1
|
Cunha C, Koike T, Seki Y, Yamamoto M, Iwashima M. Schnurri 3 promotes Th2 cytokine production during the late phase of T-cell antigen stimulation. Eur J Immunol 2022; 52:1077-1094. [PMID: 35490426 PMCID: PMC9276650 DOI: 10.1002/eji.202149633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Th1 and Th2 polarization is determined by the coordination of numerous factors including the affinity and strength of the antigen-receptor interaction, predominant cytokine environment, and costimulatory molecules present. Here, we show that Schnurri (SHN) proteins have distinct roles in Th1 and Th2 polarization. SHN2 was previously found to block the induction of GATA3 and Th2 differentiation. We found that, in contrast to SHN2, SHN3 is critical for IL-4 production and Th2 polarization. Strength of stimulation controls SHN2 and SHN3 expression patterns, where higher doses of antigen receptor stimulation promoted SHN3 expression and IL-4 production, along with repression of SHN2 expression. SHN3-deficient T cells showed a substantial defect in IL-4 production and expression of AP-1 components, particularly c-Jun and Jun B. This loss of early IL-4 production led to reduced GATA3 expression and impaired Th2 differentiation. Together, these findings uncover SHN3 as a novel, critical regulator of Th2 development.
Collapse
Affiliation(s)
- Christina Cunha
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Toru Koike
- Department of Biology, Faculty of ScienceShizuoka UniversityShizuokaJapan
| | - Yoichi Seki
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Mutsumi Yamamoto
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Makio Iwashima
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| |
Collapse
|
2
|
Wan S, Ni L, Zhao X, Liu X, Xu W, Jin W, Wang X, Dong C. Costimulation molecules differentially regulate the ERK-Zfp831 axis to shape T follicular helper cell differentiation. Immunity 2021; 54:2740-2755.e6. [PMID: 34644536 DOI: 10.1016/j.immuni.2021.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
T follicular helper (Tfh) cells play essential roles in regulating humoral immunity, especially germinal center reactions. However, how CD4+ T cells integrate the antigenic and costimulatory signals in Tfh cell development is still poorly understood. Here, we found that phorbol 12-myristate 13-acetate (PMA) + ionomycin (P+I) stimulation, together with interleukin-6 (IL-6), potently induce Tfh cell-like transcriptomic programs in vitro. The ERK kinase pathway was attenuated under P+I stimulation; ERK2 inhibition enhanced Tfh cell development in vitro and in vivo. We observed that inducible T cell costimulator (ICOS), but not CD28, lacked the ability to activate ERK, which was important in sustaining Tfh cell development. The transcription factor Zfp831, whose expression was repressed by ERK, promoted Tfh cell differentiation by directly upregulating the expression of the transcription factors Bcl6 and Tcf7. We have hence identified an ERK-Zfp831 axis, regulated by costimulation signaling, in critical regulation of Tfh cell development.
Collapse
Affiliation(s)
- Siyuan Wan
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Lu Ni
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Xu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Jin
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China; Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai, China.
| |
Collapse
|
3
|
Jiang Y, Zheng B, Yang Y, Li X, Han J. Identification of Somatic Mutation-Driven Immune Cells by Integrating Genomic and Transcriptome Data. Front Cell Dev Biol 2021; 9:715275. [PMID: 34368166 PMCID: PMC8335569 DOI: 10.3389/fcell.2021.715275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Tumor somatic mutations in protein-coding regions may generate neoantigens which may trigger antitumor immune cell response. Increasing evidence supports that immune cell response may profoundly influence tumor progression. However, there are no calculated tools to systematically identify immune cells driven by specific somatic mutations. It is urgent to develop a calculated method to comprehensively detect tumor-infiltrating immune cells driven by the specific somatic mutations in cancer. We developed a novel software package (SMDIC) that enables the automated identification of somatic mutation-driven immune cell. SMDIC provides a novel pipeline to discover mutation-specific immune cells by integrating genomic and transcriptome data. The operation modes include inference of the relative abundance matrix of tumor-infiltrating immune cells, detection of differential abundance immune cells with respect to the gene mutation status, conversion of the abundance matrix of significantly dysregulated cells into two binary matrices (one for upregulated and one for downregulated cells), identification of somatic mutation-driven immune cells by comparing the gene mutation status with each immune cell in the binary matrices across all samples, and visualization of immune cell abundance of samples in different mutation status for each gene. SMDIC provides a user-friendly tool to identify somatic mutation-specific immune cell response. SMDIC may contribute to understand the mechanisms underlying anticancer immune response and find targets for cancer immunotherapy. The SMDIC was implemented as an R-based tool which was freely available from the CRAN website https://CRAN.R-project.org/package=SMDIC.
Collapse
Affiliation(s)
- Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav Immun 2020; 88:826-839. [PMID: 32450195 DOI: 10.1016/j.bbi.2020.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) regulates the expression of many inflammatory genes that are overexpressed in a subset of people with schizophrenia. Transcriptional reduction in one NF-κB inhibitor, Human Immunodeficiency Virus Enhancer Binding Protein 2 (HIVEP2), is found in the brain of patients, aligning with evidence of NF-κB over-activity. Cellular co-expression of HIVEP2 and cytokine transcripts is a prerequisite for a direct effect of HIVEP2 on pro-inflammatory transcription, and we do not know if changes in HIVEP2 and markers of neuroinflammation are occurring in the same brain cell type. We performed in situ hybridisation on postmortem dorsolateral prefrontal cortex tissue to map and compare the expression of HIVEP2 and Serpin Family A Member 3 (SERPINA3), one of the most consistently increased inflammatory genes in schizophrenia, between schizophrenia patients and controls. We find that HIVEP2 expression is neuronal and is decreased in almost all grey matter cortical layers in schizophrenia patients with neuroinflammation, and that SERPINA3 is increased in the dorsolateral prefrontal cortex grey matter and white matter in the same group of patients. We are the first to map the upregulation of SERPINA3 to astrocytes and to some neurons, and find evidence to suggest that blood vessel-associated astrocytes are the main cellular source of SERPINA3 in the schizophrenia cortex. We show that a lack of HIVEP2 in mice does not cause astrocytic upregulation of Serpina3n but does induce its transcription in neurons. We speculate that HIVEP2 downregulation is not a direct cause of astrocytic pro-inflammatory cytokine synthesis in schizophrenia but may contribute to neuronally-mediated neuroinflammation.
Collapse
|
5
|
Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, Walker AK, Weickert CS. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation 2020; 17:215. [PMID: 32680547 PMCID: PMC7368759 DOI: 10.1186/s12974-020-01890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. Methods Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. Results In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. Conclusions Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.
Collapse
Affiliation(s)
- Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam J Lawther
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, Kensington, Maryland, USA
| | - Makoto Asai
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | - Yuji Kondo
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | | | - Adam K Walker
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Drug Discovery Biology Theme, Monash University, Parkville, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
6
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
7
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
8
|
Nakao A, Miyazaki N, Ohira K, Hagihara H, Takagi T, Usuda N, Ishii S, Murata K, Miyakawa T. Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability. Mol Brain 2017; 10:60. [PMID: 29233179 PMCID: PMC5727961 DOI: 10.1186/s13041-017-0339-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/19/2017] [Indexed: 01/18/2023] Open
Abstract
Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants’ brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.
Collapse
Affiliation(s)
- Akito Nakao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Koji Ohira
- Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
9
|
Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ, Okamoto Y. Th2 Cells in Health and Disease. Annu Rev Immunol 2016; 35:53-84. [PMID: 27912316 DOI: 10.1146/annurev-immunol-051116-052350] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.
Collapse
Affiliation(s)
- Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,AMED-CREST, AMED, Chiba 260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan
| | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Hiroyuki Hosokawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,South Australian Health and Medical Research Institute, North Terrace, Adelaide SA 5000, Australia
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
10
|
Hagihara H, Shoji H, Miyakawa T. Immaturity of brain as an endophenotype of neuropsychiatric disorders. Nihon Yakurigaku Zasshi 2016; 148:168-175. [PMID: 27725563 DOI: 10.1254/fpj.148.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, Koshimizu H, Umemori J, Toyama K, Nakamura HK, Kuroiwa M, Maeda J, Atsuzawa K, Esaki K, Yamaguchi S, Furuya S, Takagi T, Walton NM, Hayashi N, Suzuki H, Higuchi M, Usuda N, Suhara T, Nishi A, Matsumoto M, Ishii S, Miyakawa T. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology 2013; 38:1409-25. [PMID: 23389689 PMCID: PMC3682135 DOI: 10.1038/npp.2013.38] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.
Collapse
Affiliation(s)
- Keizo Takao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Katsunori Kobayashi
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Juzoh Umemori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Mahomi Kuroiwa
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Jun Maeda
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Kimie Atsuzawa
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kayoko Esaki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Yamaguchi
- Division of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu, Japan,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Takagi
- RIKEN Tsukuba Institute, Tsukuba, Japan,Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Noah M Walton
- Astellas Research Institute of America LLC, Skokie, IL, USA
| | - Nobuhiro Hayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hidenori Suzuki
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Akinori Nishi
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | | | - Shunsuke Ishii
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan. Tel: +81 562 93 9375, Fax: +81 562 92 5328, E-mail:
| |
Collapse
|
12
|
Yamashita J, Iwamura C, Ito T, Narita M, Hara Y, Sasaki T, Masuda D, Takahashi M, Tsuchiya M, Hada K, Ishikawa M, Matsuo T, Ohno Y, Tanaka H, Maruyama H, Ogawa Y, Nakayama T. Paraoxonase-1 suppresses experimental colitis via the inhibition of IFN-γ production from CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:949-60. [PMID: 23772025 DOI: 10.4049/jimmunol.1201828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract, where excessive Th1 cell responses are observed. We performed experiments to identify immunologically bioactive proteins in human plasma and found that paraoxonase (PON)-1, which has esterase activity and is associated with high-density lipoproteins, inhibited the IFN-γ production by both murine and human differentiating Th1 cells. Trinitrobenzene sulfonic acid-induced colitis was attenuated by the administration of PON-1. The beneficial effects of PON-1 were associated with a reduced ratio of IFN-γ-producing CD4 T cells in the mesenteric lymph nodes and decreased production of T cell-related cytokines in the colon. PON-1 inhibited the TCR-induced activation of ERK-MAPK signaling and the nuclear translocation of NF-κB in CD4 T cells. Interestingly, an excessive CD4 T cell response was observed in PON-1-deficient mice under physiological and pathological conditions. Additionally, the efficacy of PON-1 or G3C9-C284A (G3C9), which shows a higher esterase activity than PON-1, on colitis was similar to that of an anti-TNF-α mAb, which is a clinically used CD treatment. Moreover, G3C9 more effectively suppressed CD4(+)CD45RB(high) cell transfer-induced chronic colitis in mice than did PON-1, and the efficacy of G3C9 against the colitis was similar to that of the anti-TNF-α mAb. Therefore, PON-1 (or G3C9) administration may be clinically beneficial for CD patients.
Collapse
Affiliation(s)
- Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast 2013; 2013:318596. [PMID: 23840971 PMCID: PMC3694492 DOI: 10.1155/2013/318596] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in α -CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as "immature dentate gyrus (iDG)." To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity) have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the data's potential implication in elucidating the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keizo Takao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 5-1 Aza-Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Noah M. Walton
- CNS, Astellas Research Institute of America LLC, 8045 Lamon Avenue, Skokie, IL 60077, USA
| | - Mitsuyuki Matsumoto
- CNS, Astellas Research Institute of America LLC, 8045 Lamon Avenue, Skokie, IL 60077, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 5-1 Aza-Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
14
|
Inamine A, Sakurai D, Horiguchi S, Yonekura S, Hanazawa T, Hosokawa H, Matuura-Suzuki A, Nakayama T, Okamoto Y. Sublingual administration of Lactobacillus paracasei KW3110 inhibits Th2-dependent allergic responses via upregulation of PD-L2 on dendritic cells. Clin Immunol 2012; 143:170-9. [DOI: 10.1016/j.clim.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 12/15/2022]
|
15
|
Iwashita Y, Fukuchi N, Waki M, Hayashi K, Tahira T. Genome-wide repression of NF-κB target genes by transcription factor MIBP1 and its modulation by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase. J Biol Chem 2012; 287:9887-9900. [PMID: 22294689 DOI: 10.1074/jbc.m111.298521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-MYC intron binding protein 1 (MIBP1) binds to various genomic regulatory regions, including intron 1 of c-MYC. This factor is highly expressed in postmitotic neurons in the fetal brain and may be involved in various biological steps, such as neurological and immunological processes. In this study, we globally characterized the transcriptional targets of MIBP1 and proteins that interact with MIBP1. Microarray hybridization followed by gene set enrichment analysis revealed that genes involved in the pathways downstream of MYC, NF-κB, and TGF-β were down-regulated when HEK293 cells stably overexpressed MIBP1. In silico transcription factor binding site analysis of the promoter regions of these down-regulated genes showed that the NF-κB binding site was the most overrepresented. The up-regulation of genes known to be in the NF-κB pathway after the knockdown of endogenous MIBP1 in HT1080 cells supports the view that MIBP1 is a down-regulator of the NF-κB pathway. We also confirmed the binding of the MIBP1 to the NF-κB site. By immunoprecipitation and mass spectrometry, we detected O-linked β-N-acetylglucosamine (O-GlcNAc) transferase as a prominent binding partner of MIBP1. Analyses using deletion mutants revealed that a 154-amino acid region of MIBP1 was necessary for its O-GlcNAc transferase binding and O-GlcNAcylation. A luciferase reporter assay showed that NF-κB-responsive expression was repressed by MIBP1, and stronger repression by MIBP1 lacking the 154-amino acid region was observed. Our results indicate that the primary effect of MIBP1 expression is the down-regulation of the NF-κB pathway and that this effect is attenuated by O-GlcNAc signaling.
Collapse
Affiliation(s)
- Yuji Iwashita
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naruhiko Fukuchi
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mariko Waki
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenshi Hayashi
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoko Tahira
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
16
|
Shukla A, Yuspa SH. CLIC4 and Schnurri-2: a dynamic duo in TGF-beta signaling with broader implications in cellular homeostasis and disease. NUCLEUS (AUSTIN, TEX.) 2012; 1:144-9. [PMID: 20617112 DOI: 10.4161/nucl.1.2.10920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CLIC4 is a highly conserved, multifunctional member of the chloride intracellular channel family of proteins. The protein is largely cytoplasmic but translocates to the nucleus upon a variety of stimuli including TGF-beta, TNF-alpha and etoposide. Nuclear resident CLIC4 causes growth arrest, terminal differentiation and apoptosis. Recently, it was discovered that TGF-beta causes CLIC4 to associate with Schnurri-2 and together they translocate to the nucleus and dissociate thereafter. The nuclear function of CLIC4 was further illuminated by the discovery that CLIC4 enhances TGF-beta signaling by associating with phospho-Smad2 and 3 and preventing their dephosphorylation. Enhanced TGF-beta dependent gene expression and growth inhibition are downstream consequences of this activity of CLIC4. In this article, we speculate on other consequences of the CLIC4 relation to TGF-beta signaling and the potential for CLIC4 to participate in other cellular functions related to normal homeostasis and disease.
Collapse
Affiliation(s)
- Anjali Shukla
- Laboratory of Cancer Biology and Genetics, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Yamashita J, Iwamura C, Mitsumori K, Hosokawa H, Sasaki T, Takahashi M, Tanaka H, Kaneko K, Hanazawa A, Watanabe Y, Shinoda K, Tumes D, Motohashi S, Nakayama T. Murine Schnurri-2 controls natural killer cell function and lymphoma development. Leuk Lymphoma 2011; 53:479-86. [PMID: 21936769 DOI: 10.3109/10428194.2011.625099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Schnurri (Shn)-2 is a large zinc finger-containing protein implicated in cell growth, signal transduction and lymphocyte development. Here, we report that Shn-2-deficient (Shn-2(-/-)) mice develop CD3-positive lymphoma spontaneously. In Shn-2(-/-) mice, we observed decreased cytotoxicity of natural killer (NK) cells accompanied by decreased expression of perforin and granzyme-B. In addition, phosphorylation of signal transducer and activator of transcription (STAT) 5 was reduced in Shn-2(-/-) NK cells, while phosphorylation of STAT3 and protein expression of nuclear factor-κB p65 subunit were enhanced in Shn-2(-/-) NK cells. Moreover, cell-surface expression of activation molecules such as CD27, CD69 and CD122 were decreased on Shn-2(-/-) NK cells. Thus, Shn-2 is considered to play an important role in the activation and function of NK cells and the development of T cell lymphoma in vivo.
Collapse
Affiliation(s)
- Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Staton TL, Lazarevic V, Jones DC, Lanser AJ, Takagi T, Ishii S, Glimcher LH. Dampening of death pathways by schnurri-2 is essential for T-cell development. Nature 2011; 472:105-9. [PMID: 21475200 PMCID: PMC3077958 DOI: 10.1038/nature09848] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
Abstract
Generation of a diverse and self-tolerant T cell repertoire requires appropriate interpretation of T cell receptor (TCR) signals by CD4+CD8+ double positive (DP) thymocytes. Thymocyte cell fate is dictated by the nature of TCR:MHC-peptide interactions, with signals of higher strength leading to death (negative selection) and signals of intermediate strength leading to differentiation (positive selection)1. Molecules that regulate T cell development by modulating TCR signal strength have been described but components that specifically define the boundaries between positive and negative selection remain unknown. Here we show that repression of TCR-induced death pathways is critical for proper interpretation of positive selecting signals in vivo, and identify Schnurri2 (Shn2) as a crucial death dampener. Our results indicate that Shn2−/− DP thymocytes inappropriately undergo negative selection in response to positive selecting signals, thus leading to disrupted T cell development. Shn2−/− DP thymocytes are more sensitive to TCR-induced death in vitro and die in response to positive selection interactions in vivo. However, Shn2-deficient thymocytes can be positively selected when TCR-induced death is genetically-ablated. Shn2 levels increase after TCR stimulation suggesting that integration of multiple TCR:MHC-peptide interactions may fine tune the death threshold. Mechanistically, Shn2 functions downstream of TCR proximal signaling compenents to dampen Bax activation and the mitochondrial death pathway. Our findings uncover a critical regulator of T cell development that controls the balance between death and differentiation.
Collapse
Affiliation(s)
- Tracy L Staton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamashita J, Iwamura C, Sasaki T, Mitsumori K, Ohshima K, Hada K, Hara N, Takahashi M, Kaneshiro Y, Tanaka H, Kaneko K, Nakayama T. Apolipoprotein A-II suppressed concanavalin A-induced hepatitis via the inhibition of CD4 T cell function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3410-20. [PMID: 21300819 DOI: 10.4049/jimmunol.1002924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Con A-induced hepatitis has been used as a model of human autoimmune or viral hepatitis. During the process of identifying immunologically bioactive proteins in human plasma, we found that apolipoprotein A-II (ApoA-II), the second major apolipoprotein of high-density lipoprotein, inhibited the production of IFN-γ by Con A-stimulated mouse and human CD4 T cells. Con A-induced hepatitis was attenuated by the administration of ApoA-II. The beneficial effect of ApoA-II was associated with reduced leukocyte infiltration and decreased production of T cell-related cytokines and chemokines in the liver. ApoA-II inhibited the Con A-induced activation of ERK-MAPK and nuclear translocation of NFAT in CD4 T cells. Interestingly, exacerbated hepatitis was observed in ApoA-II-deficient mice, indicating that ApoA-II plays a suppressive role in Con A-induced hepatitis under physiological conditions. Moreover, the administration of ApoA-II after the onset of Con A-induced hepatitis was sufficient to suppress disease. Thus, the therapeutic effect of ApoA-II could be useful for patients with CD4 T cell-related autoimmune and viral hepatitis.
Collapse
Affiliation(s)
- Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nagao M, Saita Y, Hanyu R, Hemmi H, Notomi T, Hayata T, Nakamoto T, Nakashima K, Kaneko K, Kurosawa H, Ishii S, Ezura Y, Noda M. Schnurri-2 deficiency counteracts against bone loss induced by ovariectomy. J Cell Physiol 2011; 226:573-8. [PMID: 21069746 DOI: 10.1002/jcp.22521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schnurri (Shn)-2 is a transcriptional modulator of bone formation and bone resorption and its deficiency causes low turnover state with higher cancellous bone mass due to the defects in osteoclasts that exceeds the defects in osteoblasts in mice. We addressed whether such low turnover of bone remodeling in Shn2 deficiency may be modulated in the absence of estrogen that induces high turnover state in vivo. Ovariectomy reduced bone mass in wild type compared to sham operated control mice and such reduction in bone mass was also observed in Shn2 deficient mice. However, due to the high levels of basal bone mass in Shn2 deficient mice, the bone mass levels after ovariectomy were still comparable to sham operated wild-type mice. Analysis indicated that estrogen depletion increased bone resorption at similar levels in wild type and Shn2 deficient mice though the basal levels of osteoclast number was slightly lower in Shn2-deficient mice. In contrast, basal levels of bone marrow cell mineralization in cultures were low in Shn2-deficeint mice while estrogen depletion increased the mineralization levels to those that were comparable to sham wild type. This indicates that Shn2-deficient mice maintain bone mass at the levels comparable to wild-type sham mice even after ovariectomy-induced bone loss and this correlates with the high levels of mineralization activity in bone marrow cells after ovariectomy.
Collapse
Affiliation(s)
- Masashi Nagao
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Okita K, Motohashi S, Shinnakasu R, Nagato K, Yamasaki K, Sato Y, Kitamura H, Hijikata A, Yamashita M, Shimizu K, Fujii SI, Ohara O, Taniguchi M, Sakaida I, Nakayama T. A set of genes associated with the interferon-γ response of lung cancer patients undergoing α-galactosylceramide-pulsed dendritic cell therapy. Cancer Sci 2010; 101:2333-40. [PMID: 20804502 PMCID: PMC11159413 DOI: 10.1111/j.1349-7006.2010.01696.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells possess potent antitumor effects after activation with a specific glycolipid antigen, α-galactosylceramide (αGalCer). A phase I-II clinical study of αGalCer-pulsed dendritic cells (DC) to activate endogenous iNKT cells was previously performed in patients with non-small-cell lung cancer (NSCLC). In this clinical trial, the patients with increased interferon-γ (IFN-γ) production (>two-fold) in PBMC after the DC treatment (good responder group) experienced a prolonged overall survival time in comparison with the poor responder group. We extended the previous study and performed a microarray-based gene expression analysis using peripheral blood CD56(+) cells and CD56(-) CD3(+) T cells from patients enrolled in the above-mentioned clinical study. We sought to identify any biomarkers associated with the immune responses in this immunotherapy trial. Six patient samples corresponding to three subjects in the good responder group and three subjects in the poor responder group were included in the microarray analysis. Genes differentially expressed between pre-treatment and post-treatment samples were selected for analysis. Subsequently, genes that were only expressed in the good responder group or poor responder group were chosen. After these procedures, four selected genes were quantified by reverse transcriptase-polymerase chain reaction in another eight patient samples, and two genes, LTB4DH and DPYSL3, were confirmed to be candidate genes for the predictor of a good immune response. The expression profile of these two genes may be associated with the responsiveness of IFN-γ production after αGalCer-pulsed DC treatment.
Collapse
Affiliation(s)
- Kohsuke Okita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Onodera A, Yamashita M, Endo Y, Kuwahara M, Tofukuji S, Hosokawa H, Kanai A, Suzuki Y, Nakayama T. STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. ACTA ACUST UNITED AC 2010; 207:2493-506. [PMID: 20956546 PMCID: PMC2964576 DOI: 10.1084/jem.20100760] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycomb group (PcG) and trithorax group (TrxG) complexes exert opposing effects on the maintenance of the transcriptional status of the developmentally regulated Hox genes. In this study, we show that activation of STAT6 induces displacement of the PcG complex by the TrxG complex at the upstream region of the gene encoding GATA3, a transcription factor essential for T helper type 2 (Th2) cell differentiation. Once Th2 cells differentiate, TrxG complex associated with the TrxG component Menin binds to the whole GATA3 gene locus, and this binding is required for the long-term maintenance of expression of GATA3 and Th2 cytokine. Thus, STAT6-mediated displacement of PcG by the TrxG complex establishes subsequent STAT6-independent maintenance of GATA3 expression in Th2 cells via the recruitment of the Menin-TrxG complex.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Uncoupling of growth plate maturation and bone formation in mice lacking both Schnurri-2 and Schnurri-3. Proc Natl Acad Sci U S A 2010; 107:8254-8. [PMID: 20404140 DOI: 10.1073/pnas.1003727107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formation and remodeling of the skeleton relies on precise temporal and spatial regulation of genes expressed in cartilage and bone cells. Debilitating diseases of the skeletal system occur when mutations arise that disrupt these intricate genetic regulatory programs. Here, we report that mice bearing parallel null mutations in the adapter proteins Schnurri2 (Shn2) and Schnurri3 (Shn3) exhibit defects in patterning of the axial skeleton during embryogenesis. Postnatally, these compound mutant mice develop a unique osteochondrodysplasia. The deletion of Shn2 and Shn3 impairs growth plate maturation during endochondral ossification but simultaneously results in massively elevated trabecular bone formation. Hence, growth plate maturation and bone formation can be uncoupled under certain circumstances. These unexpected findings demonstrate that both unique and redundant functions reside in the Schnurri protein family that are required for proper skeletal patterning and remodeling.
Collapse
|
24
|
Suzuki A, Iwamura C, Shinoda K, Tumes DJ, Kimura MY, Hosokawa H, Endo Y, Horiuchi S, Tokoyoda K, Koseki H, Yamashita M, Nakayama T. Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. THE JOURNAL OF IMMUNOLOGY 2010; 184:4510-20. [PMID: 20237291 DOI: 10.4049/jimmunol.0903426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) gene products regulate the maintenance of homeobox gene expression in Drosophila and vertebrates. In the immune system, PcG molecules control cell cycle progression of thymocytes, Th2 cell differentiation, and the generation of memory CD4 T cells. In this paper, we extended the study of PcG molecules to the regulation of in vivo Th2 responses, especially allergic airway inflammation, by using conditional Ring1B-deficient mice with a CD4 T cell-specific deletion of the Ring1B gene (Ring1B(-/-) mice). In Ring1B(-/-) mice, CD4 T cell development appeared to be normal, whereas the differentiation of Th2 cells but not Th1 cells was moderately impaired. In an Ag-induced Th2-driven allergic airway inflammation model, eosinophilic inflammation was attenuated in Ring1B(-/-) mice. Interestingly, Ring1B(-/-) effector Th2 cells were highly susceptible to apoptosis in comparison with wild-type effector Th2 cells in vivo and in vitro. The in vitro experiments revealed that the expression of Bim was increased at both the transcriptional and protein levels in Ring1B(-/-) effector Th2 cells, and the enhanced apoptosis in Ring1B(-/-) Th2 cells was rescued by the knockdown of Bim but not the other proapoptotic genes, such as Perp, Noxa, or Bax. The enhanced apoptosis detected in the transferred Ring1B(-/-) Th2 cells in the lung of the recipient mice was also rescued by knockdown of Bim. Therefore, these results indicate that Ring1B plays an important role in Th2-driven allergic airway inflammation through the control of Bim-dependent apoptosis of effector Th2 cells in vivo.
Collapse
Affiliation(s)
- Akane Suzuki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nakayama T, Kimura MY. Memory Th1/Th2 cell generation controlled by Schnurri-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:1-10. [PMID: 20795536 DOI: 10.1007/978-1-4419-6451-9_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Schnurri (Shn) is a large zinc-finger containingprotein, which plays a critical role in cell growth, signal transduction and lymphocyte development. There are three orthologues (Shn-1, Shn-2 and Shn-3) in vertebrates. In Shn-2-deficient mice, the activation of NF-kappaB in CD4 T cells is upregulated and their ability to differentiate into Th2 cells is enhanced in part through the increased expression of GATA3. Shn-2 is found to compete with p50 NF-kappaB for binding to a consensus NF-kappaB motif and inhibit the NF-kappaB-driven promoter activity. In addition, Th2-driven allergic airway inflammation was enhanced in Shn-2-deficient mice. Therefore, Shn-2 appears to negatively control the differentiation of Th2 cells and Th2 responses through the repression of NF-kappaB function. Memory Th1/Th2 cells are not properly generated from Shn-2-deficient effector Th1/Th2 cells. The expression levels of CD69 and the number ofapoptotic cells are selectively increased in Shn-2-deficient Thl/Th2 cells when they are transferred into syngeneic host animals, in which memoryh Th1/Th2 cells are generated within a month. In addition, an increased susceptibility to apoptotic cell death is also observed in vitro accompanied with the increased expression of FasL, one of the NF-kappaB-dependent genes. Th2 effector cells overexpressing the p65 subunit of NF-kappaB demonstrate a decreased cell survival particularly in the lymph node. These results indicate that Shn-2-mediated repression of NF-kappaB is required for cell survival and the successful generation of memory Th1/Th2 cells. This may point to the possibility that after antigen clearance the recovery of the quiescent state in effector Th cells is required for the generation of memory Th cells. A repressor molecule Shn-2 plays an important role in this process.
Collapse
Affiliation(s)
- Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan.
| | | |
Collapse
|
26
|
Miki-Hosokawa T, Hasegawa A, Iwamura C, Shinoda K, Tofukuji S, Watanabe Y, Hosokawa H, Motohashi S, Hashimoto K, Shirai M, Yamashita M, Nakayama T. CD69 Controls the Pathogenesis of Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:8203-15. [DOI: 10.4049/jimmunol.0900646] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Kitajima M, Iwamura C, Miki-Hosokawa T, Shinoda K, Endo Y, Watanabe Y, Shinnakasu R, Hosokawa H, Hashimoto K, Motohashi S, Koseki H, Ohara O, Yamashita M, Nakayama T. Enhanced Th2 cell differentiation and allergen-induced airway inflammation in Zfp35-deficient mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:5388-96. [PMID: 19783676 DOI: 10.4049/jimmunol.0804155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies of human asthma and of animal models of allergic airway inflammation revealed a crucial role for Th2 cells in the pathogenesis of allergic asthma. Kruppel-type zinc finger proteins are the largest family of a regulatory transcription factor for cellular development and function. Zinc finger protein (Zfp) 35 is an 18-zinc finger motif-containing Kruppel-type zinc finger protein, while its function remains largely unknown. The aim of this study was to clarify the role of Zfp35 in the pathogenesis of Th2-dependent allergic inflammation, such as allergic asthma. We examined airway eosinophilic inflammation and hyperresponsiveness in two mouse models, which use our newly generated Zfp35-deficient (Zfp35(-/-)) mice and adoptive transfer of cells. In Zfp35(-/-) mice, Th2 cell differentiation, Th2 cytokine production, eosinophilic inflammation, and airway hyperresponsiveness were substantially enhanced. Furthermore, adoptive transfer of Ag-sensitized Zfp35(-/-) CD4 T cells into the asthmatic mice resulted in enhanced airway inflammation and airway hyperresponsiveness. These results indicate that Zfp35 controls Th2 cell differentiation, allergic airway inflammation, and airway hyperresponsiveness in a negative manner. Thus, Zfp35 may control Th2-dependent diseases, such as allergic asthma.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Viperin is required for optimal Th2 responses and T-cell receptor–mediated activation of NF-κB and AP-1. Blood 2009; 113:3520-9. [DOI: 10.1182/blood-2008-07-171942] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Viperin (virus inhibitory protein, endoplasmic reticulum [ER]–associated, interferon-inducible) has been identified as a highly inducible ER protein that has antiviral activity. Here, we characterized the phenotype of mice deficient in viperin and examined the biological function of viperin in peripheral T-cell activation and differentiation. Splenic CD4+ T cells deficient in viperin exhibited normal anti–T-cell receptor (TCR)–induced proliferation and IL-2 production, but produced significantly less T helper 2 (Th2) cytokines, including IL-4, IL-5, and IL-13, in association with impaired GATA3 activation, after stimulation with anti-CD3 antibody, which was not restored upon costimulation with anti-CD28. Th2 differentiation of viperin-deficient naive T cells was also impaired in the presence of strong TCR signaling and minimum IL-4, but not under optimal Th2-skewed conditions. In parallel, viperin-deficient T cells showed decreases in NF-κB1/p50 and AP-1/JunB DNA binding activities after TCR engagement. Thus, viperin facilitates TCR-mediated GATA-3 activation and optimal Th2 cytokine production by modulating NF-κB and AP-1 activities.
Collapse
|
29
|
Jones DC, Glimcher LH. Regulation of bone formation and immune cell development by Schnurri proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 658:117-22. [PMID: 19950022 DOI: 10.1007/978-1-4419-1050-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although identified over a decade ago, the function and physiological significance of the mammalian Schnurri protein family remained largely unknown. However, the recent generation and characterization of mice bearing null mutations in the individual Schnurri genes has led to the discovery of unexpected yet central roles for these large zinc-finger proteins in several biological processes. Here, we review findings of these studies and discuss the importance of the Schnurri protein family in regulating both the immune and skeletal systems.
Collapse
Affiliation(s)
- Dallas C Jones
- Department of Infectious Disease and Immunology, Harvard School of Public Health, Boston, MA, USA.
| | | |
Collapse
|
30
|
Shinnakasu R, Yamashita M, Kuwahara M, Hosokawa H, Hasegawa A, Motohashi S, Nakayama T. Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem 2008; 283:28216-25. [PMID: 18701459 DOI: 10.1074/jbc.m804174200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The differentiation of naive CD4 T cells into Th2 cells requires the T cell receptor-mediated activation of the ERK MAPK cascade. Little is known, however, in regard to how the ERK MAPK cascade regulates Th2 cell differentiation. We herein identified Gfi1 (growth factor independent-1) as a downstream target of the ERK MAPK cascade for Th2 cell differentiation. In the absence of Gfi1, interleukin-5 production and the change of histone modification at the interleukin-5 gene locus were severely impaired. Furthermore, the interferon gamma gene showed a striking activation in the Gfi1(-/-) Th2 cells. An enhanced ubiquitin/proteasome-dependent degradation of GATA3 protein was observed in Gfi1(-/-) Th2 cells, and the overexpression of GATA3 eliminated the defect of Th2 cell function in Gfi1-deficient Th2 cells. These data suggest that the T cell receptor-mediated induction of Gfi1 controls Th2 cell differentiation through the regulation of GATA3 protein stability.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol 2008; 122:512-20.e11. [PMID: 18620745 DOI: 10.1016/j.jaci.2008.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Studies of human asthma and of animal models of allergic inflammation/asthma highlight a crucial role for T(H)2 cells in the pathogenesis of allergic asthma. Repressor of GATA (ROG) is a POZ (BTB) domain-containing Kruppel-type zinc finger family (or POK family) repressor. A repressive function to GATA3, a master transcription factor for T(H)2 cell differentiation, is indicated. OBJECTIVE The aim of this study was to clarify the regulatory roles of ROG in the pathogenesis of T(H)2-driven allergic diseases, such as allergic asthma. METHODS We examined allergic airway inflammation and airway hyperresponsiveness (AHR) in 3 different mouse models, which use either ROG-deficient (ROG(-/-)) mice, ROG transgenic mice, or adoptive transfer of cells. RESULTS In ROG(-/-) mice T(H)2 cell differentiation, T(H)2 responses, eosinophilic airway inflammation, and AHR were enhanced. In ROG transgenic mice the levels of eosinophilic airway inflammation and AHR were dramatically reduced. Furthermore, adoptive transfer of T(H)2 cells with increased or decreased levels of ROG expression into the asthmatic mice resulted in reduced or enhanced airway inflammation, respectively. CONCLUSION These results indicate that ROG regulates allergic airway inflammation and AHR in a negative manner, and thus ROG might represent another potential therapeutic target for the treatment of asthmatic patients.
Collapse
|
32
|
Nakayama T, Yamashita M. Initiation and maintenance of Th2 cell identity. Curr Opin Immunol 2008; 20:265-71. [PMID: 18502111 DOI: 10.1016/j.coi.2008.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/10/2008] [Accepted: 03/25/2008] [Indexed: 12/13/2022]
Abstract
T helper type 2 (Th2) cells produce IL-4, IL-5, and IL-13 and play an important role in humoral immunity and allergic reactions. During Th2 cell differentiation, naïve CD4 T cells acquire 'Th2 cell identity', that is, the capability to produce selectively a large amount of Th2 cytokines. Th2 cell identity is maintained in memory Th2 cells. Significant advances in understanding of the molecular requirement for these processes have been made. The expression of GATA3, a master transcription factor for Th2 cell differentiation, is uniquely regulated by several distinct mechanisms. Molecular analyses of memory Th2 cells revealed that cell survival and the maintenance of Th2 cell function are epigenetically regulated by various nuclear factors, including Polycomb and Trithorax molecules.
Collapse
Affiliation(s)
- Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | |
Collapse
|
33
|
Kimura MY, Iwamura C, Suzuki A, Miki T, Hasegawa A, Sugaya K, Yamashita M, Ishii S, Nakayama T. Schnurri-2 controls memory Th1 and Th2 cell numbers in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:4926-36. [PMID: 17404274 DOI: 10.4049/jimmunol.178.8.4926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Schnurri-2 (Shn-2) is a large zinc-finger containing protein, and it plays a critical role in cell growth, signal transduction and lymphocyte development. In Shn-2-deficient CD4 T cells, the activation of NF-kappaB was up-regulated and their ability to differentiate into Th2 cells was enhanced. We herein demonstrate that Th1 and Th2 memory cells are not properly generated from Shn-2-deficient effector Th1/Th2 cells. Even a week after the transfer of effector Th1/Th2 cells into syngeneic mice, a dramatic decrease in the number of Shn-2-deficient donor T cells was detected particularly in the lymphoid organs. The transferred Shn-2-deficient Th1/Th2 cells express higher levels of the activation marker CD69. No significant defect in the BrdU incorporation in the Shn-2-deficient transferred CD4 T cells was observed. The numbers of apoptotic cells were selectively higher in Shn-2-deficient donor Th1/Th2 cell population. Moreover, Shn-2-deficient effector Th1 and Th2 cells showed an increased susceptibility to cell death in in vitro cultures with increased expression of FasL. Transfer of Th2 effector cells over-expressing the p65 subunit of NF-kappaB resulted in a decreased number of p65-expressing cells in the lymphoid organs. As expected, T cell-dependent Ab responses after in vivo immunization of Shn-2-deficient mice were significantly reduced. Thus, Shn-2 appears to control the generation of memory Th1/Th2 cells through a change in their susceptibility to cell death.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saita Y, Takagi T, Kitahara K, Usui M, Miyazono K, Ezura Y, Nakashima K, Kurosawa H, Ishii S, Noda M. Lack of Schnurri-2 expression associates with reduced bone remodeling and osteopenia. J Biol Chem 2007; 282:12907-15. [PMID: 17311925 DOI: 10.1074/jbc.m611203200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Regulation of bone remodeling determines the levels of bone mass and its imbalance causes major skeletal diseases such as osteoporosis. A zinc finger protein, Schnurri-2 (SHN-2), was recently demonstrated to regulate bone morphogenetic protein-dependent adipogenesis and lymphogenesis. However, the role of SHN-2 in bone is not known. Here, we investigated the effects of Shn-2 deficiency on bone metabolism and cell function in Shn-2-null mice. Lack of SHN-2 expression reduced bone remodeling by suppressing both osteoblastic bone formation and osteoclastic bone resorption activities in vivo. Shn-2 deficiency suppressed osterix and osteocalcin expression as well as in vitro mineralization. Conversely, Shn-2 overexpression enhanced osteocalcin promoter activity and bone morphogenetic protein-dependent osteoblastic differentiation. Shn-2 deficiency suppressed Nfatc1 and c-fos expression leading to reduction of tartrate-resistant acid phosphatase-positive cell development in vivo as well as in the cultures of bone marrow cells. These studies demonstrate that SHN-2 regulates the activities of critical transcription factors required for normal bone remodeling.
Collapse
Affiliation(s)
- Yoshitomo Saita
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hosokawa H, Kimura MY, Shinnakasu R, Suzuki A, Miki T, Koseki H, van Lohuizen M, Yamashita M, Nakayama T. Regulation of Th2 cell development by Polycomb group gene bmi-1 through the stabilization of GATA3. THE JOURNAL OF IMMUNOLOGY 2007; 177:7656-64. [PMID: 17114435 DOI: 10.4049/jimmunol.177.11.7656] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Polycomb group (PcG) gene products regulate the maintenance of the homeobox gene expression in Drosophila and vertebrates and also the cell cycle progression in thymocytes and Th2 cell differentiation in mature T cells. We herein studied the role of PcG gene bmi-1 product in Th1/Th2 cell differentiation and found that Bmi-1 facilitates Th2 cell differentiation in a Ring finger-dependent manner. Biochemical studies indicate that Bmi-1 interacts with GATA3 in T cells, which is dependent on the Ring finger of Bmi-1. The overexpression of Bmi-1 resulted in a decreased ubiquitination and an increased protein stability of GATA3. In bmi-1-deficient Th cells, the levels of Th2 cell differentiation decreased as the degradation and ubiquitination on GATA3 increased. Therefore, Bmi-1 plays a crucial role in the control of Th2 cell differentiation in a Ring finger-dependent manner by regulating GATA3 protein stability.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Allen CE, Richards J, Muthusamy N, Auer H, Liu Y, Robinson ML, Barnard JA, Wu LC. Disruption of ZAS3 in mice alters NF-kappaB and AP-1 DNA binding and T-cell development. Gene Expr 2007; 14:83-100. [PMID: 18257392 PMCID: PMC6042042 DOI: 10.3727/105221607783417574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The large zinc finger proteins, ZAS, regulate the transcription of a variety of genes involved in cell growth, development, and metastasis. They also function in the signal transduction of the TGF-beta and TNF-alpha pathways. However, the endogenous protein of a representative member, ZAS3, is rapidly degraded in primary lymphocytes, which limits the determination of its physiological function in vitro. Therefore, we have generated mice with targeted disruption of ZAS3. Oligonucleotide-based microarray analyses revealed subtle but consistent differences in the expression of genes, many of which are associated with receptor or signal transduction activities between ZAS3+/+ and ZAS3-/- thymi. Gel mobility shift assays showed altered DNA binding activities of NF-kappaB and AP-1 proteins in ZAS3-deficient tissues, including the thymus. Lymphocyte analysis suggested a subtle but broad function of ZAS3 in regulating T-cell development and activation. In CD3+ ZAS3-/- thymocytes, the CD4/ CD8 ratio was decreased and CD69 expression was decreased. In peripheral CD4+ ZAS3-/- lymphocytes we observed an increased number of memory T cells.
Collapse
Affiliation(s)
- Carl E. Allen
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
- †Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - John Richards
- ‡Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Natarajan Muthusamy
- §Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Herbert Auer
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - Yang Liu
- ‡Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael L. Robinson
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - John A. Barnard
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - Lai-Chu Wu
- †Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
- §Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- ¶Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Shinnakasu R, Yamashita M, Shinoda K, Endo Y, Hosokawa H, Hasegawa A, Ikemizu S, Nakayama T. Critical YxKxHxxxRP motif in the C-terminal region of GATA3 for its DNA binding and function. THE JOURNAL OF IMMUNOLOGY 2006; 177:5801-10. [PMID: 17056504 DOI: 10.4049/jimmunol.177.9.5801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A zinc finger transcription factor, GATA3, plays an essential role in the development of T cells and the functional differentiation into type 2 Th cells. Two transactivation domains and two zinc finger regions are known to be important for the GATA3 function, whereas the role for other regions remains unclear. In this study we demonstrated that a conserved YxKxHxxxRP motif (aa 345-354) adjacent to the C-terminal zinc finger domain of GATA3 plays a critical in its DNA binding and functions, including transcriptional activity, the ability to induce chromatin remodeling of the Th2 cytokine gene loci, and Th2 cell differentiation. A single point mutation of the key amino acid (Y, K, H, R, and P) in the motif abrogated GATA3 functions. A computer simulation analysis based on the solution structure of the chicken GATA1/DNA complex supported the importance of this motif in GATA3 DNA binding. Thus, we identified a novel conserved YxKxHxxxRP motif adjacent to the C-terminal zinc finger domain of GATA3 that is indispensable for GATA3 DNA binding and functions.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaneko T, Hosokawa H, Yamashita M, Wang CR, Hasegawa A, Kimura MY, Kitajiama M, Kimura F, Miyazaki M, Nakayama T. Chromatin remodeling at the Th2 cytokine gene loci in human type 2 helper T cells. Mol Immunol 2006; 44:2249-56. [PMID: 17166591 DOI: 10.1016/j.molimm.2006.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/01/2006] [Accepted: 11/06/2006] [Indexed: 11/28/2022]
Abstract
The differentiation of mouse naïve CD4 T cells into type 2 helper (Th2) cells is accompanied by chromatin remodeling at the nucleosomes associated with the IL-4, IL-13 and IL-5 genes. However, little is known about how chromatin remodeling of these Th2 cytokine gene loci occurs in human Th2 cells. We herein established an in vitro culture system in which both Th1 and Th2 cells are efficiently differentiated from human peripheral blood naïve CD4 T cells. This system allowed us to investigate the chromatin status at the Th2 cytokine gene loci and the IFNgamma locus in human Th2 and Th1 cells, respectively. In typical individuals, the chromatin remodeling indicated by the induction of hyper-acetylation of histone H3 lysine 9 and hyper-methylation of histone H3 lysine 4 was induced at the whole Th2 cytokine gene loci in developing Th2 cells. We more precisely assessed the methylation status of histone H3 lysine 4 at the Th2 cytokine gene loci (IL-5 exon 3, IL-5 promoter, IL-5/RAD50 intergenic region, RAD50 promoter, CGRE, CNS1, IL-13 promoter, IL-4 promoter, and VA enhancer regions) and the IFNgamma locus in developing Th1 and Th2 cells prepared from 20 healthy volunteers. Th2-cell specific chromatin remodeling was induced at most of the Th2 cytokine gene loci. In parallel with the induction of chromatin remodeling, GATA3 mRNA was preferentially expressed in developing Th2 cells, whereas T-bet, HLX and ROG mRNA was selectively expressed in developing Th1 cells.
Collapse
Affiliation(s)
- Takaaki Kaneko
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tenda Y, Yamashita M, Kimura MY, Hasegawa A, Shimizu C, Kitajima M, Onodera A, Suzuki A, Seki N, Nakayama T. Hyperresponsive TH2 cells with enhanced nuclear factor-κB activation induce atopic dermatitis–like skin lesions in Nishiki-nezumi Cinnamon/Nagoya mice. J Allergy Clin Immunol 2006; 118:725-33. [PMID: 16950294 DOI: 10.1016/j.jaci.2006.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice raised in nonair-controlled conventional circumstances spontaneously develop atopic dermatitis-like skin lesions; however, the underlying mechanisms remain unclear. OBJECTIVE We wanted to identify the critical intracellular signaling molecules in T cells that induce atopic dermatitis-like skin legions in NC/Nga mice. METHODS We examined the levels of signal transduction and cytokine production in T cells, particularly those in atopic dermatitis-like lesions induced by the topical injection of mite antigens in NC/Nga mice under specific pathogen-free conditions. RESULTS In NC/Nga mice maintained under specific pathogen-free conditions, the capability of T(H)1/T(H)2 and T cytotoxic 1/T cytotoxic 2 (Tc1/Tc2) cell differentiation increased significantly. T-cell antigen receptor-mediated activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase cascade and nuclear factor-kappaB (NF-kappaB) signaling were enhanced in NC/Nga T cells. The expression of T(H)2 cytokines (IL-4, IL-13, and IL-5) and that of GATA-binding protein 3 (GATA3), avian musculoaponeurotic fibrosarcoma (c-Maf), NF-kappaB, and activator protein 1 (AP1) selectively increased in draining lymph node T cells of NC/Nga mice. Moreover, the cell transfer of inhibitory NF-kappaB mutant-infected T(H)2 cells reduced ear thickness in the mite antigen-induced skin lesion of NC/Nga mice. CONCLUSION Hyperresponsive T(H)2 cells with an enhanced activity of NF-kappaB and AP1 play a crucial role in the pathogenesis of atopic dermatitis-like skin lesions in NC/Nga mice. CLINICAL IMPLICATIONS These results indicate potential therapeutic usefulness of developing selective inhibitors for NF-kappaB in the treatment of human atopic dermatitis.
Collapse
Affiliation(s)
- Yoshiyuki Tenda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Takagi T, Jin W, Taya K, Watanabe G, Mori K, Ishii S. Schnurri-2 mutant mice are hypersensitive to stress and hyperactive. Brain Res 2006; 1108:88-97. [PMID: 16836985 DOI: 10.1016/j.brainres.2006.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 06/05/2006] [Accepted: 06/05/2006] [Indexed: 12/11/2022]
Abstract
The bone morphogenetic protein (BMP)/transforming growth factor-beta (TGF-beta)/activin superfamily regulates development of the nervous system during embryogenesis and is also suggested to be involved in adult brain function. However, how BMP/TGF-beta/activin signals modulate neuronal function remains unknown. Schnurri is a transcription factor that contains two metal finger regions. Mammalian Shn-2 enters the nucleus from the cytoplasm in response to BMP-2 stimulation and plays an important role in BMP-dependent adipogenesis. To investigate whether mammalian Shn plays a role in adult brain function, we examined the behaviors of mutant mice lacking Shn-2 (Shn-2(-/-)). Shn-2(-/-) mice exhibited hypersensitivity to stress accompanied by anxiety-like behavior. Consistent with this, stress-induced corticosterone levels were significantly higher in Shn-2(-/-) mice compared to wild-type controls. Interestingly, Shn-2(-/-) mice were more active than wild-type mice in a familiar environment. The basal and stress-induced expression levels of the immediate early genes, including c-Fos, were decreased in Shn-2(-/-) mice compared to wild-type mice. Thus, Shn-2 plays a critical role in locomotion and anxiety-like behavior.
Collapse
Affiliation(s)
- Tsuyoshi Takagi
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, Hasegawa A, Nakayama T. Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 2006; 24:611-22. [PMID: 16713978 DOI: 10.1016/j.immuni.2006.03.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 02/28/2006] [Accepted: 03/03/2006] [Indexed: 11/30/2022]
Abstract
The Mixed-Lineage Leukemia (MLL) gene, a mammalian homolog of the Drosophila trithorax, is implicated in regulating the maintenance of Hox gene expression and hematopoiesis. The physiological functions of MLL in the immune system remain largely unknown. Although MLL(+/-) CD4 T cells differentiate normally into antigen-specific effector Th1/Th2 cells in vitro, the ability of memory Th2 cells to produce Th2 cytokines was selectively reduced. Furthermore, histone modifications at the Th2 cytokine gene loci were not properly maintained in MLL(+/-) memory Th2 cells. The reduced expression of MLL in memory Th2 cells resulted in decreased GATA3 expression accompanied with impaired GATA3 locus histone modifications. The direct association of MLL with the GATA3 locus and the Th2 cytokine gene loci was demonstrated. Memory Th2 cell-dependent allergic airway inflammation was decreased in MLL(+/-) Th2 cell-transferred mice. Thus, a crucial role for MLL in the maintenance of memory Th2 cell function is indicated.
Collapse
Affiliation(s)
- Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Reinhardt RL, Kang SJ, Liang HE, Locksley RM. T helper cell effector fates — who, how and where? Curr Opin Immunol 2006; 18:271-7. [PMID: 16617008 DOI: 10.1016/j.coi.2006.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 03/22/2006] [Indexed: 12/30/2022]
Abstract
CD4 helper T cells functionally organize the host immune response by elaborating cytokines, often in patterns that have overlapping effects on other cells. Much interest centers on understanding how these stereotyped cytokine patterns become elaborated and what mechanisms underlie the generation of distinct helper T cell subsets. The past two years have seen advances in understanding of additional subsets, including T helper follicular cells and IL-17-producing T helper cells. Progress has also been achieved in resolving some of the crosstalk that regulates effector fate at the level of distinct transcription factors and chromatin reorganization of the cytokine genes, and a crucial role for gene silencing has been exposed. Finally, the role of innate cells in influencing these processes has become increasingly realized.
Collapse
Affiliation(s)
- R Lee Reinhardt
- University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0795, USA
| | | | | | | |
Collapse
|
43
|
Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, Ishii S. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 2006; 10:461-71. [PMID: 16580992 DOI: 10.1016/j.devcel.2006.02.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/25/2005] [Accepted: 02/21/2006] [Indexed: 10/21/2022]
Abstract
Adipocyte differentiation is an important component of obesity, but how hormonal cues mediate adipocyte differentiation remains elusive. BMP stimulates in vitro adipocyte differentiation, but the role of BMP in adipogenesis in vivo is unknown. Drosophila Schnurri (Shn) is required for the signaling of Decapentaplegic, a Drosophila BMP homolog, via interaction with the Mad/Medea transcription factors. Vertebrates have three Shn orthologs, Shn-1, -2, and -3. Here, we report that Shn-2(-/-) mice have reduced white adipose tissue and that Shn-2(-/-) mouse embryonic fibroblasts cannot efficiently differentiate into adipocytes in vitro. Shn-2 enters the nucleus upon BMP-2 stimulation and, in cooperation with Smad1/4 and C/EBPalpha, induces the expression of PPARgamma2, a key transcription factor for adipocyte differentiation. Shn-2 directly interacts with both Smad1/4 and C/EBPalpha on the PPARgamma2 promoter. These results indicate that Shn-2-mediated BMP signaling has a critical role in adipogenesis.
Collapse
Affiliation(s)
- Wanzhu Jin
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Nigo YI, Yamashita M, Hirahara K, Shinnakasu R, Inami M, Kimura M, Hasegawa A, Kohno Y, Nakayama T. Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci U S A 2006; 103:2286-91. [PMID: 16461458 PMCID: PMC1413725 DOI: 10.1073/pnas.0510685103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In a mouse experimental asthma model, the administration of bacterial lipopolysaccharide (LPS), particularly at low doses, enhances the levels of ovalbumin (OVA)-induced eosinophilic airway inflammation. In an effort to clarify the cellular and molecular basis for the LPS effect, we demonstrate that the OVA-induced eosinophilic inflammation in the lung is dramatically increased by the administration of LPS in wild-type mice, whereas such increase was not observed in mast-cell-deficient mice or Toll-like receptor (TLR)4-deficient mice. Adoptive transfer of bone-marrow-derived mast cells (BMMCs) from wild-type, but not from TLR4-deficient, mice restored the increased eosinophilic inflammation in mast-cell-deficient mice. Wild-type BMMCs pretreated with LPS in vitro also reconstituted the eosinophilic inflammation. Moreover, in vitro analysis revealed that the treatment of BMMCs with LPS resulted in NF-kappaB activation, sustained up-regulation of GATA1 and -2 expression, and increased the capability to produce IL-5 and -13. Dramatic increases in the expression of IL-5 and -13 and Eotaxin 2 were detected in LPS-treated BMMCs after costimulation with LPS and IgE/Ag. Overexpression of GATA1, but not GATA2, in MC9 mast cells resulted in increased transcriptional activity of IL-4, -5, and -13. Furthermore, the levels of transcription of Th2 cytokines in BMMCs were decreased by the introduction of small interfering RNA for GATA1. Thus, mast cells appear to control allergic airway inflammation after their activation and modulation through TLR4-mediated induction of GATA1 and subsequent increase in Th2 cytokine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yoichi Kohno
- Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Departments of *Immunology and
- To whom correspondence should be addressed at:
Department of Immunology (H3), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
45
|
Hasegawa A, Miki T, Hosokawa H, Hossain MB, Shimizu C, Hashimoto K, Kimura MY, Yamashita M, Nakayama T. Impaired GATA3-Dependent Chromatin Remodeling and Th2 Cell Differentiation Leading to Attenuated Allergic Airway Inflammation in Aging Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2546-54. [PMID: 16456016 DOI: 10.4049/jimmunol.176.4.2546] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Age-related changes in lymphocytes are most prominent in the T cell compartment. There have been substantial numbers of reports on T cell function in aged mice and humans, such as on the production of Th1 and Th2 cytokines, but the results show considerable variation and contradictions. In the present study, we used 8- to 12-mo-old aging mice and a well-established in vitro Th1/Th2 cell differentiation culture system to identify molecular defects in Th1/Th2 cell differentiation that can be detected in the relatively early stages of aging. The capability to differentiate into Th2 cells is reduced in aging mouse CD4(+) T cells. Decreased activation of the ERK MAPK cascade upon TCR stimulation, but normal intracellular-free calcium ion concentration mobilization and normal IL-4-induced STAT6 activation were observed in aging mouse CD4(+) T cells. In addition, reduced expression of GATA3 was detected in developing Th2 cells. Chromatin remodeling of the Th2 cytokine gene locus was found to be impaired. Th2-dependent allergic airway inflammation was milder in aging mice compared with in young adult mice. These results suggest that the levels of Th2 cell differentiation and resulting Th2-dependent immune responses, including allergic airway inflammation, decline during aging through defects in the activation of the ERK MAPK cascade, expression of GATA3 protein and GATA3-dependent chromatin remodeling of the Th2 cytokine gene locus. In the present study, we provide the first evidence indicating that a chromatin-remodeling event in T cells is impaired by aging.
Collapse
Affiliation(s)
- Akihiro Hasegawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu LC, Goettl VM, Madiai F, Hackshaw KV, Hussain SRA. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury. BMC Neurosci 2006; 7:4. [PMID: 16409637 PMCID: PMC1361774 DOI: 10.1186/1471-2202-7-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 01/12/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND NF-kappaB binds to the kappaB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the kappaB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-kappaB via the association with TRAF2 to inhibit the nuclear translocation of NF-kappaB. However, the physiological significance of the ZAS3-mediated inhibition of NF-kappaB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-kappaB. RESULTS Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-kappaB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. CONCLUSION ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of NF-kappaB, allowing Wallerian regeneration and induction of NF-kappaB-dependent gene expression, including pro-inflammatory cytokines. We propose that reciprocal changes in the expression of ZAS3 and NF-kappaB might generate neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, Ohio State University, OH 43210, USA
- Department of Internal Medicine, Ohio State University, OH 43210, USA
| | - Virginia M Goettl
- Center for Molecular Neurobiology, Ohio State University, OH 43210, USA
| | - Francesca Madiai
- Department of Internal Medicine, Ohio State University, OH 43210, USA
| | - Kevin V Hackshaw
- Department of Internal Medicine, Ohio State University, OH 43210, USA
| | | |
Collapse
|
47
|
Corn RA, Hunter C, Liou HC, Siebenlist U, Boothby MR. Opposing Roles for RelB and Bcl-3 in Regulation of T-Box Expressed in T Cells, GATA-3, and Th Effector Differentiation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2102-10. [PMID: 16081776 DOI: 10.4049/jimmunol.175.4.2102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+ T cells with a block in the NF-kappaB signaling pathway exhibit decreases in Th1 responses and diminished nuclear levels of multiple transactivating NF-kappaB/Rel/IkappaB proteins. To determine the lineage-intrinsic contributions of these transactivators to Th differentiation, T cells from mice deficient in specific subunits were cultured in exogenous cytokines promoting either Th1 or Th2 differentiation. RelB-deficient cells exhibited dramatic defects in Th1 differentiation and IFN-gamma production, whereas no consistent defect in either Th1 or Th2 responses was observed with c-Rel-deficient cells. In sharp contrast, Bcl-3-null T cells displayed no defect in IFN-gamma production, but their Th2 differentiation and IL-4, IL-5, and IL-13 production were significantly impaired. The absence of RelB led to a dramatic decrease in the expression of T-box expressed in T cells and Stat4. In contrast, Bcl-3-deficient cells exhibited decreased GATA-3, consistent with evidence that Bcl-3 can transactivate a gata3 promoter. These data indicate that Bcl-3 and RelB exert distinct and opposing effects on the expression of subset-determining transcription factors, suggesting that the characteristics of Th cell responses may be regulated by titrating the stoichiometry of transactivating NF-kappaB/Rel/IkappaB complexes in the nuclei of developing helper effector cells.
Collapse
Affiliation(s)
- Radiah A Corn
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
48
|
Epstein MM. Targeting memory Th2 cells for the treatment of allergic asthma. Pharmacol Ther 2005; 109:107-36. [PMID: 16081161 DOI: 10.1016/j.pharmthera.2005.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 12/19/2022]
Abstract
Th2 memory cells play an important role in the pathogenesis of allergic asthma. Evidence from patients and experimental models indicates that memory Th2 cells reside in the lungs during disease remission and, upon allergen exposure, become activated effectors involved in disease exacerbation. The inhibition of memory Th2 cells or their effector functions in allergic asthma influence disease progression, suggesting their importance as therapeutic targets. They are allergen specific and can potentially be suppressed or eliminated using this specificity. They have distinct activation, differentiation, cell surface phenotype, migration capacity, and effector functions that can be targeted singularly or in combination. Furthermore, memory Th2 cells residing in the lungs can be treated locally. Capitalizing on these unique attributes is important for drug development for allergic asthma. The aim of this review is to present an overview of therapeutic strategies targeting Th2 memory cells in allergic asthma, emphasizing Th2 generation, differentiation, activation, migration, effector function, and survival.
Collapse
Affiliation(s)
- Michelle M Epstein
- Medical University of Vienna, Department of Dermatology, Lazarettgasse 19, Vienna A-1090, Austria.
| |
Collapse
|