1
|
Chen Q, Zheng J, Bian Q. Cell Fate Regulation During the Development of Infantile Hemangioma. J Invest Dermatol 2025; 145:266-279. [PMID: 39023471 DOI: 10.1016/j.jid.2024.06.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024]
Abstract
As the most common benign vascular tumor in infants, infantile hemangioma (IH) is characterized by rapid growth and vasculogenesis early in infancy, followed by spontaneous involution into fibrofatty tissues over time. Extensive evidence suggests that IH originates from hemangioma stem cells (HemSCs), a group of stem cells with clonal expansion and multi-directional differentiation capacity. However, the intricate mechanisms governing the cell fate transition of HemSCs during IH development remain elusive. Here we comprehensively examine the cellular composition of IH, emphasizing the nuanced properties of various IH cell types and their correlation with the clinical features of the tumor. We also summarize the current understanding of the regulatory pathways directing HemSC differentiation into endothelial cells (ECs), pericytes, and adipocytes throughout the stages of IH progression and involution. Furthermore, we discuss recent advances in unraveling the transcriptional and epigenetic regulation of EC and adipocyte development under physiological conditions, which offer crucial perspectives for understanding IH pathogenesis.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiawei Zheng
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Guan Z, Gong H, Ni Z, Xiao Q, Guo X, Xu Q. The Role of Progenitor Cells in the Pathogenesis of Arteriosclerosis. CARDIOLOGY DISCOVERY 2024; 4:231-244. [DOI: 10.1097/cd9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The increasing incidence of arteriosclerosis has become a significant global health burden. Arteriosclerosis is characterized by the thickening and hardening of arterial walls, which can lead to the narrowing or complete blockage of blood vessels. However, the pathogenesis of the disease remains incompletely understood. Recent research has shown that stem and progenitor cells found in the bone marrow and local vessel walls play a role in the development of arteriosclerosis by differentiating into various types of vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and inflammatory cells. This review aims to provide a comprehensive understanding of the role of stem and progenitor cells in the pathogenesis of arteriosclerosis, shedding light on the underlying mechanisms and potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ziyin Guan
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhichao Ni
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
3
|
Shenoy US, Basavarajappa DS, Kabekkodu SP, Radhakrishnan R. Pan-cancer exploration of oncogenic and clinical impacts revealed that HOXA9 is a diagnostic indicator of tumorigenesis. Clin Exp Med 2024; 24:134. [PMID: 38904676 PMCID: PMC11192824 DOI: 10.1007/s10238-024-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Homeodomain transcription factor A9 (HOXA9) is a member of the HOX cluster family of transcription factors that are crucially involved in embryo implantation, morphogenesis, body axis development, and endothelial cell differentiation. Despite numerous reports on its aberrant expression in a few malignancies, the molecular and functional complexity of HOXA9 across cancers remains obscure. We aimed to analyze the dynamic role of HOXA9 across cancers by identifying, analyzing, and understanding its multiple modes of regulation and functional implications and identifying possible therapeutic avenues. We conducted a comprehensive analysis to determine the role of HOXA9 across cancers. This approach involved the integration of large-scale datasets from public repositories such as the Genomic Data Commons, specifically the Cancer Genome Atlas (GDC-TCGA), across 33 different cancer types. The multiple modes of HOXA9 regulation by genetic and epigenetic factors were determined using online tools, which comprised experimentally validated observations. Furthermore, downstream pathways were identified by predicting the targets of HOXA9 and by performing functional enrichment analysis. We also assessed the clinical significance of HOXA9 in terms of prognosis and stage stratification. This study evaluated the correlation between HOXA9 and tumor-infiltrating molecules and discussed its association with therapeutically approved antineoplastic drugs. HOXA9 was significantly upregulated in 9 tumors and downregulated in 2 cancers. The deregulation of HOXA9 is primarily attributed to epigenetic factors, including promoter DNA methylation and noncoding RNAs (ncRNAs). The HOXA9 transcription factor interacts with PBX/MEIS cofactors and regulates multiple genes involved in cancer-associated EMT, autophagy, the cell cycle, metabolic pathways, Wnt signaling, TGF-β signaling, the AMPK pathway, PI3K/AKT signaling, and NF-κB signaling, thereby establishing control over downstream mechanisms. Differential expression in various clinical stages across cancers was shown to have prognostic significance and to be correlated with tumor-infiltrating immune molecules. The assessment of the correlation of HOXA9 expression with approved antineoplastic drugs revealed that targeting HOXA9 could be the most reliable strategy for preventing cancer progression. HOXA9 is upregulated in the majority of malignancies and drives cancer progression by regulating multiple signaling mechanisms. Hence, HOXA9 could be a reliable diagnostic indicator and a potential therapeutic candidate for solid cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield,, S10 2TA, UK.
| |
Collapse
|
4
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Pinto TS, Feltran GDS, Fernandes CJDC, de Camargo Andrade AF, Coque ADC, Silva SL, Abuderman AA, Zambuzzi WF, Foganholi da Silva RA. Epigenetic changes in shear-stressed endothelial cells. Cell Biol Int 2024; 48:665-681. [PMID: 38420868 DOI: 10.1002/cbin.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Célio Júnior da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Simone L Silva
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
6
|
Effect of Cyclic Uniaxial Mechanical Strain on Endothelial Progenitor Cell Differentiation. Cardiovasc Eng Technol 2022; 13:872-885. [PMID: 35501625 DOI: 10.1007/s13239-022-00623-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Endothelial progenitor cells (EPCs) have been used as an autologous or allogeneic source in multiple tissue engineering applications. EPCs possess high proliferative and tissue regeneration potential. The effect of shear stress on EPCs has been extensively studied but the role of cyclic mechanical strain on EPCs remains to be understood. In this study, we focused on examining the role of uniaxial cyclic strain on EPCs cultured on three-dimensional (3D) anisotropic composites that mimic healthy and diseased aortic valve tissue matrix compositions. METHODS AND RESULTS The composites were fabricated by combining centrifugal jet spun fibers with photocrosslinkable gelatin and glycosaminoglycan hydrogels. A custom-designed uniaxial cyclic stretcher was used to provide the necessary cyclic stimulation to the EPC-seeded 3D composites. The samples were cyclically strained at a rate of 1 Hz at 15% strain mimicking the physiological condition experienced by aortic valve, with static conditions serving as controls. Cell viability was high in all conditions. Immunostaining revealed reduced endothelial marker (CD31) expression with increased smooth muscle cell marker, SM22α, expression when subjected to cyclic strain. Functional analysis through Matrigel assay agreed with the immunostaining findings with reduced tubular structure formation in strained conditions compared to EPC controls. Additionally, the cells showed reduced acLDL uptake compared to controls which are in alignment with the EPCs undergoing differentiation. CONCLUSION Overall, we show that EPCs lose their endothelial progenitor phenotype, and have the potential to be differentiated into mesenchymal-like cells through cyclic mechanical stimulation.
Collapse
|
7
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
8
|
Xie HM, Bernt KM. HOXA Amplification Defines a Genetically Distinct Subset of Angiosarcomas. Biomolecules 2022; 12:biom12081124. [PMID: 36009018 PMCID: PMC9406048 DOI: 10.3390/biom12081124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Angiosarcoma is a rare, devastating malignancy with few curative options for disseminated disease. We analyzed a recently published genomic data set of 48 angiosarcomas and noticed recurrent amplifications of HOXA-cluster genes in 33% of patients. HOXA genes are master regulators of embryonic vascular development and adult neovascularization, which provides a molecular rationale to suspect that amplified HOXA genes act as oncogenes in angiosarcoma. HOXA amplifications typically affected multiple pro-angiogenic HOXA genes and co-occurred with amplifications of CD36 and KDR, whereas the overall mutation rate in these tumors was relatively low. HOXA amplifications were found most commonly in angiosarcomas located in the breast and were rare in angiosarcomas arising in sun-exposed areas on the head, neck, face and scalp. Our data suggest that HOXA-amplified angiosarcoma is a distinct molecular subgroup. Efforts to develop therapies targeting oncogenic HOX gene expression in AML and other sarcomas may have relevance for HOXA-amplified angiosarcoma.
Collapse
Affiliation(s)
- Hongbo M. Xie
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, CTRB 3064, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics (DBHI), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, CTRB 3064, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Philadelphia, PA 19106, USA
- Correspondence: ; Tel.: +1-215-370-3171
| |
Collapse
|
9
|
Heinisch PP, Bello C, Emmert MY, Carrel T, Dreßen M, Hörer J, Winkler B, Luedi MM. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022; 11:cells11101678. [PMID: 35626716 PMCID: PMC9139418 DOI: 10.3390/cells11101678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular endothelium. The association of an altered total EPC number and function with cardiovascular diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key mechanisms in CVD. The assessment of endothelial dysfunction in vivo remains a major challenge, especially for a clinical evaluation of the need for therapeutic interventions or for primary prevention of CVD. One of the main challenges is the heterogeneity of this particular cell population. Endothelial cells (EC) can become senescent, and the majority of circulating endothelial cells (CEC) show evidence of apoptosis or necrosis. There are a few viable CECs that have properties similar to those of an endothelial progenitor cell. To use EPC levels as a biomarker for vascular function and cumulative cardiovascular risk, a correct definition of their phenotype, as well as an update on the clinical application and practicability of current isolation methods, are an urgent priority.
Collapse
Affiliation(s)
- Paul Philipp Heinisch
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
- Correspondence:
| | - Corina Bello
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany;
- Institute of Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thierry Carrel
- Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Hospital Hietzing, 1130 Vienna, Austria;
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| |
Collapse
|
10
|
Abstract
Sirtuin1 is a nutrient-sensitive class III histone deacetylase which is a well-known regulator of organismal lifespan. It has been extensively studied for its role in metabolic regulation as well. Along with its involvement in ageing and metabolism, Sirtuin1 directly deacetylates many critical proteins controlling cardiovascular pathophysiology. Studies using conditional expression and deletion of Sirtuin1 have revealed that it functions in a highly tissue/organ-specific manner. In the vasculature, Sirtuin1 controls endothelial homoeostasis by governing the expression of inflammatory mediators, oxidants and essential transcription factors. Adding to this complexity, Sirtuin1 expression and/or function is also governed by some of these target proteins. Therefore, the importance of better understanding the organ and tissue specificity of Sirtuin1 is highly desirable. Considering the huge volume of research done in this field, this review focuses on Sirtuin1 targets regulating vascular endothelial function. Here, we summarize the discovery of Sirtuin1 as a transcription controller and the further identification of direct target proteins involved in the vascular physiology. Overall, this review presents a holistic picture of the complex cross-talk involved in the molecular regulation of vascular physiology by Sirtuin1.
Collapse
Affiliation(s)
- Jitendra Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Santosh Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
11
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
12
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020; 12:cancers12113299. [PMID: 33171691 PMCID: PMC7695342 DOI: 10.3390/cancers12113299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The inhibition of angiogenesis, relying on the use of drugs targeting the VEGF signaling pathway, has become one of the main strategies for cancer treatment. However, the intrinsic and acquired resistance to this type of therapy limit its efficacy. Thus, the identification of novel therapeutic targets is urgently needed. The resistance to anti-angiogenic treatment often occurs through the activation of alternative VEGF independent signaling pathways and recruitment of bone marrow-derived pro-angiogenic cells in the tumor microenvironment. HOX genes are key regulators of embryonic development, also involved in angiogenesis and in cancer progression. HOXB9 upregulation occurs in many types of cancer and it has been identified as a critical transcription factor involved in tumour resistance to anti-angiogenic drugs. Indeed, HOXB9 modulates the expression of alternative pro-angiogenic secreted factors in the tumour microenvironment leading tumor escape from the anti-angiogenic treatments. Hence, HOXB9 could serves as a novel therapeutic target to overcome the resistance to anti-angiogenic therapies. Abstract Angiogenesis is one of the hallmarks of cancer, and the inhibition of pro-angiogenic factors and or their receptors has become a primary strategy for cancer therapy. However, despite promising results in preclinical studies, the majority of patients either do not respond to these treatments or, after an initial period of response, they develop resistance to anti-angiogenic agents. Thus, the identification of a novel therapeutic target is urgently needed. Multiple mechanisms of resistance to anti-angiogenic therapy have been identified, including the upregulation of alternative angiogenic pathways and the recruitment of pro-angiogenic myeloid cells in the tumor microenvironment. Homeobox containing (HOX) genes are master regulators of embryonic development playing a pivotal role during both embryonic vasculogenesis and pathological angiogenesis in adults. The importance of HOX genes during cancer progression has been reported in many studies. In this review we will give a brief description of the HOX genes and their involvement in angiogenesis and cancer, with particular emphasis on HOXB9 as a possible novel target for anti-angiogenic therapy. HOXB9 upregulation has been reported in many types of cancers and it has been identified as a critical transcription factor involved in resistance to anti-angiogenic drugs.
Collapse
|
15
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Janmaat VT, Liu H, da Silva RA, Wisse PHA, Spaander MCW, Ten Hagen TLM, Smits R, Bruno MJ, Fuhler GM, Peppelenbosch MP. HOXA9 mediates and marks premalignant compartment size expansion in colonic adenomas. Carcinogenesis 2020; 40:1514-1524. [PMID: 31099823 DOI: 10.1093/carcin/bgz038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
The transformation of normal colonic epithelium to colorectal cancer (CRC) involves a relatively ordered progression, and understanding the molecular alterations involved may aid rational design of strategies aimed at preventing or counteracting disease. Homeobox A9 (HOXA9) is an oncogene in leukemia and has been implicated in CRC pathology, although its role in disease etiology remains obscure at best. We observe that HOXA9 expression is increased in colonic adenomas compared with location-matched healthy colon epithelium. Its forced expression results in dramatic genetic and signaling changes, with increased expression of growth factors IGF1 and FLT3, super-activity of the AKT survival pathway and a concomitant increase in compartment size. Furthermore, a reduced mRNA expression of the epithelial to mesenchymal transition marker N-cadherin as well as reduced activity of the actin cytoskeletal mediator PAK was seen, which is in apparent agreement with an observed reduced migratory response in HOXA9-overexpressing cells. Thus, HOXA9 appears closely linked with adenoma growth while impairing migration and metastasis and hence is both a marker and driver of premalignant polyp growth. Colonic polyps grow but remain premalignant for up to decades. Here, we show that HOXA9 drives growth in premalignant polyps, but simultaneously prevents further transformation.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Hui Liu
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Rodrigo A da Silva
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Pieter H A Wisse
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
17
|
Theiler A, Bärnthaler T, Platzer W, Richtig G, Peinhaupt M, Rittchen S, Kargl J, Ulven T, Marsh LM, Marsche G, Schuligoi R, Sturm EM, Heinemann A. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J Allergy Clin Immunol 2019; 144:764-776. [PMID: 31082458 DOI: 10.1016/j.jaci.2019.05.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive. OBJECTIVE The role of SCFAs was investigated in human eosinophil function and a mouse model of allergic asthma. METHODS Eosinophils were purified from self-reported allergic or healthy donors. Migration, adhesion to the endothelium, and eosinophil survival were studied in vitro. Ca2+ flux, apoptosis, mitochondrial membrane potential, and expression of surface markers were determined by using flow cytometry and in part by using real-time PCR. Allergic airway inflammation was assessed in vivo in an ovalbumin-induced asthma model by using invasive spirometry. RESULTS For the first time, we observed that SCFAs were able to attenuate human eosinophils at several functional levels, including (1) adhesion to the endothelium, (2) migration, and (3) survival. These effects were independent from GPR41 and GPR43 but were accompanied by histone acetylation and mimicked by trichostatin A, a pan-histone deacetylase inhibitor. In vivo butyrate ameliorated allergen-induced airway and lung eosinophilia, reduced type 2 cytokine levels in bronchial fluid, and improved airway hyperresponsiveness in mice. CONCLUSION These in vitro and in vivo findings highlight the importance of SCFAs, especially butyrate as a promising therapeutic agent in allergic inflammatory diseases.
Collapse
Affiliation(s)
- Anna Theiler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Georg Richtig
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Rufina Schuligoi
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
18
|
Sun Y, Zhou B, Mao F, Xu J, Miao H, Zou Z, Phuc Khoa LT, Jang Y, Cai S, Witkin M, Koche R, Ge K, Dressler GR, Levine RL, Armstrong SA, Dou Y, Hess JL. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018; 34:643-658.e5. [PMID: 30270123 PMCID: PMC6179449 DOI: 10.1016/j.ccell.2018.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpression.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhenhua Zou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Le Tran Phuc Khoa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Younghoon Jang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheng Cai
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Witkin
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ross L Levine
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- Dana Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jay L Hess
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Plein A, Fantin A, Denti L, Pollard JW, Ruhrberg C. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 2018; 562:223-228. [PMID: 30258231 PMCID: PMC6289247 DOI: 10.1038/s41586-018-0552-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
The earliest blood vessels in mammalian embryos are formed when endothelial cells differentiate from angioblasts and coalesce into tubular networks. Thereafter, the endothelium is thought to expand solely by proliferation of pre-existing endothelial cells. Here we show that a complementary source of endothelial cells is recruited into pre-existing vasculature after differentiation from the earliest precursors of erythrocytes, megakaryocytes and macrophages, the erythro-myeloid progenitors (EMPs) that are born in the yolk sac. A first wave of EMPs contributes endothelial cells to the yolk sac endothelium, and a second wave of EMPs colonizes the embryo and contributes endothelial cells to intraembryonic endothelium in multiple organs, where they persist into adulthood. By demonstrating that EMPs constitute a hitherto unrecognized source of endothelial cells, we reveal that embryonic blood vascular endothelium expands in a dual mechanism that involves both the proliferation of pre-existing endothelial cells and the incorporation of endothelial cells derived from haematopoietic precursors.
Collapse
Affiliation(s)
- Alice Plein
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
20
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
21
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|
22
|
Wei Y, Zhou F, Zhou H, Huang J, Yu D, Wu G. Endothelial progenitor cells contribute to neovascularization of non-small cell lung cancer via histone deacetylase 7-mediated cytoskeleton regulation and angiogenic genes transcription. Int J Cancer 2018; 143:657-667. [PMID: 29490434 DOI: 10.1002/ijc.31349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
To supply tumor tissues with nutrients and oxygen, endothelial progenitor cells (EPCs) home to tumor sites and contribute to neovascularization. Although the precise mechanism of EPCs-induced neovascularization remains poorly understood in non-small cell lung cancer (NSCLC), histone deacetylase 7 (HDAC7) is considered as a critical regulator. To explore the function of HDAC7 in neovascularization induced by EPCs, tube formation assay, immunofluorescence, microarray, Western blot analysis and animal models were performed. In vitro, HDAC7 abrogation led to the activation of Rho-associated coiled-coil containing protein kinase/myosin light chain 2 pathway concomitant with ERK dephosphorylation, causing the instability of cytoskeleton and collapse of tube formation. In vivo, absence of HDAC7 impaired the vascular lumen integrity and decreased the functional blood perfusion, inhibiting the growth of tumor. At the level of transcription, HDAC7 silencing upregulated antiangiogenic genes and suppressed proangiogenic genes collectively, turning off the angiogenic switch during vessel formation. Taken together, HDAC7 plays a dual role in maintaining the structural and nonstructural functions of EPCs. Our work demonstrates the molecular mechanism by which HDAC7 contributes to the angiogenic property of EPCs and provides a rational basis for specific targeting of antiangiogenic strategies in lung cancer.
Collapse
Affiliation(s)
- Ye Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangzheng Zhou
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Haibo Zhou
- The First College of Clinical Medical Science, China Three Gorges University and Department of Oncology, Yichang Central People's Hospital, Yichang, Hubei, People's Republic of China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
24
|
Whole-Transcriptome Sequencing: a Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High Throughput 2018; 7:ht7010005. [PMID: 29485616 PMCID: PMC5876531 DOI: 10.3390/ht7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among applicable high-throughput techniques in cardiovascular biology, whole-transcriptome sequencing is of particular use. By utilizing RNA that is isolated from virtually all cells and tissues, the entire transcriptome can be evaluated. In comparison with other high-throughput approaches, RNA sequencing is characterized by a relatively low-cost and large data output, which permits a comprehensive analysis of spatiotemporal variation in the gene expression profile. Both shear stress and cyclic strain exert hemodynamic force upon the arterial endothelium and are considered to be crucial determinants of endothelial physiology. Laminar blood flow results in a high shear stress that promotes atheroresistant endothelial phenotype, while a turbulent, oscillatory flow yields a pathologically low shear stress that disturbs endothelial homeostasis, making respective arterial segments prone to atherosclerosis. Severe atherosclerosis significantly impairs blood supply to the organs and frequently requires bypass surgery or an arterial replacement surgery that requires tissue-engineered vascular grafts. To provide insight into patterns of gene expression in endothelial cells in native or bioartificial arteries under different biomechanical conditions, this article discusses applications of whole-transcriptome sequencing in endothelial mechanobiology and vascular tissue engineering.
Collapse
|
25
|
Laurenzana A, Margheri F, Chillà A, Biagioni A, Margheri G, Calorini L, Fibbi G, Del Rosso M. Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Hum Gene Ther 2018; 27:784-791. [PMID: 27502560 DOI: 10.1089/hum.2016.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.
Collapse
Affiliation(s)
- Anna Laurenzana
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Francesca Margheri
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Anastasia Chillà
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Alessio Biagioni
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Giancarlo Margheri
- 2 Institute for Complex Systems , National Research Council, Sesto Fiorentino, Italy
| | - Lido Calorini
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| | - Gabriella Fibbi
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Mario Del Rosso
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| |
Collapse
|
26
|
Lim JE, Son Y. Endogenous Stem Cells in Homeostasis and Aging. Tissue Eng Regen Med 2017; 14:679-698. [PMID: 30603520 PMCID: PMC6171667 DOI: 10.1007/s13770-017-0097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
In almost all human tissues and organs, adult stem cells or tissue stem cells are present in a unique location, the so-called stem cell niche or its equivalent, continuously replenishing functional differentiated cells. Those endogenous stem cells can be expanded for cell therapeutics using ex vivo cell culture or recalled for tissue repair in situ through cell trafficking and homing. In the aging process, inefficiency in the endogenous stem cell-mediated healing mechanism can emerge from a variety of impairments that accumulate in the processes of stem cell self-renewal, function, differentiation capacity, and trafficking through cell autonomous intrinsic pathways (such as epigenetic alterations) or systemic extrinsic pathways. This review examines the homeostasis of endogenous stem cells, particularly bone marrow stem cells, and their dysregulation in disease and aging and discusses possible intervention strategies. Several systemic pro-aging and rejuvenating factors, recognized in heterochronic parabiosis or premature aging progeroid animal models, are reviewed as possible anti-aging pharmaceutical targets from the perspective of a healthy environment for endogenous stem cells. A variety of epigenetic modifications and chromosome architectures are reviewed as an intrinsic cellular pathway for aging and senescence. A gradual increase in inflammatory burden during aging is also reviewed. Finally, the tissue repair and anti-aging effects of Substance-P, a peptide stimulating stem cell trafficking from the bone marrow and modifying the inflammatory response, are discussed as a future anti-aging target.
Collapse
Affiliation(s)
- Ji Eun Lim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
- Kyung Hee Institute of Regenerative Medicine, Kyung Hee University Hospital, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453 Republic of Korea
| |
Collapse
|
27
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
28
|
Molino Y, Jabès F, Bonnet A, Gaudin N, Bernard A, Benech P, Khrestchatisky M. Gene expression comparison reveals distinct basal expression of HOX members and differential TNF-induced response between brain- and spinal cord-derived microvascular endothelial cells. J Neuroinflammation 2016; 13:290. [PMID: 27832801 PMCID: PMC5105278 DOI: 10.1186/s12974-016-0749-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023] Open
Abstract
Background The heterogeneity of endothelial cell types underlies their remarkable ability to sub-specialize and provide specific requirements for a given vascular bed. Here, we compared rat microvascular endothelial cells (MECs) derived from the brain and spinal cord in both basal and inflammatory conditions. Methods We used whole rat genome microarrays to compare, at different time points, basal and TNF-α-induced gene expression of rat MECs from in vitro models of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). Validation at both messenger RNA (mRNA) and protein levels was performed on freshly extracted microvessels (MVs) from the brain and spinal cord (BMVs and SCMVs, respectively), as these were considered the closest in vivo tissues to cultured MECs. Results Most of the genes encoding adhesion/tight junction molecules and known endothelial markers were similarly expressed in brain and spinal cord MECs (BMECs and SCMECs, respectively). However, one striking finding was the higher expression of several Hox genes, which encode transcription factors involved in positional identity. The differential expression of Hoxa9 and Hoxb7 at the mRNA levels as well as protein levels was confirmed in BMVs and SCMVs. Although the TNF-α response was in general higher in BMECs than in SCMECs at 12 h, the opposite was observed at 48 h. Furthermore, we found that expression of Tnfrsf1a and Tnfrsf1b encoding the TNF receptor super-family member 1a/TNFR1 and 1b/TNFR2, respectively, were constitutively higher in BMVs compared to SCMVs. However, only Tnfrsf1b was induced in SCMECs in response to TNF-α at 24 and 48 h. Conclusions Our results support a role for HOX members in defining the positional identities of MECs in vivo. Our data also suggest that the delayed transcriptional activation upon TNF-α treatment in SCMECs results from the requirement of the TNF-induced expression of Tnfrsf1b. In contrast, its high basal expression in BMECs might be sufficient to confer an immediate and efficient TNF-α response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | - Françoise Jabès
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | | | | | - Anne Bernard
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | | |
Collapse
|
29
|
Bazou D, Ng MR, Song JW, Chin SM, Maimon N, Munn LL. Flow-induced HDAC1 phosphorylation and nuclear export in angiogenic sprouting. Sci Rep 2016; 6:34046. [PMID: 27669993 PMCID: PMC5037418 DOI: 10.1038/srep34046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis requires the coordinated growth and migration of endothelial cells (ECs), with each EC residing in the vessel wall integrating local signals to determine whether to remain quiescent or undergo morphogenesis. These signals include vascular endothelial growth factor (VEGF) and flow-induced mechanical stimuli such as interstitial flow, which are both elevated in the tumor microenvironment. However, it is not clear how VEGF signaling and mechanobiological activation due to interstitial flow cooperate during angiogenesis. Here, we show that endothelial morphogenesis is histone deacetylase-1- (HDAC1) dependent and that interstitial flow increases the phosphorylation of HDAC1, its activity, and its export from the nucleus. Furthermore, we show that HDAC1 inhibition decreases endothelial morphogenesis and matrix metalloproteinase-14 (MMP14) expression. Our results suggest that HDAC1 modulates angiogenesis in response to flow, providing a new target for modulating vascularization in the clinic.
Collapse
Affiliation(s)
- Despina Bazou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA
| | - Mei Rosa Ng
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, Ohio State University, E406 201 W. 19th Avenue, Columbus, OH 43210, USA
| | - Shan Min Chin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA
| | - Nir Maimon
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
30
|
Man HSJ, Yan MS, Lee JJ, Marsden PA. Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics 2016; 8:959-79. [PMID: 27381277 DOI: 10.2217/epi-2016-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The modern landscape of gene regulation involves interacting factors that ultimately lead to gene activation or repression. Epigenetic mechanisms provide a perspective of cellular phenotype as dynamically regulated and responsive to input. This perspective is supported by the generation of induced pluripotent stem cells from fully differentiated cell types. In vascular endothelial cells, evidence suggests that epigenetic mechanisms play a major role in the expression of endothelial cell-specific genes such as the endothelial nitric oxide synthase (NOS3/eNOS). These mechanisms are also important for eNOS expression in response to environmental stimuli such as hypoxia and shear stress. A newer paradigm in epigenetics, long noncoding RNAs offer a link between genetic variation, epigenetic regulation and disease. While the understanding of epigenetic mechanisms is early in its course, it is becoming clear that approaches to understanding the interaction of these factors and their inputs will be necessary to improve outcomes in cardiovascular disease.
Collapse
Affiliation(s)
- Hon-Sum Jeffrey Man
- Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Departments of Respirology & Critical Care, University Health Network & Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Matthew S Yan
- Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John Jy Lee
- Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Philip A Marsden
- Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Nephrology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Alvarado-Ruiz L, Martinez-Silva MG, Torres-Reyes LA, Pina-Sanchez P, Ortiz-Lazareno P, Bravo-Cuellar A, Aguilar-Lemarroy A, Jave-Suarez LF. HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes. Asian Pac J Cancer Prev 2016; 17:1037-47. [DOI: 10.7314/apjcp.2016.17.3.1037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Maleszewska M, Vanchin B, Harmsen MC, Krenning G. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis 2015; 19:9-24. [PMID: 26416763 PMCID: PMC4700080 DOI: 10.1007/s10456-015-9485-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium.
Collapse
Affiliation(s)
- Monika Maleszewska
- Cardiovascular Regenerative Medicine Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands. .,Max Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany.
| | - Byambasuren Vanchin
- Cardiovascular Regenerative Medicine Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Martin C Harmsen
- Cardiovascular Regenerative Medicine Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Guido Krenning
- Cardiovascular Regenerative Medicine Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
33
|
Yan MS, Marsden PA. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era. Arterioscler Thromb Vasc Biol 2015; 35:2297-306. [PMID: 26404488 DOI: 10.1161/atvbaha.115.305043] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/14/2015] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Matthew S Yan
- From the Department of Medical Biophysics (M.S.Y., P.A.M.) and Department of Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital (M.S.Y., P.A.M.), University of Toronto, Toronto, Ontario, Canada
| | - Philip A Marsden
- From the Department of Medical Biophysics (M.S.Y., P.A.M.) and Department of Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital (M.S.Y., P.A.M.), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Jiang YZ, Manduchi E, Stoeckert CJ, Davies PF. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics 2015; 16:506. [PMID: 26148682 PMCID: PMC4492093 DOI: 10.1186/s12864-015-1656-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis is a heterogeneously distributed disease of arteries in which the endothelium plays an important central role. Spatial transcriptome profiling of endothelium in pre-lesional arteries has demonstrated differential phenotypes primed for athero-susceptibility at hemodynamic sites associated with disturbed blood flow. DNA methylation is a powerful epigenetic regulator of endothelial transcription recently associated with flow characteristics. We investigated differential DNA methylation in flow region-specific aortic endothelial cells in vivo in adult domestic male and female swine. RESULTS Genome-wide DNA methylation was profiled in endothelial cells (EC) isolated from two robust locations of differing patho-susceptibility:--an athero-susceptible site located at the inner curvature of the aortic arch (AA) and an athero-protected region in the descending thoracic (DT) aorta. Complete methylated DNA immunoprecipitation sequencing (MeDIP-seq) identified over 5500 endothelial differentially methylated regions (DMRs). DMR density was significantly enriched in exons and 5'UTR sequences of annotated genes, 60 of which are linked to cardiovascular disease. The set of DMR-associated genes was enriched in transcriptional regulation, pattern specification HOX loci, oxidative stress and the ER stress adaptive pathway, all categories linked to athero-susceptible endothelium. Examination of the relationship between DMR and mRNA in HOXA genes demonstrated a significant inverse relationship between CpG island promoter methylation and gene expression. Methylation-specific PCR (MSP) confirmed differential CpG methylation of HOXA genes, the ER stress gene ATF4, inflammatory regulator microRNA-10a and ARHGAP25 that encodes a negative regulator of Rho GTPases involved in cytoskeleton remodeling. Gender-specific DMRs associated with ciliogenesis that may be linked to defects in cilia development were also identified in AA DMRs. CONCLUSIONS An endothelial methylome analysis identifies epigenetic DMR characteristics associated with transcriptional regulation in regions of atherosusceptibility in swine aorta in vivo. The data represent the first methylome blueprint for spatio-temporal analyses of lesion susceptibility predisposing to endothelial dysfunction in complex flow environments in vivo.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Christian J Stoeckert
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peter F Davies
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Yang JY, Wang Q, Wang W, Zeng LF. Histone deacetylases and cardiovascular cell lineage commitment. World J Stem Cells 2015; 7:852-858. [PMID: 26131315 PMCID: PMC4478631 DOI: 10.4252/wjsc.v7.i5.852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/14/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), which include all diseases of the heart and circulation system, are the leading cause of deaths on the globally. During the development of CVDs, choric inflammatory, lipid metabolism disorder and endothelial dysfunction are widely recognized risk factors. Recently, the new treatment for CVDs that designed to regenerate the damaged myocardium and injured vascular endothelium and improve recovery by the use of stem cells, attracts more and more public attention. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins allowing the histones to wrap the DNA more tightly and commonly known as epigenetic regulators of gene transcription. HDACs play indispensable roles in nearly all biological processes, such as transcriptional regulation, cell cycle progression and developmental events, and have originally shown to be involved in cancer and neurological diseases. HDACs are also found to play crucial roles in cardiovascular diseases by modulating vascular cell homeostasis (e.g., proliferation, migration, and apoptosis of both ECs and SMCs). This review focuses on the roles of different members of HDACs and HDAC inhibitor on stem cell/ progenitor cell differentiation toward vascular cell lineages (endothelial cells, smooth muscle cells and Cardiomyocytes) and its potential therapeutics.
Collapse
|
36
|
Dunn J, Simmons R, Thabet S, Jo H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int J Biochem Cell Biol 2015; 67:167-76. [PMID: 25979369 DOI: 10.1016/j.biocel.2015.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 12/15/2022]
Abstract
Currently in the field of vascular biology, the role of epigenetics in endothelial cell biology and vascular disease has attracted more in-depth study. Using both in vitro and in vivo models of blood flow, investigators have recently begun to reveal the underlying epigenetic regulation of endothelial gene expression. Recently, our group, along with two other independent groups, have demonstrated that blood flow controls endothelial gene expression by DNA methyltransferases (DNMT1 and 3A). Disturbed flow (d-flow), characterized by low and oscillating shear stress (OS), is pro-atherogenic and induces expression of DNMT1 both in vivo and in vitro. D-flow regulates genome-wide DNA methylation patterns in a DNMT-dependent manner. The DNMT inhibitor 5-Aza-2'deoxycytidine (5Aza) or DNMT1 siRNA reduces OS-induced endothelial inflammation. Moreover, 5Aza inhibits the development of atherosclerosis in ApoE(-/-) mice. Through a systems biological analysis of genome-wide DNA methylation patterns and gene expression data, we found 11 mechanosensitive genes which were suppressed by d-flow in vivo, experienced hypermethylation in their promoter region in response to d-flow, and were rescued by 5Aza treatment. Interestingly, among these mechanosensitive genes, the two transcription factors HoxA5 and Klf3 contain cAMP-response-elements (CRE), which may indicate that methylation of CRE sites could serve as a mechanosensitive master switch in gene expression. These findings provide new insight into the mechanism by which flow controls epigenetic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and induces atherosclerosis. These novel findings have broad implications for understanding the biochemical mechanisms of atherogenesis and provide a basis for identifying potential therapeutic targets for atherosclerosis. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Rachel Simmons
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Salim Thabet
- Division of Cardiology, Georgia Institute of Technology and Emory University, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA; Division of Cardiology, Georgia Institute of Technology and Emory University, USA.
| |
Collapse
|
37
|
Dunn J, Thabet S, Jo H. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35:1562-9. [PMID: 25953647 DOI: 10.1161/atvbaha.115.305042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development.
Collapse
Affiliation(s)
- Jessilyn Dunn
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta
| | - Salim Thabet
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta.
| |
Collapse
|
38
|
Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS One 2015; 10:e0120587. [PMID: 25807249 PMCID: PMC4373846 DOI: 10.1371/journal.pone.0120587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/24/2015] [Indexed: 01/13/2023] Open
Abstract
Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch’s membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor-1α and vascular endothelial growth factor (VEGF), and up-regulate the anti-angiogenic and neuro-protective pigment epithelium derived factor in human retinal pigment epithelial (RPE) cells. Most strikingly, TSA markedly down-regulates the expression of VEGF receptor-2 in human vascular endothelial cells and, thus, can knock down pro-angiogenic cell signaling. Additionally, TSA suppresses CNV-associated wound healing response and RPE epithelial-mesenchymal transdifferentiation. In the laser-induced model of CNV using C57Bl/6 mice, systemic administration of TSA significantly reduces fluorescein leakage and the size of CNV lesions at post—laser days 7 and 14 as well as the immunohistochemical expression of VEGF, VEGFR2, and smooth muscle actin in CNV lesions at post-laser day 7. This report suggests that TSA, and possibly HDACi’s in general, should be further evaluated for their therapeutic potential for the treatment of CNV.
Collapse
|
39
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
40
|
Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J 2015; 282:1605-29. [PMID: 25546332 DOI: 10.1111/febs.13183] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Maintenance of vascular integrity is essential for the prevention of vascular disease and for recovery following cardiovascular, cerebrovascular and peripheral vascular events including limb ischemia, heart attack and stroke. Endothelial stem/progenitor cells have recently gained considerable interest due to their potential use in stem cell therapies to mediate revascularization after ischemic injury. Therefore, there is an urgent need to understand fundamental mechanisms regulating vascular repair in specific cell types to develop new beneficial therapeutic interventions. In this review, we highlight recent studies demonstrating that epigenetic mechanisms (including post-translational modifications of DNA and histones as well as non-coding RNA-mediated processes) play essential roles in the regulation of endothelial stem/progenitor cell functions through modifying chromatin structure. Furthermore, we discuss the potential of using small molecules that modulate the activities of epigenetic enzymes to enhance the vascular repair function of endothelial cells and offer insight on potential strategies that may accelerate clinical applications.
Collapse
Affiliation(s)
- Sylvain Fraineau
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Canada; Ottawa Institute of Systems Biology, Canada
| | | | | | | |
Collapse
|
41
|
Rajasekar P, O'Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. J Diabetes Res 2015; 2015:436879. [PMID: 26106624 PMCID: PMC4464584 DOI: 10.1155/2015/436879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.
Collapse
Affiliation(s)
- Poojitha Rajasekar
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Christina L. O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Lydia Eeles
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Reinhold J. Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
- *Reinhold J. Medina:
| |
Collapse
|
42
|
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 2014; 124:28-48. [PMID: 25450949 DOI: 10.1016/j.pneurobio.2014.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/14/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
43
|
An updated view on the differentiation of stem cells into endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:763-73. [DOI: 10.1007/s11427-014-4712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
|
44
|
Davies PF, Manduchi E, Stoeckert CJ, Jiménez JM, Jiang YZ. Emerging topic: flow-related epigenetic regulation of endothelial phenotype through DNA methylation. Vascul Pharmacol 2014; 62:88-93. [PMID: 24874278 PMCID: PMC4116435 DOI: 10.1016/j.vph.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a multi-focal disease; it is associated with arterial curvatures, asymmetries and branches/bifurcations where non-uniform arterial geometry generates patterns of blood flow that are considerably more complex than elsewhere, and are collectively referred to as disturbed flow. Such regions are predisposed to atherosclerosis and are the sites of 'athero-susceptible' endothelial cells that express regionally different cell phenotypes than endothelium in nearby athero-protected locations. The regulatory hierarchy of endothelial function includes control at the epigenetic level. MicroRNAs and histone modifications are established epigenetic regulators that respond to disturbed flow. However, very recent reports have linked transcriptional regulation by DNA methylation to endothelial gene expression in disturbed flow in vivo and in vitro. We outline these in the context of site-specific atherosusceptibility mediated by local hemodynamics.
Collapse
Affiliation(s)
- Peter F Davies
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elisabetta Manduchi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian J Stoeckert
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan M Jiménez
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Zhou Jiang
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Potter CMF, Lao KH, Zeng L, Xu Q. Role of biomechanical forces in stem cell vascular lineage differentiation. Arterioscler Thromb Vasc Biol 2014; 34:2184-90. [PMID: 25012135 DOI: 10.1161/atvbaha.114.303423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation. Cyclic strain can stimulate stem cell differentiation toward smooth muscle lineages through different mechanisms. In vivo, blood flow in the coronary artery is significantly altered after stenting, leading to changes in biomechanical forces on the vessel wall. This disruption may activate stem cell differentiation into a variety of cells and cause delayed re-endothelialization. Based on progress in the research field, the present review aims to explore the role of mechanical forces in stem cell differentiation both in vivo and in vitro and to examine what this means for the application of stem cells in the clinic, in tissue engineering, and for the management of aberrant stem cell contribution to disease.
Collapse
Affiliation(s)
- Claire M F Potter
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Ka Hou Lao
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- From the Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London, London, United Kingdom.
| |
Collapse
|
46
|
Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan C, Fan Y, Jordan IK, Jo H. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 2014; 124:3187-99. [PMID: 24865430 PMCID: PMC4071393 DOI: 10.1172/jci74792] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/28/2014] [Indexed: 12/17/2022] Open
Abstract
In atherosclerosis, plaques preferentially develop in arterial regions of disturbed blood flow (d-flow), which alters endothelial gene expression and function. Here, we determined that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase-dependent (DNMT-dependent) manner. Induction of d-flow by partial carotid ligation surgery in a murine model induced DNMT1 in arterial endothelium. In cultured endothelial cells, DNMT1 was enhanced by oscillatory shear stress (OS), and reduction of DNMT with either the inhibitor 5-aza-2'-deoxycytidine (5Aza) or siRNA markedly reduced OS-induced endothelial inflammation. Moreover, administration of 5Aza reduced lesion formation in 2 mouse models of atherosclerosis. Using both reduced representation bisulfite sequencing (RRBS) and microarray, we determined that d-flow in the carotid artery resulted in hypermethylation within the promoters of 11 mechanosensitive genes and that 5Aza treatment restored normal methylation patterns. Of the identified genes, HoxA5 and Klf3 encode transcription factors that contain cAMP response elements, suggesting that the methylation status of these loci could serve as a mechanosensitive master switch in gene expression. Together, our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Decitabine
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Human Umbilical Vein Endothelial Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphoproteins/genetics
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/physiopathology
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Transcription Factors
Collapse
Affiliation(s)
- Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Haiwei Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Soyeon Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daudi Jjingo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ryan Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Inhwan Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong Ju Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Chenyi Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yuhong Fan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - I. King Jordan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Murthi P, Abumaree M, Kalionis B. Analysis of homeobox gene action may reveal novel angiogenic pathways in normal placental vasculature and in clinical pregnancy disorders associated with abnormal placental angiogenesis. Front Pharmacol 2014; 5:133. [PMID: 24926269 PMCID: PMC4045154 DOI: 10.3389/fphar.2014.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterized by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation, and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital Parkville, VIC, Australia ; Department of Obstetrics and Gynaecology, The University of Melbourne Parkville, VIC, Australia ; NorthWest Academic Centre, The University of Melbourne St. Albans, VIC, Australia
| | - Mohamed Abumaree
- College of Science and Health Professions, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences Riyadh, Saudi Arabia
| | - Bill Kalionis
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital Parkville, VIC, Australia ; Department of Obstetrics and Gynaecology, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
48
|
Trichostatin A Enhances Vascular Repair by Injected Human Endothelial Progenitors through Increasing the Expression of TAL1-Dependent Genes. Cell Stem Cell 2014; 14:644-57. [DOI: 10.1016/j.stem.2014.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
|
49
|
Casanello P, Schneider D, Herrera EA, Uauy R, Krause BJ. Endothelial heterogeneity in the umbilico-placental unit: DNA methylation as an innuendo of epigenetic diversity. Front Pharmacol 2014; 5:49. [PMID: 24723887 PMCID: PMC3973902 DOI: 10.3389/fphar.2014.00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
The endothelium is a multifunctional heterogeneous tissue playing a key role in the physiology of every organ. To accomplish this role the endothelium presents a phenotypic diversity that is early prompted during vascular development, allowing it to cope with specific requirements in a time- and site-specific manner. During the last decade several reports show that endothelial diversity is also present in the umbilico-placental vasculature, with differences between macro- and microvascular vessels as well as arterial and venous endothelium. This diversity is evidenced in vitro as a higher angiogenic capacity in the microcirculation; or disparity in the levels of several molecules that control endothelial function (i.e., receptor for growth factors, vasoactive mediators, and adhesion molecules) which frequently are differentially expressed between arterial and venous endothelium. Emerging evidence suggests that endothelial diversity would be prominently driven by epigenetic mechanisms which also control the basal expression of endothelial-specific genes. This review outlines evidence for endothelial diversity since early stages of vascular development and how this heterogeneity is expressed in the umbilico-placental vasculature. Furthermore a brief picture of epigenetic mechanisms and their role on endothelial physiology emphasizing new data on umbilical and placental endothelial cells is presented. Unraveling the role of epigenetic mechanisms on long term endothelial physiology and its functional diversity would contribute to develop more accurate therapeutic interventions. Altogether these data show that micro- versus macro-vascular, or artery versus vein comparisons are an oversimplification of the complexity occurring in the endothelium at different levels, and the necessity for the future research to establish the precise source of cells which are under study.
Collapse
Affiliation(s)
- Paola Casanello
- Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile ; Division of Paediatrics, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Daniela Schneider
- Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Emilio A Herrera
- Programa de Fisiopatologïa, Laboratorio de Función y Reactividad Vascular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Ricardo Uauy
- Division of Paediatrics, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Bernardo J Krause
- Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
50
|
Toshner M, Dunmore BJ, McKinney EF, Southwood M, Caruso P, Upton PD, Waters JP, Ormiston ML, Skepper JN, Nash G, Rana AA, Morrell NW. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One 2014; 9:e91334. [PMID: 24651450 PMCID: PMC3961275 DOI: 10.1371/journal.pone.0091334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/10/2014] [Indexed: 01/16/2023] Open
Abstract
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.
Collapse
Affiliation(s)
- Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Papworth Hospital, Cambridge, United Kingdom
| | - Benjamin J. Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Eoin F. McKinney
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Paola Caruso
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul D. Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John P. Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark L. Ormiston
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jeremy N. Skepper
- Department of Physiology and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gerard Nash
- School of Clinical and Experimental Medicine, Birmingham University, Birmingham, United Kingdom
| | - Amer A. Rana
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|