1
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
2
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
4
|
de Assis DRR, Pimentel PMDO, Dos Reis PVM, Rabelo RAN, Vitor RWA, Cordeiro MDN, Felicori LF, Olórtegui CDC, Resende JM, Teixeira MM, Borges MH, de Lima ME, Pimenta AMDC, Machado FS. Tityus serrulatus (Scorpion): From the Crude Venom to the Construction of Synthetic Peptides and Their Possible Therapeutic Application Against Toxoplasma gondii Infection. Front Cell Infect Microbiol 2021; 11:706618. [PMID: 34354963 PMCID: PMC8329421 DOI: 10.3389/fcimb.2021.706618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, is a major public concern owing to its neurotropic nature and high morbidity and mortality rates in immunocompromised patients and newborns. Current treatment for this disease is inefficient and produces side effects. Inflammatory mediators produced during T. gondii infection (e.g., cytokines and nitric oxide) are crucial in controlling parasite replication. In this context, Tityus serrulatus venom (TsV) induces the production of inflammatory mediators by immune cells. Thus, this study aimed to isolate and identify the components of TsV with potential anti-T. gondii activity. TsV was extracted from scorpions and lyophilized or loaded onto a column to obtain its fractions. TsV subfractions were obtained using chromatography, and its amino acid sequence was identified and applied to peptide design using bioinformatics tools. The C57BL/6 mice and their harvested macrophages were used to test the anti-Toxoplasma activity of TsV components and peptides. TsV and its fraction F6 attenuated the replication of tachyzoites in macrophages and induced nitric oxide and cytokine (IL-12, TNF, and IL-6) production by infected cells, without host cell toxicity. Moreover, Su6-B toxin, a subfraction of F6, demonstrated anti-T. gondii activity. The partially elucidated and characterized amino acid sequence of Sub6-B demonstrated 93% similarity with T. serrulatus 2 toxin (Ts2). Ts2 mimetic peptides (“Pep1,” “Pep2a,” and “Pep2b”) were designed and synthesized. Pep1 and Pep2a, but not Pep2b, reduced the replication of tachyzoites in macrophages. In vivo, treatment of T. gondii-infected mice with Pep1, Pep2a, or Pep2b decreased the number of cerebral cysts and did not induce hepatotoxicity in the animals. Taken together, our data show promising immunomodulatory and antiparasitic activity of TsV that could be explored and applied in future therapies for treating infectious parasitic diseases such as toxoplasmosis.
Collapse
Affiliation(s)
- Diego Rodney Rodrigues de Assis
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Pablo Victor Mendes Dos Reis
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Wagner Almeida Vitor
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Delfin Chávez Olórtegui
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jarbas Magalhães Resende
- Department of Chemistry, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Elena de Lima
- Faculdade Santa Casa de Belo Horizonte: Programa de Pós Graduação em Medicina-Biomedicina, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol 2021; 12:660865. [PMID: 34177900 PMCID: PMC8222715 DOI: 10.3389/fimmu.2021.660865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.
Collapse
Affiliation(s)
- Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
6
|
Zaloga GP. Narrative Review of n-3 Polyunsaturated Fatty Acid Supplementation upon Immune Functions, Resolution Molecules and Lipid Peroxidation. Nutrients 2021; 13:662. [PMID: 33670710 PMCID: PMC7922327 DOI: 10.3390/nu13020662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fish oil supplementation is commonplace in human nutrition and is being used in both enteral and parenteral formulations during the treatment of patients with a large variety of diseases and immune status. The biological effects of fish oil are believed to result from their content of n-3 polyunsaturated fatty acids (PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These fatty acids are known to have numerous effects upon immune functions and are described as immunomodulatory. However, immunomodulatory is a nondescript term that encompasses immunostimulation and immunosuppression. The primary goal of this review is to better describe the immune effects of n-3 PUFA as they relate to immunostimulatory vs. immunosuppressive effects. One mechanism proposed for the immune effects of n-3 PUFA relates to the production of specialized pro-resolving mediators (SPMs). A second goal of this review is to evaluate the effects of n-3 PUFA supplementation upon production of SPMs. Although n-3 PUFA are stated to possess anti-oxidative properties, these molecules are highly oxidizable due to multiple double bonds and may increase oxidative stress. Thus, the third goal of this review is to evaluate the effects of n-3 PUFA upon lipid oxidation. We conclude, based upon current scientific evidence, that n-3 PUFA suppress inflammatory responses and most cellular immune responses such as chemotaxis, transmigration, antigen presentation, and lymphocyte functions and should be considered immunosuppressive. n-3 PUFA induced production of resolution molecules is inconsistent with many resolution molecules failing to respond to n-3 PUFA supplementation. n-3 PUFA supplementation is associated with increased lipid peroxidation in most studies. Vitamin E co-administration is unreliable for prevention of the lipid peroxidation. These effects should be considered when administering n-3 PUFA to patients that may be immunosuppressed or under high oxidative stress due to illness or other treatments.
Collapse
Affiliation(s)
- Gary P Zaloga
- MedSciHealth Consultants, 12931 Sorrento Way, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Ou M, Zhang Q, Zhao H, Shu C. Polyunsaturated Fatty Acid Diet and Upregulation of Lipoxin A4 Reduce the Inflammatory Response of Preeclampsia. J Proteome Res 2020; 20:357-368. [PMID: 33131275 DOI: 10.1021/acs.jproteome.0c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effects and mechanisms of polyunsaturated fatty acids (PUFAs) and lipoxin A4 (LXA4) on preeclampsia (PE). The LXA4 level was significantly reduced in PE rats. The PUFA diet upregulated the expressions of lipoxygenase 12 (LOX12) and lipoxygenase 15 (LOX15) and downregulated those of cyclooxygenase-2, tumor necrosis factor-α (TNF-α), and endoglin. Lipopolysaccharides could inhibit cell growth and cause inflammatory response, while the presence of PUFAs inhibited the inflammatory response and promoted the expressions of LOX12, LOX15, and LXA4. Nordihydroguaiaretic acid (NDGA) regulated LXA4 expression and inflammation levels by affecting LOX. Inhibition of lipoxygenase 5 activity by NDGA upregulated the expressions of LOX12 and LOX15, while LXA4 reversed LXA4, nitric oxide downregulation, and TNF-α upregulation by NDGA. A decrease in LXA4 levels played an important role in the development and progression of PE.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Huidong Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, No.71 Xinmin Street, Changchun, Jilin Province 130021, China
| |
Collapse
|
8
|
Niu M, Keller NP. Co-opting oxylipin signals in microbial disease. Cell Microbiol 2020; 21:e13025. [PMID: 30866138 DOI: 10.1111/cmi.13025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Oxylipins, or oxygenated lipids, are universal signalling molecules across all kingdoms of life. These molecules, either produced by microbial pathogens or their mammalian host, regulate inflammation during microbial infection. In this review, we summarise current literature on the biosynthesis pathways of microbial oxylipins and their biological activity towards mammalian cells. Collectively, these studies have illustrated how microbial pathogens can modulate immune rsponse and disease outcome via oxylipin-mediated mechanisms.
Collapse
Affiliation(s)
- Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
10
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
11
|
Yang W, Zhao X, Tao Y, Wu Y, He F, Tang L. Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair. Sci Rep 2019; 9:2953. [PMID: 30814596 PMCID: PMC6393665 DOI: 10.1038/s41598-019-39007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous population of immune cells that play central roles in a broad range of biological processes, including the resolution of inflammation. Although diverse macrophage subpopulations have been identified, the characterization and functional specialization of certain macrophage subsets in inflamed tissues remain unclear. Here we uncovered a key role of specific macrophage subsets in tissue repair using proteomics, bioinformatics and functional analysis. We isolated two hepatic monocyte-derived macrophage subpopulations: Ly6ChiCX3CR1lo macrophages and Ly6CloCX3CR1hi macrophages during distinct phases of acute liver injury and employed label-free proteomics approach to profile the proteome of these cells. We found that the endocytosis- and apoptotic cell clearance-related proteins were specifically enriched in Ly6CloCX3CR1hi macrophages at the resolution phase. Intriguingly, 12/15-lipoxygenase (Alox15), the most strongly up-regulated protein in Ly6CloCX3CR1hi macrophages, was identified as a specific marker for these macrophages. In co-culture systems, Ly6CloCX3CR1hi macrophages specifically induced hepatocyte proliferation. Furthermore, selective depletion of this population in CD11b-diphtheria toxin receptor mice significantly delayed liver repair. Overall, our studies shed light on the functional specialization of distinct macrophage subsets from different phases in the resolution of inflammation.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yuandong Tao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yan Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China. .,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, 230032, P. R. China.
| |
Collapse
|
12
|
Pérez-Cabezas B, Santarém N, Cecílio P, Silva C, Silvestre R, A M Catita J, Cordeiro da Silva A. More than just exosomes: distinct Leishmania infantum extracellular products potentiate the establishment of infection. J Extracell Vesicles 2018; 8:1541708. [PMID: 30455859 PMCID: PMC6237156 DOI: 10.1080/20013078.2018.1541708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
The use of secretion pathways for effector molecule delivery by microorganisms is a trademark of pathogenesis. Leishmania extracellular vesicles (EVs) were shown to have significant immunomodulatory potential. Still, they will act in conjunction with other released parasite-derived products that might modify the EVs effects. Notwithstanding, the immunomodulatory properties of these non-vesicular components and their influence in the infectious process remains unknown. To address this, we explored both in vitro and in vivo the immunomodulatory potential of promastigotes extracellular material (EXO), obtained as a whole or separated in two different fractions: EVs or vesicle depleted EXO (VDE). Using an air pouch model, we observed that EVs and VDE induced a dose-dependent cell recruitment profile different from the one obtained with parasites, attracting significantly fewer neutrophils and more dendritic cells (DCs). Additionally, when we co-inoculated parasites with extracellular products a drop in cell recruitment was observed. Moreover, in vitro, while VDE (but not EVs) downregulated the expression of DCs and macrophages activation markers, both products were able to diminish the responsiveness of these cells to LPS. Finally, the presence of Leishmania infantum extracellular products in the inoculum promoted a dose-dependent infection potentiation in vivo, highlighting their relevance for the infectious process. In conclusion, our data demonstrate that EVs are not the only relevant players among the parasite exogenous products. This, together with the dose-dependency observed, opens new avenues to the comprehension of Leishmania infectious process. The approach presented here should be exploited to revisit existing data and considered for future studies in other infection models.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cátia Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - José A M Catita
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Paralab, SA, Valbom, Portugal
| | - Anabela Cordeiro da Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Trypanosoma cruzi Produces the Specialized Proresolving Mediators Resolvin D1, Resolvin D5, and Resolvin E2. Infect Immun 2018; 86:IAI.00688-17. [PMID: 29358332 DOI: 10.1128/iai.00688-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/14/2018] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD). CD is a persistent, lifelong infection affecting many organs, most notably the heart, where it may result in acute myocarditis and chronic cardiomyopathy. The pathological features include myocardial inflammation and fibrosis. In the Brazil strain-infected CD-1 mouse, which recapitulates many of the features of human infection, we found increased plasma levels of resolvin D1 (RvD1), a specialized proresolving mediator of inflammation, during both the acute and chronic phases of infection (>100 days postinfection) as determined by enzyme-linked immunosorbent assay (ELISA). Additionally, ELISA on lysates of trypomastigotes of both strains Tulahuen and Brazil revealed elevated levels of RvD1 compared with lysates of cultured epimastigotes of T. cruzi, tachyzoites of Toxoplasma gondii, trypomastigotes of Trypanosoma brucei, cultured L6E9 myoblasts, and culture medium containing no cells. Lysates of T. cruzi-infected myoblasts also displayed increased levels of RvD1. Lipid mediator metabolomics confirmed that the trypomastigotes of T. cruzi produced RvD1, RvD5, and RvE2, which have been demonstrated to modulate the host response to bacterial infections. Plasma RvD1 levels may be both host and parasite derived. Since T. cruzi synthesizes specialized proresolving mediators of inflammation, as well as proinflammatory eicosanoids, such as thromboxane A2, one may speculate that by using these lipid mediators to modulate its microenvironment, the parasite is able to survive.
Collapse
|
14
|
Sham HP, Walker KH, Abdulnour REE, Krishnamoorthy N, Douda DN, Norris PC, Barkas I, Benito-Figueroa S, Colby JK, Serhan CN, Levy BD. 15-epi-Lipoxin A 4, Resolvin D2, and Resolvin D3 Induce NF-κB Regulators in Bacterial Pneumonia. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29523657 DOI: 10.4049/jimmunol.1602090] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specialized proresolving mediators (SPMs) decrease NF-κB activity to prevent excessive tissue damage and promote the resolution of acute inflammation. Mechanisms for NF-κB regulation by SPMs remain to be determined. In this study, after LPS challenge, the SPMs 15-epi-lipoxin A4 (15-epi-LXA4), resolvin D1, resolvin D2, resolvin D3, and 17-epi-resolvin D1 were produced in vivo in murine lungs. In LPS-activated human bronchial epithelial cells, select SPMs increased expression of the NF-κB regulators A20 and single Ig IL-1R-related molecule (SIGIRR). Of interest, 15-epi-LXA4 induced A20 and SIGIRR in an lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) receptor-dependent manner in epithelial cells and in murine pneumonia. This SPM regulated NF-κB-induced cytokines to decrease pathogen-mediated inflammation. In addition to dampening lung inflammation, surprisingly, 15-epi-LXA4 also enhanced pathogen clearance with increased antimicrobial peptide expression. Taken together, to our knowledge these results are the first to identify endogenous agonists for A20 and SIGIRR expression to regulate NF-κB activity and to establish mechanisms for NF-κB regulation by SPMs for pneumonia resolution.
Collapse
Affiliation(s)
- Ho Pan Sham
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - David N Douda
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Ioanna Barkas
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Sarah Benito-Figueroa
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Jennifer K Colby
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
15
|
Wang RX, Colgan SP. Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Mol Aspects Med 2017; 58:93-101. [PMID: 28232096 PMCID: PMC5797700 DOI: 10.1016/j.mam.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/19/2022]
Abstract
Surfaces covered by epithelial cells, termed mucosal surfaces, serve special functions as selectively permeable barriers that partition the host and the outside world. Given its close association to microbial antigens, the intestinal mucosa has evolved creative mechanisms to maintain homeostasis, to prevent excessive inflammatory responses, and to promote rapid and full inflammatory resolution. In recent years, an active role for the epithelium has been attributed to the local generation of specialized pro-resolving mediators (SPMs) in the maintenance of immunological homeostasis. In this brief review, we highlight evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of SPMs. These autacoids are derived from omega-6 and omega-3 polyunsaturated fatty acids. Acting through widely expressed G-protein coupled receptors, SPMs are implicated in the resolution of acute inflammation that manifests specific, epithelial-directed actions focused on mucosal-homeostasis, including regulation of leukocyte trafficking, the generation of antimicrobial peptides, the dampening of endotoxin signaling, and the attenuation of mucosal cytokine responses.
Collapse
Affiliation(s)
- Ruth X Wang
- Departments of Medicine and Immunology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P Colgan
- Departments of Medicine and Immunology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
16
|
Early Production of the Neutrophil-Derived Lipid Mediators LTB 4 and LXA 4 Is Modulated by Intracellular Infection with Leishmania major. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2014583. [PMID: 29181388 PMCID: PMC5664244 DOI: 10.1155/2017/2014583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
Abstract
Recruitment of neutrophil granulocytes to sites of infectious tissue damage is an early event in innate immune responses. Following chemotactic signals neutrophils establish a first line of defense in a swarm-like manner. Intracellular pathogens such as Leishmania major can, however, evade neutrophil-mediated killing and survive inside neutrophils. To achieve this the parasites evolved potent evasion mechanisms. Since neutrophils are a major source of inflammation regulating lipid mediators, we hypothesized that intracellular infection modifies the release of pro- and anti-inflammatory lipid mediators like leukotriene B4 (LTB4) and lipoxin A4 (LXA4), respectively. In the present study, we demonstrated in vitro that L. major-infected primary human neutrophils release an increased amount of LTB4, whereas LXA4 liberation is reduced during the first hours of infection. To investigate whether lipid mediator modulation is a common feature in intracellular infections, we tested the impact of an infection with Anaplasma phagocytophilum. Similarly to L. major, neutrophil infection with A. phagocytophilum led to an enhanced release of LTB4 and decreased LXA4 production. Together, our findings indicate that intracellular infections modulate the lipid mediator profile of neutrophils. This effect is likely to contribute to the survival of the pathogens in neutrophils and to the outcome of the infections.
Collapse
|
17
|
Abstract
As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, BMC Immunol 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.
Collapse
|
18
|
Dalli J. Does promoting resolution instead of inhibiting inflammation represent the new paradigm in treating infections? Mol Aspects Med 2017; 58:12-20. [PMID: 28365269 DOI: 10.1016/j.mam.2017.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Infections arise when the host response is overwhelmed by pathogens leading to organ dysfunction. In some instances patients progress to more severe conditions, including septic shock, that are associated with increased mortality. Current strategies in treating infections aim at either blocking inflammation using inhibitors to pro-inflammatory molecules and/or inhibiting bacterial growth using antibiotics. These approaches find their origins in studies conducted by Joseph Lister who demonstrated that applying carbolic acid to wounds promoted wound healing without suppuration, reducing both the necessity of amputation and mortality. While this approach is still applicable to certain infections, inhibition of the immune response is also associated with increased mortality, especially in septic patients. In many instances sepsis survivors succumb later to persistent, recurrent, nosocomial and secondary infections. This, together with a rise in resistance to many frontline antibiotics, has prompted a search for alternative ways to treat infections. Recent studies investigating processes engaged by the host response during self-resolving infections identified a novel group of mediators, termed as specialized pro-resolving mediators (SPM). These molecules, produced via the enzymatic conversion of essential fatty acids, actively reprogram the immune response to promote clearance of invading pathogens, and counter-regulate the production of inflammation-initiating molecules. Furthermore, recent studies also demonstrate that these mediators promote tissue repair and regeneration, essential processes in the re-establishment of barrier and prevention of re-infection. The scope of the present review is to discuss the evidence underpinning the endogenous protective roles of these novel mediators, as well as the evidence demonstrating that dysregulation in their production and actions contribute to disease pathogenesis in infections. This review will also discuss the potential of resolution pharmacology-based approaches in developing new therapeutics for combatting infections that do not interfere with the immune response.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| |
Collapse
|
19
|
Freire MO, Dalli J, Serhan CN, Van Dyke TE. Neutrophil Resolvin E1 Receptor Expression and Function in Type 2 Diabetes. THE JOURNAL OF IMMUNOLOGY 2016; 198:718-728. [PMID: 27994073 DOI: 10.4049/jimmunol.1601543] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Unresolved inflammation is key in linking metabolic dysregulation and the immune system in type 2 diabetes. Successful regulation of acute inflammation requires biosynthesis of specialized proresolving lipid mediators, such as E-series resolvin (RvE) 1, and activation of cognate G protein-coupled receptors. RvE1 binds to leukotriene B4 (BLT-1) on neutrophils and to ERV-1/ChemR23 on monocyte/macrophages. We show novel actions of RvE1 and expression patterns of neutrophil receptors in type 2 diabetes. Neutrophils from healthy subjects express functional BLT-1, low levels of minimally functional ERV-1, and inversed coexpression when compared to neutrophils from type 2 diabetes subjects. Stimulation with TNF-α or LPS increased the expression of ERV-1 by healthy and diabetic neutrophils. RvE1 counteracted LPS and TNF-α induction of ERV-1 overexpression and endogenous diabetic overexpression, activating phagocytosis and resolution signals. Functional ERV-1 was determined by phosphorylation of the signaling protein ribosomal S6. Receptor-antagonism experiments revealed that the increase in phosphorylation of ribosomal S6 was mediated by BLT-1 in healthy subject neutrophils and by ERV-1 in diabetes. Metabololipidomics reveal a proinflammatory profile in diabetic serum. Cell phagocytosis is impaired in type 2 diabetes and requires RvE1 for activation. The dose of RvE1 required to activate resolution signals in type 2 diabetic neutrophils was significantly higher than in healthy controls. RvE1 rescues the dysregulation seen on neutrophil receptor profile and, following a therapeutic dosage, activates phagocytosis and resolution signals in type 2 diabetes. These findings reveal the importance of resolution receptors in health, disease, and dysregulation of inflammation in type 2 diabetes.
Collapse
Affiliation(s)
- Marcelo O Freire
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA 02142.,Department of Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115; and
| | - Jesmond Dalli
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA 02142; .,Department of Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115; and
| |
Collapse
|
20
|
Deschamps JD, Ogunsola AF, Jameson JB, Yasgar A, Flitter BA, Freedman CJ, Melvin JA, Nguyen JVMH, Maloney DJ, Jadhav A, Simeonov A, Bomberger JM, Holman TR. Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase. Biochemistry 2016; 55:3329-40. [PMID: 27226387 DOI: 10.1021/acs.biochem.6b00338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s(-1) and Kcat/KM = 16 ± 2 μM(-1) s(-1)). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium-host interactions during colonization.
Collapse
Affiliation(s)
- Joshua D Deschamps
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Abiola F Ogunsola
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - J Brian Jameson
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Becca A Flitter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Cody J Freedman
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Jason V M H Nguyen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, MSC 3370, Bethesda, Maryland 20892, United States
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
21
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
22
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
23
|
Wagage S, Harms Pritchard G, Dawson L, Buza EL, Sonnenberg GF, Hunter CA. The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection. PLoS One 2015; 10:e0128335. [PMID: 26010337 PMCID: PMC4444139 DOI: 10.1371/journal.pone.0128335] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
Intestinal infection with the intracellular parasite Toxoplasma gondii results in the translocation of commensal bacteria to peripheral organs and the development of a T cell response specific to the microbiota. In naïve mice, the recently described RORγt+ group 3 innate lymphoid cell (ILC) population plays a critical role in promoting intestinal barrier function and limiting responses to gut-resident commensal bacteria. Given this role for group 3 ILCs, studies were performed to evaluate whether these cells might influence the immune response to mucosal infection with T. gondii. Phenotypic characterization of RORγt+ ILCs in T. gondii infected mice revealed that this population decreased following challenge but the population that remained expressed costimulatory molecules and IL-22. One factor that influences the maintenance of RORγt+ ILCs is the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and Ahr-/- mice have a marked defect in the lamina propria group 3 ILC population. When Ahr-/- mice were challenged with T. gondii, they lost more weight than wild type controls. This disease course in Ahr-/- animals was associated with increased T cell responses to Toxoplasma antigen and crude commensal antigen preparations. Together, these data suggest that group 3 ILCs have a role in limiting T cell activation during intestinal infection.
Collapse
Affiliation(s)
- Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lucas Dawson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth L. Buza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory F. Sonnenberg
- Department of Medicine and Institute for Immunology, Perelman School of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection. Proc Natl Acad Sci U S A 2014; 111:E4753-61. [PMID: 25324525 DOI: 10.1073/pnas.1415006111] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon infection and inflammation, tissue repair and regeneration are essential in reestablishing function. Here we identified potent molecules present in self-limited infectious murine exudates, regenerating planaria, and human milk as well as macrophages that stimulate tissue regeneration in planaria and are proresolving. Characterization of their physical properties and isotope tracking indicated that the bioactive structures contained docosahexaenoic acid and sulfido-conjugate (SC) of triene double bonds that proved to be 13-glutathionyl, 14-hydroxy-docosahexaenoic acid (SCI) and 13-cysteinylglycinyl, 14-hydroxy-docosahexaenoic acid (SCII). These molecules rescued Escherichia coli infection-mediated delay in tissue regeneration in planaria, improving regeneration intervals from ∼ 4.2 to ∼ 3.7 d. Administration of SCs protected mice from second-organ reflow injury, promoting repair via limiting neutrophil infiltration, up-regulating Ki67, and Roof plate-specific spondin 3. At nanomolar potencies these conjugates also resolved E. coli infections by limiting neutrophil infiltration and stimulating bacterial phagocytosis and clearance as well as efferocytosis of apoptotic cells. Together, these findings identify previously undescribed conserved chemical signals and pathways in planaria, mouse, and human tissues that enhance host responses to contain infections, stimulate resolution of inflammation, and promote the restoration of function.
Collapse
|
25
|
Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014; 40:315-27. [PMID: 24656045 PMCID: PMC4004957 DOI: 10.1016/j.immuni.2014.02.009] [Citation(s) in RCA: 611] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022]
Abstract
Inflammatory responses, like all biological cascades, are shaped by a delicate balance between positive and negative feedback loops. It is now clear that in addition to positive and negative checkpoints, the inflammatory cascade rather unexpectedly boasts an additional checkpoint, a family of chemicals that actively promote resolution and tissue repair without compromising host defense. Indeed, the resolution phase of inflammation is just as actively orchestrated and carefully choreographed as its induction and inhibition. In this review, we explore the immunological consequences of omega-3-derived specialized proresolving mediators (SPMs) and discuss their place within what is currently understood of the role of the arachidonic acid-derived prostaglandins, lipoxins, and their natural C15-epimers. We propose that treatment of inflammation should not be restricted to the use of inhibitors of the acute cascade (antagonism) but broadened to take account of the enormous therapeutic potential of inducers (agonists) of the resolution phase of inflammation.
Collapse
Affiliation(s)
- Christopher D Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, Queen Elizabeth Hospital, Birmingham B15 2WD, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Wagage S, John B, Krock BL, Hall AO, Randall LM, Karp CL, Simon MC, Hunter CA. The aryl hydrocarbon receptor promotes IL-10 production by NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:1661-70. [PMID: 24403534 DOI: 10.4049/jimmunol.1300497] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cytokine IL-10 has an important role in limiting inflammation in many settings, including toxoplasmosis. In the present studies, an IL-10 reporter mouse was used to identify the sources of this cytokine following challenge with Toxoplasma gondii. During infection, multiple cell types expressed the IL-10 reporter but NK cells were a major early source of this cytokine. These IL-10 reporter(+) NK cells expressed high levels of the IL-12 target genes T-bet, KLRG1, and IFN-γ, and IL-12 depletion abrogated reporter expression. However, IL-12 signaling alone was not sufficient to promote NK cell IL-10, and activation of the aryl hydrocarbon receptor (AHR) was also required for maximal IL-10 production. NK cells basally expressed the AHR, relevant chaperone proteins, and the AHR nuclear translocator, which heterodimerizes with the AHR to form a competent transcription factor. In vitro studies revealed that IL-12 stimulation increased NK cell AHR levels, and the AHR and AHR nuclear translocator were required for optimal production of IL-10. Additionally, NK cells isolated from T. gondii-infected Ahr(-/-) mice had impaired expression of IL-10, which was associated with increased resistance to this infection. Taken together, these data identify the AHR as a critical cofactor involved in NK cell production of IL-10.
Collapse
Affiliation(s)
- Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fullerton JN, O'Brien AJ, Gilroy DW. Lipid mediators in immune dysfunction after severe inflammation. Trends Immunol 2013; 35:12-21. [PMID: 24268519 PMCID: PMC3884129 DOI: 10.1016/j.it.2013.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 12/21/2022]
Abstract
Aberrant LM levels contribute to immune dysfunction in CI. Aberrance reflects dysregulation of inflammatory resolution pathways or their failure. Targeted manipulation of LMs restores immune competence and outcomes in animal models. Stratified resolution-based immunomodulatory strategies hold therapeutic potential.
Sepsis, trauma, burns, and major surgical procedures activate common systemic inflammatory pathways. Nosocomial infection, organ failure, and mortality in this patient population are associated with a quantitatively different reprioritization of the circulating leukocyte transcriptome to the initial inflammatory insult, greater in both magnitude and duration, and secondary to multiple observed defects in innate and adaptive immune function. Dysregulation of inflammatory resolution processes and associated bioactive lipid mediators (LMs) mechanistically contribute to this phenotype. Recent data indicate the potential efficacy of therapeutic interventions that either reduce immunosuppressive prostaglandins (PGs) or increase specialized proresolving LMs. Here, we reassess the potential for pharmacological manipulation of these LMs as therapeutic approaches for the treatment of critical illness (CI).
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology, Division of Medicine, Rayne Institute, 5 University Street, University College London, London, WC1E 6JF, UK.
| | - Alastair J O'Brien
- Centre for Clinical Pharmacology, Division of Medicine, Rayne Institute, 5 University Street, University College London, London, WC1E 6JF, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology, Division of Medicine, Rayne Institute, 5 University Street, University College London, London, WC1E 6JF, UK
| |
Collapse
|
28
|
Tobin DM, Ramakrishnan L. TB: the Yin and Yang of lipid mediators. Curr Opin Pharmacol 2013; 13:641-5. [PMID: 23849093 DOI: 10.1016/j.coph.2013.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022]
Abstract
There is a growing appreciation of the diverse roles that lipid mediators play in modulating inflammatory responses during infection. In the case of tuberculosis, virulent mycobacteria induce host production of anti-inflammatory mediators, including lipoxins, which limit the host inflammatory response and lead to necrotic cell death of infected macrophages. Recent work using the zebrafish model suggests that, while excess anti-inflammatory lipoxins are host detrimental during mycobacterial infections, excess pro-inflammatory lipids also drive host susceptibility. The balance of these inflammatory states is influenced by common human genetic variation in Asia. Fuller understanding of the mechanisms of eicosanoid-mediated inflammatory imbalance during tuberculosis infection has important implications for the development of adjunctive therapies.
Collapse
Affiliation(s)
- David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
29
|
Walters KA, Olsufka R, Kuestner RE, Cho JH, Li H, Zornetzer GA, Wang K, Skerrett SJ, Ozinsky A. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One 2013; 8:e62412. [PMID: 23690939 PMCID: PMC3653966 DOI: 10.1371/journal.pone.0062412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.
Collapse
|
30
|
Dushkin MI. Macrophage/foam cell is an attribute of inflammation: Mechanisms of formation and functional role. BIOCHEMISTRY (MOSCOW) 2012; 77:327-38. [DOI: 10.1134/s0006297912040025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Stables MJ, Shah S, Camon EB, Lovering RC, Newson J, Bystrom J, Farrow S, Gilroy DW. Transcriptomic analyses of murine resolution-phase macrophages. Blood 2011; 118:e192-208. [PMID: 22012065 PMCID: PMC5362087 DOI: 10.1182/blood-2011-04-345330] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophages are either classically (M1) or alternatively-activated (M2). Whereas this nomenclature was generated from monocyte-derived macrophages treated in vitro with defined cytokine stimuli, the phenotype of in vivo-derived macrophages is less understood. We completed Affymetrix-based transcriptomic analysis of macrophages from the resolution phase of a zymosan-induced peritonitis. Compared with macrophages from hyperinflamed mice possessing a pro-inflammatory nature as well as naive macrophages from the uninflamed peritoneum, resolution-phase macrophages (rM) are similar to monocyte-derived dendritic cells (DCs), being CD209a positive but lacking CD11c. They are enriched for antigen processing/presentation (MHC class II [H2-Eb1, H2-Ab1, H2-Ob, H2-Aa], CD74, CD86), secrete T- and B-lymphocyte chemokines (Xcl1, Ccl5, Cxcl13) as well as factors that enhance macrophage/DC development, and promote DC/T cell synapse formation (Clec2i, Tnfsf4, Clcf1). rM are also enriched for cell cycle/proliferation genes as well as Alox15, Timd4, and Tgfb2, key systems in the termination of leukocyte trafficking and clearance of inflammatory cells. Finally, comparison with in vitro-derived M1/M2 shows that rM are neither classically nor alternatively activated but possess aspects of both definitions consistent with an immune regulatory phenotype. We propose that macrophages in situ cannot be rigidly categorized as they can express many shades of the inflammatory spectrum determined by tissue, stimulus, and phase of inflammation.
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Prescott D, McKay DM. Aspirin-triggered lipoxin enhances macrophage phagocytosis of bacteria while inhibiting inflammatory cytokine production. Am J Physiol Gastrointest Liver Physiol 2011; 301:G487-97. [PMID: 21659618 DOI: 10.1152/ajpgi.00042.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macrophage plays a major role in the induction and resolution phases of inflammation; however, how lipid mediator-derived signals may modulate macrophage function in the resolution of inflammation driven by microbes (e.g., in inflammatory bowel disease) is not well understood. We examined the effects of aspirin-triggered lipoxin (ATL), a stable analog of lipoxin A(4), on the antimicrobial responses of human peripheral blood mononuclear cell-derived macrophages and the monocytic THP-1 cell line. Additionally, we assessed the expression and localization of the lipoxin receptor, formyl peptide receptor 2 (FPR2), in colonic mucosal biopsies from patients with Crohn's disease to determine whether the capacity for lipoxin signaling is altered in inflammatory bowel disease. We found that THP-1 cells treated with ATL (100 nM) displayed increased phagocytosis of inert fluorescent beads and Escherichia coli in a scavenger receptor- and PI3K-dependent, opsonization-independent manner. This ATL-induced increase in phagocytosis was also observed in primary human macrophages, where it was associated with an inhibition of E. coli-induced IL-1β and IL-8 production. Finally, we found that FPR2 gene expression was increased approximately sixfold in the colon of patients with Crohn's disease, a finding reproduced in vitro by the treatment of THP-1 cells with interferon-γ or lipopolysaccharide. These results suggest that lipoxin signaling is upregulated in inflammatory environments, and, in addition to their known role in tissue resolution following injury, lipoxins can enhance macrophage clearance of invading microbes.
Collapse
Affiliation(s)
- David Prescott
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1576-91. [PMID: 20813960 PMCID: PMC2947253 DOI: 10.2353/ajpath.2010.100322] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 01/08/2023]
Abstract
Because inflammation is appreciated as a unifying basis of many widely occurring diseases, the mechanisms involved in its natural resolution are of considerable interest. Using contained, self-limited inflammatory exudates and a systems approach, novel lipid-derived mediators and pathways were uncovered in the resolution of inflammatory exudates. These new families of local mediators control both the duration and magnitude of acute inflammation as well as the return of the site to homeostasis in the process of catabasis. This new genus of specialized proresolving mediators (SPM) includes essential fatty acid-derived lipoxins, resolvins, protectins, and, most recently, maresins. These families were named based on their unique structures and potent stereoselective actions. The temporally initiated biosynthesis of SPM and their direct impact on leukocyte trafficking and macrophage-directed clearance mechanisms provide clear evidence that resolution is an active, programmed response at the tissue level. Moreover, SPM that possess anti-inflammatory (ie, limiting PMN infiltration) and proresolving (enhance macrophage uptake and clearance of apoptotic PMN and microbial particles) actions as well as stimulating mucosal antimicrobial responses demonstrate that anti-inflammation and proresolution are different responses of the host and novel defining properties of these molecules. The mapping of new resolution circuits has opened the possibility for understanding mechanisms that lead from acute to chronic inflammation, or to the resolution thereof, as well as to potential, resolution-based immunopharmacological therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Director, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, HIM 8, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther 2010; 9:2164-74. [PMID: 20682645 DOI: 10.1158/1535-7163.mct-10-0173] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor angiogenesis plays an essential role in carcinogenesis, cancer progression, and metastasis. Some studies indicate that lipoxins, endogenous anti-inflammatory lipid mediators, might be involved in tumor angiogenesis; however, the governing mechanisms are still unknown. In the present study, we examined the effects of exogenous lipoxin A(4) (LXA(4)) in mouse hepatocarcinoma cell line (H22) and H22-bearing mice model. It was found that in H22 cells, LXA(4) inhibited the production of vascular endothelial growth factor and reduced hypoxia-inducible factor-1 alpha level. In addition, its analogue, BML-111, blocked the expression of vascular endothelial growth factor in serum and tumor sections from H22-bearing mice. H&E staining and immunostaining with antibodies against CD34 revealed that BML-111 suppressed tumor-related angiogenesis in vivo, but LXA(4) could not influence the proliferation of primary cultured human umbilical vein endothelial cells. The tumor growth was also inhibited by BML-111. We also found that BML-111 enhanced the in situ apoptosis while inhibiting macrophage infiltration in tumor tissue. The results provide new evidence that LXA(4) suppresses the growth of transplanted H22 tumor in mice through inhibiting tumor-related angiogenesis.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections. J Biomed Biotechnol 2010; 2010:828951. [PMID: 20169106 PMCID: PMC2821783 DOI: 10.1155/2010/828951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/10/2009] [Indexed: 01/04/2023] Open
Abstract
Parasitic infections induce a magnitude of host responses. At the opposite ends of the spectrum are those that ensure the host's needs to eliminate the invaders and to minimize damage to its own tissues. This review analyzes how parasites would manipulate immunity by activating the immunosuppressive nuclear factor, peroxisome proliferator-activated receptors (PPARs) with type 2 cytokines and free fatty acids from arachidonic acid metabolism. PPARs limit the action of type 1 immunity, in which classically activated macrophages act through the production of proinflammatory signals, to spare the parasites. They also favor the development of alternately activated macrophages which control inflammation so the host would not be destroyed. Possibly, the nuclear factors hold a pivotal role in the establishment of chronic infection by delicately balancing the pro- and anti-inflammatory signaling mechanisms and their ligands may be used as combination therapeutics to limit host pathology.
Collapse
|
36
|
Abstract
Inflammation has long been thought to contribute to the development of cancer; however there is also clear evidence that the immune system can recognize and eliminate cancer cells. Current research suggests that cancer-associated inflammation has a dual role in tumor progression; inflammatory mediators promote the malignant activity of cancer cells by acting as growth factors and also stimulate angiogenesis, however, cancer-associated inflammation is also linked with immune-suppression that allows cancer cells to evade detection by the immune system. In this review we will discuss the dual role of inflammation in cancer and how endogenous anti-inflammatory mechanisms may equally be important in carcinogenesis.
Collapse
|
37
|
Leedom AJ, Sullivan AB, Dong B, Lau D, Gronert K. Endogenous LXA4 circuits are determinants of pathological angiogenesis in response to chronic injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:74-84. [PMID: 20008149 DOI: 10.2353/ajpath.2010.090678] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inflammation and angiogenesis are intimately linked, and their dysregulation leads to pathological angiogenesis in human diseases. 15-lipoxygenase (15-LOX) and lipoxin A(4) receptors (ALX) constitute a LXA(4) circuit that is a key feature of inflammatory resolution. LXA(4) analogs have been shown to regulate vascular endothelial growth factor (VEGF)-A-induced angiogenic response in vitro. 15-LOX and ALX are highly expressed in the avascular and immune-privileged cornea. However, the role of this endogenous LXA(4) circuit in pathological neovascularization has not been determined. We report that suture-induced chronic injury in the cornea triggered polymorphonuclear leukocytes (PMN) infiltration, pathological neovascularization, and up-regulation of mediators of inflammatory angiogenesis, namely VEGF-A and the VEGF-3 receptor (FLT4). Up-regulation of the VEGF circuit and neovascularization correlated with selective changes in both 15-LOX (Alox15) and ALX (Fpr-rs2) expression and a temporally defined increase in basal 15-LOX activity. More importantly, genetic deletion of 15-LOX or 5-LOX, key and obligatory enzymes in the formation of LXA(4), respectively, led to exacerbated inflammatory neovascularization coincident with increased VEGF-A and FLT4 expression. Direct topical treatment with LXA(4), but not its metabolic precursor 15-hydroxyeicosatetraenoic acid, reduced expression of VEGF-A and FLT4 and inflammatory angiogenesis and rescued 15-LOX knockout mice from exacerbated angiogenesis. In summary, our findings and the prominent expression of 15-LOX and ALX in epithelial cells and macrophages place the LXA(4) circuit as an endogenous regulator of pathological angiogenesis.
Collapse
Affiliation(s)
- Alexander J Leedom
- Vision Science Program, School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
The resolution of inflammation is an active process controlled by endogenous mediators with selective actions on neutrophils and monocytes. The initial phase of the acute inflammatory response is characterized by the production of pro-inflammatory mediators followed by a second phase in which lipid mediators with pro-resolution activities may be generated. The identification of these mediators has provided evidence for the dynamic regulation of the resolution of inflammation. Among these endogenous local mediators of resolution, lipoxins (LXs), lipid mediators typically formed during cell-cell interaction, were the first to be recognized. More recently, families of endogenous chemical mediators, termed resolvins and protectins, were discovered. LXs and aspirin-triggered LXs are considered to act as 'braking signals' in inflammation, limiting the trafficking of leukocytes to the inflammatory site. LXs are actively involved in the resolution of inflammation stimulating non-phlogistic phagocytosis of apoptotic cells by macrophages. Furthermore, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to growth factors. Here, we provide a review and an update of the biosynthesis, metabolism and bioactions of LXs and LX analogues, and the recent studies on their therapeutic potential as promoters of resolution and fibro-suppressants.
Collapse
Affiliation(s)
- Paola Maderna
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
39
|
D'Ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, Gerecht A, Cimino G, Fontana A. 15S-lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. THE NEW PHYTOLOGIST 2009; 183:1064-1071. [PMID: 19538551 DOI: 10.1111/j.1469-8137.2009.02887.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent years, oxylipins (lipoxygenase-derived oxygenated fatty acid products) have been reported in several bloom-forming marine diatoms. Despite increasing attention on the ecophysiological role of these molecules in marine environments, their biosynthesis is largely unknown in these microalgae. Biochemical methods, including tandem mass spectrometry, nuclear magnetic resonance and radioactive probes were used to identify structures, enzymatic activities and growth-dependent modulation of oxylipin biosynthesis in the pennate diatom Pseudo-nitzschia delicatissima. Three major compounds, 15S-hydroxy-(5Z,8Z,11Z,13E,17Z)-eicosapentaenoic acid (15S-HEPE), 15-oxo-5Z,9E,11E,13E-pentadecatetraenoic acid and 13,14-threo-13R-hydroxy-14S,15S-trans-epoxyeicosa-5Z,8Z,11Z,17Z-tetraenoic acid (13,14-HEpETE), were produced by three putative biochemical pathways triggered by eicosapentaenoic acid-dependent 15S lipoxygenase. Oxylipin production increases along the growth curve, with remarkable changes that precede the demise of the culture. At least one of the compounds, namely 15-oxoacid, is formed only in the stationary phase immediately before the collapse of the culture. Synthesis and regulation of phyco-oxylipins seem to correspond to a signaling mechanism that governs adaptation of diatoms along the growth curve until bloom termination. Factors triggering the process are unknown but synthesis of 15-oxoacid, constrained within a time-window of a few days just before the collapse of the culture, implies the involvement of a physiological control not directly dependent on distress or death of diatom cells.
Collapse
Affiliation(s)
- Giuliana D'Ippolito
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli - Napoli, Italy
| | - Nadia Lamari
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli - Napoli, Italy
| | - Marina Montresor
- Phytoplankton Ecology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale I-80121 Napoli, Italy
| | - Giovanna Romano
- Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Adele Cutignano
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli - Napoli, Italy
| | - Andrea Gerecht
- Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Guido Cimino
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli - Napoli, Italy
| | - Angelo Fontana
- CNR-Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli - Napoli, Italy
| |
Collapse
|
40
|
Dioszeghy V, Rosas M, Maskrey BH, Colmont C, Topley N, Chaitidis P, Kühn H, Jones SA, Taylor PR, O'Donnell VB. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 181:6514-24. [PMID: 18941242 DOI: 10.4049/jimmunol.181.9.6514] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The peritoneal macrophage (Mphi) is the site of greatest 12/15-lipoxygenase (12/15-LOX) expression in the mouse; however, its immunoregulatory role in this tissue has not been explored. Herein, we show that 12/15-LOX is expressed by 95% of resident peritoneal CD11b(high) cells, with the remaining 5% being 12/15-LOX(-). 12/15-LOX(+) cells are phenotypically defined by high F4/80, SR-A, and Siglec1 expression, and enhanced IL-10 and G-CSF generation. In contrast, 12/15-LOX(-) cells are a dendritic cell population. Resident peritoneal Mphi numbers were significantly increased in 12/15-LOX(-/-) mice, suggesting alterations in migratory trafficking or cell differentiation in vivo. In vitro, Mphi from 12/15-LOX(-/-) mice exhibit multiple abnormalities in the regulation of cytokine/growth factor production both basally and after stimulation with Staphylococcus epidermidis cell-free supernatant. Resident adherent cells from 12/15-LOX(-/-) mice generate more IL-1, IL-3, GM-CSF, and IL-17, but less CCL5/RANTES than do cells from wild-type mice, while Staphylococcus epidermidis cell-free supernatant-elicited 12/15-LOX(-/-) adherent cells release less IL-12p40, IL-12p70, and RANTES, but more GM-CSF. This indicates a selective effect of 12/15-LOX on peritoneal cell cytokine production. In acute sterile peritonitis, 12/15-LOX(+) cells and LOX products were cleared, then reappeared during the resolution phase. The peritoneal lavage of 12/15-LOX(-/-) mice showed elevated TGF-beta1, along with increased immigration of monocytes/Mphi, but decreases in several cytokines including RANTES/CCL5, MCP-1/CCL2, G-CSF, IL-12-p40, IL-17, and TNF-alpha. No changes in neutrophil or lymphocyte numbers were seen. In summary, endogenous 12/15-LOX defines the resident MPhi population and regulates both the recruitment of monocytes/Mphi and cytokine response to bacterial products in vivo.
Collapse
Affiliation(s)
- Vincent Dioszeghy
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Here, we discuss the mechanisms of repression of signaling pathways that are triggered by Lipoxin (LX) and are responsible for control of pro-inflammatory response during chronic phase of Toxoplasma gondii infection. We also discuss this mechanism from the perspective of the pathogen, which pirates the host's lipoxygenase machinery to its own advantage as a probable immune-escape mechanism. Pro-inflammatory mediators such as IL-12, IFN-gamma and TNF are essential in controlling parasite growth during T. gondii infection. However, it is clear that exacerbated production of these cytokines results in host tissue damage. LX, an anti-inflammatory eicosanoid, plays an important role in regulation of immune response to T. gondii.
Collapse
|
42
|
Álvarez Sánchez B, Capote FP, Jiménez JR, Luque de Castro M. Automated solid-phase extraction for concentration and clean-up of female steroid hormones prior to liquid chromatography–electrospray ionization–tandem mass spectrometry: An approach to lipidomics. J Chromatogr A 2008; 1207:46-54. [DOI: 10.1016/j.chroma.2008.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/10/2008] [Accepted: 08/14/2008] [Indexed: 11/17/2022]
|
43
|
Abstract
Toxoplasma infection accounts for up to 50% of all cases of posterior uveitis worldwide. In this review the control of Toxoplasma infection generally, and specific in the eye, by the immune system is discussed.
Collapse
Affiliation(s)
- G R Wallace
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
44
|
Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 2008; 39:23-39. [PMID: 18775432 DOI: 10.1016/j.ijpara.2008.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 01/17/2023]
Abstract
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates.
Collapse
Affiliation(s)
- Catherine M Miller
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | | | | | | |
Collapse
|
45
|
Nebert DW, Karp CL. Endogenous functions of the aryl hydrocarbon receptor (AHR): intersection of cytochrome P450 1 (CYP1)-metabolized eicosanoids and AHR biology. J Biol Chem 2008; 283:36061-5. [PMID: 18713746 DOI: 10.1074/jbc.r800053200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and the Center for Environmental Genetics, University of Cincinnati Medical Center, and the Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45267-0056, USA.
| | | |
Collapse
|
46
|
O'Meara SJ, Rodgers K, Godson C. Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 2008; 160:47-70. [PMID: 18481030 DOI: 10.1007/112_2006_0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that are typically generated by transcellular biosynthesis. These trihydroxytetraene-containing lipid mediators and their stable synthetic analogues possess a wide spectrum of anti-inflammatory and pro-resolution bioactions both in vitro and in vivo. More recently, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to platelet-derived growth factor (PDGF). Here we review the biosynthesis, metabolism and bioactions of LXs and LX analogues and their therapeutic potential.
Collapse
Affiliation(s)
- S J O'Meara
- UCD Conway Institute of Biomolecular and Biomedical Research and UCB Diabetes Research Center, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
47
|
Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 8:349-61. [PMID: 18437155 PMCID: PMC2744593 DOI: 10.1038/nri2294] [Citation(s) in RCA: 2085] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Active resolution of acute inflammation is a previously unrecognized interface between innate and adaptive immunity. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programmes that enable inflamed tissues to return to homeostasis. This Review presents new cellular and molecular mechanisms for the resolution of inflammation, revealing key roles for eicosanoids, such as lipoxins, and recently discovered families of endogenous chemical mediators, termed resolvins and protectins. These mediators have anti-inflammatory and pro-resolution properties, thereby protecting organs from collateral damage, stimulating the clearance of inflammatory debris and promoting mucosal antimicrobial defence.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
48
|
Machado FS, Aliberti J. Role of lipoxin in the modulation of immune response during infection. Int Immunopharmacol 2008; 8:1316-9. [PMID: 18687293 DOI: 10.1016/j.intimp.2008.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 01/02/2008] [Indexed: 01/10/2023]
Abstract
Pro-inflammatory mediators such as IL-12, IFN-gamma and TNF are essential in controlling parasite growth during Toxoplasma gondii infection. However, it is clear that the exacerbate production of these cytokines results in the host tissue damage. Investigation into the immune response modulation during infectious disease, has revealed that lipoxin (LXA), an anti-inflammatory eicosanoids, plays an important role in regulation of immune response to different pathogens, including T. gondii and Mycobacterium tuberculosis. Here, we review the pro-resolution pathways triggered by LXA that are responsible for control of pro-inflammatory response during chronic disease.
Collapse
Affiliation(s)
- Fabiana S Machado
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | |
Collapse
|
49
|
Gazzinelli RT, Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 2006; 6:895-906. [PMID: 17110955 DOI: 10.1038/nri1978] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Toll-like receptors (TLRs) have emerged as a major receptor family involved in non-self recognition. They have a vital role in triggering innate immunity and orchestrate the acquired immune response during bacterial and viral infection. However, the role of TLRs during infection with protozoan pathogens is less clear. Nevertheless, our understanding of how these parasitic microorganisms engage the host TLR signalling system has now entered a phase of rapid expansion. This Review describes recent insights into how parasitic protozoans are sensed by TLR molecules, and how the TLR system itself can be targeted by these microbial pathogens for their own survival.
Collapse
Affiliation(s)
- Ricardo T Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | | |
Collapse
|
50
|
Chiang N, Serhan CN, Dahlén SE, Drazen JM, Hay DWP, Rovati GE, Shimizu T, Yokomizo T, Brink C. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 2006; 58:463-87. [PMID: 16968948 DOI: 10.1124/pr.58.3.4] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipoxins (LXs) and aspirin-triggered LX (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A(4) (LXA(4)), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. ALX was the first receptor cloned and identified as a G protein-coupled receptor (GPCR) for lipoxygenase-derived eicosanoids with demonstrated cell type-specific signaling pathways. ALX at the level of DNA has sequence homology to the N-formylpeptide receptor and as an orphan GPCR was initially referred to as the N-formylpeptide receptor-like 1. Although LXA(4) is the endogenous potent ligand for ALX activation, a number of peptides can also activate this receptor to stimulate calcium mobilization and chemotaxis in vitro. In contrast with LXA(4), the counterparts of many of these peptides in vivo remain to be established. The purpose of this review is to highlight the molecular characterization of the ALX receptor and provide an overview of the ALX-LXA(4) axis responsible for anti-inflammatory and proresolving signals in vivo. The information in this review provides further support for the initial nomenclature proposition for this GPCR as ALX.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|