1
|
Skubitz KM. The role of CEACAMs in neutrophil function. Eur J Clin Invest 2024; 54 Suppl 2:e14349. [PMID: 39674879 DOI: 10.1111/eci.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND In addition to the long-known antibacterial actions of neutrophils, neutrophils are recognized to have a variety of other effects and are functionally diverse. Neutrophils can either stimulate or inhibit B cells and T cells, regulate NK development and activity, augment or direct the resolution of inflammation, act as myeloid-derived suppressor cells, modulate tumour growth and metastasis and trigger autoimmune diseases. CEACAMs 1, 3, 6 and 8 are expressed on human neutrophils. METHODS A literature review was performed on the role of CEACAMs in neutrophil function. RESULTS CEACAMs 1, 6 and 8 can be upregulated from intracellular stores, while CEACAM3, an opsonin-independent phagocytic receptor, is constitutively expressed. CEACAM1 has an intracellular ITIM motif and an ITSM motif, and CEACAM3 has an ITAM-like motif; CEACAMs 6 and 8 are glycosylphosphatidylinositol-linked. CEACAM8 can also be released in a soluble form. These CEACAMs can interact with multiple other host CEACAMs as well as other molecules on bacteria, fungi and host cells, both transmitting and receiving signals. Known CEACAM-binding pathogens bind the CFG face of the N domain which is also important in CEACAM-CEACAM binding, although the ABDE face also appears to be involved in higher-order oligomers. CONCLUSIONS Understanding the exact role of each individual CEACAM in human neutrophils is complicated by the fact that the neutrophil CEACAMs can interact with multiple ligands. The data demonstrates some of the many roles of CEACAMs in neutrophil function and the extensive role of the neutrophil in human biology beyond its classical role as a short-lived phagocyte.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, Masonic Cancer Center, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Fleckenstein JM, Najjar SM, Zimmermann W, Hauck CR, Nguyen Q, Mejias-Luque R, Bhattacharyya A, McCarthy AJ, Sarkar A, Kujawski M, Konieva A, Elyateem F, Kube-Golovin I, Wennemuth G, Kammerer R, Skubitz KM, Shively JE, Dery KJ, Dveksler G, Götz L, Kleefeldt F, Ergün S. Current investigation of carcinoembryonic antigen cell adhesion molecule (CEACAM) biology summary of the 32nd CEA symposium: 20-23 September 2024. Würzburg, Germany. Eur J Clin Invest 2024; 54 Suppl 2:e14355. [PMID: 39674873 DOI: 10.1111/eci.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Affiliation(s)
- James M Fleckenstein
- Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Sonia M Najjar
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | | | | | | | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Bhubaneswar, India
| | | | - Arup Sarkar
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Bhubaneswar, India
| | | | | | | | | | | | | | | | | | | | - Gabriela Dveksler
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Lisa Götz
- Julius Maximilians Universität, Würzburg, Germany
| | | | | |
Collapse
|
3
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related Transcriptome Unveils a Distinctive Remodelling Matrix Pattern in Penetrating Ileal Crohn's Disease. J Crohns Colitis 2024; 18:1741-1752. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing [B2] and penetrating [B3] ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analysed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture[s] [B3s] and 12 without [B3o]. Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes, a p-adjusted <0.05 and fold change ≤-1.5 or ≥1.5 were adopted. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localisation, perianal disease, and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, and eight differentially expressed genes were so in other organs. The most significantly active biological processes and pathways in penetrating disease were response to TGFβ and matrix organisation and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodelling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center [CHUA], Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto [FMUP], Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Sheikh A, Ganguli D, Vickers TJ, Singer BB, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic Escherichia coli for elimination and toxin neutralization. Proc Natl Acad Sci U S A 2024; 121:e2410679121. [PMID: 39264739 PMCID: PMC11420188 DOI: 10.1073/pnas.2410679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bernhard B. Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, 45147Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Clayton Harro
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Nicole Maier
- Center for Vaccine Innovation and Access, PATH, Seattle, WA98121
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Subhra Chakraborty
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Taufiqur R. Bhuiyan
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Firdausi Qadri
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, MO63106
| |
Collapse
|
5
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
6
|
Zhong X, Moresco JJ, SoRelle JA, Song R, Jiang Y, Nguyen MT, Wang J, Bu CH, Moresco EMY, Beutler B, Choi JH. Disruption of the ZFP574-THAP12 complex suppresses B cell malignancies in mice. Proc Natl Acad Sci U S A 2024; 121:e2409232121. [PMID: 39047044 PMCID: PMC11295075 DOI: 10.1073/pnas.2409232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the availability of life-extending treatments for B cell leukemias and lymphomas, many of these cancers remain incurable. Thus, the development of new molecular targets and therapeutics is needed to expand treatment options. To identify new molecular targets, we used a forward genetic screen in mice to identify genes required for development or survival of lymphocytes. Here, we describe Zfp574, an essential gene encoding a zinc finger protein necessary for normal and malignant lymphocyte survival. We show that ZFP574 interacts with zinc finger protein THAP12 and promotes the G1-to-S-phase transition during cell cycle progression. Mutation of ZFP574 impairs nuclear localization of the ZFP574-THAP12 complex. ZFP574 or THAP12 deficiency results in cell cycle arrest and impaired lymphoproliferation. Germline mutation, acute gene deletion, or targeted degradation of ZFP574 suppressed Myc-driven B cell leukemia in mice, but normal B cells were largely spared, permitting long-term survival, whereas complete lethality was observed in control animals. Our findings support the identification of drugs targeting ZFP574-THAP12 as a unique strategy to treat B cell malignancies.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jeffrey A. SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Mylinh T. Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
7
|
Sheikh A, Ganguli D, Vickers TJ, Singer B, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic E. coli for elimination and toxin neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604983. [PMID: 39091797 PMCID: PMC11291149 DOI: 10.1101/2024.07.24.604983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bernhard Singer
- Institute of Anatomy, Medical Faculty, University of Suisberg-Essen, 45147 Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Clayton Harro
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | | | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | - Tafiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
9
|
Shi Y, Muenzner P, Schanz-Jurinka S, Hauck CR. The phosphatidylinositol-5' phosphatase synaptojanin1 limits integrin-mediated invasion of Staphylococcus aureus. Microbiol Spectr 2024; 12:e0200623. [PMID: 38358281 PMCID: PMC10986543 DOI: 10.1128/spectrum.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The gram-positive bacterium Staphylococcus aureus can invade non-professional phagocytic cells by associating with the plasma protein fibronectin to exploit host cell integrins. Integrin-mediated internalization of these pathogens is facilitated by the local production of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) via an integrin-associated isoform of phosphatidylinositol-5' kinase. In this study, we addressed the role of PI-4,5-P2-directed phosphatases on internalization of S. aureus. ShRNA-mediated knockdown of individual phosphoinositide 5-phosphatases revealed that synaptojanin1 (SYNJ1) is counteracting invasion of S. aureus into mammalian cells. Indeed, shRNA-mediated depletion as well as genetic deletion of synaptojanin1 via CRISPR/Cas9 resulted in a gain-of-function phenotype with regard to integrin-mediated uptake. Surprisingly, the surface level of integrins was slightly downregulated in Synj1-KO cells. Nevertheless, these cells showed enhanced local accumulation of PI-4,5-P2 and exhibited increased internalization of S. aureus. While the phosphorylation level of the integrin-associated protein tyrosine kinase FAK was unaltered, the integrin-binding and -activating protein talin was enriched in the vicinity of S. aureus in synaptojanin1 knockout cells. Scanning electron microscopy revealed enlarged membrane invaginations in the absence of synaptojanin1 explaining the increased capability of these cells to internalize integrin-bound microorganisms. Importantly, the enhanced uptake by Synj1-KO cells and the exaggerated morphological features were rescued by the re-expression of the wild-type enzyme but not phosphatase inactive mutants. Accordingly, synaptojanin1 activity limits integrin-mediated invasion of S. aureus, corroborating the important role of PI-4,5-P2 during this process.IMPORTANCEStaphylococcus aureus, an important bacterial pathogen, can invade non-professional phagocytes by capturing host fibronectin and engaging integrin α5β1. Understanding how S. aureus exploits this cell adhesion receptor for efficient cell entry can also shed light on the physiological regulation of integrins by endocytosis. Previous studies have found that a specific membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), supports the internalization process. Here, we extend these findings and report that the local levels of PIP2 are controlled by the activity of the PIP2-directed lipid phosphatase Synaptojanin1. By dephosphorylating PIP2 at bacteria-host cell attachment sites, Synaptojanin1 counteracts the integrin-mediated uptake of the microorganisms. Therefore, our study not only generates new insight into subversion of cellular receptors by pathogenic bacteria but also highlights the role of host cell proteins acting as restriction factors for bacterial invasion at the plasma membrane.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Kuiper JWP, Gregg HL, Schüber M, Klein J, Hauck CR. Controling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur J Cell Biol 2024; 103:151384. [PMID: 38215579 DOI: 10.1016/j.ejcb.2024.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Collapse
Affiliation(s)
| | - Helena L Gregg
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Meike Schüber
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jule Klein
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
11
|
Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, Eby JC, Hewlett EL, Taylor RP, Criss AK. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol 2023; 114:1-20. [PMID: 36882066 PMCID: PMC10949953 DOI: 10.1093/jleuko/qiad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
CR3 (CD11b/CD18; αmβ2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology
| | | | - Mary C. Gray
- Department of Microbiology, Immunology, and Cancer Biology
| | | | | | | | - Joshua C. Eby
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | | |
Collapse
|
12
|
Catton EA, Bonsor DA, Herrera C, Stålhammar-Carlemalm M, Lyndin M, Turner CE, Soden J, van Strijp JAG, Singer BB, van Sorge NM, Lindahl G, McCarthy AJ. Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis. Nat Commun 2023; 14:2275. [PMID: 37080973 PMCID: PMC10119177 DOI: 10.1038/s41467-023-37732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor the development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history.
Collapse
Affiliation(s)
- Erin A Catton
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Bonsor
- University of Maryland, Baltimore, MD, 21201, USA
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carolina Herrera
- Section of Immunology of Infection, Department of Infectious Disease, Imperial College London, London, W2 1NY, UK
| | | | - Mykola Lyndin
- Sumy State University, Sumy, 40000, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| | - Claire E Turner
- The School of Biosciences, The Florey Institute, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jo Soden
- Retrogenix, Chinley, High Peak, SK23 6FJ, Chinley, UK
| | - Jos A G van Strijp
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Bernhard B Singer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, location AMC, Amsterdam, 1105 AZ, The Netherlands.
| | - Gunnar Lindahl
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, 223 62, Sweden.
- Department of Chemistry, Division of Applied Microbiology, Lund University, Lund, 221 00, Sweden.
| | - Alex J McCarthy
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK.
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
13
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
14
|
Goob G, Adrian J, Cossu C, Hauck CR. Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ. J Biol Chem 2022; 298:102269. [PMID: 35850306 PMCID: PMC9418913 DOI: 10.1016/j.jbc.2022.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Carcinoembryonic Antigen-related Cell Adhesion Molecule 3 (CEACAM3) is a human granulocyte receptor mediating the efficient phagocytosis of a subset of human-restricted bacterial pathogens. Its function depends on phosphorylation of a tyrosine-based sequence motif, but the enzyme(s) responsible for reversing this modification are unclear. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as a negative regulator of CEACAM3-mediated phagocytosis. We show depletion of PTPRJ results in a gain-of-function phenotype, while overexpression of a constitutively active PTPRJ phosphatase strongly reduces bacterial uptake via CEACAM3. We also determined that recombinant PTPRJ directly dephosphorylates the cytoplasmic tyrosine residues of purified full-length CEACAM3 and recognizes synthetic CEACAM3-derived phospho-peptides as substrates. Dephosphorylation of CEACAM3 by PTPRJ is also observed in intact cells, thereby limiting receptor-initiated cytoskeletal re-arrangements, lamellipodia formation, and bacterial uptake. Finally, we show that human phagocytes deficient for PTPRJ exhibit exaggerated lamellipodia formation and enhanced opsonin-independent phagocytosis of CEACAM3-binding bacteria. Taken together, our results highlight PTPRJ as a bona fide negative regulator of CEACAM3-initiated phagocyte functions, revealing a potential molecular target to limit CEACAM3-driven inflammatory responses.
Collapse
Affiliation(s)
- Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Chiara Cossu
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
15
|
Alcott AM, Werner LM, Baiocco CM, Belcher Dufrisne M, Columbus L, Criss AK. Variable Expression of Opa Proteins by Neisseria gonorrhoeae Influences Bacterial Association and Phagocytic Killing by Human Neutrophils. J Bacteriol 2022; 204:e0003522. [PMID: 35343795 PMCID: PMC9017356 DOI: 10.1128/jb.00035-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.
Collapse
Affiliation(s)
- Allison M. Alcott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Nicchi S, Giusti F, Carello S, Utrio Lanfaloni S, Tavarini S, Frigimelica E, Ferlenghi I, Rossi Paccani S, Merola M, Delany I, Scarlato V, Maione D, Brettoni C. Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. iScience 2022; 25:103931. [PMID: 35265810 PMCID: PMC8899411 DOI: 10.1016/j.isci.2022.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist. Mcat induces ROS and NET production to a lesser extent than NTHi in dHL-60 cells Mcat interferes with ROS-related responses in chemically-activated cells Mcat subverts the autophagic pathway surviving intracellularly while NTHi does not Intracellular survival of NTHi is enhanced by the co-infecting bacterium Mcat
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, Siena, 53100, Italy.,University of Bologna, Bologna, 40141, Italy
| | | | - Stefano Carello
- GSK, Siena, 53100, Italy.,University of Turin, Turin, 10100, Italy
| | | | | | | | | | | | - Marcello Merola
- GSK, Siena, 53100, Italy.,University of Naples Federico II, Naples, 80133, Italy
| | | | | | | | | |
Collapse
|
17
|
de la Ballina NR, Villalba A, Cao A. Shotgun analysis to identify differences in protein expression between granulocytes and hyalinocytes of the European flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:678-691. [PMID: 34748932 DOI: 10.1016/j.fsi.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κβ seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
18
|
Klaile E, Prada Salcedo JP, Klassert TE, Besemer M, Bothe AK, Durotin A, Müller MM, Schmitt V, Luther CH, Dittrich M, Singer BB, Dandekar T, Slevogt H. Antibody ligation of CEACAM1, CEACAM3, and CEACAM6, differentially enhance the cytokine release of human neutrophils in responses to Candida albicans. Cell Immunol 2021; 371:104459. [PMID: 34847408 DOI: 10.1016/j.cellimm.2021.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Invasive candidiasis is a healthcare-associated fungal infection with a high mortality rate. Neutrophils, the first line of defense during fungal infections, express the immunoregulatory Candida albicans receptors CEACAM1, CEACAM3, and CEACAM6. We analyzed the effects of specific antibodies on C. albicans-induced neutrophil responses. CEACAM6 ligation by 1H7-4B and to some extent CEACAM1 ligation by B3-17, but not CEACAM3 ligation by 308/3-3, resulted in the immediate release of stored CXCL8 and altered transcriptional responses of the C. albicans-stimulated neutrophils. Integrated network analyses and dynamic simulations of signaling cascades predicted alterations in apoptosis and cytokine secretion. We verified that CEACAM6 ligation enhanced Candida-induced neutrophil apoptosis and increased long-term IL-1β/IL-6 release in responses to C. albicans. CEACAM3 ligation, but not CEACAM1 ligation, increased the long-term release of pro-inflammatory IL-1β/IL-6. Taken together, we demonstrated for the first time that ligation of CEACAM receptors differentially affects the regulation of C. albicans-induced immune functions in human neutrophils.
Collapse
Affiliation(s)
- Esther Klaile
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Juan P Prada Salcedo
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Tilman E Klassert
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Matthias Besemer
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Anne-Katrin Bothe
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Adrian Durotin
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Mario M Müller
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Verena Schmitt
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Christian H Luther
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Marcus Dittrich
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany; Dept. of Human Genetics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Thomas Dandekar
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Hortense Slevogt
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| |
Collapse
|
19
|
Pérez-García F, Jiménez-Sousa MÁ, Gómez-Sánchez E, Gonzalo-Benito H, Fernández-Rodríguez A, Lorenzo-López M, Heredia-Rodríguez M, Martínez de Paz P, Gómez-Pesquera E, Tamayo E, Resino S. CEACAM7 polymorphisms predict genetic predisposition to mortality in post-surgical septic shock patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:540-544. [PMID: 34657826 DOI: 10.1016/j.jmii.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
We carried out a retrospective exploratory study on 173 patients who underwent major surgery and developed septic shock after surgery. Our findings suggest that CEACAM7 rs1001578, rs10409040, and rs889365 polymorphisms could influence septic shock-related death in individuals who underwent major surgery.
Collapse
Affiliation(s)
- Felipe Pérez-García
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Maria Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Esther Gómez-Sánchez
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - Hugo Gonzalo-Benito
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Mario Lorenzo-López
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - María Heredia-Rodríguez
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - Pedro Martínez de Paz
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Hospital Clínico Universitario, Valladolid, Spain.
| | - Estefanía Gómez-Pesquera
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - Eduardo Tamayo
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario, Valladolid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
20
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
21
|
Shi Y, Berking A, Baade T, Legate KR, Fässler R, Hauck CR. PIP5KIγ90-generated phosphatidylinositol-4,5-bisphosphate promotes the uptake of Staphylococcus aureus by host cells. Mol Microbiol 2021; 116:1249-1267. [PMID: 34519119 DOI: 10.1111/mmi.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus, a Gram-positive pathogen, invades cells mainly in an integrin-dependent manner. As the activity or conformation of several integrin-associated proteins can be regulated by phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ), we investigated the roles of PI-4,5-P2 and PI-4,5-P2 -producing enzymes in cellular invasion by S. aureus. PI-4,5-P2 accumulated upon contact of S. aureus with the host cell, and targeting of an active PI-4,5-P2 phosphatase to the plasma membrane reduced bacterial invasion. Knockdown of individual phosphatidylinositol-4-phosphate 5-kinases revealed that phosphatidylinositol-4-phosphate 5-kinase γ (PIP5KIγ) plays an important role in bacterial internalization. Specific ablation of the talin and FAK-binding motif in PIP5KIγ90 reduced bacterial invasion, which could be rescued by reexpression of an active, but not inactive PIP5KIγ90. Furthermore, PIP5KIγ90-deficient cells showed normal basal PI-4,5-P2 levels in the plasma membrane but reduced the accumulation of PI-4,5-P2 and talin at sites of S. aureus attachment and overall lower levels of FAK phosphorylation. These results highlight the importance of local synthesis of PI-4,5-P2 by a focal adhesion-associated lipid kinase for integrin-mediated internalization of S. aureus.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Anne Berking
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Timo Baade
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | | | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Lake CM, Voss K, Bauman BM, Pohida K, Jiang T, Dveksler G, Snow AL. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8 + T cells in conjunction with CEACAM1. Cell Death Dis 2021; 12:400. [PMID: 33854046 PMCID: PMC8046753 DOI: 10.1038/s41419-021-03689-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Immune homeostasis depends upon effective clearance of pathogens while simultaneously preventing autoimmunity and immunopathology in the host. Restimulation-induced cell death (RICD) is one such mechanism where by activated T cells receive subsequent antigenic stimulation, reach a critical signal threshold through the T cell receptor (TCR), and commit to apoptosis. Many details of this process remain unclear, including the role of co-stimulatory and co-inhibitory proteins that influence the TCR signaling cascade. Here we characterize the role of T cell immunoglobulin and mucin domain containing 3 (TIM-3) in RICD regulation. TIM-3 protected newly activated CD8+ effector T cells from premature RICD during clonal expansion. Surprisingly, however, we found that TIM-3 potentiated RICD in late-stage effector T cells. The presence of TIM-3 increased proximal TCR signaling and proapoptotic protein expression in late-stage effector T cells, with no consistent signaling effects noted in newly activated cells with or without TIM-3. To better explain these differences in TIM-3 function as T cells aged, we characterized the temporal pattern of TIM-3 expression in effector T cells. We found that TIM-3 was expressed on the surface of newly activated effector T cells, but remained largely intracellular in late-stage effector cells. Consistent with this, TIM-3 required a ligand to prevent early RICD, whereas ligand manipulation had no effects at later stages. Of the known TIM-3 ligands, carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) showed the greatest difference in surface expression over time and also protected newly activated cells from premature RICD, with no measurable effects in late-stage effectors. Indeed, CEACAM1 enabled TIM-3 surface expression on T cells, implying a co-dependency for these proteins in protecting expanding T cells from premature RICD. Our findings suggest that co-signaling proteins like TIM-3 and CEACAM1 can alter RICD sensitivity at different stages of the effector T cell response, with important implications for checkpoint blockade therapy.
Collapse
Affiliation(s)
- Camille M Lake
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Katherine Pohida
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Timothy Jiang
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA.
| |
Collapse
|
23
|
Jeger JL. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 2020; 47:9801-9810. [PMID: 33185829 DOI: 10.1007/s11033-020-05993-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Endosomes and lysosomes are membrane-bound organelles crucial for the normal functioning of the eukaryotic cell. The primary function of endosomes relates to the transportation of extracellular material into the intracellular domain. Lysosomes, on the other hand, are primarily involved in the degradation of macromolecules. Endosomes and lysosomes interact through two distinct pathways: kiss-and-run and direct fusion. In addition to the internalization of particles, endosomes also play an important role in cell signaling and autophagy. Disruptions in either of these processes may contribute to cancer development. Lysosomal proteins, such as cathepsins, can play a role in both tumorigenesis and cancer cell apoptosis. Since endosomal and lysosomal biogenesis and signaling are important components of normal cellular growth and proliferation, proteins involved in these processes are attractive targets for cancer research and, potentially, therapeutics. This literature review provides an overview of the endocytic pathway, endolysosome formation, and the interplay between endosomal/lysosomal biogenesis and carcinogenesis.
Collapse
|
24
|
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219:211512. [PMID: 33119040 PMCID: PMC7604772 DOI: 10.1083/jcb.202001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin β cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin β1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.
Collapse
Affiliation(s)
- Tanja M. Grimm
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nina I. Dierdorf
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Karin Betz
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Lehrstuhl Zelluläre Chemie, Fachbereich Chemie, Universität Konstanz, Konstanz, Germany
| | - Christoph Paone
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Correspondence to Christof R. Hauck:
| |
Collapse
|
25
|
Tsai CH, Wu AC, Chiang BL, Yang YH, Hung SP, Su MW, Chang YJ, Lee YL. CEACAM3 decreases asthma exacerbations and modulates respiratory syncytial virus latent infection in children. Thorax 2020; 75:725-734. [PMID: 32606071 DOI: 10.1136/thoraxjnl-2019-214132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is associated with childhood asthma. Nevertheless, not all children exposed to RSV develop asthma symptoms, possibly because genes modulate the effects of RSV on asthma exacerbations. OBJECTIVE The purpose of this study was to identify genes that modulate the effect of RSV latent infection on asthma exacerbations. METHODS We performed a meta-analysis to investigate differentially expressed genes (DEGs) of RSV infection from Gene Expression Omnibus datasets. Expression quantitative trait loci (eQTL) methods were applied to select single nucleotide polymorphisms (SNPs) that were associated with DEGs. Gene-based analysis was used to identify SNPs that were significantly associated with asthma exacerbations in the Taiwanese Consortium of Childhood Asthma Study (TCCAS), and validation was attempted in an independent cohort, the Childhood Asthma Management Program (CAMP). Gene-RSV interaction analyses were performed to investigate the association between the interaction of SNPs and RSV latent infection on asthma exacerbations. RESULTS A total of 352 significant DEGs were found by meta-analysis of RSV-related genes. We used 38 123 SNPs related to DEGs to investigate the genetic main effects on asthma exacerbations. We found that eight RSV-related genes (GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3) were significantly associated with asthma exacerbations in TCCAS and also validated in CAMP. In TCCAS, rs7251960 (CEACAM3) significantly modulated the effect of RSV latent infection on asthma exacerbations (false-discovery rate <0.05). The rs7251960 variant was associated with CEACAM3 mRNA expression in lung tissue (p for trend=1.2×10-7). CEACAM3 mRNA was reduced in nasal mucosa from subjects with asthma exacerbations in two independent datasets. CONCLUSIONS rs7251960 is an eQTL for CEACAM3, and CEACAM3 mRNA expression is reduced in subjects experiencing asthma exacerbations. CEACAM3 may be a modulator of RSV latent infection on asthma exacerbations.
Collapse
Affiliation(s)
- Ching-Hui Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann Chen Wu
- Center for Healthcare Research in Pediatrics (CHeRP), PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Pin Hung
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Choi H, Bae SJ, Choi G, Lee H, Son T, Kim JG, An S, Lee HS, Seo JH, Kwon HB, Jeon S, Oh GT, Surh YJ, Kim KW. Ninjurin1 deficiency aggravates colitis development by promoting M1 macrophage polarization and inducing microbial imbalance. FASEB J 2020; 34:8702-8720. [PMID: 32385864 DOI: 10.1096/fj.201902753r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.
Collapse
Affiliation(s)
- Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sung-Jin Bae
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hyunseung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jeong-Gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Korea
| | - Hyouk-Bum Kwon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
28
|
Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe 2020; 27:793-808.e5. [PMID: 32289262 DOI: 10.1016/j.chom.2020.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Several pathogens suppress exfoliation, a key defense of epithelia against microbial colonization. Common among these pathogens, exemplified by Neisseria gonorrhoeae, is their ability to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Gonococcal CEACAM engagement triggers the expression of CD105, which is necessary to block epithelial exfoliation, whereas homotypic CEACAM-CEACAM interactions or antibody-mediated CEACAM clustering does not lead to CD105 expression. Here, we show that CEACAM-associated bacteria release nitric oxide (NO) during anaerobic respiration, and membrane-permeable NO initiates a eukaryotic signaling pathway involving soluble guanylate cyclase (sGC), protein kinase G, and the transcription factor CREB to upregulate CD105 expression. A murine vaginal infection model with N. gonorrhoeae reveals this metabolic cross communication allows bacterial suppression of epithelial exfoliation to facilitate mucosal colonization. Disrupting NO-initiated responses in host cells re-establishes epithelial exfoliation and inhibits mouse genital tract colonization by N. gonorrhoeae, suggesting a host-directed approach to prevent bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
29
|
Bonsignore P, Kuiper JWP, Adrian J, Goob G, Hauck CR. CEACAM3-A Prim(at)e Invention for Opsonin-Independent Phagocytosis of Bacteria. Front Immunol 2020; 10:3160. [PMID: 32117212 PMCID: PMC7026191 DOI: 10.3389/fimmu.2019.03160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.
Collapse
Affiliation(s)
- Patrizia Bonsignore
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes W P Kuiper
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
Hänske J, Hammacher T, Grenkowitz F, Mansfeld M, Dau TH, Maksimov P, Friedrich C, Zimmermann W, Kammerer R. Natural selection supports escape from concerted evolution of a recently duplicated CEACAM1 paralog in the ruminant CEA gene family. Sci Rep 2020; 10:3404. [PMID: 32099040 PMCID: PMC7042247 DOI: 10.1038/s41598-020-60425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/31/2020] [Indexed: 11/24/2022] Open
Abstract
Concerted evolution is often observed in multigene families such as the CEA gene family. As a result, sequence similarity of paralogous genes is significantly higher than expected from their evolutionary distance. Gene conversion, a “copy paste” DNA repair mechanism that transfers sequences from one gene to another and homologous recombination are drivers of concerted evolution. Nevertheless, some gene family members escape concerted evolution and acquire sufficient sequence differences that orthologous genes can be assigned in descendant species. Reasons why some gene family members can escape while others are captured by concerted evolution are poorly understood. By analyzing the entire CEA gene family in cattle (Bos taurus) we identified a member (CEACAM32) that was created by gene duplication and cooption of a unique transmembrane domain exon in the most recent ancestor of ruminants. CEACAM32 shows a unique, testis-specific expression pattern. Phylogenetic analysis indicated that CEACAM32 is not involved in concerted evolution of CEACAM1 paralogs in ruminants. However, analysis of gene conversion events revealed that CEACAM32 is subject to gene conversion but remarkably, these events are found in the leader exon and intron sequences but not in exons coding for the Ig-like domains. These findings suggest that natural selection hinders gene conversion affecting protein sequences of the mature protein and thereby support escape of CEACAM32 from concerted evolution.
Collapse
Affiliation(s)
- Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Tim Hammacher
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Franziska Grenkowitz
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald - InselRiems, Germany
| | - Christin Friedrich
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.
| |
Collapse
|
31
|
The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils. mBio 2020; 11:mBio.03256-19. [PMID: 32019805 PMCID: PMC7002351 DOI: 10.1128/mbio.03256-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori, and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori-CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology. The cag type IV secretion system (cag-T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori, via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology.
Collapse
|
32
|
Abstract
Many pathogens must bind to entry receptors on the surfaces of host cells yet avoid any closely-related phagocytic decoy receptors on granulocytes that evolved as a host defense mechanism. The discovery of decoy-receptor polymorphisms in human populations now points to an evolutionary process that allows the host to catch up with pathogens.
Collapse
|
33
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Doll F, Steimbach RR, Zumbusch A. Direct Imaging of Protein‐Specific Methylation in Mammalian Cells. Chembiochem 2019; 20:1315-1325. [DOI: 10.1002/cbic.201800787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Franziska Doll
- Department of ChemistryUniversity of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology Universitätsstrasse 10 78457 Konstanz Germany
| | - Raphael R. Steimbach
- Department of ChemistryUniversity of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Andreas Zumbusch
- Department of ChemistryUniversity of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
36
|
Clustering of integrin β cytoplasmic domains triggers nascent adhesion formation and reveals a protozoan origin of the integrin-talin interaction. Sci Rep 2019; 9:5728. [PMID: 30952878 PMCID: PMC6450878 DOI: 10.1038/s41598-019-42002-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Integrins and integrin-dependent cell-matrix adhesions are essential for a number of physiological processes. Integrin function is tightly regulated via binding of cytoplasmic proteins to integrin intracellular domains. Yet, the complexity of cell-matrix adhesions in mammals, with more than 150 core adhesome proteins, complicates the analysis of integrin-associated protein complexes. Interestingly, the evolutionary origin of integrins dates back before the transition from unicellular life to complex multicellular animals. Though unicellular relatives of metazoa have a less complex adhesome, nothing is known about the initial steps of integrin activation and adhesion complex assembly in protozoa. Therefore, we developed a minimal, microscope-based system using chimeric integrins to investigate receptor-proximal events during focal adhesion assembly. Clustering of the human integrin β1 tail led to recruitment of talin, kindlin, and paxillin and mutation of the known talin binding site abolished recruitment of this protein. Proteins indirectly linked to integrins, such as vinculin, migfilin, p130CAS, or zyxin were not enriched around the integrin β1 tail. With the exception of integrin β4 and integrin β8, the cytoplasmic domains of all human integrin β subunits supported talin binding. Likewise, the cytoplasmic domains of integrin β subunits expressed by the protozoan Capsaspora owczarzaki readily recruited talin and this interaction was based on an evolutionary conserved NPXY/F amino acid motif. The results we present here validate the use of our novel microscopic assay to uncover details of integrin-based protein-protein interactions in a cellular context and suggest that talin binding to integrin β cytoplasmic tails is an ancient feature of integrin regulation.
Collapse
|
37
|
Adrian J, Bonsignore P, Hammer S, Frickey T, Hauck CR. Adaptation to Host-Specific Bacterial Pathogens Drives Rapid Evolution of a Human Innate Immune Receptor. Curr Biol 2019; 29:616-630.e5. [PMID: 30744974 DOI: 10.1016/j.cub.2019.01.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The selective pressure by infectious agents is a major driving force in the evolution of humans and other mammals. Members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as receptors for bacterial pathogens of the genera Haemophilus, Helicobacter, Neisseria, and Moraxella, which engage CEACAMs via distinct surface adhesins. While microbial attachment to epithelial CEACAMs facilitates host colonization, recognition by CEACAM3, a phagocytic receptor expressed by granulocytes, eliminates CEACAM-binding bacteria. Sequence analysis of primate CEACAM3 orthologs reveals that this innate immune receptor is one of the most rapidly evolving human proteins. In particular, the pathogen-binding extracellular domain of CEACAM3 shows a high degree of non-synonymous versus synonymous nucleotide exchanges, indicating an exceptionally strong positive selection. Using CEACAM3 domains derived from different primates, we find that the amino acid alterations found in CEACAM3 translate into characteristic binding patterns for bacterial adhesins. One such amino acid residue is F62 in human and chimp CEACAM3, which is not present in other primates and which is critical for binding the OMP P1 adhesin of Haemophilus aegyptius. Incorporation of the F62-containing motif into gorilla CEACAM3 results in a gain-of-function phenotype with regard to phagocytosis of H. aegyptius. Moreover, CEACAM3 polymorphisms found in human subpopulations widen the spectrum of recognized bacterial adhesins, suggesting an ongoing multivariate selection acting on this innate immune receptor. The species-specific detection of diverse bacterial adhesins helps to explain the exceptionally fast evolution of CEACAM3 within the primate lineage and provides an example of Red Queen dynamics in the human genome.
Collapse
Affiliation(s)
- Jonas Adrian
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Patrizia Bonsignore
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Sebastian Hammer
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Forest Industry Informatics, Scion, Te Papa Tipu Innovation Park, 49 Sala Street, 3015 Rotorua, New Zealand; Konstanz Research School-Chemical Biology, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School-Chemical Biology, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
38
|
Ahadi A, Safavi MS. miR-335-5p has an important role in the progression of gastric cancer by down-regulation of CEACAM5. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
40
|
Krüger S, Eichler E, Strobel L, Schubert-Unkmeir A, Johswich KO. Differential influences of complement on neutrophil responses to Neisseria meningitidis infection. Pathog Dis 2018; 76:5195519. [PMID: 30476070 DOI: 10.1093/femspd/fty086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system is the primary innate immune determinant protecting against invasive diseases caused by the Gram-negative bacterium Neisseria meningitidis (Nme, meningococcus), as evidenced by the extreme susceptibility of individuals with complement deficiencies. In contrast, the role of phagocytes such as neutrophils is much less well understood, although they are recruited in great numbers to the cerebrospinal fluid during meningococcal meningitis. Here, we consider the interaction of Nme with primary human neutrophils using either purified cells or a whole blood model of infection. We found that neutrophils are capable of non-opsonic uptake and killing of different Nme strains. However, in the presence of immune serum featuring active complement, Nme association is strongly increased, whereas this is not the case in heat-inactivated immune serum. Blockade of complement at the level of C3 using the inhibitor compstatin Cp20 reduces the uptake dramatically. In addition, purified neutrophils did not mount an oxidative burst towards Nme unless complement was added and, vice versa, the oxidative burst was strongly reduced in whole blood upon complement inhibition. In contrast, there was no significant impact of complement on neutrophil degranulation or IL-8 secretion. Taken together, neutrophils require complement activation in order to mount a full response towards Nme.
Collapse
Affiliation(s)
- Sören Krüger
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Emma Eichler
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Lea Strobel
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | | | - Kay O Johswich
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
41
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
42
|
Moonens K, Hamway Y, Neddermann M, Reschke M, Tegtmeyer N, Kruse T, Kammerer R, Mejías-Luque R, Singer BB, Backert S, Gerhard M, Remaut H. Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAMs. EMBO J 2018; 37:embj.201798665. [PMID: 29858229 DOI: 10.15252/embj.201798665] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori is a major causative agent of gastritis, peptic ulcer disease, and gastric cancer. As part of its adhesive lifestyle, the bacterium targets members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family by the conserved outer membrane adhesin HopQ. The HopQ-CEACAM1 interaction is associated with inflammatory responses and enables the intracellular delivery and phosphorylation of the CagA oncoprotein via a yet unknown mechanism. Here, we generated crystal structures of HopQ isotypes I and II bound to the N-terminal domain of human CEACAM1 (C1ND) and elucidated the structural basis of H. pylori specificity toward human CEACAM receptors. Both HopQ alleles target the β-strands G, F, and C of C1ND, which form the trans dimerization interface in homo- and heterophilic CEACAM interactions. Using SAXS, we show that the HopQ ectodomain is sufficient to induce C1ND monomerization and thus providing H. pylori a route to influence CEACAM-mediated cell adherence and signaling events.
Collapse
Affiliation(s)
- Kristof Moonens
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Youssef Hamway
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Matthias Neddermann
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen, Erlangen, Germany
| | - Marc Reschke
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen, Erlangen, Germany
| | | | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen, Erlangen, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium .,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
43
|
Bonsor DA, Zhao Q, Schmidinger B, Weiss E, Wang J, Deredge D, Beadenkopf R, Dow B, Fischer W, Beckett D, Wintrode PL, Haas R, Sundberg EJ. The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA. EMBO J 2018; 37:embj.201798664. [PMID: 29724755 DOI: 10.15252/embj.201798664] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/06/2023] Open
Abstract
Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Qing Zhao
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Schmidinger
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Evelyn Weiss
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jingheng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Robert Beadenkopf
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Blaine Dow
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site LMU, Munich, Germany
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
44
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
45
|
Sintsova A, Guo CX, Sarantis H, Mak TW, Glogauer M, Gray-Owen SD. Bcl10 synergistically links CEACAM3 and TLR-dependent inflammatory signalling. Cell Microbiol 2018; 20:e12788. [PMID: 28886618 DOI: 10.1111/cmi.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
The neutrophil-specific innate immune receptor CEACAM3 functions as a decoy to capture Gram-negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross-linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll-like receptors. Using neutrophils from a human CEACAM-expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3-mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC-Rac2-/- , CEABAC-Bcl10-/- , and CEABAC-Malt1-/- neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3-mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll-like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.
Collapse
Affiliation(s)
- Anna Sintsova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia X Guo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Sarantis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Patel S, Mathivanan N, Goyal A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed Pharmacother 2017; 93:763-771. [DOI: 10.1016/j.biopha.2017.06.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
|
47
|
Abstract
Posttranslational protein glycosylation is conserved in all kingdoms of life and implicated in the regulation of protein structure, function, and localization. The visualization of glycosylation states of designated proteins within living cells is of great importance for unraveling the biological roles of intracellular protein glycosylation. Our generally applicable approach is based on the incorporation of a glucosamine analog, Ac4GlcNCyoc, into the cellular glycome via metabolic engineering. Ac4GlcNCyoc can be labeled in a second step via inverse-electron-demand Diels-Alder chemistry with fluorophores inside living cells. Additionally, target proteins can be expressed as enhanced green fluorescent protein (EGFP)-fusion proteins. To assess the proximity of the donor EGFP and the glycan-anchored acceptor fluorophore, Förster resonance energy transfer (FRET) is employed and read out with high contrast by fluorescence lifetime imaging (FLIM) microscopy. In this chapter, we present a detailed description of methods required to perform protein-specific imaging of glycosylation inside living cells. These include the complete synthesis of Ac4GlcNCyoc, immunoprecipitation of EGFP-fusion proteins to examine the Ac4GlcNCyoc modification state, and a complete section on basics, performance, as well as data analysis for FLIM-FRET microscopy. We also provide useful notes necessary for reproducibility and point out strengths and limitations of the approach.
Collapse
|
48
|
Ru GQ, Han Y, Wang W, Chen Y, Wang HJ, Xu WJ, Ma J, Ye M, Chen X, He XL, Győrffy B, Zhao ZS, Huang D. CEACAM6 is a prognostic biomarker and potential therapeutic target for gastric carcinoma. Oncotarget 2017; 8:83673-83683. [PMID: 29137373 PMCID: PMC5663545 DOI: 10.18632/oncotarget.19415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the prognostic power of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in gastric cancer (GC) and its potential role in cancer development and progression. Data mining results show that CEACAM6 is overexpressed in gastric cancer and is correlated with lymph node metastasis. Subsequently, immunohistochemical staining was performed to determine CEACAM6 protein levels in paraffin gastric tumor specimens. Real-time reverse-transcription-polymerase chain reaction (RT-PCR) was conducted to detect CEACAM6 mRNA levels in fresh GC samples. CEACAM6 protein and mRNA levels were significantly up regulated in GC compared with paired normal mucosa. The IHC staining intensity of CEACAM6 was positively correlated with tumor size, Lauren's classification, vascular invasion, lymph node metastasis, distant metastasis, and TNM stage. CEACAM6 expression was inversely correlated with the five-year survival rate of GC patients. Cox multivariate analysis results demonstrated that the overall survival was independently correlated with CEACAM6 expression. A significant association was observed between CEACAM6 and distant metastases. Network analysis of downstream gene signatures revealed several hub genes such as SRC and DNM1L etc. which may mediating tumor promoting functions of CEACAM6. Further data mining discovered that Tamoxifen etc. could be therapeutic alternatives for gastric patients with CEACAM6 overexpression. Collectively, CEACAM6 overexpression is a common characteristic of GC and is associated with poor 5 year survival rate in GC. Besides, potential molecular mechanisms and treatment options were also provided.
Collapse
Affiliation(s)
- Guo-Qing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Wei Wang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Wen-Juan Xu
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Meihua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Xi Chen
- VIP Medical Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Balázs Győrffy
- Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zhong-Sheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Dongsheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
49
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
50
|
Zimmermann W, Kammerer R. Coevolution of paired receptors in Xenopus carcinoembryonic antigen-related cell adhesion molecule families suggests appropriation as pathogen receptors. BMC Genomics 2016; 17:928. [PMID: 27852220 PMCID: PMC5112662 DOI: 10.1186/s12864-016-3279-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023] Open
Abstract
Background In mammals, CEACAM1 and closely related members represent paired receptors with similar extracellular ligand-binding regions and cytoplasmic domains with opposing functions. Human CEACAM1 and CEACAM3 which have inhibitory ITIM/ITSM and activating ITAM-like motifs, respectively, in their cytoplasmic regions are such paired receptors. Various bacterial pathogens bind to CEACAM1 on epithelial and immune cells facilitating both entry into the host and down-regulation of the immune response whereas interaction with granulocyte-specific CEACAM3 leads to their uptake and destruction. It is unclear whether paired CEACAM receptors also exist in other vertebrate clades. Results We identified more than 80 ceacam genes in Xenopus tropicalis and X. laevis. They consist of two subgroups containing one or two putative paired receptor pairs each. Analysis of genomic sequences of paired receptors provide evidence that their highly similar ligand binding domains were adjusted by recent gene conversion events. In contrast, selection for diversification is observed among inhibitory receptor orthologs of the two frogs which split some 60 million years ago. The allotetraploid X. laevis arose later by hybridization of two closely related species. Interestingly, despite the conservation of the genomic landscape surrounding the homeologous ceacam loci only one locus resembles the one found in X. tropicalis. From the second X. laevis locus more than 80 % of the ceacam genes were lost including 5 of the 6 paired receptor genes. This suggests that once the gene for one of the paired receptors is lost the remaining gene cluster degrades rapidly probably due to lack of selection pressure exerted by pathogens. Conclusions The presence of paired receptors and selection for diversification suggests that also in amphibians CEACAM1-related inhibitory proteins are or were used as pathogen receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3279-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, University Clinic, Ludwig-Maximilians-University, Feodor-Lynen-Str. 19, 81377, Munich, Germany. .,Department of Urology, University Clinic, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler Institut, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|