1
|
Salerno-Goncalves R, Chen H, Bafford AC, Sztein MB. Epigenetic regulation in epithelial cells and innate lymphocyte responses to S. Typhi infection: insights into IFN-γ production and intestinal immunity. Front Immunol 2024; 15:1448717. [PMID: 39372404 PMCID: PMC11450450 DOI: 10.3389/fimmu.2024.1448717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024] Open
Abstract
Infection by Salmonella enterica serovar Typhi (S. Typhi), the cause of enteric fevers, is low in high-income countries but persistent in low- and middle-income countries, resulting in 65,400-187,700 deaths yearly. Drug resistance, including in the United States, exacerbates this issue. Evidence indicates that innate lymphocytes (INLs), such as natural killer (NK) cells, and unconventional T lymphocytes (e.g., Mucosal-associated invariant T (MAIT) cells and T-cell receptor gamma delta (TCR-γδ) cells) can impact the intestinal epithelial barrier, the primary site of exposure to S. Typhi. Moreover, INL production of IFN-γ is central in controlling S. Typhi infection. However, the impact of epithelial cells (EC) on the secretion of IFN-γ by INLs and the relationship between these events and epigenetic changes remains unknown. Epigenetic modifications in host cells are fundamental for their differentiation and function, including IFN-γ production. Herein, using a human organoid-derived polarized intestinal epithelial cell monolayer, we investigated the role of H3K4me3 and H3K27me3 epigenetic marks in intestinal immunity, focusing on the function of EC, NK, MAIT, and TCR-γδ cells in response to S. Typhi. This study builds on our previous findings that MAIT subsets exhibiting specific IFN-γ pattern signatures were associated with protection against typhoid fever and that S. Typhi infection regulates changes in chromatin marks that depend on individual cell subsets. Here, we show that cultures exposed to S. Typhi without EC exhibit a significant increase in NK and MAIT cells, and, to a lesser extent, TCR-γδ cells, expressing IFN-γ and H3K4me3 but not H3K27me3 marks, contrasting with cultures where EC is present. The influence of EC on INL H3K4me3 marks might be indirectly mediated through the modulation of IL-18 secretion via the Histone Deacetylase 6 gene during S. Typhi infection.
Collapse
Affiliation(s)
- Rosângela Salerno-Goncalves
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haiyan Chen
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea C. Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
2
|
Huang F, Lin Y, Qiao Y, Yuan Y, Zhong Z, Luo B, Wu Y, Liu J, Chen J, Zhang W, Zhang H, Liu B. BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation. JCI Insight 2024; 9:e171605. [PMID: 38954484 PMCID: PMC11383612 DOI: 10.1172/jci.insight.171605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Upon infection, naive CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodeling system in this process remains largely unknown. Here we show that BRD7, a component of the polybromo-associated BAF complex (PBAF), was required for naive CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7 deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicate that the expression of BRD7 significantly turned to high from naive CD8+ T cells to effector cells, which bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and upregulated its expression, leading to the maturation of effector T cells. Our research demonstrates that BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yating Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jingliang Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Sun H, Qiu J, Qiu J. Epigenetic regulation of innate lymphoid cells. Eur J Immunol 2024:e2350379. [PMID: 38824666 DOI: 10.1002/eji.202350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Innate lymphoid cells (ILCs) lack antigen-specific receptors and are considered the innate arm of the immune system, phenotypically and functionally mirroring CD4+ helper T cells. ILCs are categorized into groups 1, 2, and 3 based on transcription factors and cytokine expression. ILCs predominantly reside in mucosal tissues and play important roles in regional immune responses. The development and function of ILC subsets are controlled by both transcriptional and epigenetic mechanisms, which have been extensively studied in recent years. Epigenetic regulation refers to inheritable changes in gene expression that occur without affecting DNA sequences. This mainly includes chromatin status, histone modifications, and DNA methylation. In this review, we summarize recent discoveries on epigenetic mechanisms regulating ILC development and function, and how these regulations affect disease progression under pathological conditions. Although the ablation of specific epigenetic regulators can cause global changes in corresponding epigenetic modifications to the chromatin, only partial genes with altered epigenetic modifications change their mRNA expression, resulting in specific outcomes in cell differentiation and function. Therefore, elucidating epigenetic mechanisms underlying the regulation of ILCs will provide potential targets for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Laboratory Medicine, Department of Blood Transfusion, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Falkowski L, Buddenkotte J, Datsi A. Epigenetics in T-cell driven inflammation and cancer. Semin Cell Dev Biol 2024; 154:250-260. [PMID: 36641367 DOI: 10.1016/j.semcdb.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
For decades, scientists have been investigating how processes such as gene expression, stem cell plasticity, and cell differentiation can be modulated. The discovery of epigenetics helped unravel these processes and enabled the identification of major underlying mechanisms that, for example, are central for T cell maturation. T cells go through various stages in their development evolving from progenitor cells into double positive CD4/CD8 T cells that finally leave the thymus as naïve T cells. One major mechanism driving T cell maturation is the modulation of gene activity by temporally sequenced transcription of spatially exposed gene loci. DNA methylation, demethylation, and acetylation are key processes that enable a sequenced gene expression required for T cell differentiation. In vivo, differentiated T cells are subjected to enormous pressures originating from the microenvironment. Signals from this environment, particularly from an inflammatory or a tumor microenvironment, can push T cells to differentiate into specific effector and memory T cells, and even prompt T cells to adopt a state of dysfunctional exhaustion, en route of an epigenetically controlled mechanism. Fundamentals of these processes will be discussed in this review highlighting potential therapeutic interventions, in particular those beneficial to revive exhausted T cells.
Collapse
Affiliation(s)
- Lea Falkowski
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Wang X, Han C, Yang D, Zhou J, Dong H, Wei Z, Xu S, Xu C, Zhang Y, Sun Y, Ni B, Guo S, Zhang J, Zhao T, Chen X, Luo J, Wu Y, Tian Y. STAT3 and SOX-5 induce BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells. Commun Biol 2024; 7:10. [PMID: 38172644 PMCID: PMC10764326 DOI: 10.1038/s42003-023-05735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Retinoid-related orphan receptor gamma t (RORγt) is the lineage-specific transcription factor for T helper 17 (Th17) cells. Our previous study demonstrated that STAT3 likely participates in the activation of RORCE2 (a novel enhancer of the RORγt gene) in Th17 cells. However, the detailed mechanism is still unclear. Here, we demonstrate that both STAT3 and SOX-5 mediate the enhancer activity of RORCE2 in vitro. Deletion of the STAT3 binding site (STAT3-BS) in RORCE2 impaired RORγt expression and Th17 differentiation, resulting in reduced severity of experimental autoimmune encephalomyelitis (EAE). Mechanistically, STAT3 and SOX-5 bind the RORCE2 region and recruit the chromatin remodeling factor BRG1 to remodel the nucleosomes positioned at this region. Collectively, our data suggest that STAT3 and SOX-5 mediate the differentiation of Th17 cells through the induction of BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells.
Collapse
Affiliation(s)
- Xian Wang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
- Department of Immunology, Medical College of Qingdao University, 266071, Qingdao, Shandong, People's Republic of China
| | - Chao Han
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Di Yang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jian Zhou
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiyuan Wei
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Shuai Xu
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), 400037, Chongqing, People's Republic of China
| | - Chen Xu
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yi Sun
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Sheng Guo
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jingbo Zhang
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), 400037, Chongqing, People's Republic of China
| | - Tingting Zhao
- Chongqing International Institute for Immunology, 400030, Chongqing, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 100853, Beijing, China
| | - Jie Luo
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
- Chongqing International Institute for Immunology, 400030, Chongqing, People's Republic of China.
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Jiao D, Sun R, Ren X, Wang Y, Tian P, Wang Y, Yuan D, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. Lipid accumulation-mediated histone hypoacetylation drives persistent NK cell dysfunction in anti-tumor immunity. Cell Rep 2023; 42:113211. [PMID: 37792534 DOI: 10.1016/j.celrep.2023.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Hyperlipidemia impairs anti-tumor immune responses and is closely associated with increased human cancer incidence and mortality. However, the underlying mechanisms are not well understood. In the present study, we show that natural killer (NK) cells isolated from high-fat-diet mice or treated with oleic acid (OA) in vitro exhibit sustainable functional defects even after removal from hyperlipidemic milieu. This is accompanied by reduced chromatin accessibility in the promoter region of NK cell effector molecules. Mechanistically, OA exposure blunts P300-mediated c-Myc acetylation and shortens its protein half-life in NK cells, which in turn reduces P300 accumulation and H3K27 acetylation and leads to persistent NK cell dysfunction. NK cells engineered with hyperacetylated c-Myc mutants surmount the suppressive effect of hyperlipidemia and display superior anti-tumor activity. Our findings reveal the persistent dysfunction of NK cells in dyslipidemia milieu and extend engineered NK cells as a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Deyan Jiao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Renhui Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Panpan Tian
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
7
|
Xu Y, He Z, Du J, Chen Z, Creemers JWM, Wang B, Li F, Wang Y. Epigenetic modulations of immune cells: from normal development to tumor progression. Int J Biol Sci 2023; 19:5120-5144. [PMID: 37928272 PMCID: PMC10620821 DOI: 10.7150/ijbs.88327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The dysfunction of immune cell development often impairs immunological homeostasis, thus causing various human diseases. Accumulating evidence shows that the development of different immune cells from hematopoietic stem cells are highly fine-tuned by different epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodeling and RNA-related regulations. Understanding how epigenetic regulators modulate normal development of immune cells contributes to the identification of new strategies for various diseases. Here, we review recent advances suggesting that epigenetic modulations can orchestrate immune cell development and functions through their impact on critical gene expression. We also discuss the aberrations of epigenetic modulations in immune cells that influence tumor progression, and the fact that underlying mechanisms affect how epigenetic drugs interfere with tumor progression in the clinic.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Du
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziqiang Chen
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fan Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
9
|
Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses. Immunol Suppl 2022; 167:451-470. [PMID: 36043705 DOI: 10.1111/imm.13571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antonietta Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Anne Lise Ferrara
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Stefania Loffredo
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Galdiero
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Gilda Varricchi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Rella
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Neurological Clinic and Stroke Unit and Multiple Sclerosis Center "A. Cardarelli" Hospital, Naples, Italy
| | - Martina Belardo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Roberta Vastano
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Rosaria Prencipe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Paola de Candia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Veronica De Rosa
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
10
|
Qian T, Qiao P, Lu Y, Wang H. Transcription factor SS18L1 regulates the proliferation, migration and differentiation of Schwann cells in peripheral nerve injury. Front Vet Sci 2022; 9:936620. [PMID: 36046506 PMCID: PMC9420995 DOI: 10.3389/fvets.2022.936620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors bind to specific DNA sequences, modulate the transcription of target genes, and regulate various biological processes, including peripheral nerve regeneration. Our previous analysis showed that SS18L1, a gene encoding the transcription factor SS18-like protein 1, was differentially expressed in the distal sciatic nerve stumps after rat sciatic nerve transection injury, but its effect on peripheral nerve injury has not been reported. In the current study, we isolated and cultured primary Schwann cells, and examined the role of SS18L1 for the biological functions of the cells. Depletion of SS18L1 by siRNA in Schwann cells enhanced cell proliferation and inhibited cell migration, as determined by EdU assay and transwell migration assay, respectively. In addition, silencing of SS18L1 inhibited Schwann cell differentiation induced by HRG and cAMP. Bioinformatics analyses revealed an interaction network of SS18L1, including DF2, SMARCD1, SMARCA4, and SMARCE1, which may be implicated in the regulatory functions of SS18L1 on the proliferation, migration and differentiation of Schwann cells. In conclusion, our results revealed a temporal expression profile of SS18L1 in peripheral nerve injury and its potential roles during the process of nerve recovery.
Collapse
Affiliation(s)
- Tianmei Qian
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Pingping Qiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Hongkui Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
11
|
Wang X, Lei L, Su Y, Liu J, Yuan N, Gao Y, Yang X, Sun C, Ning B, Zhang B. Pbrm1 intrinsically controls the development and effector differentiation of iNKT cells. J Cell Mol Med 2022; 26:4268-4276. [PMID: 35770325 PMCID: PMC9344823 DOI: 10.1111/jcmm.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo‐1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Juanes Cortés B, Vera-Ramos JA, Lovering RC, Gaudet P, Laegreid A, Logie C, Schulz S, Roldán-García MDM, Kuiper M, Fernández-Breis JT. Formalization of gene regulation knowledge using ontologies and gene ontology causal activity models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194766. [PMID: 34710644 DOI: 10.1016/j.bbagrm.2021.194766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 02/02/2023]
Abstract
Gene regulation computational research requires handling and integrating large amounts of heterogeneous data. The Gene Ontology has demonstrated that ontologies play a fundamental role in biological data interoperability and integration. Ontologies help to express data and knowledge in a machine processable way, which enables complex querying and advanced exploitation of distributed data. Contributing to improve data interoperability in gene regulation is a major objective of the GREEKC Consortium, which aims to develop a standardized gene regulation knowledge commons. GREEKC proposes the use of ontologies and semantic tools for developing interoperable gene regulation knowledge models, which should support data annotation. In this work, we study how such knowledge models can be generated from cartoons of gene regulation scenarios. The proposed method consists of generating descriptions in natural language of the cartoons; extracting the entities from the texts; finding those entities in existing ontologies to reuse as much content as possible, especially from well known and maintained ontologies such as the Gene Ontology, the Sequence Ontology, the Relations Ontology and ChEBI; and implementation of the knowledge models. The models have been implemented using Protégé, a general ontology editor, and Noctua, the tool developed by the Gene Ontology Consortium for the development of causal activity models to capture more comprehensive annotations of genes and link their activities in a causal framework for Gene Ontology Annotations. We applied the method to two gene regulation scenarios and illustrate how to apply the models generated to support the annotation of data from research articles.
Collapse
Affiliation(s)
- Belén Juanes Cortés
- Departamento de Informatica y Sistemas, University of Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Campus de Espinardo, 30100 Murcia, Spain.
| | - José Antonio Vera-Ramos
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerpl. 2, Graz, Austria.
| | - Ruth C Lovering
- Institute of Cardiovascular Science, Faculty of Pop Health Sciences, University College London, Rayne Building, 5 University Street, London WC1E 6JF, United Kingdom.
| | - Pascale Gaudet
- Swiss Institute of Bioinformatics, 1, rue Michel Servet, 1211 Geneva 4, Switzerland.
| | - Astrid Laegreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Gastrosenteret, 431.03.046, Øya, Prinsesse Kristinas gate 1, Trondheim, Norway.
| | - Colin Logie
- Faculty of Science, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, the Netherlands.
| | - Stefan Schulz
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerpl. 2, Graz, Austria.
| | - María Del Mar Roldán-García
- Departamento de Lenguajes y Ciencias de la Computación, University of Málaga,Bulevard Louis Pasteur 35, 29071 Málaga, Spain; ITIS Software, University of Málaga, Calle Arquitecto Francisco Peñalosa s/n, 29071 Málaga,Spain; Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain.
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, Høgskoleringen 5, 7034 Trondheim, Norway.
| | - Jesualdo Tomás Fernández-Breis
- Departamento de Informatica y Sistemas, University of Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
13
|
Renaude E, Kroemer M, Borg C, Peixoto P, Hervouet E, Loyon R, Adotévi O. Epigenetic Reprogramming of CD4 + Helper T Cells as a Strategy to Improve Anticancer Immunotherapy. Front Immunol 2021; 12:669992. [PMID: 34262562 PMCID: PMC8273698 DOI: 10.3389/fimmu.2021.669992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Evidences highlight the role of various CD4+ helper T cells (CD4+ Th) subpopulations in orchestrating the immune responses against cancers. Epigenetics takes an important part in the regulation of CD4+ Th polarization and plasticity. In this review, we described the epigenetic factors that govern CD4+ T cells differentiation and recruitment in the tumor microenvironment and their subsequent involvement in the antitumor immunity. Finally, we discussed how to manipulate tumor reactive CD4+ Th responses by epigenetic drugs to improve anticancer immunotherapy.
Collapse
Affiliation(s)
- Elodie Renaude
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France
| | - Marie Kroemer
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Paul Peixoto
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EPIGENEXP Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EPIGENEXP Platform, University of Bourgogne Franche-Comté, Besançon, France.,DImaCell Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Romain Loyon
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Olivier Adotévi
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
14
|
Brg1 restrains the pro-inflammatory properties of ILC3s and modulates intestinal immunity. Mucosal Immunol 2021; 14:38-52. [PMID: 32612160 PMCID: PMC7790751 DOI: 10.1038/s41385-020-0317-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/10/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s), a subset of the innate lymphoid cells, are abundantly present in the intestine and are crucial regulators of intestinal inflammation. Brg1 (Brahma-related gene 1), a catalytic subunit of the mammalian SWI-SNF-like chromatin-remodeling BAF complex, regulates the development and function of various immune cells. Here, by genetic deletion of Brg1 in ILC3s (Smarca4ΔILC3), we prove that Brg1 supports the differentiation of NKp46+ILC3s by promoting the T-bet expression in NKp46-ILC3s, which facilitates the conversion of NKp46-ILC3s to NKp46+ILC3s. Strikingly, Smarca4ΔILC3 mice of the Rag1-/- background develop spontaneous colitis accompanied with increased GM-CSF production in ILC3s. By construction of a mixed bone marrow chimeric system, we demonstrate that Brg1 enhances T-bet and inhibits GM-CSF expression in ILC3s through a cell-intrinsic manner. Blockade of GM-CSF ameliorates colitis in Rag1-/-Smarca4ΔILC3 mice, suggesting that the suppression of GM-CSF production from ILC3s by Brg1 serves as a critical mechanism for Brg1 to restrain intestinal inflammation. We have further demonstrated that Brg1 binds to the Tbx21 and Csf2 gene locus in ILC3s, and favors the active and repressive histones modifications on gene locus of Tbx21 and Csf2 respectively. Our work reveals the essential role of Brg1 in intestinal immunity by regulating ILC3s.
Collapse
|
15
|
In situ conversion of defective Treg into SuperTreg cells to treat advanced IPEX-like disorders in mice. Nat Commun 2020; 11:2781. [PMID: 32493900 PMCID: PMC7271236 DOI: 10.1038/s41467-020-15836-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations disrupting regulatory T (Treg) cell function can cause IPEX and IPEX-related disorders, but whether established disease can be reversed by correcting these mutations is unclear. Treg-specific deletion of the chromatin remodeling factor Brg1 impairs Treg cell activation and causes fatal autoimmunity in mice. Here, we show with a reversible knockout model that re-expression of Brg1, in conjunction with the severe endogenous proinflammatory environment, can convert defective Treg cells into powerful, super-activated Treg cells (SuperTreg cells) that can resolve advanced autoimmunity, with Brg1 re-expression in a minor fraction of Treg cells sufficient for the resolution in some cases. SuperTreg cells have enhanced trafficking and regulatory capabilities, but become deactivated as the inflammation subsides, thus avoiding excessive immune suppression. We propose a simple, robust yet safe gene-editing-based therapy for IPEX and IPEX-related disorders that exploits the defective Treg cells and the inflammatory environment pre-existing in the patients. Mutations that affect Treg cell function can cause lethal autoimmunity, but whether correcting these mutations can reverse established disease is unclear. Here, the authors correct Treg cell-specific Brg1 mutation in a minor fraction of Treg cells, which supercharges these cells to rescue mice from otherwise fatal IPEX-like autoimmunity.
Collapse
|
16
|
Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol 2019; 44:101324. [PMID: 31676122 DOI: 10.1016/j.smim.2019.101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IL-10 is a critical immunoregulatory cytokine expressed in virtually all immune cell types. Maintaining a delicate balance between effective immune response and tolerance requires meticulous and dynamic control of IL-10 expression both epigenetically and transcriptionally. In this Review, we describe the epigenetic mechanisms controlling IL-10 expression, including chromatin remodeling, 3D chromatin loops, histone modification and DNA methylation. We discuss the role of transcription factors in directing chromatin modifications, with a special highlight on the emerging concept of pioneer transcription factors in setting up the chromatin landscape in T helper cells for IL-10 induction. Besides summarizing the recent progress on transcriptional regulation in specialized IL-10 producers such as type 1 regulatory T cells, regulatory B cells and regulatory innate lymphoid cells, we also discuss common transcriptional mechanisms for IL-10 regulation that are shared with other IL-10 producing cells.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
17
|
Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 2018; 125:6-17. [DOI: 10.1016/j.yjmcc.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
18
|
Rapp M, Lau CM, Adams NM, Weizman OE, O'Sullivan TE, Geary CD, Sun JC. Core-binding factor β and Runx transcription factors promote adaptive natural killer cell responses. Sci Immunol 2018; 2:2/18/eaan3796. [PMID: 29222089 DOI: 10.1126/sciimmunol.aan3796] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/12/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that have features of adaptive immunity such as clonal expansion and generation of long-lived memory. Interleukin-12 (IL-12) signaling through its downstream transcription factor signal transducer and activator of transcription 4 (STAT4) is required for the generation of memory NK cells after expansion. We identify gene loci that are highly enriched for STAT4 binding using chromatin immunoprecipitation sequencing for STAT4 and the permissive histone mark H3K4me3 in activated NK cells. We found that promoter regions of Runx1 and Runx3 are targets of STAT4 and that STAT4 binding during NK cell activation induces epigenetic modifications of Runx gene loci resulting in increased expression. Furthermore, specific ablation of Runx1, Runx3, or their binding partner Cbfb in NK cells resulted in defective clonal expansion and memory formation during viral infection, with evidence for Runx1-mediated control of a cell cycle program. Thus, our study reveals a mechanism whereby STAT4-mediated epigenetic control of individual Runx transcription factors promotes the adaptive behavior of antiviral NK cells.
Collapse
Affiliation(s)
- Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
19
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
20
|
Hou H, Xing W, Li W. Brahma-related gene 1 induces apoptosis in a p53-dependent manner in human rheumatoid fibroblast-like synoviocyte MH7A. Medicine (Baltimore) 2016; 95:e5241. [PMID: 28002318 PMCID: PMC5181802 DOI: 10.1097/md.0000000000005241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Blocked apoptosis and aggressive inflammatory responses occur in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA) patients. Although Brahma-related gene 1 (BRG1) is considered as a tumor suppressor, few research covers its role in RA. This study aims to reveal effects and potential mechanisms of BRG1 in human FLS cell line MH7A.BRG1 expression in MH7A cells was altered by transfection of overexpression vectors or short hairpin RNAs (shRNAs). Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry after transfection. Factors involved in inflammation and apoptosis were quantified by qPCR and Western blot. The interaction between BRG1 and p53 was assessed by immunoprecipitation (IP).Results showed that BRG1 overexpression significantly suppressed MH7A cell viability and induced apoptosis (P < 0.01), and its knockdown had opposite effects. BRG1 reduced mRNA levels of matrix metallopeptidase 3, TIMP metallopeptidase inhibitor 2, cyclooxygenase 2, and interleukin 6, implying its suppressive effects on inflammation. BRG1 interacted with and promoted p53 (P < 0.05). B-cell chronic lymphocytic leukemia/lymphoma 2 was suppressed (P < 0.05), while cytochrome c, caspase 3 (CASP3) and CASP9 were activated (P < 0.01) by BRG1. However, the regulation on these factors was abrogated by p53 knockdown (P < 0.01).These findings suggest that BRG1 may induce apoptosis and suppress inflammation in MH7A cells. Potential functional mechanisms involve the regulation of apoptotic factors by BRG1, which may depend on the recruitment and promotion of p53. This study provides the essential proof for applying BRG1 to the molecular therapy of RA.
Collapse
|
21
|
Maiuri AR, O'Hagan HM. Interplay Between Inflammation and Epigenetic Changes in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:69-117. [PMID: 27865469 DOI: 10.1016/bs.pmbts.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune responses can suppress tumorigenesis, but also contribute to cancer initiation and progression suggesting a complex interaction between the immune system and cancer. Epigenetic alterations, which are heritable changes in gene expression without changes to the DNA sequence, also play a role in carcinogenesis through silencing expression of tumor suppressor genes and activating oncogenic signaling. Interestingly, epithelial cells at sites of chronic inflammation undergo DNA methylation alterations that are similar to those present in cancer cells, suggesting that inflammation may initiate cancer-specific epigenetic changes in epithelial cells. Furthermore, epigenetic changes occur during immune cell differentiation and participate in regulating the immune response, including the regulation of inflammatory cytokines. Cancer cells utilize epigenetic silencing of immune-related genes to evade the immune response. This chapter will detail the interactions between inflammation and epigenetics in tumor initiation, promotion, and immune evasion and how these connections are being leveraged in cancer prevention and treatment.
Collapse
Affiliation(s)
- A R Maiuri
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States
| | - H M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States.
| |
Collapse
|
22
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
23
|
Cichicki F, Schlums H, Theorell J, Tesi B, Miller JS, Ljunggren HG, Bryceson YT. Diversification and Functional Specialization of Human NK Cell Subsets. Curr Top Microbiol Immunol 2015; 395:63-94. [PMID: 26472216 DOI: 10.1007/82_2015_487] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are lymphocytes that participate in different facets of immunity. They can act as innate sentinels through recognition and eradication of infected or transformed target cells, so-called immunosurveillance. In addition, they can contain immune responses through the killing of other activated immune cells, so-called immunoregulation. Furthermore, they instruct and regulate immune responses by producing pro-inflammatory cytokines such as IFN-γ, either upon direct target cell recognition or by relaying cytokine cues from various cell types. Recent studies in mouse and man have uncovered infection-associated expansions of NK cell subsets with specific receptor repertoires and diverse patterns of intracellular signaling molecule expression. Moreover, distinct attributes of NK cells in tissues, including tissue-resident subsets, are being further elucidated. Findings support an emerging theme of ever-increasing diversification and functional specialization among different NK cell subsets, with a functional dichotomy between subsets involved in immunoregulation or immunosurveillance. The epigenetic landscapes and transcriptional profiles of different NK cell subsets are providing insights into the molecular regulation of effector functions. Here, we review phenotypic, functional, and developmental characteristics of a spectrum of human NK cell subsets. We also discuss the molecular underpinnings of different NK cell subsets and their potential contributions to immunity as well as disease susceptibility.
Collapse
|
24
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Aavikko M, Kaasinen E, Nieminen JK, Byun M, Donner I, Mancuso R, Ferrante P, Clerici M, Brambilla L, Tourlaki A, Sarid R, Guttman-Yassky E, Taipale M, Morgunova E, Pekkonen P, Ojala PM, Pukkala E, Casanova JL, Vaarala O, Vahteristo P, Aaltonen LA. Whole-Genome Sequencing Identifies STAT4 as a Putative Susceptibility Gene in Classic Kaposi Sarcoma. J Infect Dis 2014; 211:1842-51. [PMID: 25492914 DOI: 10.1093/infdis/jiu667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Classic Kaposi sarcoma (cKS) is an inflammatory tumor caused by human herpesvirus 8 (HHV-8) commonly observed in elderly men of Mediterranean origin. We studied a Finnish family of 5 affected individuals in 2 generations. Except for atypical mycobacterial infection of the index case, the affected individuals did not have notable histories of infection. METHODS We performed genome and exome sequencing and mapped shared chromosomal regions to identify genetic predisposition in the family. RESULTS We identified 12 protein-coding candidate variants that segregated in the 3 affected cousins from whom we had samples. The affected mother of the index case was an obligatory carrier. Among the 12 candidates was a rare heterozygous substitution rs141331848 (c.1337C>T, p.Thr446Ile) in the DNA-binding domain of STAT4. The variant was not present in 242 Finnish control genomes or 180 additional regional controls. Activated T-helper cells from the HHV-8-negative variant carriers showed reduced interferon γ production, compared with age and sex matched wild-type individuals. We screened STAT4 in additional 18 familial KS cases and the variant site from 56 sporadic KS cases but detected no pathogenic mutations. CONCLUSIONS Our data suggest that STAT4 is a potential cKS-predisposition gene, but further functional and genetic validation is needed.
Collapse
Affiliation(s)
- Mervi Aavikko
- Department of Medical Genetics Genome-Scale Biology Research Programs Unit
| | - Eevi Kaasinen
- Department of Medical Genetics Genome-Scale Biology Research Programs Unit
| | - Janne K Nieminen
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare
| | - Minji Byun
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University Howard Hughes Medical Institute
| | - Iikki Donner
- Department of Medical Genetics Genome-Scale Biology Research Programs Unit
| | | | | | - Mario Clerici
- Don C. Gnocchi Foundation, ONLUS Department of Physiopathology and Transplantation, University of Milan
| | - Lucia Brambilla
- Dermatology Unit, IRCCS Ca' Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| | - Athanasia Tourlaki
- Dermatology Unit, IRCCS Ca' Granda Foundation-Ospedale Maggiore Policlinico, Milan, Italy
| | - Ronit Sarid
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Emma Guttman-Yassky
- Department of Dermatology Immunology Institute, Mount Sinai Medical Center at Icahn School of Medicine, New York, New York
| | - Minna Taipale
- Genome-Scale Biology Research Programs Unit Science for Life Center Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Morgunova
- Science for Life Center Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Pirita Pekkonen
- Genome-Scale Biology Research Programs Unit Institute of Biotechnology, University of Helsinki
| | - Päivi M Ojala
- Genome-Scale Biology Research Programs Unit Institute of Biotechnology, University of Helsinki Finnish Cancer Institute
| | - Eero Pukkala
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki School of Health Sciences, University of Tampere, Finland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University Howard Hughes Medical Institute Laboratory of Human Genetics of Infectious Diseases, Necker Hospital School for Sick Children Imagine Institute, University Paris Descartes, France
| | - Outi Vaarala
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare
| | - Pia Vahteristo
- Department of Medical Genetics Genome-Scale Biology Research Programs Unit
| | - Lauri A Aaltonen
- Department of Medical Genetics Genome-Scale Biology Research Programs Unit
| |
Collapse
|
26
|
Disruption of hSWI/SNF complexes in T cells by WAS mutations distinguishes X-linked thrombocytopenia from Wiskott-Aldrich syndrome. Blood 2014; 124:3409-19. [PMID: 25253772 DOI: 10.1182/blood-2014-07-587642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS), an immunodeficiency disorder, and X-linked thrombocytopenia (XLT), a bleeding disorder, both arise from nonsynonymous mutations in WAS, which encodes a hematopoietic-specific WASp. Intriguingly, XLT evolves into WAS in some patients but not in others; yet the biological basis for this cross-phenotype (CP) effect remains unclear. Using human T-helper (TH) cells expressing different disease-causing WAS mutations, we demonstrated that hSWI/SNF-like complexes require nuclear-WASp to execute their chromatin-remodeling activity at promoters of WASp-target, immune function genes during TH1 differentiation. Hot-spot WAS mutations Thr45Met and Arg86Cys, which result in XLT-to-WAS disease progression, impair recruitment of hBRM- but not BRG1-enriched BAF complexes to IFNG and TBX21 promoters. Moreover, promoter enrichment of histone H2A.Z and its catalyzing enzyme EP400 are both impaired. Consequently, activation of Notch signaling, a hBRM-regulated event, and its downstream effector NF-κB are both compromised, along with decreased accessibility of nucleosomal DNA and inefficient transcription-elongation of WASp-target TH1 genes. In contrast, patient mutations Ala236Gly and Arg477Lys that manifest in XLT without progressing to WAS do not disrupt chromatin remodeling or transcriptional reprogramming of TH1 genes. Our study defines an indispensable relationship between nuclear-WASp- and hSWI/SNF-complexes in gene activation and reveals molecular distinctions in TH cells that might contribute to disease severity in the XLT/WAS clinical spectrum.
Collapse
|
27
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
29
|
Tatsuno T, Miyazaki K, Yamashiro H. Multiple solvent, N-methyl-2-pyrrolidone, acts as a novel adjuvant for enhancing cutaneous immune responses. Biosci Biotechnol Biochem 2014; 78:954-9. [PMID: 25036119 DOI: 10.1080/09168451.2014.912114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
N-methyl-2-pyrrolidone (NMP) is known for its multi-solvent properties. However, its biological, especially immunological significance still remains to be elucidated. In this study, we show for the first time that NMP stimulates the skin immune system by activating epidermal Langerhans cells (LCs). In contrast with the placebo tape, when the NMP-containing adhesive tape was applied on murine skin, LCs were stimulated immediately. Activated LCs not only exhibited enhanced expression of major histocompatibility complex class II and morphological changes, including the loss of dendrites, but also migrated effectively to draining lymph nodes. In addition, application of the tyrosine-related protein-2 peptide, which is the cytotoxic T lymphocyte (CTL) epitope against B16 melanoma, in combination with the NMP tape, resulted in explosive expansion of specific CTLs in mouse spleens. Taken together, these results demonstrate a novel role of NMP as an adjuvant in percutaneous peptide immunization.
Collapse
Affiliation(s)
- Tomoko Tatsuno
- a Research Laboratory , LINTEC Corporation , Warabi-shi , Japan
| | | | | |
Collapse
|
30
|
Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, Chiang SCC, Miller JS, Meeths M, Anderson SK, Bryceson YT. Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med 2014; 211:1079-91. [PMID: 24842371 PMCID: PMC4042637 DOI: 10.1084/jem.20131131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
Autosomal recessive mutations in UNC13D, the gene that encodes Munc13-4, are associated with familial hemophagocytic lymphohistiocytosis type 3 (FHL3). Munc13-4 expression is obligatory for exocytosis of lytic granules, facilitating cytotoxicity by T cells and natural killer (NK) cells. The mechanisms regulating Munc13-4 expression are unknown. Here, we report that Munc13-4 is highly expressed in differentiated human NK cells and effector CD8(+) T lymphocytes. A UNC13D c.118-308C>T mutation, causative of FHL3, disrupted binding of the ETS family member ELF1 to a conserved intronic sequence. This mutation impairs UNC13D intron 1 recruitment of STAT4 and the chromatin remodeling complex component BRG1, diminishing active histone modifications at the locus. The intronic sequence acted as an overall enhancer of Munc13-4 expression in cytotoxic lymphocytes in addition to representing an alternative promoter encoding a novel Munc13-4 isoform. Mechanistically, T cell receptor engagement facilitated STAT4-dependent Munc13-4 expression in naive CD8(+) T lymphocytes. Collectively, our data demonstrates how chromatin remodeling within an evolutionarily conserved regulatory element in intron 1 of UNC13D regulates the induction of Munc13-4 expression in cytotoxic lymphocytes and suggests that an alternative Munc13-4 isoform is required for lymphocyte cytotoxicity. Thus, mutations associated with primary immunodeficiencies may cause disease by disrupting transcription factor binding.
Collapse
Affiliation(s)
- Frank Cichocki
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Heinrich Schlums
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Experimental Immunology, SAIC-Frederick Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Vanessa Stache
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Timothy Holmes
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Todd R Lenvik
- Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Marie Meeths
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Stephen K Anderson
- Basic Science Program, Leidos Biomedical Research, Inc., Laboratory of Experimental Immunology, SAIC-Frederick Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden Broegelmann Research Laboratory, Clinical Institute, University of Bergen, N-5021 Bergen, Norway
| |
Collapse
|
31
|
Abstract
INTRODUCTION STAT4, which acts as the major signaling transducing STATs in response to IL-12, is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. AREAS COVERED This review summarizes that STAT4 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, mast cells, dendritic cells and T helper cells. In addition, STAT4-mediated signaling promoted the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis. EXPERT OPINION Due to its crucial roles in inflammation and autoimmunity, STAT4 may have promise as an effective therapeutic target for autoimmune diseases. Understanding the molecular mechanisms driving STAT4, together with knowledge on the ability of current immunosuppressive treatment to target this process, may open an avenue to novel therapeutic options.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , Anhui, PR China
| | | | | |
Collapse
|
32
|
Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology 2013; 139:285-93. [PMID: 23521628 DOI: 10.1111/imm.12100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023] Open
Abstract
T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia.
| | | | | | | |
Collapse
|
33
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
34
|
Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:902-11. [PMID: 23772023 PMCID: PMC3703830 DOI: 10.4049/jimmunol.1203229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The STAT transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including histone H3 lysine 4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in histone H3 lysine 27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFN-γ production. Moreover, although STAT4-deficient mice are protected from the development of experimental autoimmune encephalomyelitis, mice deficient in STAT4 and conditionally deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are derepressed in the absence of Dnmt3a have greater induction after the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a derepressed genetic state susceptible to transactivation by additional fate-determining transcription factors.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shaposhnikov AV, Komar’kov IF, Lebedeva LA, Shidlovskii YV. Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery. Mol Biol 2013. [DOI: 10.1134/s0026893313030126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Williams CL, Schilling MM, Cho SH, Lee K, Wei M, Aditi, Boothby M. STAT4 and T-bet are required for the plasticity of IFN-γ expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. THE JOURNAL OF IMMUNOLOGY 2013; 191:678-87. [PMID: 23761633 DOI: 10.4049/jimmunol.1203360] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD4(+) T cells developing toward a Th2 fate express IL-4, IL-5, and IL-13 while inhibiting production of cytokines associated with other Th types, such as the Th1 cytokine IFN- γ. IL-4-producing Th2 effector cells give rise to a long-lived memory population committed to reactivation of the Th2 cytokine gene expression program. However, reactivation of these effector-derived cells under Th1-skewing conditions leads to production of IFN-γ along with IL-4 in the same cell. We now show that this flexibility ("plasticity") of cytokine expression is preceded by a loss of the repressive DNA methylation of the Ifng promoter acquired during Th2 polarization yet requires STAT4 along with T-box expressed in T cells. Surprisingly, loss of either STAT4 or T-box expressed in T cells increased Ifng promoter CpG methylation in both effector and memory Th2 cells. Taken together, our data suggest a model in which the expression of IFN-γ by Th2-derived memory cells involves attenuation of epigenetic repression in memory Th2 cells, combined with Th1-polarizing signals after their recall activation.
Collapse
Affiliation(s)
- Christopher L Williams
- Department of Microbiology and Immunology, Vanderbilt University, Nashville TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y, Milner JD, O’Shea JJ. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol 2013; 131:1276-87. [PMID: 23622118 PMCID: PMC3677748 DOI: 10.1016/j.jaci.2013.03.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 12/13/2022]
Abstract
CD4 helper T cells are critical for proper immune cell homeostasis and host defense but are also major contributors to immune and inflammatory disease. Arising from a simple biphasic model of differentiation (ie, TH1 and TH2 cells). A bewildering number of fates seem possible for helper T cells. To what extent different helper cell subsets maintain their characteristic gene expression profiles or exhibit functional plasticity is a hotly debated topic. In this review we will discuss how the expression of "signature cytokines" and "master regulator" transcription factors do not neatly conform to a simple helper T-cell paradigm. Although this might seem confusing, the good news is that the newly recognized complexity fits better with our understanding of immunopathogenesis. Finally, we will discuss factors, including epigenetic regulation and metabolic alterations, that contribute to helper cell specificity and plasticity.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| | - Amanda Poholek
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| | - Joshua D. Milner
- Laboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases
| |
Collapse
|
38
|
Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013; 38:13-25. [PMID: 23352221 DOI: 10.1016/j.immuni.2013.01.004] [Citation(s) in RCA: 762] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine produced after antigen activation that plays pivotal roles in the immune response. Discovered as a T cell growth factor, IL-2 additionally promotes CD8(+) T cell and natural killer cell cytolytic activity and modulates T cell differentiation programs in response to antigen, promoting naïve CD4(+) T cell differentiation into T helper 1 (Th1) and T helper 2 (Th2) cells while inhibiting T helper 17 (Th17) and T follicular helper (Tfh) cell differentiation. Moreover, IL-2 is essential for the development and maintenance of T regulatory cells and for activation-induced cell death, thereby mediating tolerance and limiting inappropriate immune reactions. In this review, we focus on the molecular mechanisms and complex cellular actions of IL-2, its cooperative and opposing effects with other cytokines, and how both promoting and blocking the actions of IL-2 are being utilized in clinical medicine.
Collapse
Affiliation(s)
- Wei Liao
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | |
Collapse
|
39
|
Vahedi G, Poholek A, Hand TW, Laurence A, Kann Y, O’Shea JJ, Hirahara K. Helper T-cell identity and evolution of differential transcriptomes and epigenomes. Immunol Rev 2013; 252:24-40. [PMID: 23405893 PMCID: PMC3577092 DOI: 10.1111/imr.12037] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD4(+) T cells are critical for the elimination of an immense array of microbial pathogens. Among the ways they accomplish this task is to generate progeny with specialized, characteristic patterns of gene expression. From this perspective, helper cells can be viewed as pluripotent precursors that adopt distinct cell fates. Although there are aspects of helper cell differentiation that can be modeled as a classic cell fate commitment, CD4(+) T cells also maintain considerable flexibility in their transcriptional program. This makes sense in terms of host defense, but raises the question of how these remarkable cells balance both these requirements, a high degree of specific gene expression and the capacity for plasticity. In this review, we discuss recent advances in our understanding of CD4(+) T-cell specification, focusing on how genomic perspectives have influenced our views of these processes. The relative contributions of sensors of the cytokine milieu, especially the signal transducer and activator of transcription family transcription factors, 'master regulators', and other transcription factors are considered as they relate to the helper cell transcriptome and epigenome.
Collapse
Affiliation(s)
- Golnaz Vahedi
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Amanda Poholek
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Timothy W. Hand
- Laboratory of parasitic diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Yuka Kann
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - John J. O’Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Kiyoshi Hirahara
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| |
Collapse
|
40
|
Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 2013; 4:55. [PMID: 23450696 PMCID: PMC3584244 DOI: 10.3389/fimmu.2013.00055] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 12/24/2022] Open
Abstract
Upon maturation, natural killer (NK) cells acquire effector functions and regulatory receptors. New insights suggest a considerable functional heterogeneity and dynamic regulation of receptor expression in mature human NK cell subsets based on different developmental axes. Such processes include acquisition of lytic granules as well as regulation of cytokine production in response to exogenous cytokine stimulation or target cell interactions. One axis is regulated by expression of inhibitory receptors for self-MHC class I molecules, whereas other axes are less well defined but likely are driven by different activating receptor engagements or cytokines. Moreover, the recent identification of long-lived NK cell subsets in mice that are able to expand and respond rapidly following a secondary viral challenge suggest previously unappreciated plasticity in the programming of NK cell differentiation. Here, we review advances in our understanding of mature NK cell development and plasticity with regards to regulation of cellular function. Furthermore, we highlight some of the major questions that remain pertaining to the epigenetic changes that underlie the differentiation and functional specialization of NK cells and the regulation of their responses.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge Stockholm, Sweden ; Adult Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center Minneapolis, MN, USA
| | | | | | | |
Collapse
|
41
|
Chaiyachati BH, Jani A, Wan Y, Huang H, Flavell R, Chi T. BRG1-mediated immune tolerance: facilitation of Treg activation and partial independence of chromatin remodelling. EMBO J 2013; 32:395-408. [PMID: 23321680 DOI: 10.1038/emboj.2012.350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/05/2012] [Indexed: 02/02/2023] Open
Abstract
Treg activation in response to environmental cues is necessary for regulatory T cells (Tregs) to suppress inflammation, but little is known about the transcription mechanisms controlling Treg activation. We report that despite the known proinflammatory role of the chromatin-remodelling factor BRG1 in CD4 cells, deleting Brg1 in all αβ T cell lineages led to fatal inflammation, which reflected essential roles of BRG1 in Tregs. Brg1 deletion impaired Treg activation, concomitant with the onset of the inflammation. Remarkably, as the inflammation progressed, Tregs became increasingly activated, but the activation levels could not catch up with the severity of inflammation. In vitro assays indicate that BRG1 regulates a subset of TCR target genes including multiple chemokine receptor genes. Finally, using a method that can create littermates bearing either a tissue-specific point mutation or deletion, we found the BRG1 ATPase activity partially dispensable for BRG1 function. Collectively, these data suggest that BRG1 acts in part via remodelling-independent functions to sensitize Tregs to inflammatory cues, thus allowing Tregs to promptly and effectively suppress autoimmunity.
Collapse
Affiliation(s)
- Barbara H Chaiyachati
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lim PS, Shannon MF, Hardy K. Epigenetic control of inducible gene expression in the immune system. Epigenomics 2012; 2:775-95. [PMID: 22122082 DOI: 10.2217/epi.10.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been well documented that active genes, and their promoters and enhancers have a different chromatin or epigenomic environment compared with unexpressed genes. In addition, the epigenome may influence not only which genes are expressed, but also which genes can be induced in response to activation or differentiation signals. Immune cells respond to activation signals by rapidly inducing the expression of specific gene sets, and therefore this is a good system in which to examine the role of the epigenome in gene activation and cell differentiation. Several studies have now found that many immediate-early inducible genes exist in a similar epigenomic environment to active genes even in the unstimulated state. Some studies suggest that subsets of these genes may even have RNA polymerase II at their promoters and induction may be controlled downstream of its recruitment. Other inducible genes, however, undergo changes to histone modifications, levels or variant composition upon activation. In this article, we discuss how the epigenome of immune cells regulates inducible gene expression and discuss the differences between the immediate responses to activation signals and the longer term changes observed during differentiation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
43
|
Abstract
One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. First we briefly present biochemical and cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI) to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding.
Collapse
Affiliation(s)
- Andrea L. Wurster
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, USA
| | - Michael J. Pazin
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, USA
| |
Collapse
|
44
|
Kanno Y, Vahedi G, Hirahara K, Singleton K, O'Shea JJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 2012; 30:707-31. [PMID: 22224760 PMCID: PMC3314163 DOI: 10.1146/annurev-immunol-020711-075058] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T helper cell differentiation occurs in the context of the extracellular cytokine milieu evoked by diverse microbes and other pathogenic stimuli along with T cell receptor stimulation. The culmination of these signals results in specification of T helper lineages, which occurs through the combinatorial action of multiple transcription factors that establish distinctive transcriptomes. In this manner, inducible, but constitutively active, master regulators work in conjunction with factors such as the signal transducer and activator of transcriptions (STATs) that sense the extracellular environment. The acquisition of a distinctive transcriptome also depends on chromatin modifications that impact key cis elements as well as the changes in global genomic organization. Thus, signal transduction and epigenetics are linked in these processes of differentiation. In this review, recent advances in understanding T helper lineage specification and deciphering the action of transcription factors are summarized with emphasis on comprehensive views of the dynamic T cell epigenome.
Collapse
Affiliation(s)
- Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
45
|
Hirahara K, Vahedi G, Ghoreschi K, Yang XP, Nakayamada S, Kanno Y, O'Shea JJ, Laurence A. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology 2011; 134:235-45. [PMID: 21977994 DOI: 10.1111/j.1365-2567.2011.03483.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD4(+) T cells have critical roles in orchestrating immune responses to diverse microbial pathogens. This is accomplished through the differentiation of CD4(+) T helper cells to specialized subsets in response to microbial pathogens, which evoke a distinct cytokine milieu. Signal transducer and activator of transcription family transcription factors sense these cytokines and they in turn regulate expression of lineage-defining master regulators that programme selective gene expression, resulting in distinctive phenotypes. However, phenotype and restricted gene expression are determined not only by the action of transcription factors; chromatin accessibility is required for these factors to exert their effect. Technical advances have greatly expanded our understanding of transcription factor action and dynamic changes in the epigenome that accompany cellular differentiation. In this review, we will discuss recent progress in the understanding of how cytokines influence gene expression and epigenetic modifications, and the impact of these findings on our views of helper cell lineage commitment and plasticity.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Department of Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1930, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hughes T, Sawalha AH. The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus. Arthritis Res Ther 2011; 13:245. [PMID: 22044622 PMCID: PMC3308098 DOI: 10.1186/ar3484] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The focus of the present review is on the extent to which epigenetic alterations influence the development of systemic lupus erythematosus. Lupus is a systemic autoimmune disease characterized by the production of autoantibodies directed at nuclear self-antigens. A DNA methylation defect in CD4+ T cells has long been observed in idiopathic and drug-induced lupus. Recent studies utilizing high-throughput technologies have further characterized the nature of the DNA methylation defect in lupus CD4+ T cells. Emerging evidence in the literature is revealing an increasingly interconnected network of epigenetic dysregulation in lupus. Recent reports describe variable expression of a number of regulatory microRNAs in lupus CD4+ T cells, some of which govern the expression of DNA methyltransferase 1. While studies to date have revealed a significant role for epigenetic defects in the pathogenesis of lupus, the causal nature of epigenetic variation in lupus remains elusive. Future longitudinal epigenetic studies in lupus are therefore needed.
Collapse
Affiliation(s)
- Travis Hughes
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Amr H Sawalha
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- 825 NE 13th Street, MS#24, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Ishihara S, Schwartz RH. Two-step binding of transcription factors causes sequential chromatin structural changes at the activated IL-2 promoter. THE JOURNAL OF IMMUNOLOGY 2011; 187:3292-9. [PMID: 21832163 DOI: 10.4049/jimmunol.1003173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most gene promoters have multiple binding sequences for many transcription factors, but the contribution of each of these factors to chromatin remodeling is still unclear. Although we previously found a dynamic change in the arrangement of nucleosome arrays at the Il2 promoter during T cell activation, its timing preceded that of a decrease in nucleosome occupancy at the promoter. In this article, we show that the initial nucleosome rearrangement was temporally correlated with the binding of NFAT1 and AP-1 (Fos/Jun), whereas the second step occurred in parallel with the recruitment of other transcription factors and RNA polymerase II. Pharmacologic inhibitors for activation of NFAT1 or induction of Fos blocked the initial phase in the sequential changes. This step was not affected, however, by inhibition of c-Jun phosphorylation, which instead blocked the binding of the late transcription factors, the recruitment of CREB-binding protein, and the acetylation of histone H3 at lysine 27. Thus, the sequential recruitment of transcription factors appears to facilitate two separate steps in chromatin remodeling at the Il2 locus.
Collapse
Affiliation(s)
- Satoru Ishihara
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Wurster AL, Precht P, Pazin MJ. NF-κB and BRG1 bind a distal regulatory element in the IL-3/GM-CSF locus. Mol Immunol 2011; 48:2178-88. [PMID: 21831442 DOI: 10.1016/j.molimm.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 01/15/2023]
Abstract
We investigated gene regulation at the IL-3/GM-CSF gene cluster. We found BRG1, a SWI/SNF remodeling ATPase, bound a distal element, CNSa. BRG1 binding was strongest in differentiated, stimulated T helper cells, paralleling IL-3 and GM-CSF expression. Depletion of BRG1 reduced IL-3 and GM-CSF transcription. BAF-specific SWI/SNF subunits bound to this locus and regulated IL-3 expression. CNSa was in closed chromatin in fibroblasts, open chromatin in differentiated T helper cells, and moderately open chromatin in naïve (undifferentiated) T helper cells; BRG1 was required for the most open state. CNSa increased transcription of a reporter in an episomal expression system, in a BRG1-dependent manner. The NF-κB subunit RelA/p65 bound CNSa in activated T helper cells. Inhibition of NF-κB blocked BRG1 binding to CNSa, chromatin opening at CNSa, and activation of IL-3 and GM-CSF. Together, these findings suggest CNSa is a distal enhancer that binds BRG1 and NF-κB.
Collapse
Affiliation(s)
- Andrea L Wurster
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, USA
| | | | | |
Collapse
|
49
|
Jacob E, Hod-Dvorai R, Ben-Mordechai OL, Boyko Y, Avni O. Dual function of polycomb group proteins in differentiated murine T helper (CD4+) cells. J Mol Signal 2011; 6:5. [PMID: 21624129 PMCID: PMC3127800 DOI: 10.1186/1750-2187-6-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following antigen recognition, naive T helper (Th; CD4+) cells can differentiate toward one of several effector lineages such as Th1 and Th2; each expressing distinctive transcriptional profiles of cytokine genes. These cytokines eventually instruct the strategy of the immune response. In our search for factors that propagate the transcriptional programs of differentiated Th cells, we previously found that Polycomb group (PcG) proteins, which are known as epigenetic regulators that maintain repressive chromatin states, bind differentially the signature cytokine genes. Unexpectedly, their binding to the Ifng (Interferon-g) in Th1 cells and Il4 (Interleukin-4) in Th2 cells, was correlated with transcriptional activation. Therefore, in this study we aimed to determine the functional role of PcG proteins in the regulation of the expression of the signature cytokine genes. METHODS PcG proteins were knocked down in primary and established murine Th cells using transduction of lentiviruses encoding short hairpin RNAs (shRNAs) directed to Mel-18, Ezh2, Eed and Ring1A, representative of two different PcG complexes. The chromatin structure and the binding activity of PcG proteins and transcription factors at the Ifng promoter were assessed by chromatin immunoprecipitation (ChIP) assays. RESULTS Downregulation of PcG proteins was consistent with their function as positive regulators of the signature cytokine genes in primary and established Th1 and Th2 cells. Moreover, the PcG protein Mel-18 was necessary to recruit the Th1-lineage specifying transcription factor T-bet, and the T cell receptor (TCR)-inducible transcription factor NFAT1 to the Ifng promoter in Th1 cells. Nevertheless, our results suggest that PcG proteins can function also as conventional transcriptional repressors in Th cells of their known target the Hoxa7 gene. CONCLUSIONS Our data support a model whereby the non-differentially expressed PcG proteins are recruited in a Th-lineage specific manner to their target genes to enforce the maintenance of specific transcriptional programs as transcriptional repressors or activators. Although our results suggest a direct effect of PcG proteins in the regulation of cytokine gene expression, indirect functions cannot be excluded.
Collapse
Affiliation(s)
- Eyal Jacob
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | | | |
Collapse
|
50
|
Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Mol Cell Biol 2011; 31:1512-27. [PMID: 21262765 DOI: 10.1128/mcb.00920-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.
Collapse
|