymus was significantly decreased in MafB-deficient mice. Alterations of gene expression in the embryonic thymi of MafB-deficient mice included the reduced expression of Wnt3 and BMP4 in mesenchymal cells and of CCL21 and CCL25 in epithelial cells. These results suggest that MafB expressed in third pharyngeal pouch mesenchymal cells critically regulates lymphocyte accumulation in the embryonic thymus.
Collapse
|
29
|
Abstract
We show that Indian Hedgehog (Ihh) regulates T-cell development and homeostasis in both fetal and adult thymus, controlling thymocyte number. Fetal Ihh(-/-) thymi had reduced differentiation to double-positive (DP) cell and reduced cell numbers compared with wild-type littermates. Surprisingly, fetal Ihh(+/-) thymi had increased thymocyte numbers and proportion of DP cells relative to wild type, indicating that Ihh also negatively regulates thymocyte development. In vitro treatment of thymus explants with exogenous recombinant Hedgehog protein promoted thymocyte development in Ihh(-/-) thymi but inhibited thymocyte development in Ihh(+/-), confirming both positive and negative regulatory functions of Ihh. Analysis of Rag(-/-)Ihh(+/-) thymi showed that Ihh promotes T-cell development before pre-T-cell receptor (pre-TCR) signaling, but negatively regulates T-cell development only after pre-TCR signaling has taken place. We show that Ihh is most highly expressed by the DP population and that Ihh produced by DP cells feeds back to negatively regulate the differentiation and proliferation of their double-negative progenitors. Thus, differentiation from double-negative to DP cell, and hence the size of the DP population, is dependent on the concentration of Ihh in the thymus. Analysis of Ihh conditional knockout and heterozygote adult mice showed that Ihh also influences thymocyte number in the adult.
Collapse
|
30
|
Histochemical and molecular overview of the thymus as site for T-cells development. ACTA ACUST UNITED AC 2008; 43:73-120. [PMID: 18555891 DOI: 10.1016/j.proghi.2008.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/11/2008] [Indexed: 12/19/2022]
Abstract
The thymus represents the primary site for T cell lymphopoiesis, providing a coordinated set for critical factors to induce and support lineage commitment, differentiation and survival of thymus-seeding cells. One irrefutable fact is that the presence of non-lymphoid cells through the thymic parenchyma serves to provide coordinated migration and differentiation of T lymphocytes. Moreover, the link between foetal development and normal anatomy has been stressed in this review. Regarding thymic embryology, its epithelium is derived from the embryonic endodermal layer, with possible contributions from the ectoderm. A series of differentiating steps is essential, each of which must be completed in order to provide the optimum environment for thymic development and function. The second part of this article is focused on thymic T-cell development and differentiation, which is a stepwise process, mediated by a variety of stromal cells in different regions of the organ. It depends strongly on the thymic microenvironment, a cellular network formed by epithelial cells, macrophages, dendritic cells and fibroblasts, that provide the combination of cellular interactions, cytokines and chemokines to induce thymocyte precursors for the generation of functional T cells. The mediators of this process are not well defined but it has been demonstrated that some interactions are under neuroendocrine control. Moreover, some studies pointed out that reciprocal signals from developing T cells also are essential for establishment and maintenance of the thymic microenvironment. Finally, we have also highlighted the heterogeneity of the lymphoid, non-lymphoid components and the multi-phasic steps of thymic differentiation. In conclusion, this review contributes to an understanding of the complex mechanisms in which the foetal and postnatal thymus is involved. This could be a prerequisite for developing new therapies specifically aimed to overcome immunological defects, linked or not-linked to aging.
Collapse
|
31
|
Sivertsen EA, Huse K, Hystad ME, Kersten C, Smeland EB, Myklebust JH. Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat TAg cells. Eur J Immunol 2007; 37:2937-48. [PMID: 17899540 DOI: 10.1002/eji.200636759] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone morphogenetic proteins (BMP) are multifunctional cytokines that belong to the TGF-beta superfamily. BMP have been shown to regulate haematopoietic stem cells, B lymphopoiesis and early thymocyte differentiation. In the present study we explored the role of BMP-6 in Jurkat TAg cells. BMP-6 rapidly induced phosphorylation of Smad1/5/8, p38 and ERK1/2, followed by a potent up-regulation of ID1, ID2 and ID3. ID1 and ID3 were also induced at the protein level. Genome-wide expression profiling of cells treated with BMP-6 compared to medium confirmed that ID1-ID3 were target genes of BMP-6 together with Noggin and Smad6. Furthermore, several genes involved in transcriptional regulation were also identified, including NFKBIA, HEY1, DLX2, KLF10 and early growth response 1. Stimulation with BMP-6 exerted an antiproliferative effect that was counteracted by inhibitor of DNA binding (Id)1 siRNA, indicating that Id1 is an important downstream mediator in Jurkat TAg cells. A subset of CD4(+) T cells were found to express the BMP receptors Alk-2 and Alk-3 (type I), in addition to BMPRII (type II). BMP-6 also induced phosphorylation of Smad1/5/8, followed by transcriptional increase in ID1-ID3 mRNA expression. However, we did not observe significant changes in Id protein expression in CD4(+) T cells. Altogether, the data indicate a role for BMP-6 in human T lineage cells.
Collapse
Affiliation(s)
- Einar A Sivertsen
- Department of Immunology, Institute of Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Like all hematopoietic cells, T lymphocytes are derived from bone-marrow-resident stem cells. However, whereas most blood lineages are generated within the marrow, the majority of T cell development occurs in a specialized organ, the thymus. This distinction underscores the unique capacity of the thymic microenvironment to support T lineage restriction and differentiation. Although the identity of many of the contributing thymus-derived signals is well established and rooted in highly conserved pathways involving Notch, morphogenetic, and protein tyrosine kinase signals, the manner in which the ensuing cascades are integrated to orchestrate the underlying processes of T cell development remains under investigation. This review focuses on the current definition of the early stages of T cell lymphopoiesis, with an emphasis on the nature of thymus-derived signals delivered to T cell progenitors that support the commitment and differentiation of T cells toward the alphabeta and gammadelta T cell lineages.
Collapse
Affiliation(s)
- Maria Ciofani
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
33
|
Crompton T, Outram SV, Hager-Theodorides AL. Sonic hedgehog signalling in T-cell development and activation. Nat Rev Immunol 2007; 7:726-35. [PMID: 17690714 DOI: 10.1038/nri2151] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of mature functional T cells in the thymus requires signals from the thymic epithelium. Here, we review recent experiments showing that one way in which the epithelium controls the production of mature T cells is by the secretion of sonic hedgehog (SHH). We consider the increasing evidence that SHH-induced signalling is not only important for the differentiation and proliferation of early thymocyte progenitors, but also for modulating T-cell receptor signalling during repertoire selection, with implications for positive selection, CD4 versus CD8 lineage commitment, and clonal deletion of autoreactive cells. We also review the influence of hedgehog signalling in peripheral T-cell activation.
Collapse
Affiliation(s)
- Tessa Crompton
- Immunobiology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
34
|
Tzachanis D, Li L, Lafuente EM, Berezovskaya A, Freeman GJ, Boussiotis VA. Twisted gastrulation (Tsg) is regulated by Tob and enhances TGF-beta signaling in activated T lymphocytes. Blood 2007; 109:2944-52. [PMID: 17164348 PMCID: PMC1852213 DOI: 10.1182/blood-2006-03-006510] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Quiescent T cells express Tob, an APRO gene family member, which functions as a transcriptional regulator. Subtractive hybridization identified Twisted gastrulation (Tsg) as one of the genes suppressed by Tob. Tsg is a secreted protein that interacts with Drosophila decapentaplegic (Dpp) and its vertebrate orthologs BMP2/4 and regulates morphogenetic effects in embryos. Here, we report the expression and function of Tsg in human T cells. Tsg mRNA was almost undetectable in unstimulated T cells and was up-regulated after activation by TCR/CD3 and either CD28, IL-2, or PMA. Tsg protein had no effect on responses of primary T cells to TCR/CD3 stimulation but had a potent inhibitory effect on proliferation and cytokine production of primed alloreactive CD4+ cells. Surprisingly, Tsg did not affect phosphorylation of the BMP-specific Smad1 but induced phosphorylation of the TGF-beta-specific Smad2 and mediated DNA binding on Smad3/4 consensus-binding sites, suggesting that it acted downstream of TGF-beta. In vitro association assays revealed a direct interaction of Tsg and TGF-beta proteins. Thus, Tsg functions as an agonist synergizing with TGF-beta to inhibit T-cell activation. Modulation of Tsg signaling may represent a novel target for molecular intervention toward control of aberrant T-cell responses during ongoing graft-versus-host disease (GVHD) and autoimmune diseases.
Collapse
Affiliation(s)
- Dimitrios Tzachanis
- Department of Hematology and Oncology, Beth Israel-Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cejalvo T, Sacedón R, Hernández-López C, Diez B, Gutierrez-Frías C, Valencia J, Zapata AG, Varas A, Vicente A. Bone morphogenetic protein-2/4 signalling pathway components are expressed in the human thymus and inhibit early T-cell development. Immunology 2007; 121:94-104. [PMID: 17425602 PMCID: PMC2265915 DOI: 10.1111/j.1365-2567.2007.02541.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
T-cell differentiation is driven by a complex network of signals mainly derived from the thymic epithelium. In this study we demonstrate in the human thymus that cortical epithelial cells produce bone morphogenetic protein 2 (BMP2) and BMP4 and that both thymocytes and thymic epithelium express all the molecular machinery required for a response to these proteins. BMP receptors, BMPRIA and BMPRII, are mainly expressed by cortical thymocytes while BMPRIB is expressed in the majority of the human thymocytes. Some thymic epithelial cells from cortical and medullary areas express BMP receptors, being also cell targets for in vivo BMP2/4 signalling. The treatment with BMP4 of chimeric human-mouse fetal thymic organ cultures seeded with CD34+ human thymic progenitors results in reduced cell recovery and inhibition of the differentiation of human thymocytes from CD4- CD8- to CD4+ CD8+ cell stages. These results support a role for BMP2/4 signalling in human T-cell differentiation.
Collapse
Affiliation(s)
- Teresa Cejalvo
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Melichar H, Kang J. Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Immunol Rev 2007; 215:32-45. [PMID: 17291277 DOI: 10.1111/j.1600-065x.2006.00469.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphogens, a class of secreted proteins that regulate gene expression in a concentration-dependent manner, are responsible for directing nearly all lineage fate choices during embryogenesis. In the thymus, morphogen signal pathways consisting of WNT, Hedgehog, and the transforming growth factor-beta superfamily are active and have been implicated in various developmental processes including proliferation, survival, and differentiation of maturing thymocytes. Intriguingly, it has been inferred that some of these morphogen signal pathways differentially affect gammadelta and alphabeta T-cell development or maintenance, but their role in T-cell lineage commitment has not been directly probed. We have recently identified a modulator of morphogen signaling that significantly influences binary gammadelta versus alphabeta T-cell lineage diversification. In this review, we summarize functions of morphogens in the thymus and provide a highly speculative model of integrated morphogen signals, potentially directing the gammadelta versus alphabeta T-cell fate determination process.
Collapse
Affiliation(s)
- Heather Melichar
- Department of Pathology University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
37
|
Licona-Limón P, Soldevila G. The role of TGF-beta superfamily during T cell development: new insights. Immunol Lett 2007; 109:1-12. [PMID: 17287030 DOI: 10.1016/j.imlet.2006.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/21/2006] [Accepted: 12/23/2006] [Indexed: 10/23/2022]
Abstract
Members of the transforming growth factor beta (TGF-beta) superfamily are soluble factors that regulate a variety of functional responses including proliferation, differentiation, apoptosis and cell cycle, among others, depending not only on the cell type and its differentiation state, but also on the milieu of cytokines present. All three members of this superfamily: TGF-betas, bone morphogenetic proteins (BMPs) and Activins, have been shown to be expressed in the thymus suggesting their potential role as regulators of the T lymphocyte differentiation process. Although initial reports described the role of TGF-beta in controlling specific checkpoints during thymocyte development, recent data has provided new evidence on the role of BMPs and Activins in this process. This review provides new insights on the function of members of the TGF-beta superfamily at different stages of thymocyte development.
Collapse
Affiliation(s)
- P Licona-Limón
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, México DF-04510, Mexico
| | | |
Collapse
|
38
|
Anderson G, Jenkinson WE, Jones T, Parnell SM, Kinsella FAM, White AJ, Pongrac'z JE, Rossi SW, Jenkinson EJ. Establishment and functioning of intrathymic microenvironments. Immunol Rev 2006; 209:10-27. [PMID: 16448531 DOI: 10.1111/j.0105-2896.2006.00347.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thymus supports the production of self-tolerant T cells from immature precursors. Studying the mechanisms regulating the establishment and maintenance of stromal microenvironments within the thymus therefore is essential to our understanding of T-cell production and ultimately immune system functioning. Despite our ability to phenotypically define stromal cell compartments of the thymus, the mechanisms regulating their development and the ways by which they influence T-cell precursors are still unclear. Here, we review recent findings and highlight unresolved issues relating to the development and functioning of thymic stromal cells.
Collapse
Affiliation(s)
- Graham Anderson
- MRC Center for Immune Regulation, Division of Immunity and Infection, Institute For Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hartung A, Sieber C, Knaus P. Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Patel SR, Gordon J, Mahbub F, Blackburn CC, Manley NR. Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns 2006; 6:794-9. [PMID: 16517216 DOI: 10.1016/j.modgep.2006.01.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 11/27/2022]
Abstract
The thymus and parathyroids originate from the third pharyngeal pouches, which form as endodermal outpocketings in the pharyngeal region beginning on embryonic day 9 (E9.0) of mouse development. Using organ-specific markers, we have previously shown that thymus and parathyroid-specific organ domains are established within the primordium prior to formation of the organs proper: Gcm2 expression defines the prospective parathyroid cells in the dorsal pouch from E9.5, while Foxn1 is expressed in the thymus domain from E11.25. Bmp (bone morphogenetic protein) signaling has been implicated in thymic epithelial cell differentiation and thymus organogenesis. In the present study, we report expression patterns of Bmp4 and Noggin, a Bmp4 antagonist, in the third pharyngeal pouch using two lacZ transgenic mouse strains. Results from this gene expression study revealed localization of Bmp4 expression to the ventral region of the third pharyngeal pouch endoderm at E10.5 and E11.5, in those cells that will express Foxn1 and form the thymus. Conversely, the expression of Noggin was confined to the dorsal region of the pouch and primordium at these stages, and thus appeared to be co-expressed with Gcm2 in the parathyroid domain. This represents the first detailed study of Bmp4 and Noggin expression during the early stages of thymus and parathyroid organogenesis.
Collapse
Affiliation(s)
- Seema R Patel
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
41
|
Licona P, Chimal-Monroy J, Soldevila G. Inhibins are the major activin ligands expressed during early thymocyte development. Dev Dyn 2006; 235:1124-32. [PMID: 16477644 DOI: 10.1002/dvdy.20707] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Activins are members of the transforming growth factor-beta (TGFbeta) superfamily, which regulate cell differentiation processes. Here we report the first quantitative analysis of the expression of Activin/Inhibin ligands, type I and II receptors, as well as Smad proteins in fetal (E14-E16) and adult thymic subpopulations. Our data showed that Alk4, ActRIIA, ActRIIB, and Smads 2, 3, and 4, are expressed in fetal thymus (E14 > E15 > E16) and in thymocytes from adult mice (mostly in the double negative [DN] subpopulation). Ligand expression analysis showed that betaA, betaB, and alpha subunits were mainly detected in thymic stromal cells. Interestingly, alpha subunits were expressed at much higher levels compared to betaA and betaB subunits, demonstrating for the first time the potential role of Inhibins as important mediators during early T cell development. Our data indicate that Activin/Inhibin signaling could regulate the process of thymus organogenesis and early thymocyte differentiation, as it has been demonstrated for other members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- Paula Licona
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, México DF-04510
| | | | | |
Collapse
|
42
|
Lories RJU, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. ACTA ACUST UNITED AC 2006; 54:1736-46. [PMID: 16729286 DOI: 10.1002/art.21897] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The balance between destruction and homeostatic or reparative responses determines the outcome of arthritis. Increasing evidence suggests a role for signaling pathways, essential for development and growth, in the maintenance of tissue homeostasis and attempts at repair. Inappropriate activation of such pathways may also have a role in disease progression. We undertook this study to determine the effect of shifting the balance in bone morphogenetic protein (BMP) signaling in different mouse models of arthritis. METHODS Endogenous levels of noggin, a BMP antagonist, were reduced using heterozygous noggin(+/LacZ) mice in a model of inflammation-driven destruction (methylated bovine serum albumin [mBSA]-induced monarthritis), a model of systemic autoimmune arthritis (collagen-induced arthritis [CIA]), and a model of joint ankylosis (spontaneous arthritis in DBA/1 mice). In addition, we studied BMP inactivation by adenoviral noggin overexpression in destructive arthritis. Cartilage damage and activation of BMP signaling were studied by digital image analysis using Safranin O sulfated glycosaminoglycan staining and immunohistochemistry for phosphorylated Smads (Smads 1, 5, and 8), respectively. RESULTS Noggin haploinsufficiency provided protection for articular cartilage against destruction in mBSA-induced arthritis. Antagonist overexpression rendered cartilage more vulnerable in this model. Noggin gene transfer in knees affected by CIA also enhanced cartilage damage. Haploinsufficiency did not affect CIA, but noggin(+/LacZ) mice had an increased number of CD4-positive cells with normal immune responses. In noggin(+/LacZ) DBA/1 mice with spontaneous arthritis, we observed delayed progression from cartilage to bone formation. CONCLUSION Tight spatiotemporal control of BMP signaling appears to be critical in the response of joint tissues in models of arthritis.
Collapse
Affiliation(s)
- Rik J U Lories
- University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bleul CC, Boehm T. BMP signaling is required for normal thymus development. THE JOURNAL OF IMMUNOLOGY 2005; 175:5213-21. [PMID: 16210626 DOI: 10.4049/jimmunol.175.8.5213] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The microenvironment of the thymus fosters the generation of a diverse and self-tolerant T cell repertoire from a pool of essentially random specificities. Epithelial as well as mesenchymal cells contribute to the thymic stroma, but little is known about the factors that allow for communication between the two cells types that shape the thymic microenvironment. In this study, we investigated the role of bone morphogenetic protein (BMP) signaling in thymus development. Transgenic expression of the BMP antagonist Noggin in thymic epithelial cells under the control of a Foxn1 promoter in the mouse leads to dysplastic thymic lobes of drastically reduced size that are ectopically located in the neck at the level of the hyoid bone. Interestingly, the small number of thymocytes in these thymic lobes develops with normal kinetics and shows a wild-type phenotype. Organ initiation of the embryonic thymic anlage in these Noggin transgenic mice occurs as in wild-type mice, but the tight temporal and spatial regulation of BMP4 expression is abrogated in subsequent differentiation stages. We show that transgenic Noggin blocks BMP signaling in epithelial as well as mesenchymal cells of the thymic anlage. Our data demonstrate that BMP signaling is crucial for thymus development and that it is the thymic stroma rather than developing thymocytes that depends on BMP signals.
Collapse
Affiliation(s)
- Conrad C Bleul
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Freiburg, Germany
| | | |
Collapse
|
44
|
Konrad MAP, Zúñiga-Pflücker JC. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol 2005; 35:3030-42. [PMID: 16163674 DOI: 10.1002/eji.200526345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As thymocytes undergo differentiation in the thymus, they progress through distinct phases of quiescence and proliferation. Identifying cellular mechanisms that maintain thymocytes in a non-dividing state is critical to fully understand T cell development. A member of the B cell translocation gene/transducer of ErbB-2 (BTG/TOB) family of anti-proliferative proteins was identified as a key mediator of the quiescent state in peripheral anergic and unstimulated T cells. Here, we demonstrate that the BTG/TOB family member TPA-inducible sequence 21 (TIS21) is expressed in quiescent CD44+ CD25- early progenitor thymocytes and CD44- CD25+ cells prior to TCR beta-selection. However, TIS21 expression is decreased in proliferating CD25+ CD44+ progenitor thymocytes and CD25(low) CD44- beta-selected cells, suggesting that its regulated expression may enable thymocytes to remain quiescent in the absence of mitogenic signals. We addressed the role of TIS21 in regulating thymocyte stage-specific expansion by ectopically expressing TIS21 in developing thymocytes and hematopoietic progenitors. Dysregulated expression of TIS21 inhibited the expansion of thymocytes even in the presence of endogenous mitogenic signals, while thymocyte differentiation was unimpeded. These findings imply that the intracellular mechanisms regulating thymocyte differentiation and proliferation, which are induced downstream of developmental cues, function independently during early T cell development.
Collapse
Affiliation(s)
- Mark A P Konrad
- Department of Immunology, University of Toronto, Sunnybrook and Women's Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Nicodème F, Geffroy S, Conti M, Delobel B, Soenen V, Grardel N, Porte H, Copin MC, Laï JL, Andrieux J. Familial occurrence of thymoma and autoimmune diseases with the constitutional translocation t(14;20)(q24.1;p12.3). Genes Chromosomes Cancer 2005; 44:154-60. [PMID: 15942943 DOI: 10.1002/gcc.20225] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thymomas are low-grade epithelial cancers of the thymus whose prevalence varies between 0.1/100,000 and 0.4/100,000. Familial occurrence of thymoma is very rare. We studied a family bearing the constitutional chromosome translocation t(14;20)(q24;p12), 3 of whose members had a thymoma. In this family, among 27 patients, 11 had the translocation: 3 had thymoma and 4 others had 5 different autoimmune diseases: type 1 diabetes mellitus, Graves' disease, pernicious anemia, primitive Sjögren disease, and autoimmune pancytopenia. FISH studies allowed us to be more specific about the translocation breakpoints. The 14q24 breakpoint was in intron 5 of RAD51L1, and the 20p12 breakpoint was 100 kb telomeric to BMP2. RAD51L1 is a tumor-suppressor gene belonging to the RAD51 family, already implicated in many tumors (uterine leiomyomas, pseudo-Meigs syndromes, pulmonary chondroid hamartomas) and involved in recombinational repair of DNA double-strand breaks. BMP2 belongs to the TGFbeta superfamily, and the BMP2-BMP4 genes are involved in thymocyte differentiation by blocking progression from CD4-CD8- to CD4+CD8+ while maintaining a sufficient pool of immature precursors. Dysregulation of RAD51L1 and/or BMP2 may explain this familial occurrence of thymomas and autoimmune diseases. Using QRT-PCR, we studied the expression of BMP2 in 20 sporadic thymomas and found various levels of expression that may be associated with autoimmune diseases.
Collapse
Affiliation(s)
- Frédéric Nicodème
- Laboratoire de Génétique Médicale, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gazzerro E, Deregowski V, Vaira S, Canalis E. Overexpression of twisted gastrulation inhibits bone morphogenetic protein action and prevents osteoblast cell differentiation in vitro. Endocrinology 2005; 146:3875-82. [PMID: 15919755 DOI: 10.1210/en.2005-0053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Twisted gastrulation (Tsg) is a secreted glycoprotein that binds bone morphogenetic protein-2 (BMP-2) and BMP-4 and can display both BMP agonist and antagonist functions. Tsg acts as a BMP agonist in chondrocytes, but its expression and actions on the differentiation of cells of the osteoblastic lineage are not known. We investigated the effects of Tsg overexpression by transducing murine ST-2 stromal and MC3T3 cells with a retroviral vector where Tsg is under control of the cytomegalovirus promoter and compared them to cells transduced with the parental vector alone. ST-2 cells were cultured in osteoblastic differentiating conditions in the presence or absence of BMP-2. Tsg overexpression precluded the appearance of mineralized nodules induced by BMP-2, led to a delay in the expression of osteoblastic gene markers, and decreased the responsiveness of ST-2 differentiating cells to PTH. BMP-2 induced the phosphorylation of signaling mothers against decapentaplegic-1/5/8, but not ERK, c-Jun N-terminal kinase, and p38. ST-2 cells overexpressing Tsg displayed an inhibition of BMP/signaling mother against decapentaplegic signaling. Tsg action was specific to BMP, because Tsg overexpression did not affect TGF-beta or Wnt/beta-catenin signaling pathways. Tsg also opposed MC3T3 cell differentiation and the expression of a mature osteoblast phenotype. In conclusion, Tsg overexpression inhibits BMP action in stromal and preosteoblastic cells and, accordingly, arrests their differentiation toward the osteoblastic pathway.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, Connecticut 06105-1299, USA
| | | | | | | |
Collapse
|
47
|
Yanagita M. BMP antagonists: Their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev 2005; 16:309-17. [PMID: 15951218 DOI: 10.1016/j.cytogfr.2005.02.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 02/21/2005] [Indexed: 01/29/2023]
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily, and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated by certain classes of molecules that are recently recognized as BMP antagonists. BMP antagonists function through direct association with BMPs, thus prohibiting BMPs from binding their cognate receptors. In this review, the classification and functions of BMP antagonists will be discussed, especially focusing on the new family of tissue-specific BMP antagonists composed of uterine sensitization-associated gene 1 (USAG-1) and sclerostin.
Collapse
Affiliation(s)
- Motoko Yanagita
- COE Formation for Genomic Analysis of Disease Model Animals with Multiple Genetic Alterations, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
48
|
Kersten C, Sivertsen EA, Hystad ME, Forfang L, Smeland EB, Myklebust JH. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1. BMC Immunol 2005; 6:9. [PMID: 15877825 PMCID: PMC1134658 DOI: 10.1186/1471-2172-6-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/09/2005] [Indexed: 01/13/2023] Open
Abstract
Background Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells. Results The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27-) and memory B cells (CD19+CD27+) stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM. Conclusion In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Protein Receptors, Type I/biosynthesis
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/biosynthesis
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Proteins/pharmacology
- Bone Morphogenetic Proteins/physiology
- Burkitt Lymphoma/pathology
- CD40 Ligand/pharmacology
- Cell Division/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Humans
- Immunologic Memory
- Inhibitor of Differentiation Protein 1/biosynthesis
- Inhibitor of Differentiation Protein 1/genetics
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Signal Transduction/drug effects
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Christian Kersten
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Einar A Sivertsen
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Marit E Hystad
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Lise Forfang
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Erlend B Smeland
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- Faculty Division The Norwegian Radium Hospital, University of Oslo, Norway
| | - June H Myklebust
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
49
|
Hager-Theodorides AL, Dessens JT, Outram SV, Crompton T. The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 2005; 106:1296-304. [PMID: 15855276 PMCID: PMC1274277 DOI: 10.1182/blood-2005-03-0998] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma 3 (Gli3) is a transcription factor involved in patterning and oncogenesis. Here, we demonstrate a role for Gli3 in thymocyte development. Gli3 is differentially expressed in fetal CD4- CD8- double-negative (DN) thymocytes and is most highly expressed at the CD44+ CD25- DN (DN1) and CD44- CD25- (DN4) stages of development but was not detected in adult thymocytes. Analysis of null mutants showed that Gli3 is involved at the transitions from DN1 to CD44+ CD25+ DN (DN2) cell and from DN to CD4+ CD8+ double-positive (DP) cell. Gli3 is required for differentiation from DN to DP thymocyte, after pre-T-cell receptor (TCR) signaling but is not necessary for pre-TCR-induced proliferation or survival. The effect of Gli3 was dose dependent, suggesting its direct involvement in the transcriptional regulation of genes controlling T-cell differentiation during fetal development.
Collapse
Affiliation(s)
| | | | | | - Tessa Crompton
- Reprints: Tessa Crompton, Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Bldg, South Kensington Campus, London SW7 2AZ, United Kingdom; e-mail:
| |
Collapse
|
50
|
Kim SG, Yang BE, Oh SH, Min SK, Hong SP, Choi JY. The differential expression pattern of BMP-4 between the dentigerous cyst and the odontogenic keratocyst. J Oral Pathol Med 2005; 34:178-83. [PMID: 15689232 DOI: 10.1111/j.1600-0714.2004.00285.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bone morphogenic protein-4 (BMP-4) is widely expressed in oral cavity and involved in tooth morphogenesis, cellular differentiation and proliferation. The purpose of this study was to compare the difference in expression pattern of BMP-4 in odontogenic keratocysts (OKC) and dentigerous cysts (DC). METHODS We evaluated 77 cysts, OKC (n = 34) or DC (n = 43). The average age of patients with OKC was 29.5 +/- 14.4 and that of patients with DC was 36.1 +/- 19.4. The male to female ratio was 20:14 for OKC and 27:16 for DC. Ten cases of OKC were recurrences. Expression of BMP-4 was determined by immunohistochemistry and in situ hybridization. RESULTS The intensity scales were (-) for invisible or trace staining, (+) for visible staining, and (++) for dense, strong staining. OKCs exhibited the following staining patterns: the epithelium in 15/34 specimens and the mesenchymal cells in 17/34 specimens showed (++) stain. In contrast, the staining pattern of DC was (-) for epithelium in 37/43 specimens. The mesenchymal cells showed (-) degree staining in 30/43 specimens. The difference between the groups studied was significant (P < 0.001 in epithelium and mesenchymal cells). When recurrent and non-recurrent OKC were compared BMP-4 was expressed more intensely in the recurrent cases (P = 0.036 in epithelium). The difference in BMP-4 expression in mesenchymal cells was not significant. In situ hybridization demonstrated positive mRNA probes to BMP-4 were localized in epithelium and mesenchymal cells of OKCs and DCs. CONCLUSIONS BMP-4 was expressed more intensely in OKC when compared with DC, and was more intensely expressed in recurrent cases.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Medicine, Hallym University, Anyang, Korea.
| | | | | | | | | | | |
Collapse
|