1
|
Degn SE, Tolar P. Towards a unifying model for B-cell receptor triggering. Nat Rev Immunol 2025; 25:77-91. [PMID: 39256626 DOI: 10.1038/s41577-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Antibodies are exceptionally versatile molecules with remarkable flexibility in their binding properties. Their natural targets range from small-molecule toxins, across viruses of different sizes, to bacteria and large multicellular parasites. The molecular determinants bound by antibodies include proteins, peptides, carbohydrates, nucleic acids, lipids and even synthetic molecules that have never existed in nature. Membrane-anchored antibodies also serve as receptors on the surface of the B cells that produce them. Despite recent structural insights, there is still no unifying molecular mechanism to explain how antibody targets (antigens) trigger the activation of these B-cell receptors (BCRs). After cognate antigen encounter, somatic hypermutation and class-switch recombination allow BCR affinity maturation and immunoglobulin class-specific responses, respectively. This raises the fundamental question of how one receptor activation mechanism can accommodate a plethora of variant receptors and ligands, and how it can ensure that individual B cells remain responsive to antigen after somatic hypermutation and class switching. There is still no definite answer. Here we give a brief historical account of the different models proposed to explain BCR triggering and discuss their merit in the context of the current knowledge of the structure of BCRs, their dynamic membrane distribution, and recent biochemical and cell biological insights.
Collapse
Affiliation(s)
- Søren E Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
| | - Pavel Tolar
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
2
|
Gao M, Skolnick J. Predicting protein interactions of the kinase Lck critical to T cell modulation. Structure 2024; 32:2168-2179.e2. [PMID: 39368461 PMCID: PMC11560573 DOI: 10.1016/j.str.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Protein-protein interactions (PPIs) play pivotal roles in directing T cell fate. One key player is the non-receptor tyrosine protein kinase Lck that helps to transduce T cell activation signals. Lck is mediated by other proteins via interactions that are inadequately understood. Here, we use the deep learning method AF2Complex to predict PPIs involving Lck, by screening it against ∼1,000 proteins implicated in immune responses, followed by extensive structural modeling for selected interactions. Remarkably, we describe how Lck may be specifically targeted by a palmitoyltransferase using a phosphotyrosine motif. We uncover "hotspot" interactions between Lck and the tyrosine phosphatase CD45, leading to a significant conformational shift of Lck for activation. Lastly, we present intriguing interactions between the phosphotyrosine-binding domain of Lck and the cytoplasmic tail of the immune checkpoint LAG3 and propose a molecular mechanism for its inhibitory role. Together, this multifaceted study provides valuable insights into T cell regulation and signaling.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; AgnistaBio Inc, Palo Alto, CA 94301, USA.
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 PMCID: PMC11764038 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Brenson A. Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
6
|
Molyneaux K, Laggner C, Vincent J, Brady-Kalnay S. Small molecule antagonists of PTPmu identified by artificial intelligence-based computational screening block glioma cell migration and growth. PLoS One 2023; 18:e0288980. [PMID: 37494327 PMCID: PMC10370706 DOI: 10.1371/journal.pone.0288980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
PTPmu (PTPμ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in both homophilic cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma generating extracellular and intracellular fragments that have oncogenic activity. The intracellular fragments, in particular, are known to accumulate in the cytoplasm and nucleus where they interact with inappropriate binding partners/substrates generating signals required for glioma cell migration and growth. Thus, interfering with these fragments is an attractive therapeutic strategy. To develop agents that target these fragments, we used the AI-based AtomNetⓇ model, a drug design and discovery tool, to virtually screen molecular libraries for compounds able to target a binding pocket bordered by the wedge domain, a known regulatory motif located within the juxtamembrane portion of the protein. Seventy-four high-scoring and chemically diverse virtual hits were then screened in multiple cell-based assays for effects on glioma cell motility (scratch assays) and growth in 3D culture (sphere assays), and PTPmu-dependent adhesion (Sf9 aggregation). We identified three inhibitors (247678835, 247682206, 247678791) that affected the motility of multiple glioma cell lines (LN229, U87MG, and Gli36delta5), the growth of LN229 and Gli36 spheres, and PTPmu-dependent Sf9 aggregation. Compound 247678791 was further shown to suppress PTPmu enzymatic activity in an in vitro phosphatase assay, and 247678835 was able to inhibit the growth of human glioma tumors in mice. We propose that these three compounds are PTPmu-targeting agents with therapeutic potential for treating glioblastoma.
Collapse
Affiliation(s)
- Kathleen Molyneaux
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Jason Vincent
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Susann Brady-Kalnay
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Asano W, Yamanaka K, Ohara Y, Uhara T, Doi S, Orita T, Iwanaga T, Adachi T, Fujioka S, Akaki T, Ikegashira K, Hantani Y. Fragment-Based Discovery of Novel VE-PTP Inhibitors Using Orthogonal Biophysical Techniques. Biochemistry 2023. [PMID: 37414577 DOI: 10.1021/acs.biochem.3c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Tyrosine phosphorylation is an essential post-translational modification that regulates various biological events and is implicated in many diseases including cancer and atherosclerosis. Vascular endothelial protein tyrosine phosphatase (VE-PTP), which plays an important role in vascular homeostasis and angiogenesis, is therefore an attractive drug target for these diseases. However, there are still no drugs targeting PTP including VE-PTP. In this paper, we report the discovery of a novel VE-PTP inhibitor, Cpd-2, by fragment-based screening combining various biophysical techniques. Cpd-2 is the first VE-PTP inhibitor with a weakly acidic structure and high selectivity, unlike known strongly acidic inhibitors. We believe that this compound represents a new possibility for the development of bioavailable VE-PTP inhibitors.
Collapse
Affiliation(s)
- Wataru Asano
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kenji Yamanaka
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yasunori Ohara
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toru Uhara
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Satoki Doi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Orita
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomoko Iwanaga
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Fujioka
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tatsuo Akaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazutaka Ikegashira
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshiji Hantani
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
8
|
Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sci Signal 2023; 16:eabn8668. [PMID: 37402225 PMCID: PMC10544828 DOI: 10.1126/scisignal.abn8668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.
Collapse
Affiliation(s)
- Sho Sendo
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - William B. Kiosses
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Shen Yang
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dennis J. Wu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel W. K. Lee
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lin Liu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Allison J. Vela
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Eugenio Santelli
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Nunzio Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
10
|
Windheim M, Reubold TF, Aichane K, Gaestel M, Burgert HG. Enforced Dimerization of CD45 by the Adenovirus E3/49K Protein Inhibits T Cell Receptor Signaling. J Virol 2023; 97:e0189822. [PMID: 37125921 PMCID: PMC10231199 DOI: 10.1128/jvi.01898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.
Collapse
Affiliation(s)
- Mark Windheim
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas F. Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khadija Aichane
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Structural insights into the pSer/pThr dependent regulation of the SHP2 tyrosine phosphatase in insulin and CD28 signaling. Nat Commun 2022; 13:5439. [PMID: 36114179 PMCID: PMC9481563 DOI: 10.1038/s41467-022-32918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Serine/threonine phosphorylation of insulin receptor substrate (IRS) proteins is well known to modulate insulin signaling. However, the molecular details of this process have mostly been elusive. While exploring the role of phosphoserines, we have detected a direct link between Tyr-flanking Ser/Thr phosphorylation sites and regulation of specific phosphotyrosine phosphatases. Here we present a concise structural study on how the activity of SHP2 phosphatase is controlled by an asymmetric, dual phosphorylation of its substrates. The structure of SHP2 has been determined with three different substrate peptides, unveiling the versatile and highly dynamic nature of substrate recruitment. What is more, the relatively stable pre-catalytic state of SHP2 could potentially be useful for inhibitor design. Our findings not only show an unusual dependence of SHP2 catalytic activity on Ser/Thr phosphorylation sites in IRS1 and CD28, but also suggest a negative regulatory mechanism that may also apply to other tyrosine kinase pathways as well. SHP2 is an important human tyrosine phosphatase with key roles in cancer, immune responses and insulin signaling. Here, the authors explore its substrate recognition mechanism in molecular detail and uncover a complex regulatory mechanism for this enzyme that marks specific target sites for dephosphorylation.
Collapse
|
12
|
Henderson IM, Marez C, Dokladny K, Smoake J, Martinez M, Johnson D, Uhl GR. Substrate-selective positive allosteric modulation of PTPRD’s phosphatase by flavonols. Biochem Pharmacol 2022; 202:115109. [PMID: 35636503 PMCID: PMC10184881 DOI: 10.1016/j.bcp.2022.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
The receptor type protein tyrosine phosphatase D (PTPRD) is expressed by neurons and implicated in interesting phenotypes that include reward from addictive substances, restless leg syndrome and neurofibrillary tangle densities in Alzheimer's disease (AD-NFTs). However, the brain phosphotyrosine phosphoprotein (PTPP) substrates for PTPRD's phosphatase have not been clearly defined. Although we have identified small molecule inhibitors of PTPRD's phosphatase that are candidates for reducing reward from addictive substances, no positive allosteric modulators of this phosphatase that might be candidates for reducing AD-NFTs have been reported. We now report identification of candidate brain substrates for PTPRD based on their increased phosphorylation in knockout vs wildtype animals, coexpression with PTPRD in neuronal subtypes and brisk dephosphorylation by recombinant human PTPRD phosphatase. We also report discovery that quercetin and other flavonols, though not closely-related flavones, enhance rates of PTPRD's dephosphorylation of a group of these candidate substrate PTPPs but not others. This substrate-selective positive allosteric modulation provides a novel pharmacological action. Flavonol-mediated increases in PTPRD's dephosphorylation of the GSK3 β and α kinases that hyperphosphorylate tau, the major component of AD-NFTs, could help to explain recent data concerning genetic and dietary impacts on Alzheimer's disease.
Collapse
Affiliation(s)
- Ian M Henderson
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Carlissa Marez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Karol Dokladny
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, United States
| | - Jane Smoake
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Maria Martinez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - David Johnson
- College of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - George R Uhl
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States; Departments of Neurology, Neuroscience and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States; Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Maryland VA Healthcare System, Baltimore, MD 21201, United States.
| |
Collapse
|
13
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Abstract
Protein Tyrosine Phosphatases reverse cellular signals initiated by growth factors receptors and other tyrosine kinases by dephosphorylating phosphotyrosine on target proteins. The activity of these enzymes is crucial for maintaining cell homeostasis, yet these enzymes have been often dismissed as humble house-keeping proteins. Understandably, mutations and changes in expression patterns of Protein Tyrosine Phosphatases are implicated in tumorigenesis and various carcinomas. The conserved nature of their catalytic domains makes drug discovery a challenging pursuit. In this review, we focus on describing the various classes of Protein Tyrosine Phosphatases and their catalytic domains. We also summarize their role in cancer and neurodegenerative diseases using specific members as the model system. Finally, we explain the dichotomy in the biological role of catalytically active vs the pseudoenzyme forms of Protein Tyrosine Phosphatases in the context of their membrane bound receptor forms. This chapter aims to provide a current understanding of these proteins, in the background of their foundational past research.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Preeti Pandey
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima G Ahuja
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
15
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
16
|
Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. J Biol Chem 2020; 295:4923-4936. [PMID: 32139509 DOI: 10.1074/jbc.ra119.011808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor-type protein tyrosine phosphatase α (RPTPα) is an important positive regulator of SRC kinase activation and a known promoter of cancer growth, fibrosis, and arthritis. The domain structure of RPTPs comprises an extracellular region, a transmembrane helix, and two tandem intracellular catalytic domains referred to as D1 and D2. The D2 domain of RPTPs is believed to mostly play a regulatory function; however, no regulatory model has been established for RPTPα-D2 or other RPTP-D2 domains. Here, we solved the 1.8 Å resolution crystal structure of the cytoplasmic region of RPTPα, encompassing D1 and D2, trapped in a conformation that revealed a possible mechanism through which D2 can allosterically inhibit D1 activity. Using a D2-truncation RPTPα variant and mutational analysis of the D1/D2 interfaces, we show that D2 inhibits RPTPα phosphatase activity and identified a 405PFTP408 motif in D1 that mediates the inhibitory effect of D2. Expression of the gain-of-function F406A/T407A RPTPα variant in HEK293T cells enhanced SRC activation, supporting the relevance of our proposed D2-mediated regulation mechanism in cell signaling. There is emerging interest in the development of allosteric inhibitors of RPTPs but a scarcity of validated allosteric sites for RPTPs. The results of our study not only shed light on the regulatory role of RPTP-D2 domains, but also provide a potentially useful tool for the discovery of chemical probes targeting RPTPα and other RPTPs.
Collapse
Affiliation(s)
- Yutao Wen
- Department of Medicine, University of California, San Diego, La Jolla, California 92037.,Department of Biological Sciences, University of California, San Diego, La Jolla, California 92037
| | - Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Kuninobu Wakabayashi
- Department of Medicine, University of California, San Diego, La Jolla, California 92037.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, California 92037.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, California 92037.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California 92037 .,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, California 92037
| |
Collapse
|
17
|
Fujikawa A, Sugawara H, Tanga N, Ishii K, Kuboyama K, Uchiyama S, Suzuki R, Noda M. A head-to-toe dimerization has physiological relevance for ligand-induced inactivation of protein tyrosine receptor type Z. J Biol Chem 2019; 294:14953-14965. [PMID: 31416834 PMCID: PMC6791311 DOI: 10.1074/jbc.ra119.007878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Protein-tyrosine phosphatase (PTPase) receptor type Z (PTPRZ) has two receptor isoforms, PTPRZ-A and -B, containing tandem intracellular PTP-D1 and -D2 domains, with only D1 being active. Pleiotrophin (PTN) binding to the extracellular PTPRZ region leads to inactivation of its PTPase activity, thereby facilitating oligodendrocyte precursor cell (OPC) differentiation and myelination in the central nervous system. However, the mechanisms responsible for PTN-induced PTPRZ inactivation remain unclear. We herein report that the crystal structure of the intracellular region of PTPRZ (PTPRZ-ICR) shows a "head-to-toe"-type dimer conformation, with D2 masking the catalytic site of D1. MS analyses revealed that PTPRZ-ICR proteins remain in monomer-dimer equilibrium in aqueous solution and that a substrate-derived inhibitory peptide or competitive inhibitor (SCB4380) specifically bind to the monomer form in a 1:1 ratio. A D2 deletion (ΔD2) or dimer interface mutation (DDKK) disrupted dimer formation, but SCB4380 binding was maintained. Similar to WT PTPRZ-B, monomer-biased PTPRZ-B-ΔD2 and PTPRZ-B-DDKK variants efficiently dephosphorylated p190RhoGAP at Tyr-1105 when co-expressed in BHK-21 cells. The catalytic activities of these variants were not suppressed by PTN treatment, but were inhibited by the cell-permeable PTPase inhibitor NAZ2329. Of note, the PTN treatment did not enhance OPC differentiation in primary cultured glial cells from ΔD2 or PTPase-inactive PTPRZ-B (CS) mutant knock-in mice. Our results thus indicate that PTN-induced PTPRZ inactivation results from dimer formation of the intracellular tandem PTP domains in a head-to-toe configuration, which is physiologically relevant to the control of OPC differentiation in vivo.
Collapse
Affiliation(s)
- Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hajime Sugawara
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Naomi Tanga
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan,School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryoko Suzuki
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan,School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan,Institute of Innovative Research, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan, To whom correspondence should be addressed:
Institute of Innovative Research (IIR), Tokyo Institute of Technology, S2 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan. Tel.:
81-45-924-5537; E-mail:
| |
Collapse
|
18
|
Huang X, Zuo Y, Wang X, Wu X, Tan H, Fan Q, Dong B, Xue W, Chen GQ, Cheng J. SUMO-Specific Protease 1 Is Critical for Myeloid-Derived Suppressor Cell Development and Function. Cancer Res 2019; 79:3891-3902. [PMID: 31186231 DOI: 10.1158/0008-5472.can-18-3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/07/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) can suppress immunity and promote tumorigenesis, and their abundance is associated with poor prognosis. In this study, we show that SUMO1/sentrin-specific peptidase 1 (SENP1) regulates the development and function of MDSC. SENP1 deficiency in myeloid cells promoted MDSC expansion in bone marrow, spleen, and other organs. Senp1-/- MDSC showed stronger immunosuppressive activity than Senp1+/+ MDSC; we observed no defects in the differentiation of myeloid precursor cell in Senp1-/- mice. Mechanistically, SENP1-mediated regulation of MDSC was dependent on STAT3 signaling. We identified CD45 as a specific STAT3 phosphatase in MDSC. CD45 was SUMOylated in MDSC and SENP1 could deconjugate SUMOylated CD45. In Senp1-/- MDSC, CD45 was highly SUMOylated, which reduced its phosphatase activity toward STAT3, leading to STAT3-mediated MDSC development and function. These results reveal a suppressive function of SENP1 in modulating MDSC expansion and function via CD45-STAT3 signaling axis. SIGNIFICANCE: These findings show that increased SUMOylation of CD45 via loss of SENP1 suppresses CD45-mediated dephosphorylation of STAT3, which promotes MDSC development and function, leading to tumorigenesis.
Collapse
Affiliation(s)
- Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Urology, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out? Molecules 2018; 23:molecules23030569. [PMID: 29498714 PMCID: PMC6017057 DOI: 10.3390/molecules23030569] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs), of the receptor and non-receptor classes, are key signaling molecules that play critical roles in cellular regulation underlying diverse physiological events. Aberrant signaling as a result of genetic mutation or altered expression levels has been associated with several diseases and treatment via pharmacological intervention at the level of PTPs has been widely explored; however, the challenges associated with development of small molecule phosphatase inhibitors targeting the intracellular phosphatase domain (the “inside-out” approach) have been well documented and as yet there are no clinically approved drugs targeting these enzymes. The alternative approach of targeting receptor PTPs with biotherapeutic agents (such as monoclonal antibodies or engineered fusion proteins; the “outside-in” approach) that interact with the extracellular ectodomain offers many advantages, and there have been a number of exciting recent developments in this field. Here we provide a brief overview of the receptor PTP family and an update on the emerging area of receptor PTP-targeted biotherapeutics for CD148, vascular endothelial-protein tyrosine phosphatase (VE-PTP), receptor-type PTPs σ, γ, ζ (RPTPσ, RPTPγ, RPTPζ) and CD45, and discussion of future potential in this area.
Collapse
|
21
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
22
|
Yu Y, Sun H, Hou T, Wang S, Li Y. Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations. RSC Adv 2018; 8:13997-14008. [PMID: 35539330 PMCID: PMC9079904 DOI: 10.1039/c7ra13543b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity. However, the underlying molecular mechanism remains elusive. In this study, molecular dynamics (MD) simulations in conjunction with molecular docking calculations were utilized to investigate the binding effects of C60, C60(NH2)30, and C60(OH)30 on the enzymatic activity of CD45 (a receptor-like protein tyrosine phosphatase). Our results show that all the investigated molecules can be docked into the region between D1 and D2 domains of CD45, and stabilize the protein structure. The average number of residues that directly interact with the C60(NH2)30 is two more than that of C60(OH)30, F819 and F820 (located in the loop connects α3 and β12), resulting in different effects of C60(NH2)30 and C60(OH)30 on protein activity. Detailed MD simulation analyses show that transformation of the interaction network caused by C60(NH2)30 is completely different from that of the control simulation due to the misfolding of α3. Furthermore, the movement of D1 active pocket and KNRY motif are most severely impaired by docking with C60(NH2)30. Our simulation results illustrate that fullerene derivatives modified with amino groups exhibit conspicuous tumor inhibition to protein tyrosine phosphatases, and can act as effective inhibitors. Our results give insight into the inhibitory effects of fullerene-based molecules on protein tyrosine phosphatases and providing a theoretical basis for the design of effective inhibitors. Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity.![]()
Collapse
Affiliation(s)
- Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Suidong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
23
|
Perdomo-Celis F, Taborda NA, Rugeles MT. Follicular CD8 + T Cells: Origin, Function and Importance during HIV Infection. Front Immunol 2017; 8:1241. [PMID: 29085360 PMCID: PMC5649150 DOI: 10.3389/fimmu.2017.01241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The lymphoid follicle is critical for the development of humoral immune responses. Cell circulation to this site is highly regulated by the differential expression of chemokine receptors. This feature contributes to the establishment of viral reservoirs in lymphoid follicles and the development of some types of malignancies that are able to evade immune surveillance, especially conventional CD8+ T cells. Interestingly, a subtype of CD8+ T cells located within the lymphoid follicle (follicular CD8+ T cells) was recently described; these cells have been proposed to play an important role in viral and tumor control, as well as to modulate humoral and T follicular helper cell responses. In this review, we summarize the knowledge on this novel CD8+ T cell population, its origin, function, and potential role in health and disease, in particular, in the context of the infection by the human immunodeficiency virus.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
24
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Mercier FE, Sykes DB, Scadden DT. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1(STEM) Mouse. Stem Cell Reports 2016; 6:985-992. [PMID: 27185283 PMCID: PMC4911492 DOI: 10.1016/j.stemcr.2016.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs) requires in vivo functional analyses. Competitive bone marrow transplants (BMTs) compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprca Pepcb/BoyJ (CD45.1), has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2) strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprca Pepcb/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM) mouse strain, CD45.1STEM, which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays. Competitive transplantation is a fundamental tool for examining HSPC biology The congenic interval of the B6.SJL-Ptprca Pepcb/BoyJ mouse affects HSPC function CD45.1 and CD45.2 epitopes differ by one amino acid A single amino acid change in the C57BL/6N strain creates the CD45.1STEM competitor
Collapse
Affiliation(s)
- Francois E Mercier
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - David B Sykes
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Zheng X, Li AS, Zheng H, Zhao D, Guan D, Zou H. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma. PLoS One 2015; 10:e0119780. [PMID: 25781885 PMCID: PMC4363322 DOI: 10.1371/journal.pone.0119780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
In response to interleukin 6 (IL-6) stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT)3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK), and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing) the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC) and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC/NF-κB pathways.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| | - Allison S. Li
- Harvard University, Cambridge, MA, United States of America
| | | | - Dongmei Zhao
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dagang Guan
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Jin R, Gao Y, Zhang S, Teng F, Xu X, Aili A, Wang Y, Sun X, Pang X, Ge Q, Zhang Y. Trx1/TrxR1 system regulates post-selected DP thymocytes survival by modulating ASK1-JNK/p38 MAPK activities. Immunol Cell Biol 2015; 93:744-52. [PMID: 25753394 DOI: 10.1038/icb.2015.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/06/2015] [Accepted: 02/25/2015] [Indexed: 12/26/2022]
Abstract
A key process in the development of T lymphocyte in the thymus is T-cell receptor (TCR) selection. It is controlled by complex signaling pathways that contain redox-sensitive molecules. However, the redox status early after TCR selection and how redox regulators promote the survival of post-selected DP thymocytes has not been directly addressed. The present study demonstrated that the transition from pre- to post-selected double-positive (DP) stages was accompanied with an increase of reactive oxygen species (ROS) and a transient surge in the expression of a variety of redox regulators. Among them, the thioredoxin (Trx)1/thioredoxin reductase (TrxR)1 system was found to be critically involved in the regulation of cell survival of DP thymocytes, especially that of post-selected CD69(+) subset, as its inhibition caused a specific reduction of these cells both in vitro and in vivo, most likely owing to increased apoptosis. Suppression of the glutathione-dependent redox system, on the other hand, showed no obvious impact. Biochemically, treatment of DP thymcoytes with TrxR1 inhibitor alone or in conjunction with anti-CD3 resulted in enhanced phosphorylation of redox-sensitive ASK-1, JNK and p38 MAPK, and upregulated expression of Bim. Taken together, the data presented here suggest that the timely upregulation of Trx1/TrxR1 and the active control of intracellular redox status is critical for the survival of thymocytes during and short after positive selection.
Collapse
Affiliation(s)
- Rong Jin
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yuhan Gao
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Shusong Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Fei Teng
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xi Xu
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Abudureyimujiang Aili
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yuqing Wang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xuewen Pang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| |
Collapse
|
28
|
Hobiger K, Friedrich T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015; 6:20. [PMID: 25713537 PMCID: PMC4322731 DOI: 10.3389/fphar.2015.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 02/03/2023] Open
Abstract
The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs). Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs). In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs). Although PTPs have already been well-characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.
Collapse
Affiliation(s)
- Kirstin Hobiger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Thomas Friedrich
- Max-Volmer-Laboratory of Biophysical Chemistry, Institute of Chemistry, Technische Universität Berlin Berlin, Germany
| |
Collapse
|
29
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
30
|
Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. CHINESE JOURNAL OF CANCER 2014; 34:61-9. [PMID: 25322863 PMCID: PMC4360074 DOI: 10.5732/cjc.014.10146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play an important role in regulating cell signaling events in coordination with tyrosine kinases to control cell proliferation, apoptosis, survival, migration, and invasion. Receptor-type protein tyrosine phosphatases (PTPRs) are a subgroup of PTPs that share a transmembrane domain with resulting similarities in function and target specificity. In this review, we summarize genetic and epigenetic alterations including mutation, deletion, amplification, and promoter methylation of PTPRs in cancer and consider the consequences of PTPR alterations in different types of cancers. We also summarize recent developments using PTPRs as prognostic or predictive biomarkers and/or direct targets. Increased understanding of the role of PTPRs in cancer may provide opportunities to improve therapeutic approaches.
Collapse
Affiliation(s)
- Yu Du
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
31
|
Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Bioorg Med Chem Lett 2014; 24:3175-9. [DOI: 10.1016/j.bmcl.2014.04.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
|
32
|
Ahuja LG, Gopal B. Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Antioxid Redox Signal 2014; 20:2141-59. [PMID: 24206235 DOI: 10.1089/ars.2013.5721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. RECENT ADVANCES The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. CRITICAL ISSUES AND FUTURE DIRECTIONS The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.
Collapse
Affiliation(s)
- Lalima Gagan Ahuja
- 1 Molecular Biophysics Unit, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
33
|
Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol Pharmacol 2014; 85:553-63. [PMID: 24473749 DOI: 10.1124/mol.113.089847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs. The relevance of the allosteric pocket was verified through site-directed mutagenesis. Compound 211 has a noncompetitive mechanism of action, and it is extremely effective at preventing dephosphorylation of substrate Lck phosphotyrosine (pY)-505 versus preventing dephosphorylation of Lck pY-393. In cultured primary T cells, compound 211 prevents T-cell receptor-mediated activation of Lck, Zap-70, and mitogen-activated protein kinase, and interleukin-2 production. In a delayed-type hypersensitivity reaction in vivo, compound 211 abolished inflammation. This work demonstrates a novel approach to develop effective allosteric inhibitors that can be expanded to target the corresponding allosteric domains of other receptor PTPs.
Collapse
Affiliation(s)
- Michael D Perron
- Lady Davis Institute-Jewish General Hospital (M.P., S.C., H.U.S.), Departments of Pharmacology and Therapeutics (M.P., H.U.S.), Biochemistry (I.A., E.P., M.L.T.), and Oncology (H.U.S.), Goodman Cancer Research Center (M.L.T.), and Segal Cancer Center, McGill University, Montreal, Quebec, Canada (H.U.S.); and Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada (E.P.)
| | | | | | | | | | | |
Collapse
|
34
|
Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Biochemistry 2014; 53:397-412. [PMID: 24359314 PMCID: PMC3954597 DOI: 10.1021/bi401223r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
Collapse
Affiliation(s)
- Nicholas G. Selner
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Rinrada Luechapanichkul
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Xianwen Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Benjamin G. Neel
- Princess Margaret Cancer Center, University Health Network, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Charles E. Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Gulerez IE, Gehring K. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Methods 2014; 65:175-83. [DOI: 10.1016/j.ymeth.2013.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022] Open
|
36
|
Jeon TJ, Chien PN, Chun HJ, Ryu SE. Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Mol Cells 2013; 36:55-61. [PMID: 23820885 PMCID: PMC3887927 DOI: 10.1007/s10059-013-0033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.
Collapse
Affiliation(s)
- Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| | - Ha-Jung Chun
- Department of Radiation Oncology, College of Medicine, Hanyang University, Seoul 133-070,
Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| |
Collapse
|
37
|
Tonks NK. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J 2013; 280:346-78. [PMID: 23176256 DOI: 10.1111/febs.12077] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signalling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase family of enzymes. I have discussed various aspects of the structure, regulation and function of the protein tyrosine phosphatase family, which I hope will illustrate the fundamental importance of these enzymes in the control of signal transduction.
Collapse
Affiliation(s)
- Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA.
| |
Collapse
|
38
|
Kuban-Jankowska A, Tuszynski JA, Winter P, Gorska M, Knap N, Wozniak M. Activation of hydrogen peroxide to peroxytetradecanoic acid is responsible for potent inhibition of protein tyrosine phosphatase CD45. PLoS One 2012; 7:e52495. [PMID: 23300686 PMCID: PMC3531430 DOI: 10.1371/journal.pone.0052495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Hydrogen peroxide induces oxidation and consequently inactivation of many protein tyrosine phosphatases. It was found that hydrogen peroxide, in the presence of carboxylic acids, was efficiently activated to form even more potent oxidant - peroxy acid. We have found that peroxytetradecanoic acid decreases the enzymatic activity of CD45 phosphatase significantly more than hydrogen peroxide. Our molecular docking computational analysis suggests that peroxytetradecanoic acid has a higher binding affinity to the catalytic center of CD45 than hydrogen peroxide.
Collapse
Affiliation(s)
- Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
- * E-mail: (AKJ); (MW)
| | - Jack A. Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
- College of Health, Beauty Care and Education in Poznan, Faculty in Gdynia, Gdynia, Poland
- * E-mail: (AKJ); (MW)
| |
Collapse
|
39
|
High-throughput screen using a single-cell tyrosine phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase CD45. Proc Natl Acad Sci U S A 2012; 109:13972-7. [PMID: 22891353 DOI: 10.1073/pnas.1205028109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many cellular signaling events are regulated by tyrosine phosphorylation and mediated by the opposing actions of protein tyrosine kinases and phosphatases. Protein tyrosine phosphatases are emerging as drug targets, but poor cell permeability of inhibitors has limited the development of drugs targeting these enzymes [Tautz L, et al. (2006) Expert Opin Ther Targets 10:157-177]. Here we developed a method to monitor tyrosine phosphatase activity at the single-cell level and applied it to the identification of cell-permeable inhibitors. The method takes advantage of the fluorogenic properties of phosphorylated coumaryl amino propionic acid (pCAP), an analog of phosphotyrosine, which can be incorporated into peptides. Once delivered into cells, pCAP peptides were dephosphorylated by protein tyrosine phosphatases, and the resulting cell fluorescence could be monitored by flow cytometry and high-content imaging. The robustness and sensitivity of the assay was validated using peptides preferentially dephosphorylated by CD45 and T-cell tyrosine phosphatase and available inhibitors of these two enzymes. The assay was applied to high-throughput screening for inhibitors of CD45, an important target for autoimmunity and infectious diseases [Hermiston ML, et al. (2003) Annu Rev Immunol 21:107-137]. We identified four CD45 inhibitors that showed activity in T cells and macrophages. These results indicate that our assay can be applied to primary screening for inhibitors of CD45 and of other protein tyrosine phosphatases to increase the yield of biologically active inhibitors.
Collapse
|
40
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
41
|
Mohebiany AN, Nikolaienko RM, Bouyain S, Harroch S. Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J 2012; 280:388-400. [PMID: 22682003 DOI: 10.1111/j.1742-4658.2012.08653.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reversible protein phosphorylation plays a pivotal role in intercellular communication. Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) are involved in the regulation of key cellular processes by controlling the phosphorylation levels of diverse effectors. Among PTPs, receptor-like protein tyrosine phosphatases (RPTPs) are involved in important developmental processes, particularly in the formation of the nervous system. Until recently, few ligands had been identified for RPTPs, making it difficult to grasp the effects these receptors have on cellular processes, as well as the mechanisms through which their functions are mediated. However, several potential RPTP ligands have now been identified to provide us with unparalleled insights into RPTP function. In this review, we focus on the nature and biological outcomes of these extracellular interactions between RPTPs and their associated ligands.
Collapse
Affiliation(s)
- Alma N Mohebiany
- Department of Neuroscience, Institut Pasteur de Paris, Paris, France
| | | | | | | |
Collapse
|
42
|
Nikolaienko RM, Agyekum B, Bouyain S. Receptor protein tyrosine phosphatases and cancer: new insights from structural biology. Cell Adh Migr 2012; 6:356-64. [PMID: 22796942 DOI: 10.4161/cam.21242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.
Collapse
Affiliation(s)
- Roman M Nikolaienko
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | |
Collapse
|
43
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
44
|
Rhee I, Veillette A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 2012; 13:439-47. [PMID: 22513334 DOI: 10.1038/ni.2246] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lymphocyte activation must be tightly regulated to ensure sufficient immunity to pathogens and prevent autoimmunity. Protein tyrosine phosphatases (PTPs) serve critical roles in this regulation by controlling the functions of key receptors and intracellular signaling molecules in lymphocytes. In some cases, PTPs inhibit lymphocyte activation, whereas in others they promote it. Here we discuss recent progress in elucidating the roles and mechanisms of action of PTPs in lymphocyte activation. We also review the accumulating evidence that genetic alterations in PTPs are involved in human autoimmunity.
Collapse
Affiliation(s)
- Inmoo Rhee
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
45
|
Clark MC, Baum LG. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann N Y Acad Sci 2012; 1253:58-67. [PMID: 22288421 DOI: 10.1111/j.1749-6632.2011.06304.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosylation affects many essential T cell processes and is intrinsically controlled throughout the lifetime of a T cell. CD43 and CD45 are the two most abundant glycoproteins on the T cell surface and are decorated with O- and N-glycans. Global T cell glycosylation and specific glycosylation of CD43 and CD45 are modulated during thymocyte development and T cell activation; T cells control the type and abundance of glycans decorating CD43 and CD45 by regulating expression of glycosyltransferases and glycosidases. Additionally, T cells regulate glycosylation of CD45 by expressing alternatively spliced isoforms of CD45 that have different glycan attachment sites. The glycophenotype of CD43 and CD45 on T cells influences how T cells interact with the extracellular environment, including how T cells interact with endogenous lectins. This review focuses on changes in glycosylation of CD43 and CD45 occurring throughout T cell development and activation and the role that glycosylation plays in regulating T cell processes, such as migration, T cell receptor signaling, and apoptosis.
Collapse
Affiliation(s)
- Mary C Clark
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
46
|
Yu YL, Shi BM, Surgery DOHBP, University SPHATS, 250021 J, Province S, China. Progress in research of molecular markers for hepatic oval cells You-Lin Yu, Bao-Ming Shi. Shijie Huaren Xiaohua Zazhi 2011; 19:3610-3615. [DOI: 10.11569/wcjd.v19.i35.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stem cells have the capacity of self-renewal, proliferation and differentiation and can produce progeny cells that have the same phenotypes and genotype as parental cells. The cells originate from the foregut endoderm and exist in the form of hepatic cells in embryonic liver, and small oval cells (OCs) with a large nuclear/cytoplasmic ratio and special cell markers in the adult liver. Hepatic stem cells are normally in the dormant state and divide at a very slow rate. The cells begin to be activated to proliferate quickly and transit from quiescent phase to proliferative phase when the liver is resected by operation or injured by drugs. In recent years, numerous studies have confirmed that hepatic OCs are hepatic stem cells that have the bipotential capability of differentiation into mature hepatocytes and biliary epithelial cells when hepatocyte proliferation is inhibited and liver regeneration compromised. The research of the role of hepatic OCs in the management of acute and chronic liver dysfunction, advanced cirrhosis, other liver diseases, and diabetes caused by pancreatic lesions has attracted wide attention. Great efforts have been made to find and isolate hepatic OCs. This review discusses the progress in research of molecular markers for hepatic OCs.
Collapse
|
47
|
Oxidants as important determinants of renal apoptosis during pneumoperitoneum: a study in an isolated perfused rat kidney model. Surg Endosc 2011; 26:1417-24. [PMID: 22179442 DOI: 10.1007/s00464-011-2049-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/27/2011] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Pneumoperitoneum-associated ischemia-reperfusion (IR) may initiate renal dysfunction. Whether oxidants are responsible for renal structural damage, such as cell apoptosis, has not yet been evaluated. We investigated such eventuality in an isolated rat kidney model. METHODS Thirty-five rat kidneys with their vessels and ureter were harvested and perfused within a closed environment at flow of 15 ml min(-1). After stabilization, kidneys were assigned to one of five groups (n = 7 per group): CO(2)-induced intrachamber pressure of 8, 12, or 0 mmHg (control), and 8 or 12 mmHg pressure applied to kidneys from rats treated pre-experimentally with tungsten for 14 days. Pressurization lasted 60 min. RESULTS Organ perfusion pressure raised as intrachamber pressure increased. Urinary output decreased in the two pressurized nonpretreated groups. Intrachamber pressure was directly associated with an increase in postexperimental xanthine oxidase tissue levels. Twofold apoptosis was documented (p < 0.05) in cortex of nonpretreated kidney in the 12 mmHg group compared with the 8 or 0 mmHg groups. Tungsten pretreatment significantly (p < 0.05) attenuated the abnormalities documented in the 12 mmHg group, but less so in the 8 mmHg pressurized nontreated counterparts. CONCLUSIONS Pneumoperitoneal pressure applied to isolated perfused kidney is associated with renal apoptosis. This rapidly induced structural renal damage is oxidant dependent and can be attenuated by antioxidants. Further studies may shed more light on the role of antioxidants in preventing pneumoperitoneum-induced kidney dysfunction.
Collapse
|
48
|
Hou L, Wang J, Zhou Y, Li J, Zang Y, Li J. Structural insights into the homology and differences between mouse protein tyrosine phosphatase-sigma and human protein tyrosine phosphatase-sigma. Acta Biochim Biophys Sin (Shanghai) 2011; 43:977-88. [PMID: 22027896 DOI: 10.1093/abbs/gmr095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein tyrosine phosphatases PTP-sigma (PTPσ) plays an important role in the development of the nervous system and nerve regeneration. Although cumulative studies about the function of PTPσ have been reported, yet limited data have been reported about the crystal structure and in vitro activity of mouse PTPσ. Here we report the crystal structure of mouse PTPσ tandem phosphatase domains at 2.4 Å resolution. Then we compared the crystal structure of mouse PTPσ with human PTPσ and found that they are very similar, superimposing with a root mean square deviation of 0.45 Å for 517 equivalent Cα atoms. But some residues in mouse PTPσ form loops while corresponding residues in human PTPσ form β-sheets or α-helices. Furthermore, we also compared in vitro activities of mouse PTPσ with human PTPσ and found that mouse PTPσ has 25-fold higher specific activity than human PTPσ does toward O-methyl fluorescein phosphate (OMFP) as the substrate. However, there is no significant activity difference between the mouse and the human enzyme detected with p-nitrophenylphosphate (pNPP) as the substrate. Mouse PTPσ and human PTPσ have different substrate specificities toward OMFP and pNPP as substrates. This work gives clues for further study of PTPσ.
Collapse
Affiliation(s)
- Li Hou
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Kuban-Jankowska A, Knap N, Gorska M, Popowska U, Wozniak M. Protein tyrosine phosphatase CD45 as a molecular biosensor of hydrogen peroxide generation in cell culture media. Biochem Biophys Res Commun 2011; 415:270-3. [PMID: 22037457 DOI: 10.1016/j.bbrc.2011.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/03/2023]
Abstract
We have designed a useful method of assessing reactive oxygen species generation in biological fluids. The novel assay utilizes tyrosine phosphatase CD45 as a biosensor of oxidative stress. Applying this new method, we examined oxygen species generation in the following cell culture media: RPMI 1640, DMEM, DMEM enriched with pyruvate and MEM. We discovered that the media (especially RPMI 1640) significantly reduced the activity of protein tyrosine phosphatase. The media-caused inactivation of CD45 was reversible after treatment with dithiothreitol being a powerful reducing agent. Interestingly, the media supplemented with catalase did not exhibit any inhibitory effect on CD45 activity which suggests a hydrogen peroxide-mediated mechanism of the enzyme inactivation. In addition to that, we assessed the impact of oxidative stress level on the activity of CD45 as measured in Jurkat cells cultured in RPMI 1640 either exposed or not exposed to the light of laminar flow cabinet fluorescent lamp. We found that Jurkat cells that were exposed to light displayed ca. 20% lower activity of CD45 than the cells protected against the light. The obtained results indicate that production of hydrogen peroxide in the medium leading to inhibition of CD45 was light-dependent, and that careful protection of cell culture media from the light may help to prevent the artifact in cell studies. Hydrogen peroxide, responsible for CD45 inactivation, can be generated in cell culture media after exposition to light due to photoreactive amino acids present in the media.
Collapse
|
50
|
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 2011; 286:31993-2001. [PMID: 21757710 PMCID: PMC3173209 DOI: 10.1074/jbc.m111.219212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|