1
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
3
|
Giehler F, Ostertag MS, Sommermann T, Weidl D, Sterz KR, Kutz H, Moosmann A, Feller SM, Geerlof A, Biesinger B, Popowicz GM, Kirchmair J, Kieser A. Epstein-Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex. Nat Commun 2024; 15:414. [PMID: 38195569 PMCID: PMC10776578 DOI: 10.1038/s41467-023-44455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer.
Collapse
Affiliation(s)
- Fabian Giehler
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael S Ostertag
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Daniel Weidl
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Kai R Sterz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Johannes Kirchmair
- Universität Hamburg, Department of Informatics, Center for Bioinformatics (ZBH), 20146, Hamburg, Germany
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
4
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Swoboda AS, Arfelli VC, Danese A, Windisch R, Kerbs P, Redondo Monte E, Bagnoli JW, Chen-Wichmann L, Caroleo A, Cusan M, Krebs S, Blum H, Sterr M, Enard W, Herold T, Colomé-Tatché M, Wichmann C, Greif PA. CSF3R T618I Collaborates With RUNX1-RUNX1T1 to Expand Hematopoietic Progenitors and Sensitizes to GLI Inhibition. Hemasphere 2023; 7:e958. [PMID: 37841755 PMCID: PMC10569757 DOI: 10.1097/hs9.0000000000000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically.
Collapse
Affiliation(s)
- Anja S. Swoboda
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa C. Arfelli
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Danese
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians University, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes W. Bagnoli
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Alessandra Caroleo
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Krebs
- Gene Center - Laboratory for Functional Genome Analysis, LMU Munich, Germany
| | - Helmut Blum
- Gene Center - Laboratory for Functional Genome Analysis, LMU Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Philipp A. Greif
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Neldeborg S, Soerensen JF, Møller CT, Bill M, Gao Z, Bak RO, Holm K, Sorensen B, Nyegaard M, Luo Y, Hokland P, Stougaard M, Ludvigsen M, Holm CK. Dual intron-targeted CRISPR-Cas9-mediated disruption of the AML RUNX1-RUNX1T1 fusion gene effectively inhibits proliferation and decreases tumor volume in vitro and in vivo. Leukemia 2023; 37:1792-1801. [PMID: 37464068 PMCID: PMC10457201 DOI: 10.1038/s41375-023-01950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Oncogenic fusion drivers are common in hematological cancers and are thus relevant targets of future CRISPR-Cas9-based treatment strategies. However, breakpoint-location variation in patients pose a challenge to traditional breakpoint-targeting CRISPR-Cas9-mediated disruption strategies. Here we present a new dual intron-targeting CRISPR-Cas9 treatment strategy, for targeting t(8;21) found in 5-10% of de novo acute myeloid leukemia (AML), which efficiently disrupts fusion genes without prior identification of breakpoint location. We show in vitro growth rate and proliferation reduction by 69 and 94% in AML t(8;21) Kasumi-1 cells, following dual intron-targeted disruption of RUNX1-RUNX1T1 compared to a non t(8;21) AML control. Furthermore, mice injected with RUNX1-RUNX1T1-disrupted Kasumi-1 cells had in vivo tumor growth reduction by 69 and 91% compared to controls. Demonstrating the feasibility of RUNX1-RUNX1T1 disruption, these findings were substantiated in isolated primary cells from a patient diagnosed with AML t(8;21). In conclusion, we demonstrate proof-of-principle of a dual intron-targeting CRISPR-Cas9 treatment strategy in AML t(8;21) without need for precise knowledge of the breakpoint location.
Collapse
Affiliation(s)
- Signe Neldeborg
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johannes Frasez Soerensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kasper Holm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Boe Sorensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Hokland
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Life Science Cluster, Copenhagen, Denmark
| | - Maja Ludvigsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
7
|
Ren R, Horton JR, Chen Q, Yang J, Liu B, Huang Y, Blumenthal RM, Zhang X, Cheng X. Structural basis for transcription factor ZBTB7A recognition of DNA and effects of ZBTB7A somatic mutations that occur in human acute myeloid leukemia. J Biol Chem 2023; 299:102885. [PMID: 36626981 PMCID: PMC9932118 DOI: 10.1016/j.jbc.2023.102885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.
Collapse
Affiliation(s)
- Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
8
|
IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:cells11172630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G− polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
|
9
|
Chin PS, Bonifer C. Modelling t(8;21) acute myeloid leukaemia - What have we learned? MedComm (Beijing) 2020; 1:260-269. [PMID: 34766123 PMCID: PMC8491201 DOI: 10.1002/mco2.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous haematopoietic malignancy caused by recurrent mutations in haematopoietic stem and progenitor cells that affect both the epigenetic regulatory machinery and signalling molecules. The t(8;21) or RUNX1‐RUNX1T1 translocation generates the RUNX1‐ETO chimeric transcription factor which primes haematopoietic stem cells for further oncogenic mutational events that in their sum cause overt disease. Significant progress has been made in generating both in vitro and in vivo model systems to recapitulate t(8;21) AML which are crucial for the understanding of the biology of the disease and the development of effective treatment. This review provides a comprehensive overview of the in vivo and in vitro model systems that were developed to gain insights into the molecular mechanisms of RUNX1‐ETO oncogenic activity and their contribution to the advancement of knowledge in the t(8;21) AML field. Such models include transgenic mice, patient‐derived xenografts, RUNX1‐ETO transduced human progenitor cells, cell lines and human embryonic stem cell model systems, making the t(8;21) as one of the well‐characterized sub‐type of AML at the molecular level.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
10
|
Al Outa A, Abubaker D, Madi J, Nasr R, Shirinian M. The Leukemic Fly: Promises and Challenges. Cells 2020; 9:E1737. [PMID: 32708107 PMCID: PMC7409271 DOI: 10.3390/cells9071737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Leukemia involves different types of blood cancers, which lead to significant mortality and morbidity. Murine models of leukemia have been instrumental in understanding the biology of the disease and identifying therapeutics. However, such models are time consuming and expensive in high throughput genetic and drug screening. Drosophilamelanogaster has emerged as an invaluable in vivo model for studying different diseases, including cancer. Fruit flies possess several hematopoietic processes and compartments that are in close resemblance to their mammalian counterparts. A number of studies succeeded in characterizing the fly's response upon the expression of human leukemogenic proteins in hematopoietic and non-hematopoietic tissues. Moreover, some of these studies showed that these models are amenable to genetic screening. However, none were reported to be tested for drug screening. In this review, we describe the Drosophila hematopoietic system, briefly focusing on leukemic diseases in which fruit flies have been used. We discuss myeloid and lymphoid leukemia fruit fly models and we further highlight their roles for future therapeutic screening. In conclusion, fruit fly leukemia models constitute an interesting area which could speed up the process of integrating new therapeutics when complemented with mammalian models.
Collapse
Affiliation(s)
- Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Dana Abubaker
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Joelle Madi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
11
|
Redondo Monte E, Wilding A, Leubolt G, Kerbs P, Bagnoli JW, Hartmann L, Hiddemann W, Chen-Wichmann L, Krebs S, Blum H, Cusan M, Vick B, Jeremias I, Enard W, Theurich S, Wichmann C, Greif PA. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene 2020; 39:3195-3205. [PMID: 32115572 PMCID: PMC7142018 DOI: 10.1038/s41388-020-1209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Anja Wilding
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Stefan Krebs
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,Cancer & Immunometabolism Research Group, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany. .,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany.
| |
Collapse
|
12
|
Huang W, Liu B, Eklund EA. Investigating the role of the innate immune response in relapse or blast crisis in chronic myeloid leukemia. Leukemia 2020; 34:2364-2374. [PMID: 32080344 PMCID: PMC7438233 DOI: 10.1038/s41375-020-0771-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/04/2023]
Abstract
Chronic myeloid leukemia (CML) is characterized by expression of the tyrosine kinase oncogene, Bcr–abl. Tyrosine kinase inhibitors (TKI) induce prolonged remission in CML, and therapy discontinuation is an accepted approach to patients with reduction in Bcr–abl transcripts of four logs or greater. Half such individuals sustain a therapy free remission, but molecular mechanisms predicting relapse are undefined. We found relative calpain inhibition in CML cells with stabilization of calpain substrates, including βcatenin and Xiap1. Since the Survivin gene is activated by βcatenin, this identified two apoptosis-resistance mechanisms. We found that Survivin impaired apoptosis in leukemia stem cells (LSCs) and Xiap1 in CML granulocytes. Consistent with this, we determined treatment with an inhibitor of Survivin, but not Xiap1, prevented relapse during TKI treatment and after therapy discontinuation in a murine CML model. By transcriptome profiling, we identified activation of innate immune response pathways in murine CML bone marrow progenitors. This was increased by TKI treatment alone, but normalized with addition of a Survivin inhibitor. We found that activation of the innate immune response induced rapid blast crisis in untreated CML mice, and chronic phase relapse during a TKI discontinuation attempt. These results suggest that extrinsic stress exerts adverse effects on CML-LSCs.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School, Northwestern University, Chicago, IL, USA.,Jesse Brown Veterans Health Administration Medical Center, Chicago, IL, USA
| | - Bin Liu
- The Feinberg School, Northwestern University, Chicago, IL, USA
| | - Elizabeth A Eklund
- The Feinberg School, Northwestern University, Chicago, IL, USA. .,Jesse Brown Veterans Health Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
13
|
A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation. Nat Commun 2020; 11:685. [PMID: 32019925 PMCID: PMC7000802 DOI: 10.1038/s41467-020-14502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer.
Collapse
|
14
|
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci U S A 2018; 116:890-899. [PMID: 30593567 DOI: 10.1073/pnas.1809327116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
Collapse
|
15
|
Gentner E, Vegi NM, Mulaw MA, Mandal T, Bamezai S, Claus R, Tasdogan A, Quintanilla-Martinez L, Grunenberg A, Döhner K, Döhner H, Bullinger L, Haferlach T, Buske C, Rawat VPS, Feuring-Buske M. VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice. Oncotarget 2018; 7:86889-86901. [PMID: 27888632 PMCID: PMC5349961 DOI: 10.18632/oncotarget.13563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Eva Gentner
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Naidu M Vegi
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Rainer Claus
- Department of Internal Medicine I, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | | | - Alexander Grunenberg
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | | |
Collapse
|
16
|
Loke J, Assi SA, Imperato MR, Ptasinska A, Cauchy P, Grabovska Y, Soria NM, Raghavan M, Delwel HR, Cockerill PN, Heidenreich O, Bonifer C. RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep 2017; 19:1654-1668. [PMID: 28538183 PMCID: PMC5457485 DOI: 10.1016/j.celrep.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Pierre Cauchy
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Yura Grabovska
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Manoj Raghavan
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
17
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
18
|
ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun 2016; 7:11733. [PMID: 27252013 PMCID: PMC4895769 DOI: 10.1038/ncomms11733] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
The t(8;21) translocation is one of the most frequent cytogenetic abnormalities in acute myeloid leukaemia (AML) and results in the RUNX1/RUNX1T1 rearrangement. Despite the causative role of the RUNX1/RUNX1T1 fusion gene in leukaemia initiation, additional genetic lesions are required for disease development. Here we identify recurring ZBTB7A mutations in 23% (13/56) of AML t(8;21) patients, including missense and truncating mutations resulting in alteration or loss of the C-terminal zinc-finger domain of ZBTB7A. The transcription factor ZBTB7A is important for haematopoietic lineage fate decisions and for regulation of glycolysis. On a functional level, we show that ZBTB7A mutations disrupt the transcriptional repressor potential and the anti-proliferative effect of ZBTB7A. The specific association of ZBTB7A mutations with t(8;21) rearranged AML points towards leukaemogenic cooperativity between mutant ZBTB7A and the RUNX1/RUNX1T1 fusion. The t(8;21) translocation is often found in acute myeloid leukaemia but is not sufficient for development of the disease. In this study, the authors identify frequent mutations in the transcriptional repressor, ZBTB7A, in these patients and show that the mutations reduce DNA binding activity.
Collapse
|
19
|
Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, Piechatzek A, Salinas Riester G, Lingner T, Wichmann C, Bonig H, Seifried E, Platzbecker U, Medyouf H, Grez M, Lausen J. MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO. PLoS Genet 2016; 12:e1005946. [PMID: 26990877 PMCID: PMC4798443 DOI: 10.1371/journal.pgen.1005946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.
Collapse
Affiliation(s)
- Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Olga N. Kuvardina
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Julia Herglotz
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Alexander Piechatzek
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | | | - Thomas Lingner
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Goettingen, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Uwe Platzbecker
- Department of Hematology, Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Manuel Grez
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
20
|
Mouse models for core binding factor leukemia. Leukemia 2015; 29:1970-80. [PMID: 26165235 DOI: 10.1038/leu.2015.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.
Collapse
|
21
|
Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342-51. [DOI: 10.1007/s12185-015-1761-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
22
|
Breig O, Bras S, Martinez Soria N, Osman D, Heidenreich O, Haenlin M, Waltzer L. Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 2014; 28:1271-9. [PMID: 24342949 DOI: 10.1038/leu.2013.376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/07/2023]
Abstract
The oncogenic fusion protein AML1-ETO, also known as RUNX1-RUNX1T1 is generated by the t(8;21)(q22;q22) translocation, one of the most frequent chromosomal rearrangements in acute myeloid leukemia (AML). Identifying the genes that cooperate with or are required for the oncogenic activity of this chimeric transcription factor remains a major challenge. Our previous studies showed that Drosophila provides a genuine model to study how AML1-ETO promotes leukemia. Here, using an in vivo RNA interference screen for suppressors of AML1-ETO activity, we identified pontin/RUVBL1 as a gene required for AML1-ETO-induced lethality and blood cell proliferation in Drosophila. We further show that PONTIN inhibition strongly impaired the growth of human t(8;21)(+) or AML1-ETO-expressing leukemic blood cells. Interestingly, AML1-ETO promoted the transcription of PONTIN. Moreover, transcriptome analysis in Kasumi-1 cells revealed a strong correlation between PONTIN and AML1-ETO gene signatures and demonstrated that PONTIN chiefly regulated the expression of genes implicated in cell cycle progression. Concordantly, PONTIN depletion inhibited leukemic self-renewal and caused cell cycle arrest. All together our data suggest that the upregulation of PONTIN by AML1-ETO participate in the oncogenic growth of t(8;21) cells.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cell Proliferation
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Helicases/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RUNX1 Translocation Partner 1 Protein
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- O Breig
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - S Bras
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - N Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, UK
| | - D Osman
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - O Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, UK
| | - M Haenlin
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - L Waltzer
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| |
Collapse
|
23
|
Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS, Prokofjeva MM, Nikitenko NA, Dmitriev SE, Buzdin AA, Borisov NM, Aliper AM, Garazha AV, Rubtsov PM, Stocking C, Prassolov VS. Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia 2014; 28:2222-8. [PMID: 24727677 DOI: 10.1038/leu.2014.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
Abstract
The t(8;21)(q22;q22) rearrangement represents the most common chromosomal translocation in acute myeloid leukemia (AML). It results in a transcript encoding for the fusion protein AML1-ETO (AE) with transcription factor activity. AE is considered to be an attractive target for treating t(8;21) leukemia. However, AE expression alone is insufficient to cause transformation, and thus the potential of such therapy remains unclear. Several genes are deregulated in AML cells, including KIT that encodes a tyrosine kinase receptor. Here, we show that AML cells transduced with short hairpin RNA vector targeting AE mRNAs have a dramatic decrease in growth rate that is caused by induction of apoptosis and deregulation of the cell cycle. A reduction in KIT mRNA levels was also observed in AE-silenced cells, but silencing KIT expression reduced cell growth but did not induce apoptosis. Transcription profiling of cells that escape cell death revealed activation of a number of signaling pathways involved in cell survival and proliferation. In particular, we find that the extracellular signal-regulated kinase 2 (ERK2; also known as mitogen-activated protein kinase 1 (MAPK1)) protein could mediate activation of 23 out of 29 (79%) of these upregulated pathways and thus may be regarded as the key player in establishing the t(8;21)-positive leukemic cells resistant to AE suppression.
Collapse
Affiliation(s)
- P V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - T D Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N N Orlova
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A S Gornostaeva
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N A Nikitenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S E Dmitriev
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A A Buzdin
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia [2] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [3] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - N M Borisov
- 1] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [2] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - A M Aliper
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia [2] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A V Garazha
- 1] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [2] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - P M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - C Stocking
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - V S Prassolov
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
24
|
Scheller M, Schönheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A. Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance. ACTA ACUST UNITED AC 2013; 210:2239-56. [PMID: 24101380 PMCID: PMC3804946 DOI: 10.1084/jem.20130706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross talk between Wnt and IFN signaling determines the development of CML-leukemia–initiating cells and represents a mechanism for the acquisition of resistance to Imatinib at later stages of CML. Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/β-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of β-catenin results in up-regulation of Irf8, which in turn limits oncogenic β-catenin functions. Self-renewal and myeloproliferation become dependent on β-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive β-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL–induced LICs, and Imatinib resistance. Interestingly, activated β-catenin enhances a preexisting Irf8-deficient gene signature, identifying β-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin–driven leukemia and imply both factors as targets in combinatorial therapy.
Collapse
Affiliation(s)
- Marina Scheller
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Cabezas-Wallscheid N, Eichwald V, de Graaf J, Löwer M, Lehr HA, Kreft A, Eshkind L, Hildebrandt A, Abassi Y, Heck R, Dehof AK, Ohngemach S, Sprengel R, Wörtge S, Schmitt S, Lotz J, Meyer C, Kindler T, Zhang DE, Kaina B, Castle JC, Trumpp A, Sahin U, Bockamp E. Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 2013; 5:1804-20. [PMID: 24124051 PMCID: PMC3914523 DOI: 10.1002/emmm.201302661] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/11/2022] Open
Abstract
The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Medical Center of the Johannes Gutenberg-University Mainz, Department of Internal Medicine III, Division of Translational and Experimental Oncology, Mainz, Germany; German Cancer Research Center, Department of Stem Cells and Cancer, Heidelberg, Germany; Medical Center of the Johannes Gutenberg-University Mainz, Institute for Toxicology, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 2013; 28:1-14. [DOI: 10.1038/leu.2013.242] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/02/2023]
|
27
|
Pogosova-Agadjanyan EL, Kopecky KJ, Ostronoff F, Appelbaum FR, Godwin J, Lee H, List AF, May JJ, Oehler VG, Petersdorf S, Pogosov GL, Radich JP, Willman CL, Meshinchi S, Stirewalt DL. The prognostic significance of IRF8 transcripts in adult patients with acute myeloid leukemia. PLoS One 2013; 8:e70812. [PMID: 23967110 PMCID: PMC3743845 DOI: 10.1371/journal.pone.0070812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/23/2013] [Indexed: 11/19/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor that plays a critical role in normal hematopoiesis, such that disruption of IRF8 activity promotes leukemogenesis. We and others have identified aberrant expression of IRF8 transcripts, including novel splice variants, in acute myeloid leukemia (AML), but studies have not investigated the prognostic significance of these transcripts. Therefore, we developed and optimized quantitative expression assays for both, the wild type, or the reference sequence (WT-IRF8) and novel splice variants (SV-IRF8). These assays were used to quantify IRF8 transcript levels in 194 adult patients with AML, and multivariate analyses investigated the prognostic significance of these expression levels. After adjusting for known prognostic factors, expression levels of WT- or SV-IRF8 transcripts were not significantly associated with complete responses or overall survival. However, increased expression of WT-IRF8 was associated with decreased relapse-free survival (RFS) in both univariate (P = 0.010) and multivariate (P = 0.019) analyses. Similarly, increased expression of SV-IRF8 was associated with a decreased RFS (univariate, P = 0.026 and multivariate, P = 0.021). These studies show for the first time that WT-IRF8 and SV-IRF8 are independent adverse prognostic factors for patients with AML. Additional studies are planned to examine the prognostic significance of IRF8 transcripts in other populations of AML patients.
Collapse
Affiliation(s)
- Era L. Pogosova-Agadjanyan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kenneth J. Kopecky
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fabiana Ostronoff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Frederick R. Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - John Godwin
- Providence Cancer Center Group, Earle A. Chiles Research Institute, Portland, Oregon, United States of America
| | - Hana Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alan F. List
- H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jennifer J. May
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Vivian G. Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Steve Petersdorf
- Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Galina L. Pogosov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cheryl L. Willman
- University of New Mexico Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol 2013; 97:726-34. [PMID: 23613270 DOI: 10.1007/s12185-013-1347-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/28/2022]
Abstract
Since its discovery from a translocation in leukemias, the runt-related transcription factor 1/acute myelogenous leukemia-1 (RUNX1/AML1), which is widely expressed in hematopoietic cells, has been extensively studied. Many lines of evidence have shown that RUNX1 plays a critical role in regulating the development and precise maintenance of mammalian hematopoiesis. Studies using knockout mice have shown the importance of RUNX1 in a wide variety of hematopoietic cells, including hematopoietic stem cells and megakaryocytes. Recently, target molecular processes of RUNX1 in normal and malignant hematopoiesis have been revealed. Although RUNX1 is not required for the maintenance of hematopoietic stem cells, it is required for the homeostasis of hematopoietic stem and progenitor cells, and expansion of hematopoietic stem and progenitor cells due to RUNX1 deletion may be an important cause of human leukemias. Molecular abnormalities cooperating with loss of RUNX1 have also been identified. These findings may lead to a further understanding of human leukemias, and suggest novel molecular targeted therapies in the near future.
Collapse
|
29
|
Brady G, Elgueta Karstegl C, Farrell PJ. Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation. Nucleic Acids Res 2012; 41:1555-68. [PMID: 23254331 PMCID: PMC3561965 DOI: 10.1093/nar/gks1273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RUNX family proteins are expressed from alternate promoters, giving rise to different N-terminal forms, but the functional difference of these isoforms is not understood. Here, we show that growth of a human B lymphoblastoid cell line infected with Epstein-Barr virus is inhibited by RUNX1c but not by RUNX1b. This gives a novel functional assay for the unique N-terminus of RUNX1c, and amino acids of RUNX1c required for the effect have been identified. Primary resting B cells contain RUNX1c, consistent with the growth inhibitory effect in B cells. The oncogene TEL-RUNX1 lacks the N-terminus of RUNX1c because of the TEL fusion and does not inhibit B cell growth. Mouse Runx1c lacks some of the sequences required for human RUNX1c to inhibit B cell growth, indicating that this aspect of human B cell growth control may differ in mice. Remarkably, a cell-penetrating peptide containing the N-terminal sequence of RUNX1c specifically antagonizes the growth inhibitory effect in B lymphoblastoid cells and might be used to modulate the function of human RUNX1c.
Collapse
Affiliation(s)
- Gareth Brady
- Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
30
|
Dahlke C, Maul K, Christalla T, Walz N, Schult P, Stocking C, Grundhoff A. A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo. PLoS One 2012. [PMID: 23185331 PMCID: PMC3502504 DOI: 10.1371/journal.pone.0049435] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human gammaherpesvirus Kaposi sarcoma-associated herpesvirus is strongly linked to neoplasms of endothelial and B-cell origin. The majority of tumor cells in these malignancies are latently infected, and latency genes are consequently thought to play a critical role in virus-induced tumorigenesis. One such factor is kshv-miR-K12-11, a viral microRNA that is constitutively expressed in cell lines derived from KSHV-associated tumors, and that shares perfect homology of its seed sequence with the cellular miR-155. Since miR-155 is overexpressed in a number of human tumors, it is conceivable that mimicry of miR-155 by miR-K12-11 may contribute to cellular transformation in KSHV-associated disease. Here, we have performed a side-by-side study of phenotypic alterations associated with constitutive expression of either human miR-155 or viral miR-K12-11 in bone marrow-derived hematopoietic stem cells. We demonstrate that retroviral-mediated gene transfer and hematopoietic progenitor cell transplantation into C57BL/6 mice leads to increased B-cell fractions in lymphoid organs, as well as to enhanced germinal center formation in both microRNA-expressing mouse cohorts. We furthermore identify Jarid2, a component of Polycomb repressive complex 2, as a novel validated target of miR-K12-11, and confirm its downregulation in miR-K12-11 as well as miR-155 expressing bone marrow cells. Our findings confirm and extend previous observations made in other mouse models, and underscore the notion that miR-K12-11 may have arisen to mimic miR-155 functions in KSHV-infected B-cells. The expression of miR-K12-11 may represent one mechanism by which KSHV presumably aims to reprogram naïve B-cells towards supporting long-term latency, which at the same time is likely to pre-dispose infected lymphocytes to malignant transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Krasemann S, Neumann M, Szalay B, Stocking C, Glatzel M. Protease-sensitive prion species in neoplastic spleens of prion-infected mice with uncoupling of PrP(Sc) and prion infectivity. J Gen Virol 2012; 94:453-463. [PMID: 23136363 DOI: 10.1099/vir.0.045922-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders. An important step in disease pathophysiology is the conversion of cellular prion protein (PrP(C)) to disease-associated misfolded conformers (PrP(Sc)). These misfolded PrP variants are a common component of prion infectivity and are detectable in diseased brain and lymphoreticular organs such as spleen. In the latter, PrP(Sc) is thought to replicate mainly in follicular dendritic cells within spleen follicles. Although the presence of PrP(Sc) is a hallmark for prion disease and serves as a main diagnostic criterion, in certain instances the amount of PrP(Sc) does not correlate well with neurotoxicity or prion infectivity. Therefore, it has been proposed that prions might be a mixture of different conformers and aggregates with differing properties. This study investigated the impact of disruption of spleen architecture by neoplasia on the abundance of different PrP species in spleens of prion-infected mice. Although follicular integrity was completely disturbed, titres of prion infectivity in neoplastic spleens were not significantly altered, yet no protease-resistant PrP(Sc) was detectable. Instead, unique protease-sensitive prion species could be detected in neoplastic spleens. These results indicate the dissociation of PrP(Sc) and prion infectivity and showed the presence of non-PrP(Sc) PrP species in spleen with divergent biochemical properties that become apparent after tissue architecture disruption.
Collapse
Affiliation(s)
- Susanne Krasemann
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Melanie Neumann
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Beata Szalay
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Carol Stocking
- Heinrich Pette Institute, AG Molecular Pathology, D-20206 Hamburg, Germany
| | - Markus Glatzel
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
32
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Krasemann S, Neumann M, Luepke JP, Grashorn J, Wurr S, Stocking C, Glatzel M. Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease. Acta Neuropathol 2012; 124:111-26. [PMID: 22271154 DOI: 10.1007/s00401-012-0944-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 12/26/2022]
Abstract
A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrP(C)) into a misfolded isoform (PrP(Sc)) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrP(Sc) from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrP(Sc) in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrP(Sc) spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.
Collapse
Affiliation(s)
- Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
In vivo chemical screening for modulators of hematopoiesis and hematological diseases. Adv Hematol 2012; 2012:851674. [PMID: 22778745 PMCID: PMC3385708 DOI: 10.1155/2012/851674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022] Open
Abstract
In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and facile detection of blood-cell-related phenotypes are feasible in embryonic/larval zebrafish. Two recent studies utilizing phenotypic chemical screens in zebrafish have identified several compounds that promote hematopoietic stem cell formation and reverse the hematopoietic phenotypes of a leukemia oncogene, respectively. These studies illustrate efficient drug discovery processes in zebrafish and reveal novel biological roles of prostaglandin E2 in hematopoietic and leukemia stem cells. Furthermore, the compounds discovered in zebrafish screens have become promising therapeutic candidates against leukemia and included in a clinical trial for enhancing hematopoietic stem cells during hematopoietic cell transplantation.
Collapse
|
35
|
Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S, Komeno Y, Zhao X, Nimer SD, Yates JR, Zhang DE. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 2012; 119:4953-62. [PMID: 22498736 PMCID: PMC3367897 DOI: 10.1182/blood-2011-04-347476] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 03/23/2012] [Indexed: 01/04/2023] Open
Abstract
Fusion protein AML1-ETO, resulting from t(8;21) translocation, is highly related to leukemia development. It has been reported that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. We have previously shown that the expression of AE9a, a splice isoform of AML1-ETO, can rapidly cause leukemia in mice. To understand how AML1-ETO is involved in leukemia development, we took advantage of our AE9a leukemia model and sought to identify its interacting proteins from primary leukemic cells. Here, we report the discovery of a novel AE9a binding partner PRMT1 (protein arginine methyltransferase 1). PRMT1 not only interacts with but also weakly methylates arginine 142 of AE9a. Knockdown of PRMT1 affects expression of a specific group of AE9a-activated genes. We also show that AE9a recruits PRMT1 to promoters of AE9a-activated genes, resulting in enrichment of H4 arginine 3 methylation, H3 Lys9/14 acetylation, and transcription activation. More importantly, knockdown of PRMT1 suppresses the self-renewal capability of AE9a, suggesting a potential role of PRMT1 in regulating leukemia development.
Collapse
Affiliation(s)
- Wei-Jong Shia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vas V, Wandhoff C, Dörr K, Niebel A, Geiger H. Contribution of an aged microenvironment to aging-associated myeloproliferative disease. PLoS One 2012; 7:e31523. [PMID: 22363661 PMCID: PMC3283638 DOI: 10.1371/journal.pone.0031523] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms of the age-associated increase in the incidence of acute myeloid leukemia (AML) remain poorly understood. Multiple studies support that the bone marrow (BM) microenvironment has an important influence on leukemia progression. Given that the BM niche itself undergoes extensive functional changes during lifetime, we hypothesized that one mechanism for the age-associated increase in leukemia incidence might be that an aged niche promotes leukemia progression. The most frequent genetic alteration in AML is the t(8;21) translocation, resulting in the expression of the AML1-ETO fusion protein. Expression of the fusion protein in hematopoietic cells results in mice in a myeloproliferative disorder. Testing the role of the age of the niche on leukemia progression, we performed both transplantation and in vitro co-culture experiments. Aged animals transplanted with AML1-ETO positive HSCs presented with a significant increase in the frequency of AML-ETO positive early progenitor cells in BM as well as an increased immature myeloid cell load in blood compared to young recipients. These findings suggest that an aged BM microenvironment allows a relative better expansion of pre-leukemic stem and immature myeloid cells and thus imply that the aged microenvironment plays a role in the elevated incidence of age-associated leukemia.
Collapse
Affiliation(s)
- Virag Vas
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Corinna Wandhoff
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Karin Dörr
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Anja Niebel
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
The t(8;21)(q22;q22) is common in adult acute myeloid leukemia (AML). The RUNX1-ETO fusion protein that is expressed by this translocation is poorly leukemogenic and requires additional mutations for transformation. Loss of sex chromosome (LOS) is frequently observed in t(8;21) AML. In the present study, to evaluate whether LOS cooperates with t(8;21) in leukemogenesis, we first used a retroviral transduction/transplantation model to express RUNX1-ETO in hematopoietic cells from XO mice. The low frequency of leukemia in these mice suggests that the potentially critical gene for suppression of t(8;21) leukemia in humans is not conserved on mouse sex chromosomes. The gene encoding the GM-CSF receptor α subunit (CSF2RA) is located on X and Y chromosomes in humans but on chromosome 19 in mice. GM-CSF promotes myeloid cell survival, proliferation, and differentiation. To determine whether GM-CSF signaling affects RUNX1-ETO leukemogenesis, hematopoietic stem/progenitor cells that lack GM-CSF signaling were used to express RUNX1-ETO and transplanted into lethally irradiated mice, and a high penetrance of AML was observed in recipients. Furthermore, GM-CSF reduced the replating ability of RUNX1-ETO-expressing cells. These results suggest a possible tumor-suppressor role of GM-CSF in RUNX1-ETO leukemia. Loss of the CSF2RA gene may be a critical mutation explaining the high incidence of LOS associated with the t(8;21)(q22;q22) translocation.
Collapse
|
38
|
Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17:1120-39. [PMID: 22201794 DOI: 10.2741/3977] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RUNX1 is a transcription factor that regulates critical processes in many aspects of hematopoiesis. RUNX1 is also integral in defining the definitive hematopoietic stem cell. In addition, many hematological diseases like myelodysplastic syndrome and myeloproliferative neoplasms have been associated with mutations in RUNX1. Located on chromosomal 21, the RUNX1 gene is involved in many forms of chromosomal translocations in leukemia. t(8;21) is one of the most common chromosomal translocations found in acute myeloid leukemia (AML), where it results in a fusion protein between RUNX1 and ETO. The RUNX1-ETO fusion protein is found in approximately 12% of all AML patients. In this review, we detail the structural features, functions, and models used to study both RUNX1 and RUNX1-ETO in hematopoiesis over the past two decades.
Collapse
Affiliation(s)
- Kentson Lam
- Moores Cancer Center, Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
39
|
Spirin PV, Nikitenko NA, Lebedev TD, Rubtsov PM, Stocking C, Prasolov VS. Modulation of activated oncogene c-kit expression with RNA-interference. Mol Biol 2011. [DOI: 10.1134/s0026893311060136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood 2011; 119:1522-31. [PMID: 21937700 DOI: 10.1182/blood-2011-02-338228] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The t(8;21) RUNX1-ETO translocation is one of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML). In RUNX1-ETO(+) patient samples, differing classes of activating c-KIT receptor tyrosine kinase mutations have been observed. The most common (12%-48%) involves mutations, such as D816V, which occur in the tyrosine kinase domain, whereas another involves mutations within exon 8 in a region mediating receptor dimerization (2%-13% of cases). To test whether distinct subtypes of activating c-KIT mutations differ in their leukemogenic potential in association with RUNX1-ETO, we used a retroviral transduction/transplantation model to coexpress RUNX1-ETO with either c-Kit(D814V) or c-Kit(T417IΔ418-419) in murine hematopoietic stem/progenitor cells used to reconstitute lethally irradiated mice. Analysis of reconstituted animals showed that RUNX1-ETO;c-Kit(D814V) coexpression resulted in 3 nonoverlapping phenotypes. In 45% of animals, a transplantable AML of relatively short latency and frequent granulocytic sarcoma was noted. Other mice exhibited a rapidly fatal myeloproliferative phenotype (35%) or a lethal, short-latency pre-B-cell leukemia (20%). In contrast, RUNX1-ETO;c-Kit(T417IΔ418-419) coexpression promoted exclusively AML in a fraction (51%) of reconstituted mice. These observations indicate that c-Kit(D814V) promotes a more varied and aggressive leukemic phenotype than c-Kit(T417IΔ418-419), which may be the result of differing potencies of the activating c-Kit alleles.
Collapse
|
41
|
Loss of AML1/Runx1 accelerates the development of MLL-ENL leukemia through down-regulation of p19ARF. Blood 2011; 118:2541-50. [PMID: 21757616 DOI: 10.1182/blood-2010-10-315440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of AML1/Runx1, a transcription factor, plays a crucial role in the development of many types of leukemia. Additional events are often required for AML1 dysfunction to induce full-blown leukemia; however, a mechanistic basis of their cooperation is still elusive. Here, we investigated the effect of AML1 deficiency on the development of MLL-ENL leukemia in mice. Aml1 excised bone marrow cells lead to MLL-ENL leukemia with shorter duration than Aml1 intact cells in vivo. Although the number of MLL-ENL leukemia-initiating cells is not affected by loss of AML1, the proliferation of leukemic cells is enhanced in Aml1-excised MLL-ENL leukemic mice. We found that the enhanced proliferation is the result of repression of p19(ARF) that is directly regulated by AML1 in MLL-ENL leukemic cells. We also found that down-regulation of p19(ARF) induces the accelerated onset of MLL-ENL leukemia, suggesting that p19(ARF) is a major target of AML1 in MLL-ENL leukemia. These results provide a new insight into a role for AML1 in the progression of leukemia.
Collapse
|
42
|
AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein. Blood 2011; 117:4328-37. [DOI: 10.1182/blood-2009-09-242545] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein, which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis, we identified the Groucho-related amino-terminal enhancer of split (AES) as a consistently up-regulated AML1/ETO target. Elevated levels of AES mRNA and protein were confirmed in AML1/ETO-expressing leukemia cells, as well as in other AML specimens. High expression of AES mRNA or protein was associated with improved survival of AML patients, even in the absence of t(8;21). On a functional level, knockdown of AES by RNAi in AML1/ETO-expressing cell lines inhibited colony formation. Similarly, self-renewal induced by AML1/ETO in primary murine progenitors was inhibited when AES was decreased or absent. High levels of AES expression enhanced formation of immature colonies, serial replating capacity of primary cells, and colony formation in colony-forming unit-spleen assays. These findings establish AES as a novel AML1/ETO-induced target gene that plays an important role in the self-renewal phenotype of t(8;21)-positive AML.
Collapse
|
43
|
Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 2011; 71:2882-91. [PMID: 21487040 DOI: 10.1158/0008-5472.can-10-2493] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.
Collapse
MESH Headings
- Acid Ceramidase/biosynthesis
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- Ceramides/metabolism
- DNA Methylation
- Fas Ligand Protein/immunology
- Fas Ligand Protein/pharmacology
- HT29 Cells
- Humans
- Interferon Regulatory Factors/biosynthesis
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/metabolism
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, and Cancer Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Askmyr M, Quach J, Purton LE. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 2011; 48:115-20. [PMID: 20541047 DOI: 10.1016/j.bone.2010.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/15/2022]
Abstract
The bone marrow (BM) is contained within the bone cavity and is the main site of hematopoiesis, the continuous development of blood cells from immature hematopoietic stem and progenitor cells. The bone marrow consists of developing hematopoietic cells and non-hematopoietic cells, the latter collectively termed the bone marrow microenvironment. These non-hematopoietic cells include cells of the osteoblast lineage, adipocytes and endothelial cells. For many years these bone marrow microenvironment cells were predicted to play active roles in regulating hematopoiesis, and recent studies have confirmed such roles. Importantly, more recent data has indicated that cells of the BM microenvironment may also contribute to hematopoietic diseases. In this review we provide an overview of the roles of the data suggesting that the cells of the bone marrow microenvironment may play an active role in the initiation and progression of hematopoietic malignancy.
Collapse
Affiliation(s)
- Maria Askmyr
- St. Vincent's Institute, Fitzroy, Victoria, 3065, Australia
| | | | | |
Collapse
|
45
|
Spirin PV, Baskaran D, Orlova NN, Rulina AV, Nikitenko NA, Chernolovskaya EL, Zenkova MA, Vlassov VV, Rubtsov PM, Chumakov PM, Stocking C, Prassolov VS. Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference. Mol Biol 2010. [DOI: 10.1134/s0026893310050146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Stieler K, Fischer N. Apobec 3G efficiently reduces infectivity of the human exogenous gammaretrovirus XMRV. PLoS One 2010; 5:e11738. [PMID: 20668529 PMCID: PMC2909211 DOI: 10.1371/journal.pone.0011738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/16/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread. METHODOLOGY/PRINCIPAL FINDINGS Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV, XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G. CONCLUSIONS Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo. Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural reservoir of XMRV infection.
Collapse
Affiliation(s)
- Kristin Stieler
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Vidovic K, Svensson E, Nilsson B, Thuresson B, Olofsson T, Lennartsson A, Gullberg U. Wilms' tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia 2010; 24:992-1000. [PMID: 20237505 DOI: 10.1038/leu.2010.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wilms' tumor gene 1 (WT1) is a transcription factor involved in developmental processes. In adult hematopoiesis, only a small portion of early progenitor cells express WT1, whereas most leukemias show persistently high levels, suggesting an oncogenic role. We have previously characterized oncogenic BCR/ABL1 tyrosine kinase signaling pathways for increased WT1 expression. In this study, we show that overexpression of BCR/ABL1 in CD34+ progenitor cells leads to reduced expression of interferon regulatory factor 8 (IRF8), in addition to increased WT1 expression. Interestingly, IRF8 is known as a tumor suppressor in some leukemias and we investigated whether WT1 might repress IRF8 expression. When analyzed in four leukemia mRNA expression data sets, WT1 and IRF8 were anticorrelated. Upon overexpression in CD34+ progenitors, as well as in U937 cells, WT1 strongly downregulated IRF8 expression. All four major WT1 splice variants induced repression, but not the zinc-finger-deleted WT1 mutant, indicating dependence on DNA binding. A reporter construct with the IRF8 promoter was repressed by WT1, dependent on a putative WT1-response element. Binding of WT1 to the IRF8 promoter was demonstrated by chromatin immunoprecipitation. Our results identify IRF8 as a direct target gene for WT1 and provide a possible mechanism for oncogenic effects of WT1 in leukemia.
Collapse
Affiliation(s)
- K Vidovic
- Department of Hematology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Stieler K, Schulz C, Lavanya M, Aepfelbacher M, Stocking C, Fischer N. Host range and cellular tropism of the human exogenous gammaretrovirus XMRV. Virology 2010; 399:23-30. [PMID: 20110097 DOI: 10.1016/j.virol.2009.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/25/2009] [Accepted: 12/19/2009] [Indexed: 11/25/2022]
Abstract
Recently, the first human infection with an exogenous gammaretrovirus (XMRV) was reported. In its initial description, XMRV was confined to prostate stromal fibroblasts, although subsequent reports demonstrated XMRV protein expression in prostate epithelial cells. Most recently, XMRV has been detected in blood cells of patients with chronic fatigue syndrome. The aim of this study was to elucidate the transmission routes and tissue tropism of XMRV by comparing its host range, receptor usage and LTR functionality with other MLV isolates. We demonstrate using pseudotype experiments that XMRV Env mediates efficient infection of cells from different species. We show that replication competent XMRV infects various human cell types, including hematopoietic cell lines and prostate stromal fibroblasts. XMRV-LTR activity is significantly higher in the prostate cancer cell line LNCaP and in prostate stromal fibroblasts, compared to other cell types tested and could be one factor contributing to efficient viral spread in prostate tissue.
Collapse
Affiliation(s)
- Kristin Stieler
- Institute for Medical Microbiology and Virology, University Medical Center Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Claudia Schulz
- Institute for Medical Microbiology and Virology, University Medical Center Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Madakasira Lavanya
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier Cedex 5, France
| | - Martin Aepfelbacher
- Institute for Medical Microbiology and Virology, University Medical Center Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology and Virology, University Medical Center Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
49
|
Kumano K, Kurokawa M. The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells. J Cell Physiol 2009; 222:282-5. [PMID: 19847803 DOI: 10.1002/jcp.21953] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lineage-specific transcription factors must be precisely regulated during stem cell self-renewal and lineage commitment decisions. The role of specific transcription factors in hematopoietic stem cell (HSC) fate decisions has derived largely from genetic strategies, primarily gene-targeting and transgenic or retroviral overexpression experiments. From the previous experimental results, several transcription factors have been found to play critical roles in HSC physiology. Among them, we focus two transcription factors, Runx1/AML1 and Evi-1, in this review. During embryogenesis, both Runx1 and Evi-1 are essential for HSCs whereas in the adult, Runx1 and Evi-1 regulate HSCs negatively and positively, respectively.
Collapse
Affiliation(s)
- Keiki Kumano
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo, Japan
| | | |
Collapse
|
50
|
|