1
|
Romero-Rodríguez DP, Romero-Rodríguez J, Cervantes-Mejía F, Olvera-García G, Pérez-Patrigeon S, Murakami-Ogasawara A, Romero-Mora K, Gómez-Palacio M, Reyes-Terán G, Jiang W, Espinosa E. Central Memory CD4 T Cells from Persons with HIV Accumulate DNA Content Defects During Proliferative Response. AIDS Res Hum Retroviruses 2025; 41:37-42. [PMID: 39466061 PMCID: PMC11839537 DOI: 10.1089/aid.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Central memory (TCM) cells are a subpopulation of CD4 T cells that sustain overall CD4 T cell counts in HIV infection. The mechanisms underlying their eventual demise, which leads to loss of CD4 T cell counts, are not known. To understand their proneness to death despite their increased movement to proliferation, we examined cell division together with possible cell accumulation in different phases of the cell cycle. Purified circulating TCM cells from untreated people living with HIV (PLWH) (n = 9) and healthy controls (n = 10) were stimulated in vitro using anti-CD3/CD28 agonistic antibodies plus IL-2 and cultured for 4 days. Cell viability, DNA content, proliferation, and cyclin A and cyclin B expression were measured. We found that PLWH TCM cells more frequently had a DNA content lower than G0/G1, compared with controls (p = .043). These cells accumulated with each division. The proportion of cells with sub-G0/G1 DNA content that were cycling (expressing cyclin A) was greater in the PLWH group (p = .003). The percentage of TCM cells expressing cyclin A+ among those in G0/G1 and was also greater in the PLWH group (p = .043), suggesting arrest before G2/M. While TCM cells from PLWH can proliferate, during this process some of them accumulate defects in DNA content that are incompatible with viability, suggesting that they could be intrinsically prone to cell cycle-dependent death. This provides a possible mechanism underlying the increased TCM cell turnover in HIV infection.
Collapse
Affiliation(s)
- Dámaris P. Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases “Ismael Cosío Villegas,” Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Fernanda Cervantes-Mejía
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Gustavo Olvera-García
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Karla Romero-Mora
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - María Gómez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de los Institutos Nacionales de Salud Y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases, Mexico City, Mexico
| |
Collapse
|
2
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. mBio 2023; 14:e0241723. [PMID: 37971267 PMCID: PMC10746175 DOI: 10.1128/mbio.02417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Reeves DB, Bacchus-Souffan C, Fitch M, Abdel-Mohsen M, Hoh R, Ahn H, Stone M, Hecht F, Martin J, Deeks SG, Hellerstein MK, McCune JM, Schiffer JT, Hunt PW. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat Commun 2023; 14:6145. [PMID: 37783718 PMCID: PMC10545742 DOI: 10.1038/s41467-023-41521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Persistence of HIV in people living with HIV (PWH) on suppressive antiretroviral therapy (ART) has been linked to physiological mechanisms of CD4+ T cells. Here, in the same 37 male PWH on ART we measure longitudinal kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN), stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory (TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell turnover is ~10 times faster than HIV clearance in memory subsets, implying that cellular proliferation consistently creates HIV DNA. The optimal mathematical model for these integrated data sets posits HIV DNA also passages between CD4 cell subsets via cellular differentiation. Estimates are heterogeneous, but in an average participant's year ~10 (in TN and TSCM) and ~104 (in TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses passage via cell differentiation (per million CD4). In simulations, therapies blocking proliferation and/or enhancing differentiation could reduce HIV DNA by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and differentiation to persist during ART but clears faster in more proliferative/differentiated CD4 cell subsets and the same physiological mechanisms sustaining HIV might be temporarily modified to reduce it.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Department of Global Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | | | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | | | - Rebecca Hoh
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Mars Stone
- Vitalant Research Institute, 360 Spear St Suite 200, San Francisco, CA, 94105, USA
| | - Frederick Hecht
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Jeffrey Martin
- Epidemiology & Biostatistics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA, 94158, USA
| | - Steven G Deeks
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | - Joseph M McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Allergy and Infectious Diseases, School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| |
Collapse
|
6
|
Sturmlechner I, Jain A, Mu Y, Weyand CM, Goronzy JJ. T cell fate decisions during memory cell generation with aging. Semin Immunol 2023; 69:101800. [PMID: 37494738 PMCID: PMC10528238 DOI: 10.1016/j.smim.2023.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Heterogeneity of memory T cells in aging. Front Immunol 2023; 14:1250916. [PMID: 37662959 PMCID: PMC10471982 DOI: 10.3389/fimmu.2023.1250916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Jörg J. Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
8
|
Derksen LY, Tesselaar K, Borghans JAM. Memories that last: Dynamics of memory T cells throughout the body. Immunol Rev 2023. [PMID: 37114435 DOI: 10.1111/imr.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Memory T cells form an essential part of immunological memory, which can last for years or even a lifetime. Much experimental work has shown that the individual cells that make up the memory T-cell pool are in fact relatively short-lived. Memory T cells isolated from the blood of humans, or the lymph nodes and spleen of mice, live about 5-10 fold shorter than naive T cells, and much shorter than the immunological memory they convey. The commonly accepted view is, therefore, that long-term T-cell memory is maintained dynamically rather than by long-lived cells. This view is largely based on memory T cells in the circulation, identified using rather broad phenotypic markers, and on research in mice living in overly clean conditions. We wondered to what extent there may be heterogeneity in the dynamics and lifespans of memory T cells. We here review what is currently known about the dynamics of memory T cells in different memory subsets, locations in the body and conditions of microbial exposure, and discuss how this may be related to immunometabolism and how this knowledge can be used in various clinical settings.
Collapse
Affiliation(s)
- Lyanne Y Derksen
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José A M Borghans
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536611. [PMID: 37090500 PMCID: PMC10120704 DOI: 10.1101/2023.04.12.536611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
| | | | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Experimental Medicine Program, University of British Columbia, Vancouver, BC
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby BC
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| |
Collapse
|
10
|
Schiffer JT, Levy C, Hughes SM, Pandey U, Padullo M, Jerome KR, Zhu H, Puckett K, Helgeson E, Harrington RD, Hladik F. Stable HIV Reservoir Despite Prolonged Low-Dose Mycophenolate to Limit CD4+ T-cell Proliferation. Open Forum Infect Dis 2022; 9:ofac620. [PMID: 36519118 PMCID: PMC9745781 DOI: 10.1093/ofid/ofac620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 10/14/2023] Open
Abstract
Background The HIV reservoir of latently infected CD4+ T cells represents the barrier to cure. CD4+ T-cell proliferation is a mechanism that sustains the reservoir even during prolonged antiretroviral therapy (ART). Blocking proliferation may therefore deplete the reservoir. Methods We conducted an unblinded, uncontrolled clinical trial of mycophenolate, a T-cell antiproliferative compound, in people with HIV on chronic suppressive ART. Study drug dose selection was based on calibration to an observed ex vivo antiproliferative effect. The primary outcome was clinically significant reduction (>0.25 log10) in the HIV reservoir, measured by total and intact HIV DNA per million T cells in blood over 48 weeks. Results Five participants enrolled in the trial. Four participants took mycophenolate mofetil (MMF). One had a per-protocol switch to enteric-coated mycophenolate sodium (Myfortic) due to nausea but left the study for personal reasons. One participant developed finger cellulitis, but there were no opportunistic infections. In the 4 participants who completed the protocol, there was no clinically significant reduction in total or intact HIV DNA. There was no change in blood CD4+ T-cell subset composition within the HIV reservoir or the entire CD4+ T-cell population, although total CD4+ T cells decreased slightly in all 4 participants. An ex vivo antiproliferative effect was observed using participant serum obtained 1 hour after dosing, but this effect was severely diminished at drug trough. Conclusions Mycophenolate given over 48 weeks did not reduce the volume or composition of the HIV reservoir. Clinical Trials registration NCT03262441.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Urvashi Pandey
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Mel Padullo
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Haiying Zhu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Katrina Puckett
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric Helgeson
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Florian Hladik
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Gálvez C, Urrea V, Garcia-Guerrero MDC, Bernal S, Benet S, Mothe B, Bailón L, Dalmau J, Martinez A, Nieto A, Leal L, García F, Clotet B, Martinez-Picado J, Salgado M. Altered T-cell subset distribution in the viral reservoir in HIV-1-infected individuals with extremely low proviral DNA (LoViReTs). J Intern Med 2022; 292:308-320. [PMID: 35342993 PMCID: PMC9308636 DOI: 10.1111/joim.13484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND HIV cure strategies aim to eliminate viral reservoirs that persist despite successful antiretroviral therapy (ART). We have previously described that 9% of HIV-infected individuals who receive ART harbor low levels of provirus (LoViReTs). METHODS We selected 22 LoViReTs matched with 22 controls ART suppressed for more than 3 years with fewer than 100 and more than 100 HIV-DNA copies/106 CD4+ T cells, respectively. We measured HIV reservoirs in blood and host genetic factors. Fourteen LoViReTs underwent leukapheresis to analyze replication-competent virus, and HIV-DNA in CD4+ T-cell subpopulations. Additionally, we measured HIV-DNA in rectum and/or lymph node biopsies from nine of them. RESULTS We found that LoViReTs harbored not only lower levels of total HIV-DNA, but also significantly lower intact HIV-DNA, cell-associated HIV-RNA, and ultrasensitive viral load than controls. The proportion of intact versus total proviruses was similar in both groups. We found no differences in the percentage of host factors. In peripheral blood, 71% of LoViReTs had undetectable replication-competent virus. Minimum levels of total HIV-DNA were found in rectal and lymph node biopsies compared with HIV-infected individuals receiving ART. The main contributors to the reservoir were short-lived transitional memory and effector memory T cells (47% and 29%, respectively), indicating an altered distribution of the HIV reservoir in the peripheral T-cell subpopulations of LoViReTs. CONCLUSION In conclusion, LoViReTs are characterized by low levels of viral reservoir in peripheral blood and secondary lymphoid tissues, which might be explained by an altered distribution of the proviral HIV-DNA towards more short-lived memory T cells. LoViReTs can be considered exceptional candidates for future interventions aimed at curing HIV.
Collapse
Affiliation(s)
- Cristina Gálvez
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Maria Del Carmen Garcia-Guerrero
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sílvia Bernal
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,Chair in Infectious Diseases and Immunity, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Susana Benet
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,Chair in Infectious Diseases and Immunity, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Lucía Bailón
- Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Autonomous University of Barcelona, Catalonia, Spain
| | - Judith Dalmau
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Andrea Martinez
- Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Aroa Nieto
- Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Lorna Leal
- Infectious Diseases Department Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,Chair in Infectious Diseases and Immunity, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,Lluita contra la SIDA Foundation, Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,Chair in Infectious Diseases and Immunity, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,CIBER de Enfermedades Infecciosas, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
12
|
Glässner A, Dubrall D, Weinhold L, Schmid M, Sachs B. Lymphocyte Transformation Test for drug allergy detection: when does it work? Ann Allergy Asthma Immunol 2022; 129:497-506.e3. [PMID: 35732204 DOI: 10.1016/j.anai.2022.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The lymphocyte transformation test (LTT) is an in vitro test system for the detection of a sensitization in the context of allergies to drugs. Its reported sensitivity varies largely and seems to be affected by different parameters. In review articles, the average LTT performance was often calculated by combining overall mean sensitivities of various published studies, but without considering different patient characteristics or varying patient numbers per publication. OBJECTIVE This meta-analysis aims to investigate the impact of different patient-specific and methodical parameters on the sensitivity of the LTT based on data on the level of the individual patient extracted from single studies. METHODS We performed an advanced literature search in Pubmed and screened the identified publications according to previously defined inclusion criteria. In total, individual patient data from 721 patients were extracted from 30 studies. Random-effects meta-regression analyses were performed. RESULTS The analysis indicate that the ELISA-based read-out is more sensitive compared to the classical radioactivity method (ELISA: 80% vs. radioactivity: 66%;p=0.084). Interestingly, DRESS/DHISS is associated with a higher probability of a positive LTT test result compared to other investigated clinical phenotypes ("DRESS/DHISS" vs. "bullous reaction"; OR: 2.52;p-value=0.003). Our analysis also revealed an impact of the time to testing period after the occurrence of the allergic event ("<2 weeks" vs. "2 weeks-2 months"; OR: 2.12;p-value=0.034). CONCLUSION The read-out method and relevant clinical parameters affect the sensitivity of the LTT. These findings are based on a meta-analysis providing a higher level of evidence than a single study or previous reviews not considering individual patient data.
Collapse
Affiliation(s)
- Andreas Glässner
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | - Diana Dubrall
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Bernhardt Sachs
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany; Department for Dermatology and Allergy, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
13
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Baliu-Piqué M, Drylewicz J, Zheng X, Borkner L, Swain AC, Otto SA, de Boer RJ, Tesselaar K, Cicin-Sain L, Borghans JAM. Turnover of Murine Cytomegalovirus-Expanded CD8 + T Cells Is Similar to That of Memory Phenotype T Cells and Independent of the Magnitude of the Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:799-806. [PMID: 35091435 DOI: 10.4049/jimmunol.2100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xiaoyan Zheng
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arpit C Swain
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Sigrid A Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research, Partner Site, Hannover-Braunschweig, Germany
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands;
| |
Collapse
|
15
|
Bergstresser S, Kulpa DA. TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model. Methods Mol Biol 2022; 2407:69-79. [PMID: 34985658 DOI: 10.1007/978-1-0716-1871-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.
Collapse
Affiliation(s)
- Sydney Bergstresser
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
16
|
Passos LSA, Koh CC, Magalhães LMD, Nunes MDCP, Gollob KJ, Dutra WO. Distinct CD4 -CD8 - (Double-Negative) Memory T-Cell Subpopulations Are Associated With Indeterminate and Cardiac Clinical Forms of Chagas Disease. Front Immunol 2021; 12:761795. [PMID: 34868005 PMCID: PMC8632628 DOI: 10.3389/fimmu.2021.761795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
CD4-CD8- (double-negative, DN) T cells are critical orchestrators of the cytokine network associated with the pathogenic inflammatory response in one of the deadliest cardiomyopathies known, Chagas heart disease, which is caused by Trypanosoma cruzi infection. Here, studying the distribution, activation status, and cytokine expression of memory DN T-cell subpopulations in Chagas disease patients without cardiac involvement (indeterminate form-IND) or with Chagas cardiomyopathy (CARD), we report that while IND patients displayed a higher frequency of central memory, CARD had a high frequency of effector memory DN T cells. In addition, central memory DN T cells from IND displayed a balanced cytokine profile, characterized by the concomitant expression of IFN-γ and IL-10, which was not observed in effector memory DN T cells from CARD. Supporting potential clinical relevance, we found that the frequency of central memory DN T cells was associated with indicators of better ventricular function, while the frequency of effector memory DN T cells was not. Importantly, decreasing CD1d-mediated activation of DN T cells led to an increase in IL-10 expression by effector memory DN T cells from CARD, restoring a balanced profile similar to that observed in the protective central memory DN T cells. Targeting the activation of effector memory DN T cells may emerge as a strategy to control inflammation in Chagas cardiomyopathy and potentially in other inflammatory diseases where these cells play a key role.
Collapse
Affiliation(s)
- Livia Silva Araújo Passos
- Departamento de Morfologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Cattoni Koh
- Departamento de Morfologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luísa Mourão Dias Magalhães
- Departamento de Morfologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria do Carmo Pereira Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth John Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia Doenças Tropicais—INCT-DT, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia Doenças Tropicais—INCT-DT, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Abstract
Future HIV-1 curative therapies require a thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets during antiretroviral therapy (ART) and the cellular mechanisms that maintain this reservoir. Therefore, we sequenced near-full-length HIV-1 genomes and identified genetically-intact and genetically-defective genomes from resting naive, stem-cell memory, central memory, transitional memory, effector memory, and terminally-differentiated CD4+ T-cells with known cellular half-lives from 11 participants on ART. We find that a higher infection frequency with any HIV-1 genome was significantly associated with a shorter cellular half-life, such as transitional and effector memory cells. A similar enrichment of genetically-intact provirus was observed in these cells with relatively shorter half-lives. We found that effector memory and terminally-differentiated cells also had significantly higher levels of expansions of genetically-identical sequences, while only transitional and effector memory cells contained genetically-intact proviruses that were part of a cluster of identical sequences. Expansions of identical sequences were used to infer cellular proliferation from clonal expansion. Altogether, this indicates that specific cellular mechanisms such as short half-life and proliferative potential contribute to the persistence of genetically-intact HIV-1. IMPORTANCE The design of future HIV-1 curative therapies requires a more thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets as well as the cellular mechanisms that maintain this reservoir. These genetically-intact and presumably replication-competent proviruses make up the latent HIV-1 reservoir. Our investigations into the possible cellular mechanisms maintaining the HIV-1 reservoir in different T-cell subsets have revealed a link between the half-lives of T-cells and the level of proviruses they contain. Taken together, we believe our study shows that more differentiated and proliferative cells, such as transitional and effector memory T-cells, contain the highest levels of genetically-intact proviruses, and the rapid turnover rate of these cells contributes to the expansion of genetically-intact proviruses within them. Therefore, our study delivers an in-depth assessment of the cellular mechanisms, such as cellular proliferation and half-life, that contribute to and maintain the latent HIV-1 reservoir.
Collapse
|
18
|
Zarnitsyna VI, Akondy RS, Ahmed H, McGuire DJ, Zarnitsyn VG, Moore M, Johnson PLF, Ahmed R, Li KW, Hellerstein MK, Antia R. Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination. PLoS Comput Biol 2021; 17:e1009468. [PMID: 34648489 PMCID: PMC8568194 DOI: 10.1371/journal.pcbi.1009468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/04/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Immunological memory, generated in response to infection or vaccination, may provide complete or partial protection from antigenically similar infections for the lifetime. Memory CD8 T cells are important players in protection from secondary viral infections but quantitative understanding of their dynamics in humans is limited. We analyze data from two studies where immunization with the yellow fever virus vaccine (YFV-17D) generates a mild acute infection and long-term memory. We find that: (i) the division rate of YFV-17D-specific CD8 T cells drops and stabilizes at ∼ 0.1% per day during the first year following vaccination whereas the death rate declines more gradually, and (ii) the number of these cells declines approximately in accordance with a power law (∝ time−0.75) for at least several decades following vaccination.
Collapse
Affiliation(s)
- Veronika I. Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (VIZ); (RAn)
| | - Rama S. Akondy
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Donald J. McGuire
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | | | - Mia Moore
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Philip L. F. Johnson
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelvin W. Li
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (VIZ); (RAn)
| |
Collapse
|
19
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
20
|
Yeh YHJ, Yang K, Razmi A, Ho YC. The Clonal Expansion Dynamics of the HIV-1 Reservoir: Mechanisms of Integration Site-Dependent Proliferation and HIV-1 Persistence. Viruses 2021; 13:1858. [PMID: 34578439 PMCID: PMC8473165 DOI: 10.3390/v13091858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases. HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
| | | | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA; (Y.-H.J.Y.); (K.Y.); (A.R.)
| |
Collapse
|
21
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Masurel L, Bianca C, Lemarchand A. Space-velocity thermostatted kinetic theory model of tumor growth. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5525-5551. [PMID: 34517499 DOI: 10.3934/mbe.2021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The competition between cancer cells and immune system cells in inhomogeneous conditions is described at cell scale within the framework of the thermostatted kinetic theory. Cell learning is reproduced by increased cell activity during favorable interactions. The cell activity fluctuations are controlled by a thermostat. The direction of cell velocity is changed according to stochastic rules mimicking a dense fluid. We develop a kinetic Monte Carlo algorithm inspired from the direct simulation Monte Carlo (DSMC) method initially used for dilute gases. The simulations generate stochastic trajectories sampling the kinetic equations for the distributions of the different cell types. The evolution of an initially localized tumor is analyzed. Qualitatively different behaviors are observed as the field regulating activity fluctuations decreases. For high field values, i.e. efficient thermalization, cancer is controlled. For small field values, cancer rapidly and monotonously escapes from immunosurveillance. For the critical field value separating these two domains, the 3E's of immunotherapy are reproduced, with an apparent initial elimination of cancer, a long quasi-equilibrium period followed by large fluctuations, and the final escape of cancer, even for a favored production of immune system cells. For field values slightly smaller than the critical value, more regular oscillations of the number of immune system cells are spontaneously observed in agreement with clinical observations. The antagonistic effects that the stimulation of the immune system may have on oncogenesis are reproduced in the model by activity-weighted rate constants for the autocatalytic productions of immune system cells and cancer cells. Local favorable conditions for the launching of the oscillations are met in the fluctuating inhomogeneous system, able to generate a small cluster of immune system cells with larger activities than those of the surrounding cancer cells.
Collapse
Affiliation(s)
- Léon Masurel
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| | - Carlo Bianca
- École Supérieure d'Ingénieurs en Génie Électrique, Productique et Management Industriel, Laboratoire Quartz EA 7393, Laboratoire de Recherche en Eco-innovation Industrielle et Energétique, 13 Boulevard de l'Hautil, 95092 Cergy Pontoise Cedex, France
| | - Annie Lemarchand
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| |
Collapse
|
23
|
Horsburgh BA, Hiener B, Fisher K, Lee E, Morgan H, Eden JS, von Stockenstrom S, Odevall L, Milush JM, Hoh R, Fromentin R, Chomont N, Hecht FM, Schlub TE, Deeks SG, Palmer S. Cellular activation, differentiation and proliferation influence the dynamics of genetically-intact proviruses over time. J Infect Dis 2021; 225:1168-1178. [PMID: 34037766 PMCID: PMC8974828 DOI: 10.1093/infdis/jiab291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) persists in cells despite antiretroviral therapy; however, the influence of cellular mechanisms such as activation, differentiation, and proliferation upon the distribution of proviruses over time is unclear. To address this, we used full-length sequencing to examine proviruses within memory CD4+ T-cell subsets longitudinally in 8 participants. Over time, the odds of identifying a provirus increased in effector and decreased in transitional memory cells. In all subsets, more activated (HLA-DR–expressing) cells contained a higher frequency of intact provirus, as did more differentiated cells such as transitional and effector memory subsets. The proportion of genetically identical proviruses increased over time, indicating that cellular proliferation was maintaining the persistent reservoir; however, the number of genetically identical proviral clusters in each subset was stable. As such, key biological processes of activation, differentiation, and proliferation influence the dynamics of the HIV reservoir and must be considered during the development of any immune intervention.
Collapse
Affiliation(s)
- Bethany A Horsburgh
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hannah Morgan
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Susanne von Stockenstrom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Lina Odevall
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jeffrey M Milush
- Department of Medicine, University of California San Francisco, California, 94110, United States of America
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, California, 94110, United States of America
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9 Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9 Canada
| | - Frederick M Hecht
- Department of Medicine, University of California San Francisco, California, 94110, United States of America
| | - Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, California, 94110, United States of America
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, New South Wales, 2145, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
24
|
Lioulios G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225:108685. [PMID: 33549833 DOI: 10.1016/j.clim.2021.108685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Aging results in substantial changes in almost all cellular subpopulations within the immune system, including functional and phenotypic alterations. T lymphocytes, as the main representative population of cellular immunity, have been extensively studied in terms of modifications and adjustments during aging. Phenotypic alterations are attributed to three main mechanisms; a reduction of naïve T cell population with a shift to more differentiated forms, a subsequent oligoclonal expansion of naïve T cells characterized by repertoire restriction, and replicative insufficiency after repetitive activation. These changes and the subsequent phenotypic disorders are comprised in the term "immunosenescence". Similar changes seem to occur in chronic kidney disease, with T cells of young patients resembling those of healthy older individuals. A broad range of surface markers can be utilized to identify immunosenescent T cells. In this review, we will discuss the most important senescence markers and their potential connection with impaired renal function.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
25
|
Bacchus-Souffan C, Fitch M, Symons J, Abdel-Mohsen M, Reeves DB, Hoh R, Stone M, Hiatt J, Kim P, Chopra A, Ahn H, York VA, Cameron DL, Hecht FM, Martin JN, Yukl SA, Mallal S, Cameron PU, Deeks SG, Schiffer JT, Lewin SR, Hellerstein MK, McCune JM, Hunt PW. Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART. PLoS Pathog 2021; 17:e1009214. [PMID: 33465157 PMCID: PMC7846027 DOI: 10.1371/journal.ppat.1009214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates.
Collapse
Affiliation(s)
- Charline Bacchus-Souffan
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jori Symons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute and Department of Laboratory Medicine at the University of California, San Francisco, California, United States of America
| | - Joseph Hiatt
- Medical Scientist Training Program & Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Peggy Kim
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Vanessa A. York
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Daniel L. Cameron
- Division of Bioinformatics, Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederick M. Hecht
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Steven A. Yukl
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul U. Cameron
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph M. McCune
- Global Health Innovative Technology Solutions/HIV Frontiers, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathog 2021; 17:e1008748. [PMID: 33465149 PMCID: PMC7846126 DOI: 10.1371/journal.ppat.1008748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies. A curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in an inactive, latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not always the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the otherwise unresponsive latently HIV-1 infected T cell reservoir.
Collapse
|
27
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Darboe A, Nielsen CM, Wolf AS, Wildfire J, Danso E, Sonko B, Bottomley C, Moore SE, Riley EM, Goodier MR. Age-Related Dynamics of Circulating Innate Lymphoid Cells in an African Population. Front Immunol 2020; 11:594107. [PMID: 33343571 PMCID: PMC7738635 DOI: 10.3389/fimmu.2020.594107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cell (ILC) lineages mirror those of CD4+ T helper cell subsets, producing type 1, 2 and 3 cytokines respectively. Studies in adult human populations have shown contributions of non-cytotoxic ILC to immune regulation or pathogenesis in a wide range of diseases and have prompted investigations of potential functional redundancy between ILC and T helper cell compartments in neonates and children. To investigate the potential for ILC to contribute to immune responses across the human lifespan, we examined the numbers and frequencies of peripheral blood ILC subsets in a cohort of Gambians aged between 5 and 73 years of age. ILC2 were the most abundant peripheral blood ILC subset in this Gambian cohort, while ILC1 were the rarest at all ages. Moreover, the frequency of ILC1s (as a proportion of all lymphocytes) was remarkably stable over the life course whereas ILC3 cell frequencies and absolute numbers declined steadily across the life course and ILC2 frequencies and absolute numbers declined from childhood until the age of approx. 30 years of age. Age-related reductions in ILC2 cell numbers appeared to be partially offset by increasing numbers of total and GATA3+ central memory (CD45RA-CCR7+) CD4+ T cells, although there was also a gradual decline in numbers of total and GATA3+ effector memory (CD45RA-CCR7-) CD4+ T cells. Despite reduced overall abundance of ILC2 cells, we observed a coincident increase in the proportion of CD117+ ILC2, indicating potential for age-related adaptation of these cells in childhood and early adulthood. While both CD117+ and CD117- ILC2 cells produced IL-13, these responses occurred predominantly within CD117- cells. Furthermore, comparison of ILC frequencies between aged-matched Gambian and UK young adults (25–29 years) revealed an overall higher proportion of ILC1 and ILC2, but not ILC3 in Gambians. Thus, these data indicate ongoing age-related changes in ILC2 cells throughout life, which retain the capacity to differentiate into potent type 2 cytokine producing cells, consistent with an ongoing role in immune modulation.
Collapse
Affiliation(s)
- Alansana Darboe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Vaccines & Immunity Theme, Infant Immunology, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Asia-Sophia Wolf
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jacob Wildfire
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebrima Danso
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia
| | - Bakary Sonko
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sophie E Moore
- Nutrition Theme, MRC International Group, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, Gambia.,Women & Children's Health, Kings College London, London, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Martini V, Hinchcliffe M, Blackshaw E, Joyce M, McNee A, Beverley P, Townsend A, MacLoughlin R, Tchilian E. Distribution of Droplets and Immune Responses After Aerosol and Intra-Nasal Delivery of Influenza Virus to the Respiratory Tract of Pigs. Front Immunol 2020; 11:594470. [PMID: 33193445 PMCID: PMC7653178 DOI: 10.3389/fimmu.2020.594470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Recent evidence indicates that local immune responses and tissue resident memory T cells (TRM) are critical for protection against respiratory infections but there is little information on the contributions of upper and lower respiratory tract (URT and LRT) immunity. To provide a rational basis for designing methods for optimal delivery of vaccines to the respiratory tract in a large animal model, we investigated the distribution of droplets generated by a mucosal atomization device (MAD) and two vibrating mesh nebulizers (VMNs) and the immune responses induced by delivery of influenza virus by MAD in pigs. We showed that droplets containing the drug albuterol, a radiolabel (99mTc-DTPA), or a model influenza virus vaccine (S-FLU) have similar aerosol characteristics. 99mTc-DTPA scintigraphy showed that VMNs deliver droplets with uniform distribution throughout the lungs as well as the URT. Surprisingly MAD administration (1ml/nostril) also delivered a high proportion of the dose to the lungs, albeit concentrated in a small area. After MAD administration of influenza virus, antigen specific T cells were found at high frequency in nasal turbinates, trachea, broncho-alveolar lavage, lungs, tracheobronchial nodes, and blood. Anti-influenza antibodies were detected in serum, BAL and nasal swabs. We conclude that the pig is useful for investigating optimal targeting of vaccines to the respiratory tract.
Collapse
Affiliation(s)
- Veronica Martini
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom.,Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Elaine Blackshaw
- Radiological Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Adam McNee
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, Daphne Jackson Road, University of Surrey, Guildford, United Kingdom
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
30
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
31
|
De Francesco D, Sabin CA, Reiss P, Kootstra NA. Monocyte and T Cell Immune Phenotypic Profiles Associated With Age Advancement Differ Between People With HIV, Lifestyle-Comparable Controls and Blood Donors. Front Immunol 2020; 11:581616. [PMID: 33123168 PMCID: PMC7573236 DOI: 10.3389/fimmu.2020.581616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Motivation People with HIV on successful antiretroviral therapy show signs of premature aging and are reported to have higher rates of age-associated comorbidities. HIV-associated immune dysfunction and inflammation have been suggested to contribute to this age advancement and increased risk of comorbidities. Method Partial least squares regression (PLSR) was used to explore associations between biological age advancement and immunological changes in the T cell and monocyte compartment in people with HIV (n=40), comparable HIV-negative individuals (n=40) participating in the Comorbidity in Relation to AIDS (COBRA) cohort, and blood donors (n=35). Results We observed that age advancement in all three groups combined was associated with a monocyte immune phenotypic profile related to inflammation and a T cell immune phenotypic associated with immune senescence and chronic antigen exposure. Interestingly, a unique monocyte and T cell immune phenotypic profile predictive for age advancement was found within each group. An inflammatory monocyte immune phenotypic profile associated with age advancement in HIV-negative individuals, while the monocyte profile in blood donors and people with HIV was more reflective of loss of function. The T cell immune phenotypic profile in blood donors was related to loss of T cell function, whereas the same set of markers were related to chronic antigen stimulation and immune senescence in HIV-negative individuals. In people with HIV, age advancement was related to changes in the CD4+ T cell compartment and more reflective of immune recovery after cART treatment. Impact The identified monocyte and T cell immune phenotypic profiles that were associated with age advancement, were strongly related to inflammation, chronic antigen exposure and immune senescence. While the monocyte and T cell immune phenotypic profile within the HIV-negative individuals reflected those observed in the combined three groups, a distinct profile related to immune dysfunction, was observed within blood donors and people with HIV. These data suggest that varying exposures to lifestyle and infection-related factors may be associated with specific changes in the innate and adaptive immune system, that all contribute to age advancement.
Collapse
Affiliation(s)
- Davide De Francesco
- Institute for Global Health, University College London, London, United Kingdom
| | - Caroline A Sabin
- Institute for Global Health, University College London, London, United Kingdom
| | - Peter Reiss
- Amsterdam institute for Global Health and Development, Amsterdam, Netherlands.,Department of Global Health & Division of Infectious Disease, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,HIV Monitoring Foundation, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N. Naive CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-competent Human Immunodeficiency Virus Type 1. Clin Infect Dis 2020; 69:1919-1925. [PMID: 30753360 DOI: 10.1093/cid/ciz108] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The latent human immunodeficiency virus type 1 (HIV-1) reservoir represents a major barrier to a cure. Based on the levels of HIV-1 DNA in naive (TN) vs resting memory CD4+ T cells, it is widely hypothesized that this reservoir resides primarily within memory cells. Here, we compared virus production from TN and central memory (TCM) CD4+ T cells isolated from HIV-1-infected individuals on suppressive therapy. METHODS CD4+ TN and TCM cells were purified from the blood of 7 HIV-1-infected individuals. We quantified total HIV-1 DNA in the CD4+ TN and TCM cells. Extracellular virion-associated HIV-1 RNA or viral outgrowth assays were used to assess latency reversal following treatment with anti-CD3/CD28 monoclonal antibodies (mAbs), phytohaemagglutinin/interleukin-2, phorbol 12-myristate 13-acetate/ionomycin, prostratin, panobinostat, or romidepsin. RESULTS HIV-1 DNA was significantly higher in TCM compared to TN cells (2179 vs 684 copies/106 cells, respectively). Following exposure to anti-CD3/CD28 mAbs, virion-associated HIV-1 RNA levels were similar between TCM and TN cells (15 135 vs 18 290 copies/mL, respectively). In 4/7 donors, virus production was higher for TN cells independent of the latency reversing agent used. Replication-competent virus was recovered from both TN and TCM cells. CONCLUSIONS Although the frequency of HIV-1 infection is lower in TN compared to TCM cells, as much virus is produced from the TN population after latency reversal. This finding suggests that quantifying HIV-1 DNA alone may not predict the size of the inducible latent reservoir and that TN cells may be an important reservoir of latent HIV-1.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Deborah K McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Michelle D Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
33
|
Pangrazzi L, Naismith E, Miggitsch C, Carmona Arana JA, Keller M, Grubeck-Loebenstein B, Weinberger B. The impact of body mass index on adaptive immune cells in the human bone marrow. IMMUNITY & AGEING 2020; 17:15. [PMID: 32514279 PMCID: PMC7251898 DOI: 10.1186/s12979-020-00186-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Background Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV− and CMV+ groups. Results Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV− persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria.,Present Address: Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini, 31 Rovereto, Italy
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria
| | - Carina Miggitsch
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria.,Present Address: Private Kinderwunsch-Clinic Dr. J. Zech GmbH, Grabenweg 64, 6020 Innsbruck, Austria
| | - Jose' Antonio Carmona Arana
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg, 10 Innsbruck, Austria
| |
Collapse
|
34
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
35
|
Virgilio MC, Collins KL. The Impact of Cellular Proliferation on the HIV-1 Reservoir. Viruses 2020; 12:E127. [PMID: 31973022 PMCID: PMC7077244 DOI: 10.3390/v12020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.
Collapse
Affiliation(s)
- Maria C. Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
37
|
Abstract
Stable isotope labeling is a generally applicable method of quantifying cell dynamics. Its advent has opened up the way for the quantitative study of T cells in humans. However, the literature is confusing as estimates vary by orders of magnitude between studies. In this short review we aim to explain the reasons for the discrepancies in estimates, clarify which estimates have been superseded and why and highlight the current best estimates. We focus on stable isotope labeling of T cell subsets in healthy humans. Current best estimates of the proliferation and production of CD4+ and CD8+ T cell subsets. Explanation of why estimates vary between studies and which estimates have been superseded. Discussion of the implications of model choice.
Collapse
Affiliation(s)
- Derek C Macallan
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Robert Busch
- Department of Life Sciences, University of Roehampton, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
38
|
Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4 + T Cells. J Virol 2019; 93:JVI.00969-19. [PMID: 31578289 PMCID: PMC6880164 DOI: 10.1128/jvi.00969-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells. During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.
Collapse
|
39
|
Sleep Matters: CD4 + T Cell Memory Formation and the Central Nervous System. Trends Immunol 2019; 40:674-686. [PMID: 31262652 DOI: 10.1016/j.it.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022]
Abstract
The mechanisms of CD4+ T-cell memory formation in the immune system are debated. With the well-established concept of memory formation in the central nervous system (CNS), we propose that formation of CD4+ T-cell memory depends on the interaction of two different cell systems handling two types of stored information. First, information about antigen (event) and challenge (context) is taken up by antigen-presenting cells, as initial storage. Second, event and context information is transferred to CD4+ T cells. During activation, two categories of CD4+ T cell develop: effector CD4+ T cells, carrying event and context information, enabling them to efficiently focus their response to tissues under attack; and persisting CD4+ T cells, providing context-independent antigen-specific memories and long-term storage. This novel hypothesis is supported by the observation that mammalian sleep can improve both CNS and CD4+ T-cell memory.
Collapse
|
40
|
Borghans JAM, Tesselaar K, de Boer RJ. Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuterium-labeling experiments. Immunol Rev 2019; 285:233-248. [PMID: 30129193 DOI: 10.1111/imr.12693] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deuterium is a non-toxic, stable isotope that can safely be administered to humans and mice to study their cellular turnover rates in vivo. It is incorporated into newly synthesized DNA strands during cell division, without interference with the kinetics of cells, and the accumulation and loss of deuterium in the DNA of sorted (sub-)populations of leukocytes can be used to estimate their cellular production rates and lifespans. In the past two decades, this powerful technology has been used to estimate the turnover rates of various types of leukocytes. Although it is the most reliable technique currently available to study leukocyte turnover, there are remarkable differences between the cellular turnover rates estimated by some of these studies. We have recently established that part of this variation is due to (a) difficulties in estimating deuterium availability in some deuterium-labeling studies, and (b) assumptions made by the mathematical models employed to fit the data. Being aware of these two problems, we here aim to approach a consensus on the life expectancies of different types of T cells, B cells, monocytes, and neutrophils in mice and men. We address remaining outstanding problems whenever appropriate and discuss for which immune subpopulations we currently have too little information to draw firm conclusions about their turnover.
Collapse
Affiliation(s)
- José A M Borghans
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Rob J de Boer
- Theoretical Biology & Bioinformatics, Utrecht, The Netherlands
| |
Collapse
|
41
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
42
|
A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun 2018; 9:4811. [PMID: 30446650 PMCID: PMC6240116 DOI: 10.1038/s41467-018-06843-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses viral replication in people living with HIV. Yet, infected cells persist for decades on ART and viremia returns if ART is stopped. Persistence has been attributed to viral replication in an ART sanctuary and long-lived and/or proliferating latently infected cells. Using ecological methods and existing data, we infer that >99% of infected cells are members of clonal populations after one year of ART. We reconcile our results with observations from the first months of ART, demonstrating mathematically how a fossil record of historic HIV replication permits observed viral evolution even while most new infected cells arise from proliferation. Together, our results imply cellular proliferation generates a majority of infected cells during ART. Therefore, reducing proliferation could decrease the size of the HIV reservoir and help achieve a functional cure. HIV infected cells persist for decades in patients under ART, but the mechanisms responsible remain unclear. Here, Reeves et al. use modeling approaches adapted from ecology to show that cellular proliferation, rather than viral replication, generates a majority of infected cells during ART.
Collapse
|
43
|
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15:71. [PMID: 30352600 PMCID: PMC6199739 DOI: 10.1186/s12977-018-0448-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.
Collapse
Affiliation(s)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
44
|
Baliu-Piqué M, Verheij MW, Drylewicz J, Ravesloot L, de Boer RJ, Koets A, Tesselaar K, Borghans JAM. Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Front Immunol 2018; 9:2054. [PMID: 30254637 PMCID: PMC6141715 DOI: 10.3389/fimmu.2018.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Memory T-cells are essential to maintain long-term immunological memory. It is widely thought that the bone marrow (BM) plays an important role in the long-term maintenance of memory T-cells. There is controversy however on the longevity and recirculating kinetics of BM memory T-cells. While some have proposed that the BM is a reservoir for long-lived, non-circulating memory T-cells, it has also been suggested to be the preferential site for memory T-cell self-renewal. In this study, we used in vivo deuterium labeling in goats to simultaneously quantify the average turnover rates—and thereby expected lifespans—of memory T-cells from BM, blood and lymph nodes (LN). While the fraction of Ki-67 positive cells, a snapshot marker for recent cell division, was higher in memory T-cells from blood compared to BM and LN, in vivo deuterium labeling revealed no substantial differences in the expected lifespans of memory T-cells between these compartments. Our results support the view that the majority of memory T-cells in the BM are self-renewing as fast as those in the periphery, and are continuously recirculating between the blood, BM, and LN.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrddin W Verheij
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| | - Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
45
|
Hill AL, Rosenbloom DIS, Nowak MA, Siliciano RF. Insight into treatment of HIV infection from viral dynamics models. Immunol Rev 2018; 285:9-25. [PMID: 30129208 PMCID: PMC6155466 DOI: 10.1111/imr.12698] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The odds of living a long and healthy life with HIV infection have dramatically improved with the advent of combination antiretroviral therapy. Along with the early development and clinical trials of these drugs, and new field of research emerged called viral dynamics, which uses mathematical models to interpret and predict the time-course of viral levels during infection and how they are altered by treatment. In this review, we summarize the contributions that virus dynamics models have made to understanding the pathophysiology of infection and to designing effective therapies. This includes studies of the multiphasic decay of viral load when antiretroviral therapy is given, the evolution of drug resistance, the long-term persistence latently infected cells, and the rebound of viremia when drugs are stopped. We additionally discuss new work applying viral dynamics models to new classes of investigational treatment for HIV, including latency-reversing agents and immunotherapy.
Collapse
Affiliation(s)
- Alison L. Hill
- Program for Evolutionary DynamicsHarvard UniversityCambridgeMassachusetts
| | - Daniel I. S. Rosenbloom
- Department of PharmacokineticsPharmacodynamics, & Drug MetabolismMerck Research LaboratoriesKenilworthNew Jersey
| | - Martin A. Nowak
- Program for Evolutionary DynamicsHarvard UniversityCambridgeMassachusetts
| | - Robert F. Siliciano
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
- Howard Hughes Medical InstituteBaltimoreMaryland
| |
Collapse
|
46
|
Opata MM, Ibitokou SA, Carpio VH, Marshall KM, Dillon BE, Carl JC, Wilson KD, Arcari CM, Stephens R. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection. PLoS Pathog 2018; 14:e1006960. [PMID: 29630679 PMCID: PMC5908200 DOI: 10.1371/journal.ppat.1006960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 03/04/2018] [Indexed: 01/12/2023] Open
Abstract
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages. Malaria causes significant mortality but current vaccine candidates have poor efficacy and duration, as does natural immunity to malaria. T helper cells (CD4+) are essential to protection from malaria, but it is unknown what kinds of T cells would be both protective and long-lasting. Here, we explored the mechanisms of survival used by memory T cells in malaria, and their ability to protect immunodeficient animals from malaria. We identified four mechanisms by which memory T cells are maintained in chronic infection. We also showed that highly activated effector T cells protect better than memory T cells in general, however, effector T cells have a shorter lifespan suggesting a mechanism for short-lived immunity. In total, we identified two protective T cell subsets that are long-lived. Unfortunately, the memory T cell subset that protects, is not the predominant memory T cell population generated by natural infection, suggesting a mechanism for the poor immunity seen in malaria. Our work suggests that vaccines that induce these two T cell subsets may improve on current immunity from malaria infection and disease.
Collapse
Affiliation(s)
- Michael M. Opata
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Samad A. Ibitokou
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Victor H. Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Karis M. Marshall
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Brian E. Dillon
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jordan C. Carl
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyle D. Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Christine M. Arcari
- Department of Preventive Medicine & Community Health, University of Texas Medical Branch Galveston, TX, United States of America
| | - Robin Stephens
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
47
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
48
|
Reeves DB, Duke ER, Hughes SM, Prlic M, Hladik F, Schiffer JT. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci Rep 2017. [PMID: 28638104 PMCID: PMC5479830 DOI: 10.1038/s41598-017-04160-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the era of antiretroviral therapy (ART), HIV-1 infection is no longer tantamount to early death. Yet the benefits of treatment are available only to those who can access, afford, and tolerate taking daily pills. True cure is challenged by HIV latency, the ability of chromosomally integrated virus to persist within memory CD4+ T cells in a non-replicative state and activate when ART is discontinued. Using a mathematical model of HIV dynamics, we demonstrate that treatment strategies offering modest but continual enhancement of reservoir clearance rates result in faster cure than abrupt, one-time reductions in reservoir size. We frame this concept in terms of compounding interest: small changes in interest rate drastically improve returns over time. On ART, latent cell proliferation rates are orders of magnitude larger than activation and new infection rates. Contingent on subtypes of cells that may make up the reservoir and their respective proliferation rates, our model predicts that coupling clinically available, anti-proliferative therapies with ART could result in functional cure within 2–10 years rather than several decades on ART alone.
Collapse
Affiliation(s)
- Daniel B Reeves
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA
| | - Elizabeth R Duke
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA.,University of Washington, Department of Medicine, Seattle, WA, 98195, USA
| | - Sean M Hughes
- University of Washington, Departments of Obstetrics and Gynecology, Seattle, WA, 98195, USA
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA.,University of Washington, Department of Global Health, Seattle, WA, 98105, USA
| | - Florian Hladik
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA. .,University of Washington, Departments of Obstetrics and Gynecology, Seattle, WA, 98195, USA.
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA. .,University of Washington, Department of Medicine, Seattle, WA, 98195, USA. .,Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, 98109, USA.
| |
Collapse
|
49
|
HIV-DNA content in different CD4+ T-cell subsets correlates with CD4+ cell : CD8+ cell ratio or length of efficient treatment. AIDS 2017; 31:1387-1392. [PMID: 28426533 DOI: 10.1097/qad.0000000000001510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES HIV establishes a latent infection at different degrees within naïve (TN) or central (TCM) and effector memory (TEM) CD4 T cell. Studying patients in whom HIV production was suppressed by combined antiretroviral therapy, our main aim was to find which factors are related or can influence intracellular viral reservoir in different CD4 T-cell subsets. METHODS We enrolled 32 HIV patients successfully treated for more than 2 years, with a CD4 T-cell count more than 500 cells/μl and plasma viremia undetectable from at least 1 year. Proviral HIV-DNA, the amount of cells expressing signal-joint T-cell receptor rearrangement excision circles and telomere length were quantified by droplet digital PCR in highly purified, sorted CD4 T-cell subsets; plasma IL-7 and IL-15 were measured by ELISA. RESULTS HIV-DNA was significantly lower in TN cells compared with TCM or to TEM. Conversely, TN cells contained more signal-joint T-cell receptor rearrangement excision circles compared with TCM or to TEM; no appreciable changes were observed in telomere length. HIV-DNA content was significantly higher in TN and TCM cells, but not in TEM, from patients with shorter time of treatment, or in those with lower CD4 : CD8 ratio. CONCLUSION Length of treatment or recovery of CD4 : CD8 ratio significantly influences viral reservoir in both TN and TCM. Measuring HIV-DNA in purified lymphocyte populations allows a better monitoring of HIV reservoir and could be useful for designing future eradication strategies.
Collapse
|
50
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|