1
|
Lee YH, Song GG. Association between chemokine genes polymorphisms and susceptibility to Parkinson's disease: a meta-analysis and systematic review. Acta Neurol Belg 2024:10.1007/s13760-024-02615-9. [PMID: 39066886 DOI: 10.1007/s13760-024-02615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the potential association between polymorphisms in monocyte chemoattractant protein-1 (MCP-1), chemokine receptor type 2 (CCR2), type 5 (CCR5), regulated on activation, normal T cell expressed, and secreted (RANTES) and susceptibility to Parkinson's disease (PD). METHODS The MEDLINE, EMBASE, and Web of Science databases were searched for relevant articles, and a meta-analysis was conducted to assess the associations between the MCP-1 -2518 G/A, CCR2 V64I, CCR5-Δ32, RANTES - 405 G/A, -28 G/A polymorphisms and the risk of PD. RESULTS Six studies with 1,416 patients with PD and 1,715 controls that met the inclusion criteria were identified. Meta-analysis of all study participants demonstrated no association between PD and the MCP-1 -2518 G allele (odds ratio [OR] = 1.089, 95% confidence interval [CI] = 0.980-1.211, p = 0.114). Stratification by ethnicity indicated no association between the MCP-1 -2518 G allele and PD in the European and Asian populations. Meta-analysis demonstrated no association between PD and the MCP-1-2518 A/G polymorphism in recessive and dominant models and homozygote contrast. However, meta-analysis revealed a significant association between the risk of PD and the CCR2-V64I AA + GG genotype in all study participants (OR = 0.418, 95% CI = 0.232-0.753, p = 0.004). Stratification based on ethnicity validated this association between the CCR2-V64I AA + GG genotype and PD in the Asian population (OR = 0.460, 95% CI = 0.243-0.870, p = 0.017), but not in European populations. Analysis using the homozygous contrast model revealed the same pattern for the CCR2-V64I AA + GG genotype. Meta-analysis revealed no association between the CCR5-Δ32 allele and the risk of PD (OR = 0.972, 95% CI = 0.377-2.501, p = 0.952). Moreover, the meta-analysis demonstrated no allelic association between RANTES - 405 G/A and - 28 G/A polymorphisms and the risk of PD. CONCLUSIONS Our meta-analysis showed that the CCR2 V64I polymorphism is associated with PD, especially in Asian populations.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
2
|
Liu Z, Deligen B, Han Z, Gerile C, Da A. Integrated sequence-based genomic, transcriptomic, and methylation characterization of the susceptibility to tuberculosis in monozygous twins. Heliyon 2024; 10:e31712. [PMID: 38845983 PMCID: PMC11153169 DOI: 10.1016/j.heliyon.2024.e31712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six decades; however, the genomic and epigenetic mechanisms underlying the highly heritable susceptibility to TB remain unclear. Methods Integrated sequence-based genomic, transcriptomic, and methylation analyses were conducted to identity the genetic factors associated with susceptibility to TB in two pairs of Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene-gene interaction network was analyzed using differentially expressed genes. Results Our study revealed no significant difference in SNP and InDel profiles between participants with and without TB. Genes with CNVs were involved in human immunity (human leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. Different DNA methylation patterns and mRNA expression profiles were observed in genes participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 receptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). Conclusions The results of this study suggested that susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in immune and inflammatory responses. The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) may play major roles in susceptibility to TB.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Batu Deligen
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Zhiqiang Han
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Chaolumen Gerile
- Department of Internal Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, 026000, Inner Mongolia, China
| | - An Da
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| |
Collapse
|
3
|
Biswas SK, Mohanty KK, Singh V, Natrajan M, Arora M, Chakma JK, Tripathy SP. Association of CC-chemokine ligand-2 gene polymorphisms with leprosy reactions. Microbes Infect 2024; 26:105298. [PMID: 38244764 DOI: 10.1016/j.micinf.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND C-C motif chemokine ligand 2, a gene that codes for a protein involved in inflammation. Certain SNPs in the CCL2 gene have been studied for their potential associations with susceptibility to various diseases. These SNPs may affect the production and function of the CCL2 protein, which is involved in the recruitment of immune cells to the site of inflammation. Variations in CCL2 may influence the immune response to Mycobacterium leprae infection. OBJECTIVE To investigate the association of the C-C motif chemokine ligand-2 single nucleotide polymorphisms with leprosy. METHODS CCL2 single nucleotide polymorphisms were analyzed in a total of 975 leprosy patients and 357 healthy controls. Of those, 577 leprosy and 288 healthy controls were analyzed by PCR-RFLP for CCL2 -2518 A>G, 535 leprosy and 290 controls for CCL2 -362 G>C, 295 leprosy and 240 controls for CCL2 -2134 T>G, 325 leprosy and 288 controls for CCL2 -1549 A>T SNPs by melting curve analysis using hybridization probe chemistry and detection by fluorescence resonance energy transfer (FRET) technique in Realtime PCR. The levels of CCL2, IL-12p70, IFN-γ, TNF-α, and TGF-β were estimated in sera samples and correlated with CCL2 genotypes. RESULTS The frequency of the GCT (-2518 A>G, -362 G>C, -2134 T>G) haplotype is observed to be higher in leprosy patients compared to healthy controls (P = 0.04). There was no significant difference observed in genotypic frequencies between leprosy patients and healthy controls {(-2518A>G, p = 0.53), (-362 G>C, p = 0.01), (-2134 T>G, p = 0.10)}. G allele at the -2134 site is predominant in leprosy (borderline) without any reaction (8 %) compared to borderline patients with RR reactions (2.1 %) (P = 0.03). GG genotype (p = 0.008) and G allele at -2518 (p = 0.030) of the CCL 2 gene were found to be associated with patients with ENL reaction. An elevated level of serum CCL2 was observed in leprosy patients with the -2518 AA and AG genotypes (p = 0.0001). CONCLUSIONS G allele and GG genotype at the CCL2 -2518 site are associated with a risk of ENL reactions.
Collapse
Affiliation(s)
- Sanjay Kumar Biswas
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Keshar Kunja Mohanty
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Vandana Singh
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mohan Natrajan
- Histopathology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mamta Arora
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Joy Kumar Chakma
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Srikanth Prasad Tripathy
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| |
Collapse
|
4
|
Chávez-Vélez E, Álvarez-Nava F, Torres-Vinueza A, Balarezo-Díaz T, Pilataxi K, Acosta-López C, Peña IZ, Narváez K. Single nucleotide variants in the CCL2, OAS1 and DPP9 genes and their association with the severity of COVID-19 in an Ecuadorian population. Front Cell Infect Microbiol 2024; 14:1322882. [PMID: 38694517 PMCID: PMC11061356 DOI: 10.3389/fcimb.2024.1322882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.
Collapse
Affiliation(s)
- Erik Chávez-Vélez
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Francisco Álvarez-Nava
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Alisson Torres-Vinueza
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Thalía Balarezo-Díaz
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Kathya Pilataxi
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Camila Acosta-López
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Ivonne Z. Peña
- Unidad de Cuidados Críticos de Adultos, Hospital Quito Sur del Instituto Ecuatoriano de Securidad Social, Quito, Ecuador
| | - Katherin Narváez
- Unidad de Cuidados Críticos de Adultos, Hospital Quito Sur del Instituto Ecuatoriano de Securidad Social, Quito, Ecuador
| |
Collapse
|
5
|
Wodelo W, Wampande EM, Andama A, Kateete DP, Ssekatawa K. Polymorphisms in Immune Genes and Their Association with Tuberculosis Susceptibility: An Analysis of the African Population. Appl Clin Genet 2024; 17:33-46. [PMID: 38567200 PMCID: PMC10986402 DOI: 10.2147/tacg.s457395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wycliff Wodelo
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Eddie M Wampande
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Alfred Andama
- Department of Medical Microbiology, School of Medicine, College of Health Science, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Kenneth Ssekatawa
- Department of Science, Technical and Vocational Education, Makerere University, Kampala, Uganda
- Africa Center Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
8
|
Rzepka-Wrona P, Skoczyński S, Piotrowski WJ, Jassem E, Ziora D, Barczyk A. Characteristics of Interstitial Pneumonia With Autoimmune Features (IPAF): Protocol for a Multicenter Prospective Study. JMIR Res Protoc 2023; 12:e44802. [PMID: 37976081 PMCID: PMC10692886 DOI: 10.2196/44802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND "Interstitial lung disease" (ILD) is a broad term encompassing diseases of different backgrounds. "Interstitial pneumonia with autoimmune features" (IPAF) is a recent term that implies the presence of autoimmunity. OBJECTIVE This study aims to determine the characteristics of Polish patients with IPAF, compare them with patients with other interstitial pneumonias, and search for the prognostic and diagnostic biomarkers of IPAF in serum and bronchoalveolar lavage fluid (BALF). METHODS This multicenter prospective study plans to recruit 240 participants divided into 1 study group and 2 control groups. Biological fluid samples will be collected according to Polish Respiratory Society management guidelines and stored at -80°C for further tests. Prospective 5-year observations of 60 newly diagnosed individuals are planned. The study will be divided into subsections. First, we plan to characterize Polish patients with IPAF (study group) against their peers with other ILDs (2 control groups). Control group 1 will comprise patients with idiopathic ILDs, including mainly idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. Control group 2 will comprise patients with connective tissue disease-associated interstitial lung diseases, such as rheumatoid arthritis, systemic sclerosis, polymyositis, dermatomyositis, Sjögren's syndrome, mixed connective tissue disease, and systemic lupus erythematosus. Radiological and functional parameters will be analyzed. Patients will be compared in terms of high-resolution computed tomography results, the 6-minute walking test performance, and pulmonary function test parameters. The diagnosis of IPAF will be reassessed on a regular basis through multidisciplinary discussion in order to determine its clinical stability. In the laboratory arm, inflammation and fibrosis pathways will be assessed. Cytokine levels (interleukin 8, transforming growth factor beta 1, chemokine C-C motif ligand [CXCL]18, CXCL1, surfactant protein [SP]-A, SP-D, Krebs von den Lungen-6 protein, and chitinase 1) will be measured in serum and BALF. A comparative analysis of serum and BALF cytokine levels will be performed in order to establish potential differences between systemic and local inflammatory pathways. In the quality of life (QoL) arm of the study, dyspnea and cough and their impact on various aspects of the QoL will be assessed. Depression and anxiety will be measured with the Hospital Anxiety and Depression Modified Scale and the 9-item Patient Health Questionnaire, and potential correlations with symptom prevalence will be assessed. RESULTS This study will start recruiting patients to phase 1 in October 2023. The final results will be available in 2028. We plan to publish preliminary results after 2-3 years from the start of phase 1. CONCLUSIONS This study will be a step toward a better understanding of IPAF etiopathogenesis and outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/44802.
Collapse
Affiliation(s)
- Patrycja Rzepka-Wrona
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Skoczyński
- Department of Lung Diseases and Tuberculosis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Ewa Jassem
- Department of Pneumonology and Allergology, Medical University of Gdansk, Gdańsk, Poland
| | - Dariusz Ziora
- Department of Lung Diseases and Tuberculosis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Adam Barczyk
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Akhtar F, Ruiz JH, Liu YG, Resendez RG, Feliers D, Morales LD, Diaz-Badillo A, Lehman DM, Arya R, Lopez-Alvarenga JC, Blangero J, Duggirala R, Mummidi S. Functional characterization of the disease-associated CCL2 rs1024611G-rs13900T haplotype: The role of the RNA-binding protein HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564937. [PMID: 37961304 PMCID: PMC10635030 DOI: 10.1101/2023.10.31.564937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CC-chemokine ligand 2 (CCL2) is involved in the pathogenesis of several diseases associated with monocyte/macrophage recruitment, such as HIV-associated neurocognitive disorder (HAND), tuberculosis, and atherosclerosis. The rs1024611 (alleles:A>G; G is the risk allele) polymorphism in the CCL2 cis-regulatory region is associated with increased CCL2 expression in vitro and ex vivo, leukocyte mobilization in vivo, and deleterious disease outcomes. However, the molecular basis for the rs1024611-associated differential CCL2 expression remains poorly characterized. It is conceivable that genetic variant(s) in linkage disequilibrium (LD) with rs1024611 could mediate such effects. Previously, we used rs13900 (alleles:_C>T) in the CCL2 3' untranslated region (3' UTR) that is in perfect LD with rs1024611 to demonstrate allelic expression imbalance (AEI) of CCL2 in heterozygous individuals. Here we tested the hypothesis that the rs13900 could modulate CCL2 expression by altering mRNA turnover and/or translatability. The rs13900 T allele conferred greater stability to the CCL2 transcript when compared to the rs13900 C allele. The rs13900 T allele also had increased binding to Human Antigen R (HuR), an RNA-binding protein, in vitro and ex vivo. The rs13900 alleles imparted differential activity to reporter vectors and influenced the translatability of the reporter transcript. We further demonstrated a role for HuR in mediating allele-specific effects on CCL2 expression in overexpression and silencing studies. The presence of the rs1024611G-rs13900T conferred a distinct transcriptomic signature related to inflammation and immunity. Our studies suggest that the differential interactions of HuR with rs13900 could modulate CCL2 expression and explain the interindividual differences in CCL2-mediated disease susceptibility.
Collapse
Affiliation(s)
- Feroz Akhtar
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Joselin Hernandez Ruiz
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Ya-Guang Liu
- Department of Pathology, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Roy G. Resendez
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Denis Feliers
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Liza D. Morales
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Alvaro Diaz-Badillo
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Donna M. Lehman
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Rector Arya
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Juan Carlos Lopez-Alvarenga
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Ravindranath Duggirala
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Srinivas Mummidi
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| |
Collapse
|
10
|
Azarfar F, Abbasi B, Jalali A, Abbasian MH. Investigation of the relationship between monocyte chemoattractant protein 1 rs1024611 variant and severity of COVID-19. Cytokine 2023; 171:156367. [PMID: 37713941 DOI: 10.1016/j.cyto.2023.156367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Higher expression of Monocyte Chemoattractant Protein 1 (MCP-1) was reported in several studies. The clinical severity of Coronavirus disease 2019 (COVID-19) could be affected by genetic polymorphisms in MCP-1. This study aimed to examine the impact of MCP-1 2518A/G polymorphism and clinical parameters with COVID-19 severity. METHODS The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for MCP-1 rs1024611 (A/G) genotyping in 116 outpatients, hospitalized, and ICU patients. The biochemical and hematological profiles were collected from the patient's medical records. RESULTS Based on the statistical analysis, there was no significant relationship between the -2518A/G (rs1024611) genetic polymorphism in the regulatory region of the MCP-1 gene and the severity of the COVID-19. Multivariate logistic regression analysis has shown that the severity of COVID-19 infection was associated with decreased levels of eosinophils, neutrophils, lymphocytes, and, monocyte and higher levels of SGPT, SGOT, NLR, CRP, ferritin, urea, and D-Dimer (P < 0.05). CONCLUSION The MCP-1 gene polymorphism had no impact on COVID-19 severity. However, to confirm these results, a large-scale study needs to be conducted.
Collapse
Affiliation(s)
- Fatemeh Azarfar
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Bahareh Abbasi
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Jalali
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran.
| | - Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Mohammadi NG, Namaki S, Hashemi SM, Salehi M, Ghaffarpour S, Ghazanfari T. Impact of the MCP-1-2518A>G polymorphism on COVID-19 severity in the Iranian population: A case-control study. Int Immunopharmacol 2023; 119:110217. [PMID: 37148770 PMCID: PMC10123354 DOI: 10.1016/j.intimp.2023.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
As a result of SARS-CoV-2 infection, the host's immune system is disrupted, and chemokines and cytokines are intensified to eliminate the virus, resulting in cytokine storm syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19 have been observed to have elevated levels of MCP-1, a chemokine associated with the severity of the disease. In some diseases, polymorphisms in the regulatory region of the MCP-1 gene correspond to serum levels and disease severity. An attempt was made in this study to assess the relationship between MCP-1 G-2518A and serum MCP-1 levels in Iranian COVID-19 patients and the severity of the disease. In this study, patients were randomly sampled from outpatients on the first day of diagnosis and from inpatients on the first day of their hospitalization. Patients were classified into the outpatient (without symptoms or with mild symptoms) and inpatient (with moderate, severe, and critical symptoms) groups. The serum level of MCP-1 was measured by ELISA and the frequency of MCP-1 G-2518A gene polymorphism genotypes in COVID-19 patients was checked by the RFLP-PCR method. Participants with COVID-19 infection had a higher rate of underlying diseases, such as diabetes, high blood pressure, kidney disease, and cardiovascular disease than the control group (P-value < 0.001). Also, the frequency of these factors in inpatients was significantly higher compared to outpatients (P-value < 0.001). Additionally, the level of MCP-1 in serum was significantly different with an average of 11.90 in comparison to 2.98 in the control group (P-value, 0.05), which is attributed to elevated serum levels among patients in hospitals with an average of 11.72 in comparison to 2.98 in the control group. Compared with outpatients, inpatients had a higher frequency of the G allele of the MCP-1-2518 polymorphism (P-value < 0.05), while a notable difference was observed in the serum level of MCP-1 in COVID-19 patients with the MCP-1-2518 AA genotype in the whole group in comparison to the control group (P-value: 0.024). Totally, the results showed that a high frequency of the G allele is related to hospitalization and poor outcome in COVID-19 cases.
Collapse
Affiliation(s)
- Niki Ghambari Mohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Namaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infection Disease and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghaffarpour
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
12
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
13
|
Absence of CCR2 Promotes Proliferation of Alveolar Macrophages That Control Lung Inflammation in Acute Respiratory Distress Syndrome in Mice. Int J Mol Sci 2022; 23:ijms232112920. [DOI: 10.3390/ijms232112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) consists of uncontrolled inflammation that causes hypoxemia and reduced lung compliance. Since it is a complex process, not all details have been elucidated yet. In a well-controlled experimental murine model of lipopolysaccharide (LPS)-induced ARDS, the activity and viability of macrophages and neutrophils dictate the beginning and end phases of lung inflammation. C-C chemokine receptor type 2 (CCR2) is a critical chemokine receptor that mediates monocyte/macrophage activation and recruitment to the tissues. Here, we used CCR2-deficient mice to explore mechanisms that control lung inflammation in LPS-induced ARDS. CCR2−/− mice presented higher total numbers of pulmonary leukocytes at the peak of inflammation as compared to CCR2+/+ mice, mainly by enhanced influx of neutrophils, whereas we observed two to six-fold lower monocyte or interstitial macrophage numbers in the CCR2−/−. Nevertheless, the time needed to control the inflammation was comparable between CCR2+/+ and CCR2−/−. Interestingly, CCR2−/− mice presented higher numbers and increased proliferative rates of alveolar macrophages from day 3, with a more pronounced M2 profile, associated with transforming growth factor (TGF)-β and C-C chemokine ligand (CCL)22 production, decreased inducible nitric oxide synthase (Nos2), interleukin (IL)-1β and IL-12b mRNA expression and increased mannose receptor type 1 (Mrc1) mRNA and CD206 protein expression. Depletion of alveolar macrophages significantly delayed recovery from the inflammatory insult. Thus, our work shows that the lower number of infiltrating monocytes in CCR2−/− is partially compensated by increased proliferation of resident alveolar macrophages during the inflammation control of experimental ARDS.
Collapse
|
14
|
Williams PT. Quantile-specific heritability of monocyte chemoattractant protein-1, and relevance to rs1024611-disease interactions. Cytokine 2021; 149:155722. [PMID: 34624603 PMCID: PMC10124179 DOI: 10.1016/j.cyto.2021.155722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1) concentrations are 34% to 47% heritable. Larger -2518 G/A (rs1024611) genotypes differences are reported for: 1) MCP-1 production in stimulated vs. basal cells; and 2) MCP-1 concentrations in diseased (sepsis, brain abscess, hepatitis B virus, Alzheimer's disease, Behcet's disease, and systemic lupus erythematosus) vs. healthy patients. Those results suggest that the -2518 G/A effect size may depend on whether the phenotype is high or low relative to its distribution (quantile-dependent expressivity). METHOD To test whether quantile-dependent expressivity applies more broadly to genetic influences on MCP-1 concentrations, quantile-specific offspring-parent (βOP) and full-sib regression slopes (βFS) were estimated by applying quantile regression to the age- and sex-adjusted serum MCP-1 concentrations of Framingham Heart Study families. Quantile-specific heritabilities were calculated as h2 = 2βOP/(1 + rspouse) and h2={(1 + 8rspouseβFS)0.5-1}/(2rspouse)). RESULTS Heritability (h2 ± SE) of MCP-1 concentrations increased from 0.15 ± 0.05 at the 10th percentile of the MCP-1 distribution, 0.23 ± 0.04 at the 25th, 0.32 ± 0.05 at the 50th, 0.43 ± 0.07 at the 75th, and 0.44 ± 0.07 at the 90th percentile, or an 0.0041 ± 0.0009 increase for each one-percent increment in the MCP-1 distribution (Plinear trend = 2.4 × 10-5) when estimated from βOP, and (Plinear trend = 7.7 × 10-9) when estimated from βFS. Compared to the 10th percentile, βOP-estimated h2 was 3-fold greater at the 90th percentile (Pdifference = 0.0003), and 6.9-fold greater when estimated from βFS (Pdifference = 3.3 × 10-6). Re-analysis of in vivo comparison of MCP-1 concentrations in controls vs. patients with MCP-1-elevating conditions, and in vitro studies of MCP-1 production in basal vs. stimulated cells, show rs1024611 genotypes differences that were consistent with quantile-dependent expressivity. CONCLUSION The heritability of circulating MCP-1 concentrations is quantile-dependent.
Collapse
Affiliation(s)
- Paul T Williams
- Lawrence Berkeley National Laboratory, Molecular Biophysics & Integrated Bioimaging Division, 1 Cyclotron Road, Berkeley, CA 94720, United States.
| |
Collapse
|
15
|
Joshi N, Tripathi DK, Nagar N, Poluri KM. Hydroxyl Groups on Annular Ring-B Dictate the Affinities of Flavonol-CCL2 Chemokine Binding Interactions. ACS OMEGA 2021; 6:10306-10317. [PMID: 34056184 PMCID: PMC8153786 DOI: 10.1021/acsomega.1c00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 05/26/2023]
Abstract
Owing to the astounding biological properties, dietary plant flavonoids have received considerable attention toward developing unique supplementary food sources to prevent various ailments. Chemokines are chemotactic proteins involved in leukocyte trafficking through their interactions with G-protein-coupled receptors and cell surface glycosaminoglycans (GAGs). CCL2 chemokine, a foremost member of CC chemokines, is associated with the pathogenesis of various inflammatory infirmities, thus making the CCL2-Receptor (CCR2)/GAG axis a potential pharmacological target. The current study is designed to unravel the structural details of CCL2-flavonol interactions. Molecular interactions between flavonols (kaempferol, quercetin, and myricetin) with human/murine CCL2 orthologs and their monomeric/dimeric variants were systematically investigated using a combination of biophysical approaches. Fluorescence studies have unveiled that flavonols interact with CCL2 orthologs specifically but with differential affinities. The dissociation constants (K d) were in the range of 10-5-10-7 μM. The NMR- and computational docking-based outcomes have strongly suggested that the flavonols interact with CCL2, comprising the N-terminal and β1- and β3-sheets. It has also been observed that the number of hydroxyl groups on the annular ring-B imposed a significant cumulative effect on the binding affinities of flavonols for CCL2 chemokine. Further, the binding surface of these flavonols to CCL2 orthologs was observed to be extensively overlapped with that of the receptor/GAG-binding surface, thus suggesting attenuation of CCL2-CCR2/GAG interactions in their presence. Considering the pivotal role of CCL2 during monocyte/macrophage trafficking and the immunomodulatory features of these flavonols, their direct interactions highlight the promising role of flavonols as nutraceuticals.
Collapse
|
16
|
TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun 2021; 12:2299. [PMID: 33863908 PMCID: PMC8052348 DOI: 10.1038/s41467-021-22620-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion. Mycobacterial cell wall lipids can drive immunoevasion, but underlying mechanisms are incompletely understood. Here the authors show TREM2 is a pattern recognition receptor that binds non-glycosylated mycolic acid-containing lipids and inhibits Mincle-induced anti-mycobacterial macrophage responses.
Collapse
|
17
|
Exploring the Role of C-C Motif Chemokine Ligand-2 Single Nucleotide Polymorphism in Pulmonary Tuberculosis: A Genetic Association Study from North India. J Immunol Res 2021; 2020:1019639. [PMID: 33381602 PMCID: PMC7759415 DOI: 10.1155/2020/1019639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/31/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
The C-C motif chemokine ligand-2 (CCL2) was evidenced to be associated with tuberculosis susceptibility in some ethnic groups. In the present study, effort was made to find out the association of CCL2-2518 A>G and -362 G>C variants with susceptibility to TB in a population from North India. The genotyping was carried out in 373 participants with pulmonary TB (PTB) and 248 healthy controls (HCs) for CCL2-2518 A>G and -362 G>C polymorphisms by PCR-RFLP and by melting curve analysis using fluorescence-labeled hybridization fluorescent resonance energy transfer (FRET) probes, respectively, followed by DNA sequencing in a few representative samples. Genotype and allele frequencies were compared by the chi-squared test and crude and Mantel-Haenszel (M-H) odds ratio (OR). OR was calculated using STATA/MP16.1 software. Further, CCL2, IL-12p70, IFN-γ, TNF-α, and TGF-β levels were measured in serum samples of these participants using commercially available kits. Our analysis indicated that the homozygous mutant in both -2518 GG (OR = 2.07, p = 0.02) and -362 CC (OR = 1.92, p = 0.03) genotypes was associated with susceptibility to pulmonary TB. Further, heterozygous genotypes -2518AG (OR = 0.60, p = 0.003) and -362GC (OR = 0.64, p = 0.013) provide resistance from PTB disease. Haplotype analysis revealed AC haplotype (p = 0.006) to be a risk factor associated with PTB susceptibility. The serum CCL2 level was significantly elevated among participants with -2518 AA genotype compared to -2518 GG genotype. CCL2 level was observed to be positively correlated with IL12p70, IFN-γ and TNF-α, thus suggesting the immunological regulatory role of CCL2 against pulmonary tuberculosis. CCL2-2518 GG and -362 CC genotypes were found to be associated with susceptibility to pulmonary tuberculosis and CCL2-2518AG and CCL2-362GC with resistance from PTB. AC haplotype was found to be a risk factor for PTB in the present study. It may be hypothesized from the findings that -2518G allele could be responsible for lower production of CCL2 which leads to defective Th1 response and makes a host susceptible for pulmonary tuberculosis.
Collapse
|
18
|
Cohan CM, Beattie G, Tang A, Mazzolini K, Victorino GP. Early Monocyte Chemoattractant Protein-1 Elevation Predicts Surgical Site Infections after Blunt Trauma. Surg Infect (Larchmt) 2020; 22:690-696. [PMID: 33370546 DOI: 10.1089/sur.2020.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Dysregulation of the inflammatory and immune response to injury may increase susceptibility to secondary infections after trauma. It is unknown whether cytokines involved in this response could function as plasma biomarkers for surgical site infection (SSI). We hypothesized that the early cytokine response differs between patients who develop SSI and those who do not and that critical cytokine threshold values could be used to predict risk of SSI. Patients and Methods: Using the Glue Grant database, we performed an analysis of severely injured blunt trauma patients who underwent a major procedure and had available cytokine data. Patients were divided into SSI and no SSI groups. Receiver operating curve analysis was used to determine acceptable early cytokine predictors of SSI and critical threshold values. Multivariable regression analysis was then performed to determine the odds of developing SSI using threshold values, adjusting for key patient or injury factors. Cytokine levels were compared between SSI and no SSI groups at three time points. Results: The study cohort consisted of 70 patients and 11 patients developed SSI. Monocyte chemoattractant protein-1 (MCP-1) was the only acceptable early predictor of SSI with an area under the curve (AUC) of 0.71 (p = 0.03) and a critical threshold value of 490 pg/mL. Monocyte chemoattractant protein-1 levels above this threshold within 24 hours of injury were associated with SSI (adjusted odds ratio [AOR] 8.1; p = 0.01). Monocyte chemoattractant protein-1 levels within 24 hours of injury were higher in those who developed SSI (994 vs. 259 pg/mL; p < 0.01) and remained higher in the SSI group at 33 hours from injury (338 vs. 144 pg/mL; p = 0.01), but were similar by 106 hours (155 vs. 97 pg/mL; p = 0.19). Conclusion: Among cytokines involved in the early response to trauma, only early elevation of MCP-1 predicted SSI after blunt trauma. Monocyte chemoattractant protein-1 may act as a specific and early marker for SSI after blunt trauma, allowing for preventative measures to mitigate risks.
Collapse
Affiliation(s)
- Caitlin M Cohan
- Department of Surgery, University of California San Francisco-East Bay, Oakland, California, USA
| | - Genna Beattie
- Department of Surgery, University of California San Francisco-East Bay, Oakland, California, USA
| | - Annie Tang
- Department of Surgery, University of California San Francisco-East Bay, Oakland, California, USA
| | - Kirea Mazzolini
- Department of Surgery, University of California San Francisco-East Bay, Oakland, California, USA
| | - Gregory P Victorino
- Department of Surgery, University of California San Francisco-East Bay, Oakland, California, USA
| |
Collapse
|
19
|
Fu Z, Jiang Y, Liu J, Lin Z, Jin Y. Study on plasma CC chemokine ligand 2 level and its promoter region 2518A/G polymorphism in MS patients. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220959913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The increase of CC chemokine ligand 2 (CCL2) is associated with multiple sclerosis (MS), but the relationship between gene promoter region 2518A/G and the pathogenesis of MS is still not obvious. Collected 54 cases of relapsing-remitting MS patients and 54 healthy controls. By detecting the CCL2-2518A/G polymorphism of MS patients and analyzing the plasma CCL2 level. High levels of A/A genotype and A allele frequency in serum CCL2 and PBMC were found in MS patients. The serum CCL2 of MS patients with A/A genotype is higher than other genotypes. Lipopolysaccharide stimulated PBMC, CCL2 levels in the supernatant of all genotypes were higher, and the A/A genotype levels of MS patients were the highest. Finally, CCL2-2518A/G polymorphism is related to the pathogenesis of MS.
Collapse
Affiliation(s)
- Zenghui Fu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang
| | - Yan Jiang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang
| | - Jing Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang
| | - Zaihong Lin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang
| | - Yan Jin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang
| |
Collapse
|
20
|
Joshi N, Kumar D, Poluri KM. Elucidating the Molecular Interactions of Chemokine CCL2 Orthologs with Flavonoid Baicalin. ACS OMEGA 2020; 5:22637-22651. [PMID: 32923824 PMCID: PMC7482410 DOI: 10.1021/acsomega.0c03428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 05/03/2023]
Abstract
An integrated and controlled migration of leukocytes is necessary for the legitimate functioning and maintenance of the immune system. Chemokines and their receptors play a decisive role in regulating the leukocyte migration to the site of inflammation, a phenomena often referred to as chemotaxis. Chemokines and their receptors have become significant targets for therapeutic intervention considering their potential to regulate the immune system. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a preeminent member of CC chemokine family that facilitates crucial roles by orchestrating the recruitment of monocytes into inflamed tissues. Baicalin (BA), a major bioactive flavonoid, has been reported to attenuate chemokine-regulated leukocyte trafficking. However, no molecular details pertaining to its direct binding to chemokine(s)/receptor(s) are available till date. In the current study, using an array of monomers/dimers of human and murine CCL2 orthologs (hCCL2/mCCL2), we have shown that BA binds to the CCL2 protein specifically with nanomolar affinity (K d = 270 ± 20 nM). NMR-based studies established that BA binds CCL2 in a specific pocket involving the N-terminal, β1- and β3-sheets. Docking studies suggested that the residues T16, N17, R18, I20, R24, K49, E50, I51, and C52 are majorly involved in complex formation through a combination of H-bonds and hydrophobic interactions. As the residues R18, R24, and K49 of hCCL2 are crucial determinants of monocyte trafficking through receptor/glycosaminoglycans (GAG) binding in CCL2 human/murine orthologs, we propose that baicalin engaging these residues in complex formation will result in attenuation of CCL2 binding to the receptor/GAGs, thus inhibiting the chemokine-regulated leukocyte trafficking.
Collapse
Affiliation(s)
- Nidhi Joshi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- , . Tel: +91-1332-284779
| |
Collapse
|
21
|
Zhao Y, Jiao Y, Wang L. Hesperidin methyl chalcone alleviates spinal tuberculosis in New Zealand white rabbits by suppressing immune responses. J Spinal Cord Med 2020; 43:532-539. [PMID: 30124375 PMCID: PMC7480517 DOI: 10.1080/10790268.2018.1507805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective: Spinal tuberculosis (ST) refers to tuberculosis resulted from infections of Mycobacterium tuberculosis (Mtb) in the spinal cord. Hesperidin methyl chalcone (HMC) is a flavonoid derivative from citrus fruits with anti-inflammatory properties. We aimed to investigate the efficacy of HMC in treating ST in New Zealand white rabbit model. Design and Setting: Rabbits were infected in the sixth lumbar vertebral bodies with or without Mtb strain H37Rv followed by treatments with HMC. Outcome Measures: 10 weeks post treatments, the adjacent vertebral tissues were examined by hematoxylin-eosin staining. The expression levels of transcription factor κB (NF-κB) p65 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in lymphocytes were determined using reverse transcription quantitative real-time PCR (RT-qPCR), Western blot and enzyme-linked immunosorbent assays (ELISA). The serum levels of interleukin (IL)-2, IL-4, IL-10 as well as interferon (IFN)-γ were also assessed using ELISA. Western blot was used to determine the effects of HMC on the phosphorylation of IKKα/β, p65, and IκBα in the signal transduction of NF-κB pathways. Results: HMC significantly attenuated the granulation in adjacent vertebral bone tissues. The expression of p65, IL-4, IL-10, and MCP-1 was reduced. The NF-κB pathway was suppressed, in which the phosphorylation of IκBα, IKKα/β, and p65 was inhibited whereas the relative level of IκBα was increased. Conclusion: HMC could serve as a therapeutic option to effectively inhibit granulomas formation through downregulation of MCP-1, IL-4, IL-10, and NF-κB in the treatment of ST.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yong Jiao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lei Wang
- Department of Anesthesiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Correspondence to: Lei Wang, Department of Anesthesiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyun Cang, Beijing100700, People’s Republic of China; Tel.: +86-010-84013151, Fax.: +86-010-84013151.
| |
Collapse
|
22
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
23
|
Suzukawa M, Takeda K, Akashi S, Asari I, Kawashima M, Ohshima N, Inoue E, Sato R, Shimada M, Suzuki J, Yamane A, Tamura A, Ohta K, Tohma S, Teruya K, Nagai H. Evaluation of cytokine levels using QuantiFERON-TB Gold Plus in patients with active tuberculosis. J Infect 2020; 80:547-553. [PMID: 32092390 DOI: 10.1016/j.jinf.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES A recently released new QuantiFERON (QFT) product, QFT TB Gold plus (QFT-plus), is optimized for both CD4 and CD8 responses and reported to have higher sensitivity compared to the former QFT-3 G. Previously, using supernatants of QFT-3 G, we and others have demonstrated that cytokines other than IFN-γ may be useful in diagnosing tuberculosis. The present study aimed to identify cytokines that are useful for accurately diagnosing active tuberculosis by using QFT-plus and compared the data to those with QFT-3 G. METHODS Eighty-three active tuberculosis patients and 70 healthy control subjects who were examined by QFT at Tokyo National Hospital from June 2017 to July 2018 were enrolled. QFT-3 G and QFT-plus were performed according to the manufacturer's instructions. At the same time, blood cell culture supernatants were collected and assayed for their cytokine levels using R&D Systems Luminex Assay and MAGPIX System. The levels of cytokines were compared between different antigen-containing tubes (3 G Ag, TB1 and TB2 tubes), as well as between the patients and the control subjects. ROC curves were drawn, and the AUCs were calculated. RESULTS Five cytokines, i.e., IL-2, IL-6, IL-8, IP-10 and MIP-1β, produced by human blood cells in three independent tubes containing different tuberculosis antigens were higher in the 3 G Ag tube compared to both the TB1 and TB2 tubes. Further, when the TB1 and TB2 tubes were compared, TB2 showed greater production of only PDGF-BB, and less production of IL-6 and TNF-α. For diagnosing active tuberculosis, the levels of IP-10 were superior to the level of IFN-γ based on showing a larger AUC for ROC curves in our present study setting. Finally, the levels of IFN-γ, IL-1RA, IL-2, IP-10, MCP-1 and MIP-1β were distinctly different between the active tuberculosis patients and healthy controls. CONCLUSIONS In summary, there was no cytokine that was higher in the tubes of QFT-plus compared to the tube of QFT-3 G, suggesting inferiority of QFT-plus antigens to 3 G Ag in terms of elicitation of cytokine production. Our results also suggest the usefulness of cytokines that showed a significant difference between the active tuberculosis patients and the healthy controls-namely, IFN-γ, IL-1RA, IL-2, IP-10, MCP-1 and MIP-1β-for diagnosing tuberculosis, but the roles of these cytokines in the pathogenesis of tuberculosis need to be elucidated (UMIN000035253).
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Keita Takeda
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| | - Shunsuke Akashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Isao Asari
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Kawashima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Nobuharu Ohshima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Eri Inoue
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Ryota Sato
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Shimada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Junko Suzuki
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Akira Yamane
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Atsuhisa Tamura
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Shigeto Tohma
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideaki Nagai
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| |
Collapse
|
24
|
Profiles of Local and Systemic Inflammation in the Outcome of Treatment of Human Cutaneous Leishmaniasis Caused by Leishmania ( Viannia). Infect Immun 2020; 88:IAI.00764-19. [PMID: 31818959 DOI: 10.1128/iai.00764-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023] Open
Abstract
The immune mechanisms that contribute to the efficacy of treatment of cutaneous leishmaniasis (CL) are not fully understood. The aim of this study was to define immune correlates of the outcome of treatment of CL caused by Leishmania (Viannia) species during standard of care treatment with pentavalent antimonials. We conducted a comparative expression profiling of immune response genes in peripheral blood mononuclear cells (PBMCs) and lesion biopsy specimens obtained from CL patients before and at the end of treatment (EoT) with meglumine antimoniate. The ex vivo response of PBMCs to L (V) panamensis partially reflected that of lesion microenvironments. Significant downregulation of gene expression profiles consistent with local innate immune responses (monocyte and neutrophil activation and chemoattractant molecules) was observed at EoT in biopsy specimens of patients who cured (n = 8), compared to those from patients with treatment failure (n = 8). Among differentially expressed genes, pretreatment expression of CCL2 was significantly predictive of the therapeutic response (receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.82, P = 0.02). Polymorphisms in regulatory regions of the CCL2 promoter were analyzed in a pilot cohort of DNA samples from CL patients (cures, n = 20, and treatment failure, n = 20), showing putative association of polymorphisms rs13900(C/T) and rs2857656(G/C) with treatment outcome. Our data indicate that dampening gene expression profiles of monocyte and neutrophil activation characterize clinical cure after treatment of CL, supporting participation of parasite-sustained inflammation or deregulated innate immune responses in treatment failure.
Collapse
|
25
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Protective Effect of the MCP-1 Gene Haplotype against Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4042615. [PMID: 31886209 PMCID: PMC6925699 DOI: 10.1155/2019/4042615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
While cytokines and their genetic variants have been intensively studied in schizophrenia, little attention has been focused on chemokines in the last years. The monocyte chemoattractant protein 1 (MCP-1) is known to attract peripheral monocytes to the brain during an inflammatory reaction and to affect the T helper (Th) cell development by stimulating Th2 polarization. Owing to the neuroinflammation in schizophrenia and the variable level of MCP-1 in these patients' sera, we proposed to analyze the impact of functional genetic variants of the MCP-1 gene (MCP-1-2518A/G (rs1024611), MCP-1-362G/C (rs2857656), and MCP-1 int1del554-567 (rs3917887)) in schizophrenic patients. We conducted a case-control study on a Tunisian population composed of 200 patients and 200 controls using RFLP-PCR. Our results indicated that the minor alleles (-2518G and Del554-567) were significantly more prevalent in controls than in patients (P=0.001/adjusted OR = 0.42, P=0.04/adjusted OR = 0.64), whereas, for -362C minor allele, increased risk of schizophrenia was revealed (P=0.001, adjusted OR = 2.38). In conclusion, we have identified the haplotype combination -2581G/-362G/int1del554-567 that could mediate protection against schizophrenia (P=0.0038, OR = 0.19) and the effect could result more strongly from the MCP-1 -2582G with -362G variants, whereas the effect of int1del554-567 may in part be explained by its LD with -362.
Collapse
|
27
|
Cai L, Li Z, Guan X, Cai K, Wang L, Liu J, Tong Y. The Research Progress of Host Genes and Tuberculosis Susceptibility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9273056. [PMID: 31485302 PMCID: PMC6710736 DOI: 10.1155/2019/9273056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/05/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Nucleotide diversity may affect the immune regulation of tuberculosis (TB) patients, leading to the individual susceptibility to TB. In recent years, there are a lot of researches on the association of host genetic factors and TB susceptibility which has attracted increasing attention, and the in-depth study of its mechanism is gradually clear. MATERIALS We made a minireview on the association of many candidate genes with TB based on recent research studies systematically, such as the human leukocyte antigen (HLA) gene, the solute carrier family 11 member 1 (SLC11A1) gene system, the vitamin D receptor (VDR) gene, the mannan-binding lectin (MBL) gene, the nitric oxide synthase 2A (NOS2A) gene, the speckled 110 (SP110) gene, and the P2X7 receptor (P2X7) gene. The discovery of these candidate genes could reveal the pathogenesis of TB comprehensively and is crucial to provide scientific evidence for formulating the related measures of prevention and cure. DISCUSSION The host genes play important roles in the development of TB, and the host genes may become new targets for the prevention and treatment of TB. Effective regulation of host genes may help prevent or even treat TB. CONCLUSION This minireview focuses on the association of host genes with the development of TB, which may supply some clues for future therapies and novel drug targets for TB.
Collapse
Affiliation(s)
- Li Cai
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, China
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Zhan Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhua Guan
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Kun Cai
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Lei Wang
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Jiafa Liu
- School of Health Sciences, Wuhan University, Wuhan 430071, China
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Yeqing Tong
- Hubei Center for Disease Control and Prevention, 430079, China
| |
Collapse
|
28
|
Anaya-Ayala JE, Escamilla-Tilch M, Granados J, Hernandez-Dono S, Hernandez-Sotelo K, Lozano-Corona R, Ruiz-Gomez D, Garcia-Toca M, Hinojosa CA. Investigation of an Immunogenetic Profile in Patients with Abdominal Aortic Aneurysms and Possible Applications in Screening and Surveillance. Ann Vasc Surg 2019; 62:57-62. [PMID: 31201975 DOI: 10.1016/j.avsg.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The pathogenesis of atherosclerotic abdominal aortic aneurysms (AAAs) remains not fully understood. Histological analyses confirm chronic adventitial and medial inflammatory cell infiltration, and its pathophysiology involves the upregulation of proteolytic pathways; added to this, genetic factors have been suggested to favor the susceptibility for AAA. The aim of the present study was to analyze the association between genetic polymorphism of the class II human leukocyte antigens (HLAs, HLA-DRB1) with the susceptibility to develop AAA in Mexican patients and to initiate a pilot study of single-nucleotide polymorphisms (SNPs) rs1024611 in the monocyte chemoattractant protein-1 (MCP-1/CCL2) gene to investigate a possible role in the AAA pathogenesis. METHODS In a cohort of patients with AAA, HLA molecular typing was completed for DRB1 loci with LABType SSO-One Lambda kit in 39 patients (69% men with a mean age of 72 years) and compared with 99 without the disease (60% men, mean age 65 years) (control group). Genotyping of rs1024611 in the MCP-1 gene was performed using TaqMan predesigned SNP genotyping assays in 27 patients with AAA (63% men, mean age of 71). Gene frequencies (gfs) and genotype frequencies (Gfs) were determined; categorical data were analyzed by nonparametric statistic test at significance level (P < 0.05), and odds ratios (ORs) were calculated using the STATA v14 software and StatCalc software Epi Info™ 7.2.2.2. RESULTS Seventy-eight HLA-DRB1 alleles of patients with AAA and 198 from the control group were studied. We observed that the gf of HLA-DRB1*01 was 0.128 in the AAA group compared with 0.05 in the control group (P = 0.03, OR: 2.6, 95% confidence interval [CI]: 1.04-6.5); the gf of HLA-DRB1*16 was 0.115 in the AAA and 0.025 in control group (P = 0.002, OR: 5, 95% CI: 1.6-16.9). The Gf for SNP rs1024611 were 0.51 in the GA genotype, 0.30 in AA, and 0.19 of GG. Four patients with the proinflammatory homozygous genotype GG (80%) were women and younger than patients with other genotypes, and only one had a history of dyslipidemia. CONCLUSIONS The dissection and interpretation of an immunogenetic profile in patients with AAA is an active and complex field of research that might assist in a more precise identification of those patients at genetic risk. Our study demonstrated increased frequencies of HLA-DRB1*01 and HLA-DRB1*16 alleles in Mexican patients with AAA compared with an ethnically matched control group.
Collapse
Affiliation(s)
- Javier E Anaya-Ayala
- Department of Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Section of Vascular Surgery and Endovascular Therapy, Mexico City, Mexico; Division for Postgraduate studies, Universidad Nacional Autonoma de Mexico, Faculty of Medicine, Master and Doctoral degree program, Mexico City, Mexico
| | | | - Julio Granados
- Division for Postgraduate studies, Universidad Nacional Autonoma de Mexico, Faculty of Medicine, Master and Doctoral degree program, Mexico City, Mexico; Division of Immunogenetics, Department of Transplant Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Mexico City, Mexico
| | - Susana Hernandez-Dono
- Division of Immunogenetics, Department of Transplant Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Mexico City, Mexico
| | - Kemberly Hernandez-Sotelo
- Department of Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Section of Vascular Surgery and Endovascular Therapy, Mexico City, Mexico
| | - Rodrigo Lozano-Corona
- Department of Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Section of Vascular Surgery and Endovascular Therapy, Mexico City, Mexico; Division for Postgraduate studies, Universidad Nacional Autonoma de Mexico, Faculty of Medicine, Master and Doctoral degree program, Mexico City, Mexico
| | - Daniela Ruiz-Gomez
- Division of Immunogenetics, Department of Transplant Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Mexico City, Mexico
| | | | - Carlos A Hinojosa
- Department of Surgery, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Section of Vascular Surgery and Endovascular Therapy, Mexico City, Mexico; Division for Postgraduate studies, Universidad Nacional Autonoma de Mexico, Faculty of Medicine, Master and Doctoral degree program, Mexico City, Mexico.
| |
Collapse
|
29
|
Yan S, Zhen J, Li Y, Zhang C, Stojkoska A, Lambert N, Li Q, Li P, Xie J. Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. Int Immunopharmacol 2019; 66:205-214. [DOI: 10.1016/j.intimp.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
30
|
Significance of CCL2 (−2518A/G), CCR2 (190G/A) and TLR4 polymorphisms (896 A/G and 1196C/T) in tuberculosis risk in Indian population. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Choudhary ML, Alagarasu K, Chaudhary U, Kawale S, Malasane P, Gurav YK, Padbidri V, Kadam D, Sangle SA, Salvi S, Bavdekar AR, D'costa P, Chadha MS. Association of Single Nucleotide Polymorphisms inTNFAandIL10Genes with Disease Severity in Influenza A/H1N1pdm09 Virus Infections: A Study from Western India. Viral Immunol 2018; 31:683-688. [DOI: 10.1089/vim.2018.0120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Urmila Chaudhary
- Human Influenza Group, ICMR-National Institute of Virology, Pune, India
| | - Samruddhi Kawale
- Human Influenza Group, ICMR-National Institute of Virology, Pune, India
| | - Prachi Malasane
- Human Influenza Group, ICMR-National Institute of Virology, Pune, India
| | - Yogesh K. Gurav
- Human Influenza Group, ICMR-National Institute of Virology, Pune, India
| | | | - Deelip Kadam
- Department of Medicine, BJ Medical College, Pune, India
| | | | - Sonali Salvi
- Department of Medicine, BJ Medical College, Pune, India
| | | | | | - Mandeep S. Chadha
- Human Influenza Group, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
32
|
Dunlap MD, Howard N, Das S, Scott N, Ahmed M, Prince O, Rangel-Moreno J, Rosa BA, Martin J, Kaushal D, Kaplan G, Mitreva M, Kim KW, Randolph GJ, Khader SA. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol 2018; 11:1727-1742. [PMID: 30115997 PMCID: PMC6279476 DOI: 10.1038/s41385-018-0071-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2) is a major chemokine axis that recruits myeloid cells including monocytes and macrophages. Thus far, CCR2-/- mice have not been found to be susceptible to infection with Mycobacterium tuberculosis (Mtb). Here, using a prototype W-Beijing family lineage 2 Mtb strain, HN878, we show that CCR2-/- mice exhibit increased susceptibility to tuberculosis (TB). Following exposure to Mtb HN878, alveolar macrophages (AMs) are amongst the earliest cells infected. We show that AMs accumulate early in the airways following infection and express CCR2. During disease progression, CCR2-expressing AMs exit the airways and localize within the TB granulomas. RNA-sequencing of sorted airway and non-airway AMs from infected mice show distinct gene expression profiles, suggesting that upon exit from airways and localization within granulomas, AMs become classically activated. The absence of CCR2+ cells specifically at the time of AM egress from the airways resulted in enhanced susceptibility to Mtb infection. Furthermore, infection with an Mtb HN878 mutant lacking phenolic glycolipid (PGL) expression still resulted in increased susceptibility in CCR2-/- mice. Together, these data show a novel role for CCR2 in protective immunity against clinically relevant Mtb infections.
Collapse
Affiliation(s)
- Micah D Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Nicole Howard
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ninecia Scott
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Bruce A Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - John Martin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, 70118, USA
| | - Gilla Kaplan
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
33
|
Harishankar M, Selvaraj P, Bethunaickan R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front Med (Lausanne) 2018; 5:213. [PMID: 30167433 PMCID: PMC6106802 DOI: 10.3389/fmed.2018.00213] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is still remains the major threat for human health worldwide. Several case-control, candidate-gene, family studies and genome-wide association studies (GWAS) suggested the association of host genetic factors to TB susceptibility or resistance in various ethnic populations. Moreover, these factors modulate the host immune responses to tuberculosis. Studies have reported genetic markers to predict TB development in human leukocyte antigen (HLA) and non-HLA genes like killer immunoglobulin-like receptor (KIR), toll-like receptors (TLRs), cytokine/chemokines and their receptors, vitamin D receptor (VDR) and SLC11A1 etc. Highly polymorphic HLA loci may influence antigen presentation specificities by modifying peptide binding motifs. The recent meta-analysis studies revealed the association of several HLA alleles in particular class II HLA-DRB1 with TB susceptibility and valuable marker for disease development especially in Asian populations. Case-control studies have found the association of HLA-DR2 in some populations, but not in other populations, this could be due to an ethnic specific association of gene variants. Recently, GWAS conducted in case-control and family based studies in Russia, Chinese Han, Morocco, Uganda and Tanzania revealed the association of genes such as ASAP1, Alkylglycerol monooxygenase (AGMO), Forkhead BoxP1 (FOXP1), C-terminal domain phosphatase 1 (UBLCP1) and intergenic SNP rs932347C/T with TB. Whereas, SNP rs10956514A/G were not associated with TB in western Chinese Han and Tibetan population. In this review, we summarize the recent findings of genetic variants with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Murugesan Harishankar
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | - Paramasivam Selvaraj
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
34
|
Wang W, Yang B, Cui Y, Zhan Y. Isoliquiritigenin attenuates spinal tuberculosis through inhibiting immune response in a New Zealand white rabbit model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:369-377. [PMID: 29962851 PMCID: PMC6019872 DOI: 10.4196/kjpp.2018.22.4.369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Spinal tuberculosis (ST) is the tuberculosis caused by Mycobacterium tuberculosis (Mtb) infections in spinal curds. Isoliquiritigenin 4,2′,4′-trihydroxychalcone, ISL) is an anti-inflammatory flavonoid derived from licorice (Glycyrrhiza uralensis), a Chinese traditional medicine. In this study, we evaluated the potential of ISL in treating ST in New Zealand white rabbit models. In the model, rabbits (n=40) were infected with Mtb strain H37Rv or not in their 6th lumbar vertebral bodies. Since the day of infection, rabbits were treated with 20 mg/kg and 100 mg/kg of ISL respectively. After 10 weeks of treatments, the adjacent vertebral bone tissues of rabbits were analyzed through Hematoxylin-Eosin staining. The relative expression of Monocyte chemoattractant protein-1 (MCP-1/CCL2), transcription factor κB (NF-κB) p65 in lymphocytes were verified through reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and enzyme-linked immunosorbent assays (ELISA). The serum level of interleukin (IL)-2, IL-4, IL-10 and interferon γ (IFN-γ) were evaluated through ELISA. The effects of ISL on the phosphorylation of IκBα, IKKα/β and p65 in NF-κB signaling pathways were assessed through western blotting. In the results, ISL has been shown to effectively attenuate the granulation inside adjacent vertebral tissues. The relative level of MCP-1, p65 and IL-4 and IL-10 were retrieved. NF-κB signaling was inhibited, in which the phosphorylation of p65, IκBα and IKKα/β were suppressed whereas the level of IκBα were elevated. In conclusion, ISL might be an effective drug that inhibited the formation of granulomas through downregulating MCP-1, NF-κB, IL-4 and IL-10 in treating ST.
Collapse
Affiliation(s)
- Wenjing Wang
- Record Room, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Baozhi Yang
- Department of Obstetrics & Gynaecology, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Yong Cui
- Department of Traditional Chinese Medicine, Jinan Second People's Hospital, Jinan 250011, Shandong, China
| | - Ying Zhan
- Department of Orthopedics, Shandong Chest Hospital, Jinan 250101, Shandong, China
| |
Collapse
|
35
|
Varzari A, Tudor E, Bodrug N, Corloteanu A, Axentii E, Deyneko IV. Age-Specific Association ofCCL5Gene Polymorphism with Pulmonary Tuberculosis: A Case–Control Study. Genet Test Mol Biomarkers 2018; 22:281-287. [DOI: 10.1089/gtmb.2017.0250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alexander Varzari
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Elena Tudor
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Nina Bodrug
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Andrei Corloteanu
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Ecaterina Axentii
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Igor V. Deyneko
- Institute of Microbiology and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
36
|
Monocyte Chemoattractant Protein-1 in Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis: Biomarker Potential and Association with Polymorphisms in the MCP-1 and the CC Chemokine Receptor-2 Gene. Mediators Inflamm 2018; 2018:6861257. [PMID: 29720895 PMCID: PMC5867591 DOI: 10.1155/2018/6861257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 11/23/2022] Open
Abstract
Antineutrophil cytoplasmic autoantibody- (ANCA-) associated vasculitis (AAV) are relapsing-remitting disorders with unpredictable prognosis. There is a need of biomarkers for distinguishing which patients will have a more severe outcome and also for predicting relapses in disease activity. This study confirms the previous results of urinary MCP-1 (uMCP-1) as a prognostic marker and explores its potential as a marker of disease activity. Method. 114 patients with AAV were followed regularly between 2002 and 2011 at Skåne University Hospital. Urine samples, blood samples, and clinical status were registered. The urine samples were analyzed in an in-house-developed ELISA. PCR-RLFP was used to analyze the MCP-1 and CCR2 genes. Results. Patients with severe prognosis had significantly higher levels of uMCP-1 compared to patients with nonsevere prognosis and healthy controls. Patients with renal damage had higher levels compared to patients who did not have renal damage. There was also a tendency of higher uMCP-1 levels in active disease as compared to remission. AA in the -2518 position in the MCP-1 gene was associated with a more severe outcome compared to the A/G or the G/G genotype. The A/A genotype were also associated with higher levels of uMCP-1. No significant associations were seen for the CCR2-V64I. Conclusion. This study confirmed the connection between high uMCP-1 levels and poor prognosis and also disease activity. It also suggests an association of the A/A genotype at position -2518 in the MCP-1 gene and poor prognosis in AAV. uMCP-1 is clearly a candidate biomarker of potential clinical value. The A/A genotype association needs further evaluation.
Collapse
|
37
|
Matia-García I, Salgado-Goytia L, Ramos-Arellano LE, Muñoz-Valle JF, Armenta-Solís A, Garibay-Cerdenares OL, Ramírez M, Parra-Rojas I. A possible association between the -2518 A>G MCP-1 polymorphism and insulin resistance in school children. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:79-86. [PMID: 29694633 PMCID: PMC10118690 DOI: 10.20945/2359-3997000000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/09/2017] [Indexed: 11/23/2022]
Abstract
Objective Monocyte chemoattractant protein 1 (MCP-1) has been suggested to be involved in the pathophysiology of insulin resistance (IR); therefore, variants in the MCP-1 gene may contribute to the development of this disease. The aim of this study was to analyze the relationship of the -2518 A>G MCP-1 (rs1024611) gene polymorphism with insulin resistance in Mexican children. Subjects and methods A cross-sectional study was performed in 174 children, including 117 children without insulin resistance and 57 children with IR, with an age range of 6-11 years. Levels for serum insulin and high-sensitivity C-reactive protein were determined. The -2518 A>G MCP-1 polymorphism was identified by the polymerase chain reaction-restriction fragment length polymorphism method. Insulin resistance was defined as a HOMA-IR in the upper 75th percentile, which was ≥ 2.4 for all children. Results Genotype frequencies of the rs1024611 polymorphism for the insulin-sensitive group were 17% AA, 48% AG and 35% GG, and the frequency of G allele was 59%, whereas frequencies for the insulin-resistant group were 12% AA, 37% AG and 51% GG, and the frequency of G allele was 69%. The genotype and allele frequencies between groups did not show significant differences. However, the GG genotype was the most frequent in children with IR. The GG genotype was associated with insulin resistance (OR = 2.2, P = 0.03) in a genetic model. Conclusion The -2518 A>G MCP-1 gene polymorphism may be related to the development of insulin resistance in Mexican children.
Collapse
|
38
|
Qrafli M, Najimi M, Elaouad R, Sadki K. Current immunogenetic predisposition to tuberculosis in the Moroccan population. Int J Immunogenet 2017; 44:286-304. [PMID: 29057608 DOI: 10.1111/iji.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/06/2017] [Accepted: 08/27/2017] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease that kills approximately two million people per year, particularly in low- and middle-income countries. Numerous genetic epidemiology studies have been conducted of many ethnic groups worldwide and have highlighted the critical impact of the genetic environment on TB distribution. Many candidate genes associated with resistance or susceptibility to TB have been identified. In Morocco, where TB is still a major public health problem, various observations of clinical, microbiological and incidence distribution are heavily affected by genetic background and external environment. Morocco has almost the same clinical profile as do other North African countries, mainly the increase in more extrapulmonary than pulmonary forms of the diseases, when compared to European, Asian or American populations. In addition, a linkage analysis study that examined Moroccan TB patients identified a unique chromosome region that had a strong association with the risk of contracting TB. Other genes in the Moroccan population that were found to be associated seem to be involved predominantly in modulating the innate immunity. In this review, we appraise the major candidate genes that have been reported in Moroccan immunogenetic studies and discuss their updated role in TB, particularly during the first phase of the immune response to Mycobacterium tuberculosis (Mtb) infection.
Collapse
Affiliation(s)
- M Qrafli
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - M Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - R Elaouad
- School of Medicine and Pharmacy Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - K Sadki
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| |
Collapse
|
39
|
Stein CM, Sausville L, Wejse C, Sobota RS, Zetola NM, Hill PC, Boom WH, Scott WK, Sirugo G, Williams SM. Genomics of human pulmonary tuberculosis: from genes to pathways. CURRENT GENETIC MEDICINE REPORTS 2017; 5:149-166. [PMID: 29805915 DOI: 10.1007/s40142-017-0130-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a cohesive genetic model underlying TB risk has not emerged. Recent Findings Despite the difficulties in identifying consistent genetic associations, genetic studies of TB and MTB infection have revealed a few well-documented loci. These well validated genes are presented in this review, but there remains a large gap in how these genes translate into better understanding of TB. To address this, we present a pathway based extension of standard association analyses, seeding the results with the best validated genes from candidate gene and GWAS studies. Summary Several pathways were significantly enriched using pathway analyses that may help to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the study of host genetic analysis of TB that extend traditional association approaches.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Cleveland, OH.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - Lindsay Sausville
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| | - Christian Wejse
- Dept of Infectious Diseases/Center for Global Health, Aarhus University, Aarhus, Denmark
| | - Rafal S Sobota
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL
| | - Nicola M Zetola
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA 19104, USA.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Medicine, University of Botswana, Gaborone, Botswana
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - William K Scott
- Department of Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL
| | - Giorgio Sirugo
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| |
Collapse
|
40
|
Jabot-Hanin F, Cobat A, Feinberg J, Orlova M, Niay J, Deswarte C, Poirier C, Theodorou I, Bustamante J, Boisson-Dupuis S, Casanova JL, Alcaïs A, Hoal EG, Delacourt C, Schurr E, Abel L. An eQTL variant of ZXDC is associated with IFN-γ production following Mycobacterium tuberculosis antigen-specific stimulation. Sci Rep 2017; 7:12800. [PMID: 28993696 PMCID: PMC5634485 DOI: 10.1038/s41598-017-13017-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
There is a large inter-individual variability in the response to Mycobacterium tuberculosis infection. In previous linkage analyses, we identified a major locus on chromosome region 8q controlling IFN-γ production after stimulation with live BCG (Bacillus Calmette-Guérin), and a second locus on chromosome region 3q affecting IFN-γ production triggered by the 6-kDa early secretory antigen target (ESAT-6), taking into account the IFN-γ production induced by BCG (IFNγ-ESAT6BCG). High-density genotyping and imputation identified ~100,000 variants within each linkage region, which we tested for association with the corresponding IFN-γ phenotype in families from a tuberculosis household contact study in France. Significant associations were replicated in a South African familial sample. The most convincing association observed was that between the IFNγ-ESAT6BCG phenotype and rs9828868 on chromosome 3q (p = 9.8 × 10−6 in the French sample). This variant made a significant contribution to the linkage signal (p < 0.001), and a trend towards the same association was observed in the South African sample. This variant was reported to be an eQTL of the ZXDC gene, biologically linked to monocyte IL-12 production through CCL2/MCP1. The identification of rs9828868 as a genetic driver of IFNγ production in response to mycobacterial antigens provides new insights into human anti-tuberculosis immunity.
Collapse
Affiliation(s)
- Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacqueline Feinberg
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill International TB Centre, McGill University, Montreal, Canada.,Department of Human Genetics and Department of Medicine, McGill University, Montreal, Canada
| | - Jonathan Niay
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière - Charles Foix, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christine Poirier
- Centre de Lutte Anti-Tuberculeuse, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Ioannis Theodorou
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière - Charles Foix, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Eileen G Hoal
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology, DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christophe Delacourt
- Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.,Pediatric Pneumology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill International TB Centre, McGill University, Montreal, Canada.,Department of Human Genetics and Department of Medicine, McGill University, Montreal, Canada
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France. .,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Arcos J, Sasindran SJ, Moliva JI, Scordo JM, Sidiki S, Guo H, Venigalla P, Kelley HV, Lin G, Diangelo L, Silwani SN, Zhang J, Turner J, Torrelles JB. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. Mucosal Immunol 2017; 10:1248-1258. [PMID: 28000679 PMCID: PMC5479761 DOI: 10.1038/mi.2016.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is a major public health challenge facing the world. During infection, M.tb is deposited in the lung alveolar space where it comes in contact with the lung mucosa, known as alveolar lining fluid (ALF), an environment that M.tb encounters at different stages of the infection and disease. ALF is abundant in homeostatic and antimicrobial hydrolytic enzymes, also known as hydrolases. Here we demonstrate that ALF hydrolases, at their physiological concentrations and upon contact with M.tb, release M.tb cell envelope fragments into the milieu. These released fragments are bioactive, but non-cytotoxic, regulate the function of macrophages, and thus are capable of modulating the immune response contributing to the control of M.tb infection by human macrophages. Specifically, macrophages exposed to fragments derived from the exposure of M.tb to ALF were able to control the infection primarily by increasing phagosome-lysosome fusion and acidification events. This enhanced control was found to be dependent on fragment-induced interleukin-10 (IL-10) production but also involves the STAT3 signaling pathway in an IL-10-independent manner. Collectively our data indicate that M.tb fragments released upon contact with lung mucosa hydrolases participate in the host immune response to M.tb infection through innate immune modulation.
Collapse
Affiliation(s)
- Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Smitha J. Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Juan I. Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Julia M. Scordo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sabeen Sidiki
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Poornima Venigalla
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Holden V. Kelley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Guoxin Lin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Lauren Diangelo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sayeed N. Silwani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| |
Collapse
|
42
|
Nonghanphithak D, Reechaipichitkul W, Namwat W, Naranbhai V, Faksri K. Chemokines additional to IFN-γ can be used to differentiate among Mycobacterium tuberculosis infection possibilities and provide evidence of an early clearance phenotype. Tuberculosis (Edinb) 2017; 105:28-34. [PMID: 28610785 DOI: 10.1016/j.tube.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
Current diagnostic tests for tuberculosis (TB) remain limited in their ability to discriminate between active TB (ATB) and latent TB infection (LTBI). Early clearance (EC) of TB by individuals exposed to Mycobacterium tuberculosis is a debated phenomenon for which evidence is lacking. We measured and compared secreted chemokines in the plasma fraction from 48 ATB, 38 LTBI, 162 presumed EC and 39 healthy controls (HC) using the QuantiFERON®-TB Gold In-Tube assay. Single chemokine markers were limited in their ability to discriminate between ATB and LTBI: IFN-γ showed 16.7% sensitivity; CCL2 showed moderate sensitivity (70.8%) and specificity (74.4%); CXCL10 showed high sensitivity (87.5%) and specificity (78.9%). Compared to IFN-γ alone, IFN-γ combined with CXCL10 significantly improved (p < 0.001) the sensitivity and specificity to discriminate between ATB and HC (97.9% sensitivity and 94.9% specificity) and between ATB and LTBI (89.6% sensitivity and 71.1% specificity). Levels of CCL2 were very significantly lower (p < 0.0001) in EC compared to HC groups and hence CCL2 is a useful marker for EC. This study demonstrated the potential application of profiling using multiple chemokines for differentiating among the various M. tuberculosis infection possibilities. We also present evidence to support the EC phenomenon based on the decrease of CCL2 levels.
Collapse
Affiliation(s)
| | - Wipa Reechaipichitkul
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Wises Namwat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Vivek Naranbhai
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Centre for the AIDS Program of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu Natal, South Africa
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
43
|
Dubey A, Biswas SK, Sinha E, Chakma JK, Kamal R, Arora M, Sagar H, Natarajan M, Bhagyawant SS, Mohanty KK. Association of Nitric Oxide Synthase2 gene polymorphisms with leprosy reactions in northern Indian population. INFECTION GENETICS AND EVOLUTION 2017; 51:67-73. [PMID: 28315742 DOI: 10.1016/j.meegid.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
The pathogen Mycobacterium leprae causes leprosy that affects mainly skin and nerves. Polymorphisms of certain genes are substantiated to be associated with the susceptibility/resistance to leprosy. The present investigation addressed the association of Nitric Oxide Synthase2 gene polymorphisms and leprosy in a population from northern part of India. A total of 323 leprosy cases and 288 healthy controls were genotyped for four NOS2 promoter variants (rs1800482, rs2779249, rs8078340 and rs2301369) using FRET technology in Real Time PCR. None of these SNPs in promoter sites was associated with susceptibility/resistance to leprosy. NOS2 rs1800482 was found to be monomorphic with GG genotype. However, NOS2-1026T allele was observed to be in higher frequency with leprosy cases (BL and LL) who were not suffering from any reactional episodes compared to cases with ENL reaction {OR=0.30, 95% CI (0.10-0.86), p=0.024}. NOS2-1026GT genotype was more prevalent in cases without reaction (BT, BB and BL) compared to RR reactional patients {OR=0.38, 95% CI (0.17-0.86), p=0.02}. Although haplotype analysis revealed that no haplotype was associated with leprosy susceptibility/resistance with statistical significance, GTG haplotype was noted to be more frequent in healthy controls. These SNPs are observed to be in linkage disequilibrium. Although, these SNPs are not likely to influence leprosy vulnerability, -1026G>T SNP was indicated to have noteworthy role in leprosy reactions.
Collapse
Affiliation(s)
- Amit Dubey
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Sanjay Kumar Biswas
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Ekata Sinha
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Joy Kumar Chakma
- Clinical Division National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Raj Kamal
- Clinical Division National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Mamta Arora
- Clinical Division National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Harish Sagar
- Clinical Division National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Mohan Natarajan
- Histopathlogy Division National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | | | - Keshar Kunja Mohanty
- Immunology Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| |
Collapse
|
44
|
Mosquera-Restrepo SF, Caro AC, García LF, Peláez-Jaramillo CA, Rojas M. Fatty acid derivative, chemokine, and cytokine profiles in exhaled breath condensates can differentiate adult and children paucibacillary tuberculosis patients. J Breath Res 2017; 11:016003. [DOI: 10.1088/1752-7163/11/1/016003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
46
|
Liang Y, Wang Y, Li H, Yang Y, Liu J, Yu T, Wu X. Evaluation of a whole-blood chemiluminescent immunoassay of IFN-γ, IP-10, and MCP-1 for diagnosis of active pulmonary tuberculosis and tuberculous pleurisy patients. APMIS 2016; 124:856-64. [PMID: 27523388 DOI: 10.1111/apm.12583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| | - Ying Wang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
- The Second Hospital of Jilin University; Changchun China
| | - Hang Li
- The Tumor Hospital of Jilin Province; Changchun China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| | - Jianyang Liu
- The Tumor Hospital of Jilin Province; Changchun China
| | - Ting Yu
- The Second Hospital of Jilin University; Changchun China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory; Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment; Institute of Tuberculosis Research; the 309th Hospital of PLA; Beijing China
| |
Collapse
|
47
|
Bhavanam S, Rayat GR, Keelan M, Kunimoto D, Drews SJ. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. Future Microbiol 2016; 11:1073-89. [PMID: 27501829 DOI: 10.2217/fmb-2016-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.
Collapse
Affiliation(s)
- Sudha Bhavanam
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Keelan
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Drews
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Qidwai T, Khan MY. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases. Hum Immunol 2016; 77:961-971. [PMID: 27316325 DOI: 10.1016/j.humimm.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed.
Collapse
Affiliation(s)
- Tabish Qidwai
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226 025, India.
| | - M Y Khan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226 025, India.
| |
Collapse
|
49
|
Ma J, Jung BG, Yi N, Samten B. Early Secreted Antigenic Target of 6 kDa ofMycobacterium tuberculosisStimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4. Scand J Immunol 2016; 84:39-48. [DOI: 10.1111/sji.12447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J. Ma
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B-G. Jung
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - N. Yi
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B. Samten
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| |
Collapse
|
50
|
Suzukawa M, Akashi S, Nagai H, Nagase H, Nakamura H, Matsui H, Hebisawa A, Ohta K. Combined Analysis of IFN-γ, IL-2, IL-5, IL-10, IL-1RA and MCP-1 in QFT Supernatant Is Useful for Distinguishing Active Tuberculosis from Latent Infection. PLoS One 2016; 11:e0152483. [PMID: 27035669 PMCID: PMC4817970 DOI: 10.1371/journal.pone.0152483] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 02/01/2023] Open
Abstract
The QuantiFERON®-TB Gold In-Tube test (QFT), an interferon-γ release assay, is used to diagnose Mycobacterium tuberculosis, but its inaccuracy in distinguishing active tuberculosis from latent infection is a major concern. There is thus a need for an easy and accurate tool for achieving that goal in daily clinical settings. This study aimed to identify candidate cytokines for specifically differentiating active tuberculosis from latent infection. Our study population consisted of 31 active TB (tuberculosis) patients, 29 LTBI (latent tuberculosis infection) patients and 10 healthy control subjects. We assayed for 27 cytokines in QFT supernatants of both specific antigen-stimulated blood samples (TBAg) and negative-control samples (Nil). We analyzed their specificities and sensitivities by creating receiver operating characteristic (ROC) curves and measuring the area under those curves (AUCs). In TBAg–Nil supernatants, IL-10, IFN-γ, MCP-1 and IL-1RA showed high AUCs of 0.8120, 0.7842, 0.7419 and 0.7375, respectively. Compared with each cytokine alone, combined assay for these top four cytokines showed positive rates in diagnosing active TB, and GDA analysis revealed that MCP-1 and IL-5 are potent in distinguishing active TB from LTBI, with Wilk’s lambda = 0.718 (p < 0.001). Furthermore, utilizing the unique characteristic of IL-2 that its TBAg–Nil supernatant levels are higher in LTBI compared to active TB, the difference between IFN-γ and IL-2 showed a large AUC of 0.8910. In summary, besides IFN-γ, IL-2, IL-5, IL-10, IL-1RA and MCP-1 in QFT supernatants may be useful for distinguishing active TB from LTBI. Those cytokines may also help us understand the difference in pathogenesis between active TB and LTBI.
Collapse
Affiliation(s)
- Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Shunsuke Akashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Hirotoshi Matsui
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
- * E-mail:
| |
Collapse
|