1
|
Kirkbride JA, Nilsson GY, Kim JI, Takeya K, Tanaka Y, Tokumitsu H, Suizu F, Eto M. PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules 2023; 13:1741. [PMID: 38136612 PMCID: PMC10741526 DOI: 10.3390/biom13121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Raf-1, a multifunctional kinase, regulates various cellular processes, including cell proliferation, apoptosis, and migration, by phosphorylating MAPK/ERK kinase and interacting with specific kinases. Cellular Raf-1 activity is intricately regulated through pathways involving the binding of regulatory proteins, direct phosphorylation, and the ubiquitin-proteasome axis. In this study, we demonstrate that PHI-1, an endogenous inhibitor of protein phosphatase-1 (PP1), plays a pivotal role in modulating Raf-1 proteostasis within cells. Knocking down endogenous PHI-1 in HEK293 cells using siRNA resulted in increased cell proliferation and reduced apoptosis. This heightened cell proliferation was accompanied by a 15-fold increase in ERK1/2 phosphorylation. Importantly, the observed ERK1/2 hyperphosphorylation was attributable to an upregulation of Raf-1 expression, rather than an increase in Ras levels, Raf-1 Ser338 phosphorylation, or B-Raf levels. The elevated Raf-1 expression, stemming from PHI-1 knockdown, enhanced EGF-induced ERK1/2 phosphorylation through MEK. Moreover, PHI-1 knockdown significantly contributed to Raf-1 protein stability without affecting Raf-1 mRNA levels. Conversely, ectopic PHI-1 expression suppressed Raf-1 protein levels in a manner that correlated with PHI-1's inhibitory potency. Inhibiting PP1 to mimic PHI-1's function using tautomycin led to a reduction in Raf-1 expression. In summary, our findings highlight that the PHI-1-PP1 signaling axis selectively governs Raf-1 proteostasis and cell survival signals.
Collapse
Affiliation(s)
- Jason A. Kirkbride
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Garbo Young Nilsson
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Jee In Kim
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kosuke Takeya
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| | - Yoshinori Tanaka
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Okayama, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan;
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| |
Collapse
|
2
|
Lamarque M, Gautier EF, Rodrigues F, Guillem F, Bayard E, Broussard C, Maciel Trovati T, Arlet JB, Mayeux P, Hermine O, Courtois G. Role of Caspase-10-P13tBID axis in erythropoiesis regulation. Cell Death Differ 2023; 30:208-220. [PMID: 36202990 PMCID: PMC9883265 DOI: 10.1038/s41418-022-01066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Red blood cell production is negatively controlled by the rate of apoptosis at the stage of CFU-E/pro-erythroblast differentiation, depending on the balance between erythropoietin (EPO) levels and activation of the Fas/FasL pathway. At this stage, activation of transient caspases through depolarization via mitochondrial outer membrane permeabilization (MOMP) is also required for terminal erythroid differentiation. Molecular mechanisms regulating the differential levels of MOMP during differentiation and apoptosis, however, remain poorly understood. Here we show a novel and essential role for the caspase-10-P13-tBID axis in erythroid terminal differentiation. Caspase-10 (but not caspase-8, which is activated during apoptosis) is activated at the early stages of erythroid terminal differentiation leading to the cleavage of P22-BID into P18-tBID, and later into P13-tBID. Erythropoietin (EPO) by inducing casein kinase I alpha (CKIα) expression, which in turn phosphorylates P18-tBID, prevents the generation of MYR-P15-tBID (leading to apoptosis) and allows the generation of P13-tBID by caspase-10. Unlike P15-tBID, P13-tBID is not myristoylated and as such, does not irreversibly anchor the mitochondrial membrane resulting in a transient MOMP. Likewise, transduction of a P13-tBID fragment induces rapid and strong erythroid terminal differentiation. Thus, EPO modulates the pattern of BID cleavage to control the level of MOMP and determines the fate of erythroblasts between apoptosis and differentiation. This pathway is impaired in 5q- myelodysplastic syndromes because of CK1α haplo-insufficiency and may contribute to erythroid differentiation arrest and high sensitivity of this disease to lenalidomide (LEN).
Collapse
Affiliation(s)
- Mathilde Lamarque
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Emilie-Fleur Gautier
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - François Rodrigues
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Flavia Guillem
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Elisa Bayard
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Cédric Broussard
- grid.462098.10000 0004 0643 431X3P5 Proteom’IC facility, Université Paris-Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Thiago Maciel Trovati
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Jean-Benoît Arlet
- grid.508487.60000 0004 7885 7602Service de Médecine Interne, Hôpital européen Georges-Pompidou APHP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France
| | - Patrick Mayeux
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - Olivier Hermine
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Department of Hematology, Hôpital Necker Enfants Malades, AP-HP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France.
| | - Geneviève Courtois
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
3
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
4
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
5
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, Sexl V, Bock C, Baccarini M. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell 2018; 22:879-892.e6. [PMID: 29804890 PMCID: PMC5988582 DOI: 10.1016/j.stem.2018.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
Hematopoietic stem cells (HSCs) sustain hematopoiesis throughout life. HSCs exit dormancy to restore hemostasis in response to stressful events, such as acute blood loss, and must return to a quiescent state to prevent their exhaustion and resulting bone marrow failure. HSC activation is driven in part through the phosphatidylinositol 3-kinase (PI3K)/AKT/mTORC1 signaling pathway, but less is known about the cell-intrinsic pathways that control HSC dormancy. Here, we delineate an ERK-dependent, rate-limiting feedback mechanism that controls HSC fitness and their re-entry into quiescence. We show that the MEK/ERK and PI3K pathways are synchronously activated in HSCs during emergency hematopoiesis and that feedback phosphorylation of MEK1 by activated ERK counterbalances AKT/mTORC1 activation. Genetic or chemical ablation of this feedback loop tilts the balance between HSC dormancy and activation, increasing differentiated cell output and accelerating HSC exhaustion. These results suggest that MEK inhibitors developed for cancer therapy may find additional utility in controlling HSC activation.
Collapse
Affiliation(s)
- Christian Baumgartner
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Stefanie Toifl
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ruth Scheicher
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Irmgard Fischer
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Saarland Informatics Campus, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
7
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
9
|
Solier S, Fontenay M, Vainchenker W, Droin N, Solary E. Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ 2017; 24:1337-1347. [PMID: 28211870 DOI: 10.1038/cdd.2017.19] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/26/2022] Open
Abstract
Subtle caspase activation is associated with the differentiation of several myeloid lineages. A tightly orchestrated dance between caspase-3 activation and the chaperone HSP70 that migrates to the nucleus to protect the master regulator GATA-1 from cleavage transiently occurs in basophilic erythroblasts and may prepare nucleus and organelle expel that occurs at the terminal phase of erythroid differentiation. A spatially restricted activation of caspase-3 occurs in maturing megakaryocytes to promote proplatelet maturation and platelet shedding in the bloodstream. In a situation of acute platelet need, caspase-3 could be activated in response to IL-1α and promote megakaryocyte rupture. In peripheral blood monocytes, colony-stimulating factor-1 provokes the formation of a molecular platform in which caspase-8 is activated, which downregulates nuclear factor-kappa B (NF-κB) activity and activates downstream caspases whose target fragments such as those generated by nucleophosmin (NPM1) cleavage contribute to the generation of resting macrophages. Human monocytes secrete mature IL-1β in response to lipopolysaccharide through an alternative inflammasome activation that involves caspase-8, a pathway that does not lead to cell death. Finally, active caspase-3 is part of the proteases contained in secretory granules of mast cells. Many questions remain on how these proteases are activated in myeloid cell lineages, which target proteins are cleaved, whereas other are protected from proteolysis, the precise role of cleaved proteins in cell differentiation and functions, and the link between these non-apoptotic functions of caspases and the death of these diverse cell types. Better understanding of these functions may generate therapeutic strategies to control cytopenias or modulate myeloid cell functions in various pathological situations.
Collapse
Affiliation(s)
- Stéphanie Solier
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Institut Cochin, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre, Paris, France
| | - William Vainchenker
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Eric Solary
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France.,Department of Hematology, Gustave Roussy, Villejuif, France
| |
Collapse
|
10
|
Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, Rappoport JZ, Wickrema A, Yang J, Ji P. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 2016; 36:498-510. [PMID: 26954545 DOI: 10.1016/j.devcel.2016.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/18/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric Wayne Roth
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, Nikon Imaging Center at Northwestern University, Chicago, IL 60611, USA
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 3-210, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Identification of signalling cascades involved in red blood cell shrinkage and vesiculation. Biosci Rep 2015; 35:BSR20150019. [PMID: 25757360 PMCID: PMC4400636 DOI: 10.1042/bsr20150019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. After screening two libraries of small bioactive molecules and kinase inhibitors, we identified several signalling pathways to be involved in red blood cell (RBC) shrinkage and vesiculation. These include the Jak (Janus kinase)–STAT (signal transducer and activator of transcription) pathway, phosphoinositide 3-kinase (PI3K)–Akt pathway, the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) signalling.
Collapse
|
12
|
Chen J, Zhao R, Semba U, Oda M, Suzuki T, Toba K, Hattori S, Okada S, Yamamoto T. Involvement of cross-linked ribosomal protein S19 oligomers and C5a receptor in definitive erythropoiesis. Exp Mol Pathol 2013; 95:364-75. [PMID: 24184702 DOI: 10.1016/j.yexmp.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
13
|
Boehm D, Mazurier C, Giarratana MC, Darghouth D, Faussat AM, Harmand L, Douay L. Caspase-3 is involved in the signalling in erythroid differentiation by targeting late progenitors. PLoS One 2013; 8:e62303. [PMID: 23658722 PMCID: PMC3642196 DOI: 10.1371/journal.pone.0062303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/23/2013] [Indexed: 02/07/2023] Open
Abstract
A role for caspase activation in erythroid differentiation has been established, yet its precise mode of action remains elusive. A drawback of all previous investigations on caspase activation in ex vivo erythroid differentiation is the lack of an in vitro model producing full enucleation of erythroid cells. Using a culture system which renders nearly 100% enucleated red cells from human CD34(+) cells, we investigated the role of active caspase-3 in erythropoiesis. Profound effects of caspase-3 inhibition were found on erythroid cell growth and differentiation when inhibitors were added to CD34(+) cells at the start of the culture and showed dose-response to the concentration of inhibitor employed. Enucleation was only reduced as a function of the reduced maturity of the culture and the increased cell death of mature cells while the majority of cells retained their ability to extrude their nuclei. Cell cycle analysis after caspase-3 inhibition showed caspase-3 to play a critical role in cell proliferation and highlighted a novel function of this protease in erythroid differentiation, i.e. its contribution to cell cycle regulation at the mitotic phase. While the effect of caspase-3 inhibitor treatment on CD34(+) derived cells was not specific to the erythroid lineage, showing a similar reduction of cell expansion in myeloid cultures, the mechanism of action in both lineages appeared to be distinct with a strong induction of apoptosis causing the decreased yield of myeloid cells. Using a series of colony-forming assays we were able to pinpoint the stage at which cells were most sensitive to caspase-3 inhibition and found activated caspase-3 to play a signalling role in erythroid differentiation by targeting mature BFU-E and CFU-E but not early BFU-E.
Collapse
Affiliation(s)
- Daniela Boehm
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Christelle Mazurier
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
| | - Marie-Catherine Giarratana
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Dhouha Darghouth
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Anne-Marie Faussat
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- IFR 65-St Antoine, Université Pierre et Marie Curie - Paris 6, Plateforme de Cytométrie, Paris, France
| | - Laurence Harmand
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
| | - Luc Douay
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
- IFR 65-St Antoine, Université Pierre et Marie Curie - Paris 6, Plateforme de Cytométrie, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital St Antoine et Hôpital Trousseau, Service d'Hématologie Biologique, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Shrivastava K, Llovera G, Recasens M, Chertoff M, Giménez-Llort L, Gonzalez B, Acarin L. Temporal expression of cytokines and signal transducer and activator of transcription factor 3 activation after neonatal hypoxia/ischemia in mice. Dev Neurosci 2013; 35:212-25. [PMID: 23571161 DOI: 10.1159/000348432] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Hypoxia/ischemia (HI) is a prevalent reason for neonatal brain injury with inflammation being an inevitable phenomenon following such injury; but there is a scarcity of data regarding the signaling pathway involved and the effector molecules. The signal transducer and activator of transcription factor 3 (STAT3) is known to modulate injury following imbalance between pro- and anti-inflammatory cytokines in peripheral and central nervous system injury making it a potential molecule for study. The current study investigates the temporal expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, IL-1ra, IL-4, IL-10, IL-13 and phosphorylated STAT3 (pSTAT3) after carotid occlusion and hypoxia (8% O2, 55 min) in postnatal day 7 C57BL/6 mice from 3 h to 21 days after hypoxia. Protein array illustrated notable changes in cytokines expressed in both hemispheres in a time-dependent manner. The major pro-inflammatory cytokines showing immediate changes between ipsi- and contralateral hemispheres were IL-6 and IL-1β. The anti-inflammatory cytokines IL-4 and IL-13 demonstrated a delayed augmentation with no prominent differences between hemispheres, while IL-1ra showed two distinct peaks of expression spread over time. We also illustrate for the first time the spatiotemporal activation of pSTAT3 (Y705 phosphorylation) after a neonatal HI in mice brain. The main regions expressing pSTAT3 were the hippocampus and the corpus callosum. pSTAT3+ cells were mostly a subpopulation of activated astrocytes (GFAP+) and microglia/macrophages (F4/80+) seen only in the ipsilateral hemisphere at most time points studied (till 7 days after hypoxia). The highest expression of pSTAT3+ cells was observed to be around 24-48 h, where the presence of pSTAT3+ astrocytes and pSTAT3+ microglia/macrophages was seen by confocal micrographs. In conclusion, our study highlights a synchronized expression of some pro- and anti-inflammatory cytokines, especially in the long term not previously defined. It also points towards a significant role of STAT3 signaling following micro- and astrogliosis in the pathophysiology of neonatal HI-related brain injury. In the study, a shift from pro-inflammatory to anti-inflammatory cytokine profile was also noted as the injury progressed. We suggest that while designing efficient neuroprotective therapies using inflammatory molecules, the time of intervention and balance between the pro- and anti-inflammatory cytokines must be considered.
Collapse
Affiliation(s)
- K Shrivastava
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma Barcelona, Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured endothelial cells and is a potent angiogenic factor in vivo (Ribatti et al. Eur J Clin Invest. 33:891-896, 2003) and might enhance ventilation in hypoxic conditions (Soliz et al. J Physiol. 568:559-571, 2005; Soliz et al. J Physiol. 583, 329-336, 2007). Thus multiple functions have been identified breathing new life and exciting possibilities into what is really an old growth factor.This review will address the function of Epo in non-hematopoietic tissues with significant emphasis on the brain and heart.
Collapse
Affiliation(s)
- Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
16
|
Meshkini A, Yazdanparast R. Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int J Biochem Cell Biol 2012; 44:1718-28. [PMID: 22743331 DOI: 10.1016/j.biocel.2012.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
Evidence is emerging that Foxo family proteins serve as biochemical signal integrators in complex signaling networks mediating and modulating diverse cellular functions. Herein, we report that besides the well-established function of Foxo3a as a transcriptional regulator of multiple target genes in nucleus, a substantial fraction of Foxo3a translocates to mitochondria leading to disruption of mitochondrial membrane potential, release of cytochrome c and caspase activation during erythroid differentiation mediated by guanosine 5'-triphosphate (GTP). In fact, non transcriptional role of Foxo3a in mitochondria was achieved through the protein-protein interaction with pro-apoptotic protein Bax and its translocation to mitochondrial membrane. Furthermore, our results revealed that mitochondrial localization of Foxo3a was modulated by intracellular GTP content which is sensed by PKC signaling element. Collectively, our findings provided insight into a novel Foxo3a mechanism in leukemia cells which led to engagement of cells in the maturation pathway.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Institute of Biochemistry and Biophysics, PO Box 13145-1384, University of Tehran, Tehran, Iran
| | | |
Collapse
|
17
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
18
|
Maragno AL, Pironin M, Alcalde H, Cong X, Knobeloch KP, Tangy F, Zhang DE, Ghysdael J, Quang CT. ISG15 modulates development of the erythroid lineage. PLoS One 2011; 6:e26068. [PMID: 22022510 PMCID: PMC3192153 DOI: 10.1371/journal.pone.0026068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022] Open
Abstract
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.
Collapse
Affiliation(s)
- Ana Leticia Maragno
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Martine Pironin
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Hélène Alcalde
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Xiuli Cong
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | | | - Frederic Tangy
- Unité de Génomique Virale et Vaccination, CNRS URA-3015, Institut Pasteur, Paris, France
| | - Dong-Er Zhang
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | - Jacques Ghysdael
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Christine Tran Quang
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| |
Collapse
|
19
|
Abstract
The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2330, USA.
| | | |
Collapse
|
20
|
Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 2011; 21:409-15. [PMID: 21592797 DOI: 10.1016/j.tcb.2011.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
21
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
22
|
Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling. Cell Death Differ 2010; 18:678-89. [PMID: 21072057 DOI: 10.1038/cdd.2010.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation.
Collapse
|
23
|
Frisan E, Pawlikowska P, Pierre-Eugène C, Viallon V, Gibault L, Park S, Mayeux P, Dreyfus F, Porteu F, Fontenay M. p-ERK1/2 is a predictive factor of response to erythropoiesis-stimulating agents in low/int-1 myelodysplastic syndromes. Haematologica 2010; 95:1964-8. [PMID: 20823131 DOI: 10.3324/haematol.2010.024349] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Serum erythropoietin level less than 100U/L and a transfusion requirement of less than 2 units per month are the best predictive factors for response to treatment by erythropoiesis-stimulating agents in low/int-1 myelodysplastic syndromes. To investigate the factors influencing the response to erythropoiesis-stimulating agents, we enrolled 127 low/int-1 myelodysplastic syndrome patients at diagnosis in a biological study of erythropoiesis. The 54 non-responders had a significantly lower number of burst-forming unit-erythroid and colony-forming unit-erythroid than responders. Erythropoietin-dependent proliferation and survival, and phospho (p)-ERK1/2 expression in steady state and after erythropoietin stimulation were defective in cultured erythroblasts. By flow cytometry, p-ERK1/2 was significantly lower in bone marrow CD45(-)/CD71(+)/GPA(-)cells from non-responders compared to responders or controls. Receiver Operator Characteristic curve analysis showed that this flow cytometry test was a sensitive biomarker for predicting the response to erythropoiesis-stimulating agents.
Collapse
Affiliation(s)
- Emilie Frisan
- Département d’Immunologie-Hématologie, Institut Cochin, INSERM U1016, 3Centre National de la Recherche Scientifique, Paris Cedex 14, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Enucleation of mammalian erythroblasts is a process whose mechanism is largely undefined. The prevailing model suggests that nuclear extrusion occurs via asymmetric cytokinesis. To test this hypothesis, we treated primary erythroblasts with inhibitors of cytokinesis, including blebbistatin, hesperadin, and nocodazole, and then assayed for enucleation. Although these agents inhibited cell-cycle progression and subsequent enucleation when added early in culture, they failed to block enucleation proper when added to postmitotic cells. These results suggest that contraction of the actomyosin ring is not essential for nuclear expulsion. Next, by ultrastructural examination of primary erythroblasts, we observed an accumulation of vacuoles in the cytoplasm proximal to the extruding nucleus. This finding led us to hypothesize that vesicle trafficking contributes to erythroblast enucleation. Here, we show that chemical inhibitors of vesicle trafficking block enucleation of primary erythroblasts without affecting differentiation, cell division, or apoptosis. Moreover, knock-down of clathrin inhibited the enucleation of late erythroblasts. In contrast, vacuolin-1, a small molecule that induces vacuole formation, increased the percentage of enucleated cells. Together, these results illustrate that vesicle trafficking, specifically the formation, movement, and subsequent coalescence of vacuoles at the junction of the nucleus and the cytoplasm, is a critical component of mammalian erythroblast enucleation.
Collapse
|
25
|
Abstract
Heat shock protein 27 (HSP27) is a chaperone whose cellular expression increases in response to various stresses and protects the cell either by inhibiting apoptotic cell death or by promoting the ubiquitination and proteasomal degradation of specific proteins. Here, we show that globin transcription factor 1 (GATA-1) is a client protein of HSP27. In 2 models of erythroid differentiation; that is, in the human erythroleukemia cell line, K562 induced to differentiate into erythroid cells on hemin exposure and CD34(+) human cells ex vivo driven to erythroid differentiation in liquid culture, depletion of HSP27 provokes an accumulation of GATA-1 and impairs terminal maturation. More specifically, we demonstrate that, in the late stages of the erythroid differentiation program, HSP27 is phosphorylated in a p38-dependent manner, enters the nucleus, binds to GATA-1, and induces its ubiquitination and proteasomal degradation, provided that the transcription factor is acetylated. We conclude that HSP27 plays a role in the fine-tuning of terminal erythroid differentiation through regulation of GATA-1 content and activity.
Collapse
|
26
|
Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm 2010; 2009:405016. [PMID: 20204172 PMCID: PMC2830572 DOI: 10.1155/2009/405016] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 12/17/2009] [Indexed: 12/26/2022] Open
Abstract
Anemia of cancer and chronic inflammatory diseases is a frequent complication affecting quality of life. For cancer patients it represents a particularly bad prognostic. Low level of erythropoietin is considered as one of the causes of anemia in these pathologies. The deficiency in erythropoietin production results from pro-inflammatory cytokines effect. However, few data is available concerning molecular mechanisms involved in cytokine-mediated anemia. Some recent publications have demonstrated the direct effect of pro-inflammatory cytokines on cell differentiation towards erythroid pathway, without erythropoietin defect. This suggested that pro-inflammatory cytokine-mediated signaling pathways affect erythropoietin activity. They could interfere with erythropoietin-mediated signaling pathways, inducing early apoptosis and perturbing the expression and regulation of specific transcription factors involved in the control of erythroid differentiation. In this review we summarize the effect of tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL), and interferon (IFN)-γ on erythropoiesis with a particular interest for molecular feature.
Collapse
|
27
|
Theoretical and experimental analysis links isoform-specific ERK signalling to cell fate decisions. Mol Syst Biol 2009; 5:334. [PMID: 20029368 PMCID: PMC2824492 DOI: 10.1038/msb.2009.91] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 11/07/2009] [Indexed: 11/30/2022] Open
Abstract
Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. By combining quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, we predicted and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. Model analysis showed bow-tie-shaped signal processing and inherently transient signalling for cytokine-induced ERK signalling. Sensitivity analysis predicted that, through a feedback-mediated process, increasing one ERK isoform reduces activation of the other isoform, which was verified by protein over-expression. We calculated ERK activation for biochemically not addressable but physiologically relevant ligand concentrations showing that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Thus, we provide a quantitative link between earlier unobservable signalling dynamics and cell fate decisions.
Collapse
|
28
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
29
|
Kozuma Y, Yuki S, Ninomiya H, Nagasawa T, Kojima H. Caspase activation is involved in early megakaryocyte differentiation but not in platelet production from megakaryocytes. Leukemia 2009; 23:1080-6. [DOI: 10.1038/leu.2009.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
|
31
|
Abstract
Multisubunit complexes containing molecular chaperones regulate protein production, stability, and degradation in virtually every cell type. We are beginning to recognize how generalized and tissue-specific chaperones regulate specialized aspects of erythropoiesis. For example, chaperones intersect with erythropoietin signaling pathways to protect erythroid precursors against apoptosis. Molecular chaperones also participate in hemoglobin synthesis, both directly and indirectly. Current knowledge in these areas only scratches the surface of what is to be learned. Improved understanding of how molecular chaperones regulate erythropoietic development and hemoglobin homeostasis should identify biochemical pathways amenable to pharmacologic manipulation in a variety of red blood cell disorders including thalassemia and other anemias associated with hemoglobin instability.
Collapse
|
32
|
Targeted cleavage of signaling proteins by caspase 3 inhibits T cell receptor signaling in anergic T cells. Immunity 2008; 29:193-204. [PMID: 18701083 DOI: 10.1016/j.immuni.2008.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 03/26/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
T cell receptor (TCR) engagement in the absence of costimulation induces the calcium-dependent upregulation of a program of gene expression that leads to the establishment of T cell anergy. Casp3 is one of the genes activated during anergy induction. Here we show that caspase 3 is required for the induction of T cell unresponsiveness. Suboptimal T cell stimulation induced caspase 3 activation, which did not result in cell death. Furthermore, caspase 3-deficient T cells showed impaired responses to anergizing stimuli. In anergic T cells, activated caspase 3 associated to the plasma membrane, where it cleaved and inactivated proteins such as the Grb2-related adaptor downstream of shc (GADS) and the guanine-nucleotide exchange factor Vav1, causing a blockade in TCR signaling. Our results identify a role for caspase 3 in nonapoptotic T cells and support that caspase 3-dependent proteolytic inactivation of signaling proteins is essential to maintain T cell tolerance.
Collapse
|
33
|
Droin N, Cathelin S, Jacquel A, Guéry L, Garrido C, Fontenay M, Hermine O, Solary E. A role for caspases in the differentiation of erythroid cells and macrophages. Biochimie 2007; 90:416-22. [PMID: 17905508 DOI: 10.1016/j.biochi.2007.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Several cysteine proteases of the caspase family play a central role in many forms of cell death by apoptosis. Other enzymes of the family are involved in cytokine maturation along inflammatory response. In recent years, several caspases involved in cell death were shown to play a role in other cellular processes such as proliferation and differentiation. In the present review, we summarize the current knowledge of the role of caspases in the differentiation of erythroid cells and macrophages. Based on these two examples, we show that the nature of involved enzymes, the pathways leading to their activation in response to specific growth factors, and the specificity of the target proteins that are cleaved by the activated enzymes strongly differ from one cell type to another. Deregulation of these pathways is thought to play a role in the pathophysiology of low-grade myelodysplastic syndromes, characterized by excessive activation of caspases and erythroid precursor apoptosis, and that of chronic myelomonocytic leukemia, characterized by a defective activation of caspases in monocytes exposed to M-CSF, which blocks their differentiation.
Collapse
|
34
|
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1196-212. [PMID: 17555829 PMCID: PMC1986673 DOI: 10.1016/j.bbamcr.2007.05.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 12/25/2022]
Abstract
The Ras-Raf-MAPK pathway regulates diverse physiological processes by transmitting signals from membrane based receptors to various nuclear, cytoplasmic and membrane-bound targets, coordinating a large variety of cellular responses. Function of Raf family kinases has been shown to play a role during organism development, cell cycle regulation, cell proliferation and differentiation, cell survival and apoptosis and many other cellular and physiological processes. Aberrations along the Ras-Raf-MAPK pathway play an integral role in various biological processes concerning human health and disease. Overexpression or activation of the pathway components is a common indicator in proliferative diseases such as cancer and contributes to tumor initiation, progression and metastasis. In this review, we focus on the physiological roles of Raf kinases in normal and disease conditions, specifically cancer, and the current thoughts on Raf regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guri Tzivion
- To whom correspondence should be addressed: Karmanos Cancer Institute, Wayne State University, 4100 John R., HWCRC 716, Detroit, MI 48201, Tel: 313-576-8311, Fax: 313-576-8308, E-mail:
| |
Collapse
|
35
|
Moosavi MA, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5'-triphosphate-mediated terminal erythroid differentiation of K562 cells. Int J Biochem Cell Biol 2007; 39:1685-97. [PMID: 17543571 DOI: 10.1016/j.biocel.2007.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
36
|
Lui JCK, Kong SK. Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett 2006; 581:109-17. [PMID: 17182042 DOI: 10.1016/j.febslet.2006.11.082] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 11/30/2006] [Indexed: 11/24/2022]
Abstract
Loss of mitochondrial membrane potential (DeltaPsi(m)) and release of AIF (apoptosis-inducing factor) from mitochondria are key steps in apoptosis. In TF-1 model, DeltaPsi(m) was depolarized with AIF release during erythroid development. Yet, no DNA fragmentation was observed. When DeltaPsi(m) depolarization had been blocked, erythropoiesis was suppressed. Interestingly, heat shock protein 70 (Hsp70) was found transiently upregulated during depolarization and it retained AIF in the cytosol to avoid DNA damages. When Hsp inhibitor was added, DNA fragmentation occurred. We show this mechanism for the first time in erythropoiesis how cells with DeltaPsi(m) depolarization and AIF release escape apoptosis.
Collapse
Affiliation(s)
- Julian Chun-Kin Lui
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | |
Collapse
|
37
|
Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, Coulon S, Moura IC, Zeuner A, Kirkegaard-Sørensen T, Varet B, Solary E, Garrido C, Hermine O. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 2006; 445:102-5. [PMID: 17167422 DOI: 10.1038/nature05378] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/25/2006] [Indexed: 01/22/2023]
Abstract
Caspase-3 is activated during both terminal differentiation and erythropoietin-starvation-induced apoptosis of human erythroid precursors. The transcription factor GATA-1, which performs an essential function in erythroid differentiation by positively regulating promoters of erythroid and anti-apoptotic genes, is cleaved by caspases in erythroid precursors undergoing cell death upon erythropoietin starvation or engagement of the death receptor Fas. In contrast, by an unknown mechanism, GATA-1 remains uncleaved when these cells undergo terminal differentiation upon stimulation with Epo. Here we show that during differentiation, but not during apoptosis, the chaperone protein Hsp70 protects GATA-1 from caspase-mediated proteolysis. At the onset of caspase activation, Hsp70 co-localizes and interacts with GATA-1 in the nucleus of erythroid precursors undergoing terminal differentiation. In contrast, erythropoietin starvation induces the nuclear export of Hsp70 and the cleavage of GATA-1. In an in vitro assay, Hsp70 protects GATA-1 from caspase-3-mediated proteolysis through its peptide-binding domain. The use of RNA-mediated interference to decrease the Hsp70 content of erythroid precursors cultured in the presence of erythropoietin leads to GATA-1 cleavage, a decrease in haemoglobin content, downregulation of the expression of the anti-apoptotic protein Bcl-X(L), and cell death by apoptosis. These effects are abrogated by the transduction of a caspase-resistant GATA-1 mutant. Thus, in erythroid precursors undergoing terminal differentiation, Hsp70 prevents active caspase-3 from cleaving GATA-1 and inducing apoptosis.
Collapse
Affiliation(s)
- Jean-Antoine Ribeil
- CNRS UMR 8147, Faculté de Médecine et Université René Descartes Paris V, Institut Fédérative Necker, 75270 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jacquel A, Colosetti P, Grosso S, Belhacene N, Puissant A, Marchetti S, Breittmayer JP, Auberger P. Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene 2006; 26:2445-58. [PMID: 17043649 DOI: 10.1038/sj.onc.1210034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Imatinib targets the Bcr-Abl oncogene that causes chronic myelogenous leukemia (CML) in humans. Recently, we demonstrated that besides triggering apoptosis in K562 cells, imatinib also mediated their erythroid differentiation. Although both events appear to proceed concomitantly, it is not known at present whether or not imatinib-induced apoptosis and differentiation are interdependent processes. Hence, we investigated the requirements for Bcr-Abl inhibitor-mediated apoptosis and erythroid differentiation in several established and engineered CML cell lines. Imatinib triggered apoptosis and erythroid differentiation of different CML cell lines, but only apoptosis exhibited sensitivity to ZVAD-fmk inhibition. Conversely, the p38 mitogen-activated protein (MAP) kinase inhibitor, SB202190, significantly slowed down erythroid differentiation without affecting caspase activation. Furthermore, imatinib and PD166326, another Bcr-Abl inhibitory molecule, triggered erythroid differentiation of K562 cell clones, nevertheless resistant to Bcr-Abl inhibitor-induced apoptosis. Finally, short hairpin RNA inhibitor (shRNAi) silencing of caspase 3 efficiently inhibited caspase activity but had no effect on erythroid differentiation, whereas silencing of Bcr-Abl mimicked imatinib or PD166326 treatment, leading to increased apoptosis and erythroid differentiation of K562 cells. Taken together, our findings not only demonstrate that Bcr-Abl inhibitor-mediated apoptosis and differentiation are fully distinguishable events, but also that caspases are dispensable for erythroid differentiation of established CML cell lines.
Collapse
MESH Headings
- Apoptosis/drug effects
- Benzamides
- Caspase Inhibitors
- Caspases/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Erythroid Cells/cytology
- Erythroid Cells/enzymology
- Erythroid Cells/pathology
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Piperazines/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/blood
- Pyridines/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- A Jacquel
- INSERM, U526, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E. Mitochondria in hematopoiesis and hematological diseases. Oncogene 2006; 25:4757-67. [PMID: 16892088 DOI: 10.1038/sj.onc.1209606] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria are involved in hematopoietic cell homeostasis through multiple ways such as oxidative phosphorylation, various metabolic processes and the release of cytochrome c in the cytosol to trigger caspase activation and cell death. In erythroid cells, the mitochondrial steps in heme synthesis, iron (Fe) metabolism and Fe-sulfur (Fe-S) cluster biogenesis are of particular importance. Mutations in the specific delta-aminolevulinic acid synthase (ALAS) 2 isoform that catalyses the first and rate-limiting step in heme synthesis pathway in the mitochondrial matrix, lead to ineffective erythropoiesis that characterizes X-linked sideroblastic anemia (XLSA), the most common inherited sideroblastic anemia. Mutations in the adenosine triphosphate-binding cassette protein ABCB7, identified in XLSA with ataxia (XLSA-A), disrupt the maturation of cytosolic (Fe-S) clusters, leading to mitochondrial Fe accumulation. In addition, large deletions in mitochondrial DNA, whose integrity depends on a specific DNA polymerase, are the hallmark of Pearson's syndrome, a rare congenital disorder with sideroblastic anemia. In acquired myelodysplastic syndromes at early stage, exacerbation of physiological pathways involving caspases and the mitochondria in erythroid differentiation leads to abnormal activation of a mitochondria-mediated apoptotic cell death pathway. In contrast, oncogenesis-associated changes at the mitochondrial level can alter the apoptotic response of transformed hematopoietic cells to chemotherapeutic agents. Recent findings in mitochondria metabolism and functions open new perspectives in treating hematopoietic cell diseases, for example various compounds currently developed to trigger tumor cell death by directly targeting the mitochondria could prove efficient as either cytotoxic drugs or chemosensitizing agents in treating hematological malignancies.
Collapse
Affiliation(s)
- M Fontenay
- Inserm U567, Institut Cochin, Department of Hematology, Paris, Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Dolznig H, Grebien F, Deiner EM, Stangl K, Kolbus A, Habermann B, Kerenyi MA, Kieslinger M, Moriggl R, Beug H, Müllner EW. Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR. Oncogene 2006; 25:2890-900. [PMID: 16407844 PMCID: PMC3035873 DOI: 10.1038/sj.onc.1209308] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/02/2005] [Accepted: 11/03/2005] [Indexed: 01/17/2023]
Abstract
The balance between hematopoietic progenitor commitment and self-renewal versus differentiation is controlled by various transcriptional regulators cooperating with cytokine receptors. Disruption of this balance is increasingly recognized as important in the development of leukemia, by causing enhanced renewal and differentiation arrest. We studied regulation of renewal versus differentiation in primary murine erythroid progenitors that require cooperation of erythropoietin receptor (EpoR), the receptor tyrosine kinase c-Kit and a transcriptional regulator (glucocorticoid receptor; GR) for sustained renewal. However, mice defective for GR- (GR(dim/dim)), EpoR- (EpoR(H)) or STAT5ab function (Stat5ab(-/-)) show no severe erythropoiesis defects in vivo. Using primary erythroblast cultures from these mutants, we present genetic evidence that functional GR, EpoR, and Stat5 are essential for erythroblast renewal in vitro. Cells from GR(dim/dim), EpoR(H), and Stat5ab(-/-) mice showed enhanced differentiation instead of renewal, causing accumulation of mature cells and gradual proliferation arrest. Stat5ab was additionally required for Epo-induced terminal differentiation: differentiating Stat5ab(-/-) erythroblasts underwent apoptosis instead of erythrocyte maturation, due to absent induction of the antiapoptotic protein Bcl-X(L). This defect could be fully rescued by exogenous Bcl-X(L). These data suggest that signaling molecules driving leukemic proliferation may also be essential for prolonged self-renewal of normal erythroid progenitors.
Collapse
Affiliation(s)
- H Dolznig
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - F Grebien
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - EM Deiner
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - K Stangl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - A Kolbus
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - B Habermann
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - MA Kerenyi
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - M Kieslinger
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - R Moriggl
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - H Beug
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - EW Müllner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Rubiolo C, Piazzolla D, Meissl K, Beug H, Huber JC, Kolbus A, Baccarini M. A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood 2006; 108:152-9. [PMID: 16527894 DOI: 10.1182/blood-2005-09-3866] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal erythropoiesis critically depends on the balance between the renewal of precursor cells and their differentiation. If the renewal phase is shortened, the decrease in the precursor pool results in anemia; conversely, impaired differentiation increases the number of proliferating progenitors and the potential risk of leukemic transformation. Using gene ablation, we have discovered 2 self-sustaining signal transduction loops that antagonize each other and regulate erythroid progenitor proliferation and differentiation, respectively. We identify Raf-1 as the main activator of the MEK/ERK cascade and as the key molecule in maintaining progenitor proliferation. Differentiation, in contrast, is mediated by Fas via the activation of both the ASK1/JNK/p38 module and the caspase cascade. The point of convergence between the 2 cascades is activated ERK, which positively feeds back on the proliferation pathway by maintaining the expression of Raf-1, while inhibiting the expression of Fas and therefore differentiation. In turn, Fas, once expressed, antagonizes proliferation by exerting a negative feedback on ERK activation and Raf-1 expression. Simultaneously, Fas-mediated caspase activation precipitates differentiation. These results identify Raf-1 and Fas as the key molecules whose expression finely tunes erythropoiesis and the extent of ERK activation as the switch that tips the balance between them.
Collapse
Affiliation(s)
- Cristina Rubiolo
- Department of Obstetrics and Gynecology, Division of Gynecological Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
42
|
Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M. Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. ACTA ACUST UNITED AC 2006; 171:1013-22. [PMID: 16365167 PMCID: PMC2171328 DOI: 10.1083/jcb.200504137] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ablation of the Raf-1 protein causes fetal liver apoptosis, embryonic lethality, and selective hypersensitivity to Fas-induced cell death. Furthermore, Raf-1–deficient cells show defective migration as a result of the deregulation of the Rho effector kinase Rok-α. In this study, we show that the kinase-independent modulation of Rok-α signaling is also the basis of the antiapoptotic function of Raf-1. Fas activation stimulates the formation of Raf-1–Rok-α complexes, and Rok-α signaling is up-regulated in Raf-1–deficient cells. This leads to increased clustering and membrane expression of Fas, which is rescued both by kinase-dead Raf-1 and by interfering with Rok-α or its substrate ezrin. Increased Fas clustering and membrane expression are also evident in the livers of Raf-1–deficient embryos, and genetically reducing Fas expression counteracts fetal liver apoptosis, embryonic lethality, and the apoptotic defects of embryonic fibroblasts. Thus, Raf-1 has an essential function in regulating Fas expression and setting the threshold of Fas sensitivity during embryonic life.
Collapse
Affiliation(s)
- Daniela Piazzolla
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Campus Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
43
|
Lui JCK, Kong SK. Erythropoietin activates caspase-3 and downregulates CAD during erythroid differentiation in TF-1 cells - A protection mechanism against DNA fragmentation. FEBS Lett 2006; 580:1965-70. [PMID: 16529748 DOI: 10.1016/j.febslet.2006.02.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/03/2006] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
The involvement of caspase-3 and its failure in the induction of DNA fragmentation during erythropoiesis were investigated with TF-1 cells. During erythroid differentiation, caspase-3 activation and cleavage of caspase-3 substrates such as ICAD (inhibitor of caspase-activated DNase) were detected without concomitant phosphatidyl-serine (PS) externalization and DNA fragmentation. These observations are in contrast to our understanding that DNA is degraded by CAD (caspase-activated DNase) when ICAD is cleaved by caspase-3. Our study demonstrates that CAD is downregulated at the mRNA and protein level during the erythroid differentiation in TF-1 cells. This provides a mechanism for the first time how cells avoid DNA fragmentation with activated caspase-3.
Collapse
Affiliation(s)
- Julian Chun-Kin Lui
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | |
Collapse
|
44
|
Schuierer MM, Heilmeier U, Boettcher A, Ugocsai P, Bosserhoff AK, Schmitz G, Langmann T. Induction of Raf kinase inhibitor protein contributes to macrophage differentiation. Biochem Biophys Res Commun 2006; 342:1083-7. [PMID: 16513087 DOI: 10.1016/j.bbrc.2006.02.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/15/2006] [Indexed: 11/20/2022]
Abstract
Differential gene expression analysis of human blood monocytes has identified the Raf kinase inhibitor protein (RKIP) as a continuously upregulated gene in macrophage and dendritic cell maturation. Using realtime RT-PCR and Western blot analysis we were able to confirm the initial DNA-microarray findings of RKIP induction on mRNA and protein levels. RKIP upregulation in primary cells and overexpression in THP-1 cells did not alter ERK activity but strongly reduced the amount of the NFkappaB subunit p65 in the nucleus. mRNA levels and cell surface expression of maturation markers including the integrin CD11c and the scavenger receptor CD36 were significantly increased in RKIP transfected THP-1 cells. Our data show for the first time that RKIP is upregulated during macrophage and dendritic cell differentiation on mRNA and protein levels and we conclude that RKIP contributes to the monocytic differentiation process via inhibition of the NFkappaB signaling cascade independent from the canonical Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Marion M Schuierer
- Institute of Clinical Chemistry, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Oliver L, Vallette FM. The role of caspases in cell death and differentiation. Drug Resist Updat 2005; 8:163-70. [PMID: 15946892 DOI: 10.1016/j.drup.2005.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/21/2005] [Accepted: 05/24/2005] [Indexed: 12/19/2022]
Abstract
The complexity, redundancy and interdependence of the biological systems involved in tumour response to different treatments hamper progress towards developing specific and effective therapies. In addition, the many and even contradictory roles played by certain key proteins can significantly amend our view on tumourigenesis. The role of caspases in the modulation of cell death and differentiation is a prominent example of such a complexity. Here we focus on the role of caspases in apoptotic cell death, mainly in haematological malignancies, tumourigenesis, sepsis, T-cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Lisa Oliver
- Equipe 4 Labellisée Ligue contre le Cancer, UMR 601 INSERM/Université de Nantes, 9 Quai Moncousu, 44035 Nantes Cedex 01, France.
| | | |
Collapse
|
46
|
Santambrogio L, Potolicchio I, Fessler SP, Wong SH, Raposo G, Strominger JL. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat Immunol 2005; 6:1020-8. [PMID: 16170319 DOI: 10.1038/ni1250] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 08/09/2005] [Indexed: 01/01/2023]
Abstract
The involvement of the tetrameric adaptor protein 1 (AP-1) complex in protein sorting in intracellular compartments is not yet completely defined. Here we report that in immature dendritic cells, the beta1- and gamma-subunits of AP-1 underwent caspase 3-catalyzed cleavage in their hinge regions, resulting in removal of the C-terminal 'ear' domains. Cleavage was inhibited by lipopolysaccharide or caspase inhibitors, each of which led to maturation of the dendritic cells, demonstrated by endosomal remodeling and an increase in surface expression of peptide-loaded major histocompatibility complex class II. Overexpression of similarly truncated AP-1 together with 'silencing' of the endogenous genes in immature dendritic cells did not compromise delivery of major histocompatibility complex class II invariant chain to endosomal compartments. However, after lipopolysaccharide-induced maturation, overexpression of truncated AP-1 and 'silencing' of endogenous genes did result in the anomalous surface accumulation of invariant chain and the peptide-editing molecule H2-DM. Thus, at least one function for intact AP-1 is to retain some proteins in endosomes during the dendritic cell maturation process in which others are allowed to egress to the cell surface.
Collapse
Affiliation(s)
- Laura Santambrogio
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Muntean AG, Crispino JD. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 2005; 106:1223-31. [PMID: 15860665 PMCID: PMC1895209 DOI: 10.1182/blood-2005-02-0551] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 04/12/2005] [Indexed: 11/20/2022] Open
Abstract
GATA1 is mutated in patients with 2 different disorders. First, individuals with a GATA1 mutation that blocks the interaction between GATA-1 and its cofactor Friend of GATA-1 (FOG-1) suffer from dyserythropoietic anemia and thrombocytopenia. Second, children with Down syndrome who develop acute megakaryoblastic leukemia harbor mutations in GATA1 that lead to the exclusive expression of a shorter isoform named GATA-1s. To determine the effect of these patient-specific mutations on GATA-1 function, we first compared the gene expression profile between wild-type and GATA-1-deficient megakaryocytes. Next, we introduced either GATA-1s or a FOG-binding mutant (V205G) into GATA-1-deficient megakaryocytes and assessed the effect on differentiation and gene expression. Whereas GATA-1-deficient megakaryocytes failed to undergo terminal differentiation and proliferated excessively in vitro, GATA-1s-expressing cells displayed proplatelet formation and other features of terminal maturation, but continued to proliferate aberrantly. In contrast, megakaryocytes that expressed V205G GATA-1 exhibited reduced proliferation, but failed to undergo maturation. Examination of the expression of megakaryocyte-specific genes in the various rescued cells correlated with the observed phenotypic differences. These studies show that GATA-1 is required for both normal regulation of proliferation and terminal maturation of megakaryocytes, and further, that these functions can be uncoupled by mutations in GATA1.
Collapse
Affiliation(s)
- Andrew G Muntean
- Ben May Institute for Cancer Research, Univeristy of Chicago, IL, USA
| | | |
Collapse
|
48
|
Gurbuxani S, Xu Y, Keerthivasan G, Wickrema A, Crispino JD. Differential requirements for survivin in hematopoietic cell development. Proc Natl Acad Sci U S A 2005; 102:11480-5. [PMID: 16055565 PMCID: PMC1183538 DOI: 10.1073/pnas.0500303102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 06/22/2005] [Indexed: 11/18/2022] Open
Abstract
Although erythroid cells and megakaryocytes arise from a common progenitor, their terminal maturation follows very different paths; erythroid cells undergo cell-cycle exit and enucleation, whereas megakaryocytes continue to progress through the cell cycle but skip late stages of mitosis to become polyploid cells. In our efforts to identify genes that participate in this process, we discovered that survivin, a member of the inhibitor of apoptosis family that also has an essential role in cytokinesis, is differentially expressed during erythroid versus megakaryocyte development. Erythroid cells express survivin throughout their maturation, whereas megakaryocytes express approximately 4-fold lower levels of survivin mRNA and no detectable protein. To investigate the role of survivin in these lineages, we overexpressed or knocked down survivin from mouse bone marrow cells and then examined erythroid and megakaryocyte development. These studies revealed that overexpression of survivin antagonized megakaryocyte growth, maturation, and polyploidization but had no effect on erythroid development. This block in polyploidization was accompanied by increased expression of p21 and decreased expression of megakaryocyte genes such as von Willebrand factor and beta(1)-tubulin. In contrast, a reduction in survivin expression interfered with the formation of erythroid cells but not megakaryocytes. Last, consistent with the requirement for survivin in the survival of proliferating cells, survivin-deficient hematopoietic progenitors failed to give rise to either erythroid or megakaryocytic colonies. Together, these studies show that whereas survivin expression is essential for megakaryocyte and erythroid progenitors, its down-regulation is required for terminal differentiation of megakaryocytes.
Collapse
Affiliation(s)
- Sandeep Gurbuxani
- The Ben May Institute for Cancer Research and Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
49
|
Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C. Vital functions for lethal caspases. Oncogene 2005; 24:5137-48. [PMID: 16079910 DOI: 10.1038/sj.onc.1208524] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are a family of cysteine proteases expressed as inactive zymogens in virtually all animal cells. These enzymes play a central role in most cell death pathways leading to apoptosis but growing evidences implicate caspases also in nonapoptotic functions. Several of these enzymes, activated in molecular platforms referred to as inflammasomes, play a role in innate immune response by processing some of the cytokines involved in inflammatory response. Caspases are requested for terminal differentiation of specific cell types, whether this differentiation process leads to enucleation or not. These enzymes play also a role in T and B lymphocyte proliferation and, in some circumstances, appear to be cytoprotective rather than cytotoxic. These pleiotropic functions implicate caspases in the control of life and death but the fine regulation of their dual effect remains poorly understood. The nonapoptotic functions of caspases implicate that cells can restrict the proteolytic activity of these enzymes to selected substrates. Deregulation of the pathways in which caspases exert these nonapoptotic functions is suspected to play a role in the pathophysiology of several human diseases.
Collapse
Affiliation(s)
- Sophie Launay
- INSERM U-517, IFR100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| | | | | | | | | | | |
Collapse
|
50
|
Unraveling the mysteries of B-Raf: the clot thickens! Blood 2005. [DOI: 10.1182/blood-2005-05-1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|