1
|
Tang Y, Shen L, Yang D, Zhang J, Xie Q, Sun F, Luo Q. Neutrophil CD64 index as a potential blood biomarker for the diagnosis of neurosyphilis in secondary and tertiary syphilis: A retrospective study. Heliyon 2024; 10:e29027. [PMID: 38596103 PMCID: PMC11002674 DOI: 10.1016/j.heliyon.2024.e29027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To examine the correlation of neutrophil CD64 (nCD64) index with neurosyphilis (NS) across different stages of syphilis. Methods A total of 1243 syphilis patients at different stages (344 of primary, 385 of secondary, and 514 of tertiary) included in this study were divided into NS and non-NS (NNS). Correlations of nCD64 index with currently used syphilis biomarkers were explored using Spearman correlation test. Relationships between nCD64 index and NS at different stages were investigated by stratified analysis and restricted cubic spline model. The diagnostic performance of nCD64 index for NS was assessed by receiver operating characteristic (ROC) curve. Results Significant statistical correlations of nCD64 index with cerebrospinal fluid (CSF) NS indicators were found in secondary and tertiary syphilis. Increased nCD64 index was associated with increased risk of NS in secondary and tertiary syphilis. ROC analysis values further confirmed the diagnostic potential of nCD64 index for NS. Marked decrease of nCD64 index was observed in NS patients after effective antisyphilitic treatments. Conclusions The nCD64 index may help to the diagnosis of NS in secondary and tertiary syphilis.
Collapse
Affiliation(s)
- Yijie Tang
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingyun Shen
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dandan Yang
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqin Zhang
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinghui Xie
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingqiong Luo
- Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
3
|
Bando K, Tanaka Y, Takahashi T, Sugawara S, Mizoguchi I, Endo Y. Histamine acts via H4-receptor stimulation to cause augmented inflammation when lipopolysaccharide is co-administered with a nitrogen-containing bisphosphonate. Inflamm Res 2022; 71:1603-1617. [DOI: 10.1007/s00011-022-01650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
|
4
|
Lee JS, Kim CY. Brimonidine tartrate ophthalmic solution 0.025% for redness relief: an overview of safety and efficacy. Expert Rev Clin Pharmacol 2022; 15:911-919. [PMID: 35951740 DOI: 10.1080/17512433.2022.2112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ocular redness, or conjunctival hyperemia, is a common ophthalmic sign associated with reduced quality of life. For redness without apparent underlying pathology, topical ophthalmic decongestants have been widely used. AREAS COVERED Brimonidine tartrate was approved in 2017 as a topical vasoconstrictor at a 0.025% concentration for relief of ocular redness. Since then, investigators have reported on efficacy and safety findings from studies evaluating low-dose brimonidine for reducing ocular redness. EXPERT OPINION Brimonidine is highly selective for α2-adrenergic receptors. Clinical trials have so far shown that the drug in low doses significantly reduces ocular redness in comparison to vehicle for up to 8 hours. Brimonidine-treated eyes did not present side effects of other vasoconstrictors, such as hypotension, cardiac arrhythmia or drowsiness. Ocular adverse events such as allergic reactions and redness rebound were also minimal. In this review, we examine in detail published literature on the mechanism of brimonidine tartrate and its efficacy and safety in relieving conjunctival hyperemia.
Collapse
Affiliation(s)
- Jihei Sara Lee
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Dib K, El Banna A, Radulescu C, Lopez Campos G, Sheehan G, Kavanagh K. Histamine Produced by Gram-Negative Bacteria Impairs Neutrophil's Antimicrobial Response by Engaging the Histamine 2 Receptor. J Innate Immun 2022; 15:153-173. [PMID: 35858582 PMCID: PMC10643892 DOI: 10.1159/000525536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
We found that histamine (10-9 M) did not have any effect on the in vitro capture of Escherichia coli by neutrophils but accelerated its intracellular killing. In contrast, histamine (10-6 M) delayed the capture of Escherichia coli by neutrophils and reduced the amounts of pHrodo zymosan particles inside acidic mature phagosomes. Histamine acted through the H4R and the H2R, which are coupled to the Src family tyrosine kinases or the cAMP/protein kinase A pathway, respectively. The protein kinase A inhibitor H-89 abrogated the delay in bacterial capture induced by histamine (10-6 M) and the Src family tyrosine kinase inhibitor PP2 blocked histamine (10-9 M) induced acceleration of bacterial intracellular killing and tyrosine phosphorylation of proteins. To investigate the role of histamine in pathogenicity, we designed an Acinetobacter baumannii strain deficient in histamine production (hdc::TOPO). Galleria mellonella larvae inoculated with the wild-type Acinetobacter baumannii ATCC 17978 strain (1.1 × 105 CFU) died rapidly (100% death within 40 h) but not when inoculated with the Acinetobacter baumannii hdc::TOPO mutant (10% mortality). The concentration of histamine rose in the larval haemolymph upon inoculation of the wild type but not the Acinetobacter baumannii hdc::TOPO mutant, such concentration of histamine blocks the ability of hemocytes from Galleria mellonella to capture Candida albicans in vitro. Thus, bacteria-producing histamine, by maintaining high levels of histamine, may impair neutrophil phagocytosis by hijacking the H2R.
Collapse
Affiliation(s)
- Karim Dib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amal El Banna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Clara Radulescu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
6
|
Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Curr Issues Mol Biol 2022; 44:1597-1609. [PMID: 35723367 PMCID: PMC9164076 DOI: 10.3390/cimb44040109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.
Collapse
|
7
|
Ikeda H. Plasma amino acid levels in individuals with bacterial pneumonia and healthy controls. Clin Nutr ESPEN 2021; 44:204-210. [PMID: 34330467 DOI: 10.1016/j.clnesp.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND & AIMS Amino acids play an important role in immune responses and as neurotransmitters. During the course of a bacterial pneumonia episode, from the onset to the recovery phase, immune responses dramatically change, as does the metabolism of amino acids, a concept referred to as immuno-nutrition. We investigated the differences in plasma amino acid levels (PAA) between the acute and recovery phases in individuals with community-acquired pneumonia (CAP) and healthy controls. METHODS Two groups of participants were recruited: Healthy adults aged over 60 years and patients hospitalized with CAP. Samples were collected on Day 0 (the day of admission) and Day 7 (after 6-8 days treatment). RESULTS A total of 93 healthy adults and 60 patients with CAP participated in the study. Of those with CAP, 43 had their amino acids measured on Day 7. Patients with CAP had markedly decreased PAA of 12 amino acids on Day 0. Citrulline, histidine, and tryptophan remained low in male, while aspartic acid, asparagine, ornithine, proline, and threonine were higher on Day 7 in both males and females. Phenylalanine increased at Day 0 and Day7. CONCLUSIONS The findings suggest that the host response against bacterial infection changed the plasma amino acid levels. PAA on Day 7 (representing convalescence) continued to display an amino acid profile distinct from that observed in healthy individuals. Based on these findings, reconsideration for providing amino acids to patients with bacterial pneumonia should be needed depending on stage of the pneumonia from the perspective of immuno-nutrition.
Collapse
Affiliation(s)
- Hideki Ikeda
- Department of Pulmonary Medicine, Sanyudo Hospital, Yonezawa, Japan.
| |
Collapse
|
8
|
Chacón P, Vega-Rioja A, Doukkali B, Del Valle Rodríguez A, Bellido V, Puente Y, Alcañiz L, Rodríguez D, Palacios R, Cornejo-García JA, Monteseirín J, Rivas-Pérez D. Targeted inhibition of allergen-induced histamine production by neutrophils. FASEB J 2021; 35:e21483. [PMID: 33788304 DOI: 10.1096/fj.202001912r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/11/2022]
Abstract
Histamine is a critical inflammatory mediator in allergic diseases. We showed in a previous work that neutrophils from allergic patients produce histamine in response to allergens to which the patients were sensitized. Here, we investigate the molecular mechanisms involved in this process using peripheral blood neutrophils. We challenged these cells in vitro with allergens and analyzed histamine release in the culture supernatants. We also explored the effect of common therapeutic drugs that ameliorate allergic symptoms, as well as allergen-specific immunotherapy. Additionally, we examined the expression of histidine decarboxylase and diamine oxidase, critical enzymes in the metabolism of histamine, under allergen challenge. We show that allergen-induced histamine release is dependent on the activation of the phosphoinositide 3-kinase, mitogen-activated protein kinase p38, and extracellular signal-regulated kinase 1/2 signaling pathways. We also found a contribution of the phosphatase calcineurin to lesser extent. Anti-histamines, glucocorticoids, anti-M3-muscarinic receptor antagonists, and mainly β2 -receptor agonists abolished the allergen-dependent histamine release. Interestingly, allergen-specific immunotherapy canceled the histamine release through the downregulation of histidine decarboxylase expression. Our observations describe novel molecular mechanisms involved in the allergen-dependent histamine release by human neutrophils and provide new targets to inhibit histamine production.
Collapse
Affiliation(s)
- Pedro Chacón
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Antonio Vega-Rioja
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Bouchra Doukkali
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Virginia Bellido
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Yolanda Puente
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Lorena Alcañiz
- UGC de Dermatología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | | | - Javier Monteseirín
- UGC de Alergología, Hospital Universitario Virgen Macarena, Sevilla, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
9
|
Singh RB, Liu L, Anchouche S, Yung A, Mittal SK, Blanco T, Dohlman TH, Yin J, Dana R. Ocular redness - I: Etiology, pathogenesis, and assessment of conjunctival hyperemia. Ocul Surf 2021; 21:134-144. [PMID: 34010701 PMCID: PMC8328962 DOI: 10.1016/j.jtos.2021.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
The translucent appearance of the conjunctiva allows for immediate visualization of changes in the circulation of the conjunctival microvasculature consisting of extensive branching of superficial and deep arterial systems and corresponding drainage pathways, and the translucent appearance of the conjunctiva allows for immediate visualization of changes in the circulation. Conjunctival hyperemia is caused by a pathological vasodilatory response of the microvasculature in response to inflammation due to a myriad of infectious and non-infectious etiologies. It is one of the most common contributors of ocular complaints that prompts visits to medical centers. Our understanding of these neurogenic and immune-mediated pathways has progressed over time and has played a critical role in developing targeted novel therapies. Due to a multitude of underlying etiologies, patients must be accurately diagnosed for efficacious management of conjunctival hyperemia. The diagnostic techniques used for the grading of conjunctival hyperemia have also evolved from descriptive and subjective grading scales to more reliable computer-based objective grading scales.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lingjia Liu
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sonia Anchouche
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ann Yung
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Wang Y, Cao Q, Cao Q, Gan J, Sun N, Yang CG, Bae T, Wu M, Lan L. Histamine activates HinK to promote the virulence of Pseudomonas aeruginosa. Sci Bull (Beijing) 2021; 66:1101-1118. [PMID: 36654344 DOI: 10.1016/j.scib.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023]
Abstract
During infections, bacteria stimulate host cells to produce and release histamine, which is a key mediator of vital cellular processes in animals. However, the mechanisms underlying the bacterial cell's ability to sense and respond to histamine are poorly understood. Herein, we show that HinK, a LysR-type transcriptional regulator, is required to evoke responses to histamine in Pseudomonas aeruginosa, an important human pathogen. HinK directly binds to and activates the promoter of genes involved in histamine uptake and metabolism, iron acquisition, and Pseudomonas quinolone signal (PQS) biosynthesis. The transcriptional regulatory activity of HinK is induced when histamine is present, and it occurs when HinK binds with imidazole-4-acetic acid (ImAA), a histamine metabolite whose production in P. aeruginosa depends on the HinK-activated histamine uptake and utilization operon hinDAC-pa0222. Importantly, the inactivation of HinK inhibits diverse pathogenic phenotypes of P. aeruginosa. These results suggest that histamine acts as an interkingdom signal and provide insights into the mechanism used by pathogenic bacteria to exploit host regulatory signals to promote virulence.
Collapse
Affiliation(s)
- Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201438, China
| | - Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary IN 46408, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks ND 58203-9037, USA
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
11
|
Morin F, Singh N, Mdzomba JB, Dumas A, Pernet V, Vallières L. Conditional Deletions of Hdc Confirm Roles of Histamine in Anaphylaxis and Circadian Activity but Not in Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2029-2037. [PMID: 33846226 DOI: 10.4049/jimmunol.2000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Histamine is best known for its role in allergies, but it could also be involved in autoimmune diseases such as multiple sclerosis. However, studies using experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis, have reported conflicting observations and suggest the implication of a nonclassical source of histamine. In this study, we demonstrate that neutrophils are the main producers of histamine in the spinal cord of EAE mice. To assess the role of histamine by taking into account its different cellular sources, we used CRISPR-Cas9 to generate conditional knockout mice for the histamine-synthesizing enzyme histidine decarboxylase. We found that ubiquitous and cell-specific deletions do not affect the course of EAE. However, neutrophil-specific deletion attenuates hypothermia caused by IgE-mediated anaphylaxis, whereas neuron-specific deletion reduces circadian activity. In summary, this study refutes the role of histamine in EAE, unveils a role for neutrophil-derived histamine in IgE-mediated anaphylaxis, and establishes a new mouse model to re-explore the inflammatory and neurologic roles of histamine.
Collapse
MESH Headings
- Anaphylaxis/genetics
- Anaphylaxis/immunology
- Anaphylaxis/metabolism
- Animals
- Cells, Cultured
- Circadian Rhythm/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Histamine/immunology
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/immunology
- Histidine Decarboxylase/metabolism
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Mice
Collapse
Affiliation(s)
- Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Noopur Singh
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Julius Baya Mdzomba
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Vincent Pernet
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
- Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada;
| |
Collapse
|
12
|
Goussard P, Pohunek P, Eber E, Midulla F, Di Mattia G, Merven M, Janson JT. Pediatric bronchoscopy: recent advances and clinical challenges. Expert Rev Respir Med 2021; 15:453-475. [PMID: 33512252 DOI: 10.1080/17476348.2021.1882854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: During the last 40 years equipment has been improved with smaller instruments and sufficient size working channels. This has ensured that bronchoscopy offers therapeutic and interventional options.Areas covered: We provide a review of recent advances and clinical challenges in pediatric bronchoscopy. This includes single-use bronchoscopes, endobronchial ultrasound, and cryoprobe. Bronchoscopy in persistent preschool wheezing and asthma is included. The indications for interventional bronchoscopy have amplified and included balloon dilatation, endoscopic intubation, the use of airway stents, whole lung lavage, closing of fistulas and air leak, as well as an update on removal of foreign bodies. Others include the use of laser and microdebrider in airway surgery. Experience with bronchoscope during the COVID-19 pandemic has been included in this review. PubMed was searched for articles on pediatric bronchoscopy, including rigid bronchoscopy as well as interventional bronchoscopy with a focus on reviewing literature in the past 5 years.Expert opinion: As the proficiency of pediatric interventional pulmonologists continues to grow more interventions are being performed. There is a scarcity of published evidence in this field. Courses for pediatric interventional bronchoscopy need to be developed. The COVID-19 experience resulted in safer bronchoscopy practice for all involved.
Collapse
Affiliation(s)
- P Goussard
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - P Pohunek
- Division of Pediatric Respiratory Diseases, Pediatric Department, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - E Eber
- Department of Paediatrics and Adolescent Medicine, Head, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - F Midulla
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - G Di Mattia
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - M Merven
- Department Otorhinolaryngology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - J T Janson
- Department of Surgical Sciences, Division of Cardio-Thoracic Surgery, Stellenbosch University, and Tygerberg Hospital, Tygerberg, South Africa
| |
Collapse
|
13
|
Chandran S, Anand AJ, Rajadurai VS, Seyed ES, Khoo PC, Chua MC. Evidence-Based Practices Reduce Necrotizing Enterocolitis and Improve Nutrition Outcomes in Very Low-Birth-Weight Infants. JPEN J Parenter Enteral Nutr 2020; 45:1408-1416. [PMID: 33296087 DOI: 10.1002/jpen.2058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in preterm infants. Survivors may suffer both short- and long-term morbidities. Current evidence suggests that the incidence of NEC can be reduced by standardizing the care delivery in addressing key risk factors including an altered gut microbiome, use of formula milk, hyperosmolar feeds, and unrestricted use of high-risk medications METHODS: Since 2014, the department has a workgroup who analyzed all cases of NEC within a month of diagnosis to identify preventable risk factors. Existing evidence-based quality improvement strategies were revised and new ones were implemented sequentially over the next 4 years. These strategies include (1) a standardized feeding protocol, (2) early initiation of enteral feeding using human milk, (3) optimization of the osmolality of preterm milk feeds using standardized dilution guidelines for additives, and (4) promotion of healthy microbiome by use of probiotics, early oral care with colostrum and by restricting high-risk medications and prolonged use of empirical antibiotics RESULTS: Baseline characteristics of the patients including sex, gestational age, and birth weight were similar during the study period. After implementing the evidence-based practices successively over 4 years, the incidence of NEC in very- low birth-weight (VLBW) infants dropped from 7% in 2014 to 0% (P < .001) in 2018. The duration of parenteral nutrition, use of central line, and days to full feeds were also reduced significantly (P < .05) CONCLUSION: Adopting evidence-based best practices resulted in a significant decrease in the incidence of NEC and improved the nutrition outcomes in VLBW infants.
Collapse
Affiliation(s)
- Suresh Chandran
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore
| | - Amudha Jayanthi Anand
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore
| | - Victor Samuel Rajadurai
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore
| | - Ehsan Saffari Seyed
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore.,Center for Quantitative Medicine, Office of Clinical Science, Duke University-National University of Singapore Medical School, Singapore
| | - Poh Choo Khoo
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore
| | - Mei Chien Chua
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore
| |
Collapse
|
14
|
Paranjape A, Haque TT, Kiwanuka KN, Qayum AA, Barnstein BO, Finkelman FD, Nigrovic PA, Ryan JJ. The Fyn-Stat5 cascade is required for Fcγ receptor-mediated mast cell function. Cell Immunol 2020; 356:104134. [PMID: 32862025 DOI: 10.1016/j.cellimm.2020.104134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Mast cells, well established effectors in allergic disease, can be activated by numerous stimuli. We previously found that the Fyn-Stat5B pathway is critical for FcεRI-stimulated mast cell function. Because IgG receptors employ similar signaling pathways, we investigated Fyn-Stat5B function downstream of FcγR. We report that FcγR elicits Fyn-dependent Stat5B tyrosine phosphorylation in mast cells. As we previously found for Fyn kinase, Stat5B is indispensable for IgG-mediated mast cell cytokine expression and secretion. However, Stat5B KO macrophages responded normally to FcγR signaling, indicating a lineage-restricted role for Stat5B. This was consistent in vivo, since passive FcγR activation induced anaphylaxis in a macrophage-dominated response even when Stat5B was deleted. We further investigated this lineage restriction using the K/BxN model of inflammatory arthritis. This model exhibits a rapid and transient mast cell-dependent joint inflammation followed days later by a macrophage- and neutrophil-dependent response. Consistent with our hypothesis, Fyn or Stat5B deficiency did not protect mice from late joint swelling, but greatly reduced the early mast cell-dependent response. This was associated with decreased joint and plasma histamine. We conclude that Fyn-Stat5B is a linage-restricted pathway critical for IgG-mediated mast cell responses.
Collapse
Affiliation(s)
- Anuya Paranjape
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Kasalina N Kiwanuka
- Department of Biochemistry, Virginia Commonwealth University, Box 980614, Richmond, VA 23298-0614, USA
| | - Amina Abdul Qayum
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Box 842012, Richmond, VA 23284-2012, USA
| | - Fred D Finkelman
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Box 842012, Richmond, VA 23284-2012, USA.
| |
Collapse
|
15
|
Jiang Q, Yang F, Peng Y, Dong X, Ge Y. Epidemiology and molecular identification of mycoplasma pneumoniae associated with respiratory infections in Zhejiang province, China, 2008-2017. J Clin Lab Anal 2020; 34:e23460. [PMID: 32666532 PMCID: PMC7676177 DOI: 10.1002/jcla.23460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Mycoplasma pneumoniae is a common cause of respiratory infections in humans. The aim of this study was to investigate the infection of Mycoplasma pneumoniae (MP) in patients with acute respiratory tract infections in Zhejiang Province from 2008 to 2017, and to provide evidence for the early diagnosis and prevention of MP pneumonia. Methods MP‐DNA was detected in nasopharyngeal swabs of patients with acute respiratory tract infection by real‐time fluorescent PCR (TaqMan probe). Statistical analysis and epidemiological investigation were carried out on the test results. Results There were 10 296 patients with acute respiratory tract infection in Zhejiang Provincial People's Hospital from 2008 to 2017, including 4387 females and 5909 males. A total of 1251 MP‐DNA–positive patients were detected, with a total positive rate of 12.2% (1251/10296). Among 1251 patients with MP infection, 571 were female positive, with an average positive rate of 13.0% (571/4387), and 680 were male positive, with a positive rate of 11.5% (680/5909). From 2008 to 2017, the positive rates were 22.8% (33 cases), 20.9% (211 cases), 20.9% (350 cases), 5.5% (70 cases), 11.7% (136 cases), 15.2% (190 cases), 7.8% (94 cases), 5.9% (62 cases), 7.8% (56 cases), and 6.0% (49 cases), respectively. Of 1251 MP‐DNA–positive patients, 1243 (99.4%) were younger than 18 years old. Conclusions Mycoplasma pneumoniae infection mainly occurs from late summer to autumn and in the age below 18 years, suggesting that early diagnosis and prevention of MP infection in adolescents should be emphasized.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Laboratory Center, Huamei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Fangfang Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | | | - XiaoYan Dong
- The Second Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yumei Ge
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Januska MN, Goldman DL, Webley W, Teague WG, Cohen RT, Bunyavanich S, Vicencio AG. Bronchoscopy in severe childhood asthma: Irresponsible or irreplaceable? Pediatr Pulmonol 2020; 55:795-802. [PMID: 31730298 PMCID: PMC7385726 DOI: 10.1002/ppul.24569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
For children with severe asthma, guideline-based management focuses on the escalation of anti-inflammatory and bronchodilatory medications while addressing comorbid conditions. Bronchoscopy, in this context, has been relegated to ruling out asthma mimickers. More recently, however, there have been questions surrounding the clinical utility of bronchoscopy in severe childhood asthma. In this solicited lecture summary, we discuss the past, present, and potential future applications of bronchoscopy in severe childhood asthma.
Collapse
Affiliation(s)
- Megan N. Januska
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics, New York, NY
| | | | | | | | | | - Supinda Bunyavanich
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics, New York, NY
- Ichan School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY
| | - Alfin G. Vicencio
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics, New York, NY
| |
Collapse
|
17
|
Abstract
Staining cells or tissues with basic dyes was the mainstay of mast cell and basophil detection methods for more than a century following the first identification of these cell types using such methods. These techniques have now been largely supplanted by immunohistochemical procedures with monoclonal antibodies directed against unique constituents of these cell types. Immunohistochemistry with antibodies specific for the granule protease tryptase provides a more sensitive and discriminating means for detecting mast cells than using the classical histochemical procedures, and using antibodies specific for products of basophils (2D7 antigen and basogranulin) has allowed detection of basophils that infiltrate into tissues. The application of immunohistochemistry to detect more than one marker in the same cell has underpinned concepts of mast cell heterogeneity based on differential expression of chymase and other proteases. The double labeling procedures employed have also provided a means for investigating the expression of cytokines and a range of other products. Protocols are here set out that have been used for immunohistochemical detection of mast cells and basophils and their subpopulations in human tissues. Consideration is given to pitfalls to avoid and to a range of alternative approaches.
Collapse
Affiliation(s)
- Andrew F Walls
- Southampton General Hospital, University of Southampton, Southampton, UK.
| | - Cornelia Amalinei
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Institute of Legal Medicine, Iasi, Romania
| |
Collapse
|
18
|
Wang Y, Li P, Song F, Yang X, Weng Y, Ma Z, Wang L, Jiang H. Substrate Transport Properties of the Human Peptide/Histidine Transporter PHT2 in Transfected MDCK Cells. J Pharm Sci 2019; 108:3416-3424. [DOI: 10.1016/j.xphs.2019.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
|
19
|
Yatoo MI, Parray OR, Mir M, Bhat RA, Malik HU, Fazili MUR, Qureshi S, Mir MS, Yousuf RW, Tufani NA, Dhama K, Bashir ST. Comparative evaluation of different therapeutic protocols for contagious caprine pleuropneumonia in Himalayan Pashmina goats. Trop Anim Health Prod 2019; 51:2127-2137. [PMID: 31076996 DOI: 10.1007/s11250-019-01913-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
Therapeutic management of contagious caprine pleuroneumonia (CCPP) involves mostly the use of oxytetracycline followed by enrofloxacin and rarely tylosin. In many parts of the world including India, the former antibiotics are commonly available than the latter. Therefore, prolonged use of the same leads to the development of antibiotic resistance and decreased efficacy of drug. Besides, inflammatory and allergic pathogenesis of CCPP envisages combination therapy. In this study, we evaluated the effectiveness of the combination therapy using different antibiotics (oxytetracycyline @ 10: group I, enrofloxacin @ 5 group II, and tylosin: group III, @ 10 mg/kg body weight), along with anti-inflammatory (meloxicam @ 0.5 mg/kg) and anti-allergic (pheneramine maleate @ 1.0 mg/kg) drugs. These drugs were given intramuscularly at the interval of 48 h for four times in three test groups (n = 10) of Pashmina goats, viz. groups I, II, and III, respectively, affected with CCPP. Group IV (n = 10) was kept as healthy control when group V (n = 10) treated with oxytetracycline @ 10 mg/kg alone was used as positive control. Clinical signs, clinical parameters, pro-inflammatory cytokine (tumor necrosis factor alpha (TNF-α)), and oxidative stress indices (total oxidant status (TOS), total antioxidant status (TAS)) were evaluated at hours 0, 48, 96, and 144 of experimental trial. Tylosin-based combination therapy resulted in a rapid and favorable recovery resulting in restoration of normal body temperature (102.46 ± 0.31 °F), respiration rate (16.30 ± 0.79 per minute), and heart rate (89.50 ± 2.63 per minute) compared to the oxytetracycline (102.95 ± 0.13, 21.30 ± 1.12, 86.00 ± 2.33, respectively) and enrofloxacin (102.97 ± 0.19, 21.00 ± 1.25, 90.00 ± 2.58, respectively) treated groups. By hour 144, all the groups showed restoration of clinical parameters of normal health and diminishing signs of CCPP, viz. fever, dyspnea, coughing, nasal discharge, weakness, and pleurodynia. Significant (P ≤ 0.05) decrease in levels of TNF-α and non-significant (P > 0.05) decrease in levels of TOS and an increase in levels of TAS were noted from hour 0 to 144 in all the test groups. Within the groups, no significant (P > 0.05) change was noted in TNF-α, TOS, and TAS levels; however, TNF-α levels were comparatively lower in group III. Hematological parameters did not differ significantly (P > 0.05). From these findings, it can be inferred that tylosin-based combination therapy is relatively better for early, rapid, and safe recovery besides minimizing inflammatory and oxidative cascade in CCPP affected Pashmina goats compared to oxytetracycline- and enrofloxacin-based therapies.
Collapse
Affiliation(s)
- Mohd Iqbal Yatoo
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India.
| | - Oveas Raffiq Parray
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Muheet Mir
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Hamid Ullah Malik
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Mujeeb Ur Rehman Fazili
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sabia Qureshi
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Masood Salim Mir
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Raja Wasim Yousuf
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Noor Alam Tufani
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Kuldeep Dhama
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh, 243422, India
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
20
|
Shi S, Zhang X, Zhou Y, Tang H, Zhao D, Liu F. Immunosuppression Reduces Lung Injury Caused by Mycoplasma pneumoniae Infection. Sci Rep 2019; 9:7147. [PMID: 31073201 PMCID: PMC6509254 DOI: 10.1038/s41598-019-43451-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms of Mycoplasma pneumoniae pneumonia (MPP) pathogenesis are not clearly understood. This study aimed to investigate the correlation between immune response and lung injury in MPP. The clinical characteristics of MPP were compared between patients treated with and without immunosuppressive chemotherapy, and demographic, clinical, and laboratory data were compared between patients with severe and mild MPP. To determine the effect of immune response on lung lesions, mouse MPP and immunosuppression models were established by intranasal inoculation of M129 and intraperitoneal injection of cyclophosphamide, respectively. Myeloperoxidase and oxidant-antioxidant enzyme activities were evaluated for mechanism studies. The immunosuppressant group had a lower incidence of MPP and fewer cases of severe MPP than the non-immunosuppressant group. The severe MPP group had a greater incidence of severe immune disorders than the mild MPP group. Relative to immunosuppressed mice, wild mice exhibited more severe inflammatory infiltration and lung injury as well as a significant increase in myeloperoxidase and malondialdehyde levels and a decrease in superoxide dismutase level after MP infection. In conclusion, immunological responses likely play a vital role in MPP pathogenesis. Lung injury occurring after MP infection-which might be caused by oxidant-antioxidant imbalance-can be reduced by immunosuppression.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.,Department of Respiratory Medicine, Shanghai Children's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, 200333, China
| | - Xiuqing Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yao Zhou
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heng Tang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
21
|
Santos VS, Freire MS, Santana RNS, Martins-Filho PRS, Cuevas LE, Gurgel RQ. Association between histamine-2 receptor antagonists and adverse outcomes in neonates: A systematic review and meta-analysis. PLoS One 2019; 14:e0214135. [PMID: 30947259 PMCID: PMC6448909 DOI: 10.1371/journal.pone.0214135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Background The use of histamine-2 receptor antagonists (H2RA) in neonates is still debated because of possible risk of infection, necrotizing enterocolitis (NEC) and increased mortality. Aim To review whether the use of H2RA in neonates admitted to neonatal intensive care units (NICU) is associated with infection, NEC or mortality. Materials and method We performed a systematic search in PubMed, Web of Science and SCOPUS databases using the terms “histamine-2 receptor antagonists”, “infection”, “necrotizing enterocolitis”, “mortality”, “neonates” and related terms to identify studies published up to April 30, 2017. We included studies conducted in hospitalized neonates and exposed to H2RA. The primary outcomes were infection, NEC and mortality. We included reports of infections with clinical signs and positive culture, and NEC according to Bell stages (stage ≥II) based on standardised clinical and radiologic criteria. Among 1,144 studies identified, 10 fulfilled the selection criteria. Information extracted included study design, sample size and number of participants, along with the outcomes of interest. We conducted a meta-analysis of adjusted data and pooled estimates of infection, NEC and mortality are reported as odds ratios (OR) and 95% confidence intervals (95%CI). Results Ten studies were analysed. There were substantial associations between H2RA and infection (pooled OR: 2.09; 95%CI: 1.35–3.24; P = 0.001) and NEC (pooled OR: 2.81, 95%CI: 1.19–6.64; P = 0.02) but not with the mortality risk (pooled OR: 1.76; 95%CI: 0.50–6.16; P: 0.38). Conclusion Current evidence suggests that H2RA is associated with an increased risk of infection and NEC, but not with mortality in neonates admitted to NICU. The use of H2RA in neonates must be stringently considered when necessary.
Collapse
Affiliation(s)
- Victor S. Santos
- Centre for Epidemiology and Public Health. Federal University of Alagoas, Arapiraca, Brazil
| | - Marina S. Freire
- Department of Medicine. Federal University of Sergipe, Aracaju, Brazil
| | | | - Paulo R. S. Martins-Filho
- Postgraduate Programme in Health Science. Federal University of Sergipe, Aracaju, Brazil
- Investigative Pathology Laboratory, Federal University of Sergipe, Brazil
| | - Luis E. Cuevas
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ricardo Q. Gurgel
- Department of Medicine. Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Programme in Health Science. Federal University of Sergipe, Aracaju, Brazil
- * E-mail:
| |
Collapse
|
22
|
Sarkar K, Sil PC. Infectious Lung Diseases and Endogenous Oxidative Stress. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7122037 DOI: 10.1007/978-981-13-8413-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lower respiratory tract infections, according to the World Health Organization, account for nearly one third of all deaths from infectious diseases. They account for approximately 4 million deaths annually including children and adults and provide a greater disease burden than HIV and malaria. Among the common respiratory diseases, tuberculosis, influenza, and pneumonia are very common and can be life threatening if not treated properly. The causative agent of tuberculosis is the slow-growing bacilli Mycobacterium tuberculosis, while the causative agent of influenza is a segmented genome RNA virus. Pneumonia can be caused by a number of different microorganisms like bacteria, virus, and mycoplasma. In case of the entry of a pathogen in our body, the immune system gets activated, and the phagocytic cells try to eliminate it by generating reactive oxygen and nitrogen species (ROS and RNS) inside the phagosome. These reactive species or respiratory bursts are sufficient to eliminate most of the pathogens, except a few. M. tuberculosis is one such microorganism that has evolved mechanisms to escape this respiratory burst-mediated killing and thus survive and grow inside the macrophages. Infection with M. tuberculosis leads to the destruction of macrophages and release of cytokines, which lead to prolonged immune activation and oxidative stress. In some cases, the bacilli remain dormant inside macrophages for a long time. Flu viruses infect the epithelial cells present in respiratory tract, and the infection site is dependent on the hemagglutinin protein present on their capsid. Destruction of epithelial cells promotes secretion of mucus and activation of immune system leading to the oxidative damage. Community-acquired pneumonia is more serious and difficult to treat. In all these infections, ROS/RNS are developed as a defense mechanism against the pathogen. Persistence of the pathogen for a long time would lead to the uncontrolled production of ROS/RNS which will lead to oxidative stress and tissue damage to the host. Administration of antioxidants along with conventional treatments can be useful in the elimination of the reactive oxygen and nitrogen species.
Collapse
|
23
|
Kamei M, Otani Y, Hayashi H, Nakamura T, Yanai K, Furuta K, Tanaka S. Suppression of IFN-γ Production in Murine Splenocytes by Histamine Receptor Antagonists. Int J Mol Sci 2018; 19:E4083. [PMID: 30562962 PMCID: PMC6321562 DOI: 10.3390/ijms19124083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that histamine synthesis induced in several types of tumor tissues modulates tumor immunity. We found that a transient histamine synthesis was induced in CD11b⁺Gr-1⁺ splenocytes derived from BALB/c mice transplanted with a syngeneic colon carcinoma, CT-26, when they were co-cultured with CT-26 cells. Significant levels of IFN-γ were produced under this co-culture condition. We explored the modulatory roles of histamine on IFN-γ production and found that several histamine receptor antagonists, such as pyrilamine, diphenhydramine, JNJ7777120, and thioperamide, could significantly suppress IFN-γ production. However, suppression of IFN-γ production by these antagonists was also found when splenocytes were derived from the Hdc-/- BALB/c mice. Suppressive effects of these antagonists were found on IFN-γ production induced by concanavalin A or the combination of an anti-CD3 antibody and an anti-CD28 antibody in a histamine-independent manner. Murine splenocytes were found to express H₁ and H₂ receptors, but not H₃ and H₄ receptors. IFN-γ production in the Hh1r-/- splenocytes induced by the combination of an anti-CD3 antibody and an anti-CD28 antibody was significantly suppressed by these antagonists. These findings suggest that pyrilamine, diphenhydramine, JNJ7777120, and thioperamide can suppress IFN-γ production in activated splenocytes in a histamine-independent manner.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Histamine/genetics
- Histamine/metabolism
- Histamine Antagonists/pharmacology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Spleen/metabolism
- Spleen/pathology
Collapse
Affiliation(s)
- Miho Kamei
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Yukie Otani
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Hidenori Hayashi
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Satoshi Tanaka
- Department of Pharmacology, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
24
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
25
|
Patel KK, Webley WC. Respiratory Chlamydia Infection Induce Release of Hepoxilin A 3 and Histamine Production by Airway Neutrophils. Front Immunol 2018; 9:2357. [PMID: 30374355 PMCID: PMC6196283 DOI: 10.3389/fimmu.2018.02357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Hepoxilins are biologically active metabolites of arachidonic acid that are formed through the 12-lipoxygenase pathway. Hepoxilin A3 is now known to be an important regulator of mucosal inflammation in response to infection by bacterial pathogens and was recently identified as a potent neutrophil chemoattractant in the intestinal mucosa. Our goal in this study was to determine if airway infection with Chlamydia in a murine model of allergic airway disease (AAD) induces hepoxilin secretion along with airway neutrophilia. Methods: We utilized an AAD adult Balb/c mouse model to evaluate airway pathology and immune response by assaying bronchoalveolar lavage (BAL) fluid cytokine, cellularity, histidine decarboxylase (HDC) as well as histamine released in response to in-vivo chlamydial antigen stimulation of purified airway neutrophils. Hepoxilin A3 production was determined by Western blot identification of 12-lipoxygenase precursor (12-LO). Results: Chlamydial infection induced increased production of IL-2, IL-12, TNF-α, and IFN-γ in BAL fluid compared to uninfected animals. Chlamydia-infected mice responded with robust airway neutrophil infiltration and upon induction of AAD increased their production of IL-4, IL-5, and IL-13 by >3 fold compared to unsensitized groups. In addition, 12-LO mRNA was upregulated in infected, but not in uninfected AAD mice, suggesting the production of hepoxilin A3. mRNA expression of HDC was induced only in neutrophils from the airways of Chlamydia-infected mice, but was not seen in AAD only or uninfected controls. When purified neutrophils from infected animals were challenged with chlamydial antigen in vitro there was significant histamine release. Conclusions: Our data confirms the production and release of hepoxilin A3 in the murine airways concomitant with airway neutrophilia in response to chlamydial infection. We further confirmed that Chlamydia provokes the production and release of histamine by these neutrophils. These findings suggest that neutrophils, provoked by Chlamydia infection can synthesize and release histamine, thereby contributing directly to airway inflammation.
Collapse
Affiliation(s)
- Katir K Patel
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Wilmore C Webley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
26
|
Rebetz J, Semple JW, Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother 2018; 45:290-298. [PMID: 30498407 PMCID: PMC6257140 DOI: 10.1159/000492950] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a serious and common complication of multiple medical and surgical interventions, with sepsis, pneumonia, and aspiration of gastric contents being common risk factors. ARDS develops within 1 week of a known clinical insult or presents with new/worsening respiratory symptoms if the clinical insult is unknown. Approximately 40% of the ARDS cases have a fatal outcome. Transfusion-related acute lung injury (TRALI), on the other hand, is characterized by the occurrence of respiratory distress and acute lung injury, which presents within 6 h after administration of a blood transfusion. In contrast to ARDS, acute lung injury in TRALI is not attributable to another risk factor for acute lung injury. 'Possible TRALI', however, may have a clear temporal relationship to an alternative risk factor for acute lung injury. Risk factors for TRALI include chronic alcohol abuse and systemic inflammation. TRALI is the leading cause of transfusion-related fatalities. There are no specific therapies available for ARDS or TRALI as both have a complex and incompletely understood pathogenesis. Neutrophils (polymorphonuclear leukocytes; PMNs) have been suggested to be key effector cells in the pathogenesis of both syndromes. In the present paper, we summarize the literature with regard to PMN involvement in the pathogenesis of both ARDS and TRALI based on both human data as well as on animal models. The evidence generally supports a strong role for PMNs in both ARDS and TRALI. More research is required to shed light on the pathogenesis of these respiratory syndromes and to more thoroughly establish the nature of the PMN involvement, especially considering the heterogeneous etiologies of ARDS.
Collapse
Affiliation(s)
| | - John W. Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
27
|
Jain S, Panyutin A, Liu N, Xiao C, Piñol RA, Pundir P, Girardet C, Butler AA, Dong X, Gavrilova O, Reitman ML. Melanotan II causes hypothermia in mice by activation of mast cells and stimulation of histamine 1 receptors. Am J Physiol Endocrinol Metab 2018; 315:E357-E366. [PMID: 29812984 PMCID: PMC6171009 DOI: 10.1152/ajpendo.00024.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.
Collapse
Affiliation(s)
- Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Anna Panyutin
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Priyanka Pundir
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Clémence Girardet
- Department of Pharmacology and Physiology, Saint Louis School of Medicine , St. Louis, Missouri
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis School of Medicine , St. Louis, Missouri
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
28
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol 2017; 140:335-348. [PMID: 28780941 PMCID: PMC5657389 DOI: 10.1016/j.jaci.2017.06.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Anaphylaxis is a severe systemic hypersensitivity reaction that is rapid in onset; characterized by life-threatening airway, breathing, and/or circulatory problems; and usually associated with skin and mucosal changes. Because it can be triggered in some persons by minute amounts of antigen (eg, certain foods or single insect stings), anaphylaxis can be considered the most aberrant example of an imbalance between the cost and benefit of an immune response. This review will describe current understanding of the immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the disorder. Evidence from studies of anaphylaxis in human subjects will be discussed, as well as insights gained from analyses of animal models, including mice genetically deficient in the antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis and mice that have been "humanized" for some of these elements. We also review possible host factors that might influence the occurrence or severity of anaphylaxis. Finally, we will speculate about anaphylaxis from an evolutionary perspective and argue that, in the context of severe envenomation by arthropods or reptiles, anaphylaxis might even provide a survival advantage.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
30
|
Santana RNS, Santos VS, Ribeiro-Júnior RF, Freire MS, Menezes MAS, Cipolotti R, Gurgel RQ. Use of ranitidine is associated with infections in newborns hospitalized in a neonatal intensive care unit: a cohort study. BMC Infect Dis 2017; 17:375. [PMID: 28558748 PMCID: PMC5450121 DOI: 10.1186/s12879-017-2482-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The inhibition of gastric acid secretion with ranitidine is frequently prescribed off-label to newborns admitted to neonatal intensive care units (NICU). Some studies show that the use of inhibitors of gastric acid secretion (IGAS) may predispose to infections and necrotising enterocolitis (NEC), but there are few data to confirm this association. This study aimed to compare the rates of neonatal infections and NEC among preterm infants (<37 weeks gestation) hospitalised in a NICU exposed or not to treatment with ranitidine. METHODS A retrospective cohort study was conducted with all consecutive preterm newborns admitted to a NICU between August-2014 and October-2015. The rates of infection, NEC, and death of newborns exposed or not to ranitidine were recorded. RESULTS A total of 300 newborns were enrolled, of which 115 had received ranitidine and 185 had not. The two groups were similar with regard to the main demographic and clinical characteristics. Forty-eight (41.7%) of the 115 infants exposed to ranitidine and 49 (26.5%) of the 185 infants not exposed were infected (RR = 1.6, 95%CI 1.1-2.2, p = 0.006). The late onset (>48 h) blood culture positive infection rate was higher in the group exposed to ranitidine than in the untreated group (13.0% vs. 3.8%, p = 0.001). There was no significant association between the use of ranitidine and NEC (Bell stage >II) (p = 0.36). The mortality rate risk was 4-fold higher in infants receiving ranitidine (16.5% vs. 8.6%, p < 0.001). CONCLUSION Ranitidine use in neonates was associated with an increased risk of infections and mortality, but not with NEC.
Collapse
Affiliation(s)
- Ruth N S Santana
- Department of Medicine, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Victor S Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Ruy F Ribeiro-Júnior
- Department of Medicine, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Marina S Freire
- Department of Medicine, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Maria A S Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Rosana Cipolotti
- Department of Medicine, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil.,Postgraduate Program in Health Sciences, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil
| | - Ricardo Q Gurgel
- Department of Medicine, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil. .,Postgraduate Program in Health Sciences, Federal University of Sergipe, R. Cláudio Batista, s/n - Cidade Nova, Aracaju, 49060-108, Brazil.
| |
Collapse
|
31
|
Kishimoto Y, Asakawa S, Sato T, Takano T, Nakajyo T, Mizuno N, Segawa R, Yoshikawa T, Hiratsuka M, Yanai K, Ohtsu H, Hirasawa N. Induced histamine regulates Ni elution from an implanted Ni wire in mice by downregulating neutrophil migration. Exp Dermatol 2017; 26:868-874. [PMID: 28191674 DOI: 10.1111/exd.13315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
Histamine regulates various inflammatory reactions. We have reported that the expression of histidine decarboxylase (HDC) was induced by subcutaneous implantation of nickel (Ni) wire. However, the source and functions of histamine in Ni elution and Ni wire-induced inflammation have not been completely studied. We aimed to elucidate the effects of de novo synthesized histamine on leucocyte infiltration and Ni elution. Implantation of Ni wire induced an increase in the Ni ion content of the surrounding tissues and serum and in the mRNA levels of HDC, a histamine-producing enzyme, macrophage inflammatory protein-2 (MIP-2), a chemoattractant for neutrophils, and monocyte chemoattractant protein-1 (MCP-1), a chemoattractant for monocytes. The Ni wire induced HDC expression even in mast cell-deficient WBB6F1-W/WV mice. In HDC knockout (HDC KO) mice, the Ni wire-induced increase in MIP-2 mRNA expression was significantly higher than that in wild-type mice but not MCP-1. MIP-2 expression was enhanced in histamine H2 receptor knockout (H2R KO) mice but not in WBB6F1-W/WV mice. Histamine inhibited NiCl2 -induced MIP-2 mRNA expression in mouse bone marrow-derived macrophages (BMDMs) obtained from wild-type mice; this inhibition was not observed in BMDMs from H2R KO mice. Ni elution increased in HDC KO mice, in which leucocyte infiltration also increased, and was suppressed in mice treated with neutrophil-specific antibody. These results suggest that the Ni wire induced HDC expression in non-mast cells and that, in the chronic phase of inflammation, endogenous histamine reduced Ni elution, probably through regulation of MIP-2 expression and neutrophil migration.
Collapse
Affiliation(s)
- Yu Kishimoto
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Takano
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takahisa Nakajyo
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroshi Ohtsu
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Yang F, Feng C, Zhang X, Lu J, Zhao Y. The Diverse Biological Functions of Neutrophils, Beyond the Defense Against Infections. Inflammation 2017; 40:311-323. [PMID: 27817110 DOI: 10.1007/s10753-016-0458-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophils are among the first defense against infection and closely involved in the initiation of inflammatory response. It is well recognized that this function of neutrophils was mainly mediated by phagocytosis, intracellular degradation, releasing of granules, and formation of neutrophil extracellular traps after sensing dangerous stress. However, accumulating data showed that neutrophils had a variety of important biological functions in both innate and adaptive immunities, far beyond cytotoxicity against pathogens. Neutrophils can differentially switch phenotypes and display distinct subpopulations under different microenvironments. Neutrophils can produce a large variety of cytokines and chemokines upon stimulation. Furthermore, neutrophils directly interact with dendritic cells (DCs), macrophages, natural killer cells, T cells, and B cells so as to either potentiate or down-modulate both innate and adaptive immunity. In the present review, we summarize the recent progress on the functional plasticity and the regulatory ability on immunity of neutrophils in physiological and pathological situations.
Collapse
Affiliation(s)
- Fan Yang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
33
|
O'Brien CE, Tsirilakis K, Santiago MT, Goldman DL, Vicencio AG. Heterogeneity of lower airway inflammation in children with severe-persistent asthma. Pediatr Pulmonol 2015; 50:1200-4. [PMID: 25739748 DOI: 10.1002/ppul.23165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE The treatment of children with severe-persistent asthma remains problematic. Recent studies suggest that stratification of this cohort by inflammatory type may be useful in designing effective treatment strategies. In this study, we examined the inflammatory profile in bronchoalveolar lavage fluid from children with severe-persistent asthma and compared this profile with serum IgE levels. METHODS The inflammatory profile in the bronchoalveolar fluid from 32 children who met criteria for severe-persistent asthma as defined by the Severe Asthma Research Program (SARP) were analyzed retrospectively. Inflammatory patterns were classified as neutrophilic, eosinophilic, mixed, or pauci-granulocytic. Serum total IgE was measured prior to bronchoscopy and determined by ELISA at each hospital's lab by standard procedures. RESULTS The most common pattern of inflammation in this cohort was neutrophilic (37.5%) followed by eosinophilic (28.1%), mixed (21.9%), and pauci-granulocytic (11.1%). The odds ratio of an eosinophilic BAL pattern for patients with an elevated serum IgE was 4.67 (CI 0.78-28, P = 0.12). A correlation between serum IgE levels and BAL eosinophil percentages was present (P = 0.04). CONCLUSIONS To our knowledge, ours is one of few studies to systematically investigate the pattern of lower airway inflammation in children with severe-persistent asthma. Our results differ from a recent investigation in children, showing more heterogeneity and a greater proportion of neutrophilic inflammation. Further investigation is required to determine whether specific inflammatory patterns are associated with specific etiologies, and whether individualized therapy is warranted.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kalliope Tsirilakis
- Department of Pediatrics, Cohen Children's Medical Center of New York, Hofstra University School of Medicine, New Hyde Park, New York
| | - Maria Teresa Santiago
- Department of Pediatrics, Cohen Children's Medical Center of New York, Hofstra University School of Medicine, New Hyde Park, New York
| | - David L Goldman
- Divisions of Pediatrics and Microbiology, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, New York
| | - Alfin G Vicencio
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
34
|
Schwameis M, Steiner MM, Schoergenhofer C, Lagler H, Buchtele N, Jilma-Stohlawetz P, Boehm T, Jilma B. D-dimer and histamine in early stage bacteremia: A prospective controlled cohort study. Eur J Intern Med 2015; 26:782-6. [PMID: 26586287 DOI: 10.1016/j.ejim.2015.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Plasma histamine levels and D-dimer predict disease severity and mortality in advanced septic shock. We hypothesized that increased plasma histamine levels parallel coagulation activation and yield prognostic significance already at a very early stage of bacteremia. PATIENTS AND METHODS This prospective controlled cohort study enrolled 72 consecutive non-surgical non-ICU-ward inpatients with newly culture-diagnosed bacteremia and a Pitt Bacteremia score ≤2 to determine the extent of histamine and D-dimer release and their predictive role on outcome at the earliest stage of blood stream infection. Age-matched healthy adults served as internal controls (n=36). A binominal logistic regression and a Cox proportional hazards regression analysis were performed to ascertain the effects of D-dimer and histamine on in-hospital mortality. RESULTS In contrast to plasma histamine, D-dimer levels were significantly higher within hours of culture-proven bacteremia. In-hospital mortality occurred in 17%. Histamine levels were neither associated with D-dimer level (r=0.04; p>0.05) nor with ICU admissions (r=0.06; p>0.05) and outcome (crude OR 0.8, 95% CI 0.3-1.9; p=0.6). In contrast, early-elevated D-dimer levels predicted mortality: the odds to die increased with the D-dimer level, and was 12.6 (crude OR, 95% CI 3-52; p=0.001) in patients with a D-dimer ≥4μg/mL (n=13). CONCLUSION Histamine levels are elevated in only few patients (4%) with newly diagnosed bacteremia. Our findings suggest that D-dimer, but not plasma histamine, could be a promising marker of lethality already at a very early stage of blood stream infection.
Collapse
Affiliation(s)
- Michael Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | | | | | - Heimo Lagler
- Department of Internal Medicine I, Medical University of Vienna, 1090 A Vienna, Austria
| | - Nina Buchtele
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | - Petra Jilma-Stohlawetz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, 1090 A Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria.
| |
Collapse
|
35
|
Yeh JJ, Wang YC, Hsu WH, Kao CH. Incident asthma and Mycoplasma pneumoniae: A nationwide cohort study. J Allergy Clin Immunol 2015; 137:1017-1023.e6. [PMID: 26586037 DOI: 10.1016/j.jaci.2015.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/16/2015] [Accepted: 09/08/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Previous studies investigating the relationship between Mycoplasma pneumoniae and incident asthma in the general population have been inconclusive. OBJECTIVE We conducted a nationwide cohort study to clarify this relationship. METHODS Using the National Health Insurance Research Database of Taiwan, we identified 1591 patients with M pneumoniae infection (International Classification of Diseases, Ninth Revision, Clinical Modification code 4830) given diagnoses between 2000 and 2008. We then frequency matched 6364 patients without M pneumoniae infection from the general population according to age, sex, and index year. Cox proportional hazards regression analysis was performed to determine the adjusted hazard ratio (aHR) of the occurrence of asthma in the M pneumoniae cohort compared with that in the non-M pneumoniae cohort. RESULTS Regardless of comorbidities and the use of antibiotic or steroid therapies, patients with M pneumonia infection had a higher risk of incident asthma than those without it. The aHR of asthma was 3.35 (95% CI, 2.71-4.15) for the M pneumoniae cohort, with a significantly higher risk when patients were stratified by age, sex, follow-up time, and comorbidities, including allergic rhinitis, atopic dermatitis, or allergic conjunctivitis. Patients with M pneumoniae infection had a higher risk of having early-onset (age, <12 years; aHR, 2.87) and late-onset (age, ≥12 years; aHR, 3.95) asthma. The aHR was also higher within the less than 2-year follow-up in the M pneumoniae cohort (aHR, 4.41; 95% CI, 3.40-5.74) than in the cohort without the infection. CONCLUSION This study found that incident cases of early-onset and late-onset asthma are closely related to M pneumoniae infection, even in nonatopic patients.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Chest Medicine and Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan; Chia Nan University of Pharmacy and Science, Tainan, Taiwan; Meiho University, Pingtung, Taiwan
| | - Yu-Chiao Wang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- School of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
36
|
Royer DJ, Zheng M, Conrady CD, Carr DJJ. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils. Invest Ophthalmol Vis Sci 2015; 56:3763-75. [PMID: 26066745 DOI: 10.1167/iovs.15-16900] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. METHODS The impact of mast cells on the immune response to HSV-1 infection was investigated using MC-deficient Kit(W-sh) mice. Virus titers, inflammatory cytokine production, eicosanoid profiles, cellular immune responses, and ocular pathology were evaluated and compared with C57BL/6J mice during an acute corneal HSV-1 infection. RESULTS Corneas of Kit(W-sh) mice have higher viral titers, increased edema, and greater leukocyte infiltration following HSV-1 infection. Following infection, cytokine profiles were slightly elevated overall in Kit(W-sh) mice. Eicosanoid profiles were remarkably different only when comparing uninfected corneas from both groups. Neutrophils within infected corneas expressed HSV-1 antigen, lytic genes, and served as a disease-causing vector when adoptively transferred into immunocompromised animals. Myeloid-derived suppressor cells did not infiltrate into the cornea or suppress the expansion, recruitment, or cytokine production by CD8+ T cells following acute HSV-1 infection. CONCLUSIONS Collectively, these findings provide new insight into host defense in the cornea and the pathogenesis of HSV-1 infection by identifying previously unacknowledged MCs as protective innate sentinels for infection of the ocular surface and reinforcing that neutrophils are detrimental to corneal infection.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Min Zheng
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Christopher D Conrady
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States 2Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
37
|
Raymond WW, Xu X, Nimishakavi S, Le C, McDonald DM, Caughey GH. Regulation of hepatocyte growth factor in mice with pneumonia by peptidases and trans-alveolar flux. PLoS One 2015; 10:e0125797. [PMID: 25938594 PMCID: PMC4418689 DOI: 10.1371/journal.pone.0125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
Hepatocyte growth factor (HGF) promotes lung epithelial repair after injury. Because prior studies established that human neutrophil proteases inactivate HGF in vitro, we predicted that HGF levels decrease in lungs infiltrated with neutrophils and that injury is less severe in lungs lacking HGF-inactivating proteases. After establishing that mouse neutrophil elastase cleaves mouse HGF in vitro, we tested our predictions in vivo by examining lung pathology and HGF in mice infected with Mycoplasma pulmonis, which causes neutrophilic tracheobronchitis and pneumonia. Unexpectedly, pneumonia severity was similar in wild type and dipeptidylpeptidase I-deficient (Dppi-/-) mice lacking neutrophil serine protease activity. To assess how this finding related to our prediction that Dppi-activated proteases regulate HGF levels, we measured HGF in serum, bronchoalveolar lavage fluid, and lung tissue from Dppi+/+ and Dppi-/- mice. Contrary to prediction, HGF levels were higher in lavage fluid from infected mice. However, serum and tissue concentrations were not different in infected and uninfected mice, and HGF lung transcript levels did not change. Increased HGF correlated with increased albumin in lavage fluid from infected mice, and immunostaining failed to detect increased lung tissue expression of HGF in infected mice. These findings are consistent with trans-alveolar flux rather than local production as the source of increased HGF in lavage fluid. However, levels of intact HGF from infected mice, normalized for albumin concentration, were two-fold higher in Dppi-/- versus Dppi+/+ lavage fluid, suggesting regulation by Dppi-activated proteases. Consistent with the presence of active HGF, increased expression of activated receptor c-Met was observed in infected tissues. These data suggest that HGF entering alveoli from the bloodstream during pneumonia compensates for destruction by Dppi-activated inflammatory proteases to allow HGF to contribute to epithelial repair.
Collapse
Affiliation(s)
- Wilfred W. Raymond
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xiang Xu
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Shilpa Nimishakavi
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Catherine Le
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Donald M. McDonald
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - George H. Caughey
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Northern California Institute for Research and Education, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
39
|
Stein J, Maxeiner JH, Montermann E, Höhn Y, Raker V, Taube C, Sudowe S, Reske-Kunz AB. Non-eosinophilic airway hyper-reactivity in mice, induced by IFN-γ producing CD4(+) and CD8(+) lung T cells, is responsive to steroid treatment. Scand J Immunol 2015; 80:327-38. [PMID: 25124713 DOI: 10.1111/sji.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023]
Abstract
Non-eosinophilic asthma is characterized by infiltration of neutrophils into the lung and variable responsiveness to glucocorticoids. The pathophysiological mechanisms have not been characterized in detail. Here, we present an experimental asthma model in mice associated with non-eosinophilic airway inflammation and airway hyper-responsiveness (AHR). For this, BALB/c mice were sensitized by biolistic DNA immunization with a plasmid encoding the model antigen β-galactosidase (pFascin-βGal mice). For comparison, eosinophilic airway inflammation was induced by subcutaneous injection of βGal protein (βGal mice). Intranasal challenge of mice in both groups induced AHR to a comparable extent as well as recruitment of inflammatory cells into the airways. In contrast to βGal mice, which exhibited extensive eosinophilic infiltration in the lung, goblet cell hyperplasia and polarization of CD4(+) T cells into Th2 and Th17 cells, pFascin-βGal mice showed considerable neutrophilia, but no goblet cell hyperplasia and a predominance of Th1 and Tc1 cells in the airways. Depletion studies in pFascin-βGal mice revealed that CD4(+) and CD8(+) cells cooperated to induce maximum inflammation, but that neutrophilic infiltration was not a prerequisite for AHR induction. Treatment of pFascin-βGal mice with dexamethasone before intranasal challenge did not affect neutrophilic infiltration, but significantly reduced AHR, infiltration of monocytes and lymphocytes as well as content of IFN-γ in the bronchoalveolar fluid. Our results suggest that non-eosinophilic asthma associated predominantly with Th1/Tc1 cells is susceptible to glucocorticoid treatment. pFascin-βGal mice might represent a mouse model to study pathophysiological mechanisms proceeding in the subgroup of asthmatics with non-eosinophilic asthma that respond to inhaled steroids.
Collapse
Affiliation(s)
- J Stein
- Clinical Research Unit Allergology, Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reber LL, Marichal T, Sokolove J, Starkl P, Gaudenzio N, Iwakura Y, Karasuyama H, Schwartz LB, Robinson WH, Tsai M, Galli SJ. Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol 2014; 66:2881-91. [PMID: 24943488 DOI: 10.1002/art.38747] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gouty arthritis is caused by the precipitation of monosodium urate monohydrate (MSU) crystals in the joints. While it has been reported that mast cells (MCs) infiltrate gouty tophi, little is known about the actual roles of MCs during acute attacks of gout. This study was undertaken to assess the role of MCs in a mouse model of MSU crystal-induced acute arthritis. METHODS We assessed the effects of intraarticular (IA) injection of MSU crystals in various strains of mice with constitutive or inducible MC deficiency or in mice lacking interleukin-1β (IL-1β) or other elements of innate immunity. We also assessed the response to IA injection of MSU crystals in genetically MC-deficient mice after IA engraftment of wild-type or IL-1β(-/-) bone marrow-derived cultured MCs. RESULTS MCs were found to augment acute tissue swelling following IA injection of MSU crystals in mice. IL-1β production by MCs contributed importantly to MSU crystal-induced tissue swelling, particularly during its early stages. Selective depletion of synovial MCs was able to diminish MSU crystal-induced acute inflammation in the joints. CONCLUSION Our findings identify a previously unrecognized role of MCs and MC-derived IL-1β in the early stages of MSU crystal-induced acute arthritis in mice.
Collapse
|
41
|
Nabe T, Matsuya K, Akamizu K, Fujita M, Nakagawa T, Shioe M, Kida H, Takiguchi A, Wakamori H, Fujii M, Ishihara K, Akiba S, Mizutani N, Yoshino S, Chaplin DD. Roles of basophils and mast cells infiltrating the lung by multiple antigen challenges in asthmatic responses of mice. Br J Pharmacol 2014; 169:462-76. [PMID: 23472967 DOI: 10.1111/bph.12154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 01/06/2013] [Accepted: 02/16/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Mast cell hyperplasia has been observed in the lungs of mice with experimental asthma, but few reports have studied basophils. Here, we attempted to discriminate and quantify mast cells and basophils in the lungs in a murine asthma model, determine if both cells were increased by multiple antigen challenges and assess the roles of those cells in asthmatic responses. EXPERIMENTAL APPROACH Sensitized Balb/c mice were intratracheally challenged with ovalbumin four times. Mast cells and basophils in enzymatically digested lung tissue were detected by flow cytometry. An anti-FcεRI monoclonal antibody, MAR-1, was i.p. administered during the multiple challenges. KEY RESULTS The numbers of both mast cells (IgE(+) C-kit(+) ) and basophils (IgE(+) C-kit(-) CD49b(+) ) increased in the lungs after three challenges. Treatment with MAR-1 completely abolished the increases; however, a late-phase increase in specific airway resistance (sRaw), and airway eosinophilia and neutrophilia were not affected by the treatment, although the early-phase increase in sRaw was suppressed. MAR-1 reduced antigen-induced airway IL-4 production. Basophils infiltrating the lung clearly produced IL-4 after antigen stimulation in vitro; however, histamine and murine mast cell protease 1 were not increased in the serum after the challenge, indicating that mast cell activation was not evoked. CONCLUSION AND IMPLICATIONS Both mast cells and basophils infiltrated the lungs by multiple intratracheal antigen challenges in sensitized mice. Neither mast cells nor basophils were involved in late-phase airway obstruction, although early-phase obstruction was mediated by basophils. Targeting basophils in asthma therapy may be useful for an early asthmatic response.
Collapse
Affiliation(s)
- T Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Greenland JR, Xu X, Sayah DM, Liu FC, Jones KD, Looney MR, Caughey GH. Mast cells in a murine lung ischemia-reperfusion model of primary graft dysfunction. Respir Res 2014; 15:95. [PMID: 25115556 PMCID: PMC4151192 DOI: 10.1186/s12931-014-0095-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023] Open
Abstract
Primary graft dysfunction (PGD), as characterized by pulmonary infiltrates and high oxygen requirements shortly after reperfusion, is the major cause of early morbidity and mortality after lung transplantation. Donor, recipient and allograft-handling factors are thought to contribute, although new insights regarding pathogenesis are needed to guide approaches to prevention and therapy. Mast cells have been implicated in ischemic tissue injury in other model systems and in allograft rejection, leading to the hypothesis that mast cell degranulation contributes to lung injury following reperfusion injury. We tested this hypothesis in a mouse model of PGD involving reversible disruption of blood flow to one lung. Metrics of injury included albumin permeability, plasma extravasation, lung histopathology, and mast cell degranulation. Responses were assessed in wild-type (Kit+/+) and mast cell-deficient (KitW-sh/W-sh) mice. Because mouse lungs have few mast cells compared with human lungs, we also tested responses in mice with lung mastocytosis generated by injecting bone marrow-derived cultured mast cells (BMCMC). We found that ischemic lung responses of mast cell-deficient KitW-sh/W-sh mice did not differ from those of Kit+/+ mice, even after priming for injury using LPS. Degranulated mast cells were more abundant in ischemic than in non-ischemic BMCMC-injected KitW-sh/W-sh lungs. However, lung injury in BMCMC-injected KitW-sh/W-sh and Kit+/+ mice did not differ in globally mast cell-deficient, uninjected KitW-sh/W-sh mice or in wild-type Kit+/+ mice relatively deficient in lung mast cells. These findings predict that mast cells, although activated in lungs injured by ischemia and reperfusion, are not necessary for the development of PGD.
Collapse
|
43
|
Longhini R, Aparecida de Oliveira P, Sasso-Cerri E, Cerri PS. Cimetidine Reduces Alveolar Bone Loss in Induced Periodontitis in Rat Molars. J Periodontol 2014; 85:1115-25. [DOI: 10.1902/jop.2013.130453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Baluk P, Phillips K, Yao LC, Adams A, Nitschké M, McDonald DM. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1877-89. [PMID: 24726646 DOI: 10.1016/j.ajpath.2014.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 12/22/2022]
Abstract
Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma pulmonis infection as a model of sustained inflammation in mice. The time course of vascular remodeling coincided with the influx of neutrophils during the first few days after infection and peaked at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed in Cxcr2(-/-) mice, in which neutrophils adhered to the endothelium of venules but did not extravasate into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2. Tumor necrosis factor α (TNFα) expression increased more than sixfold in the trachea of wild-type and Cxcr2(-/-) mice, but intratracheal administration of TNFα did not induce vascular remodeling similar to that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries into venules in the airways of mice with Mycoplasma infection and that TNFα signaling is necessary but not sufficient for vascular remodeling.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.
| | - Keeley Phillips
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Li-Chin Yao
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Alicia Adams
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Maximilian Nitschké
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Donald M McDonald
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
45
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
46
|
Abstract
Staining cells or tissues with basic dyes was the mainstay of mast cell and basophil detection methods for more than a century following the first identification of these cell types using such methods. These techniques have now been largely supplanted by immunohistochemical procedures with monoclonal antibodies directed against unique constituents of these cell types. Immunohistochemistry with antibodies specific for the granule protease tryptase provides a more sensitive and discriminating means for detecting mast cells than using the classical histochemical procedures; and employing antibodies specific for products of basophils (2D7 antigen and basogranulin) has allowed detection of basophils that infiltrate into tissues. The application of immunohistochemistry to detect more than one marker in the same cell has underpinned concepts of mast cell heterogeneity based on differential expression of chymase and other proteases. The double-labelling procedures employed have also provided a means for investigating the expression of cytokines and a range of other products. Protocols are here set out that have been used for immunohistochemical detection of mast cells and basophils and their subpopulations in human tissues. Consideration is given to pitfalls to avoid and to a range of alternative approaches.
Collapse
Affiliation(s)
- Andrew F Walls
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 837, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK,
| | | |
Collapse
|
47
|
Xu X, Greenland J, Baluk P, Adams A, Bose O, McDonald DM, Caughey GH. Cathepsin L protects mice from mycoplasmal infection and is essential for airway lymphangiogenesis. Am J Respir Cell Mol Biol 2013; 49:437-44. [PMID: 23600672 DOI: 10.1165/rcmb.2013-0016oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cathepsin L (Ctsl) is a proposed therapeutic target to control inflammatory responses in a number of disease states. However, Ctsl is thought to support host defense via its involvement in antigen presentation pathways. Hypothesizing that Ctsl helps combat bacterial infection, we investigated its role in Mycoplasma pulmonis-infected mice as a model of acute and chronic infectious airway inflammation. Responses to the airway inoculation of mycoplasma were compared in Ctsl(-/-) and Ctsl(+/+) mice. After infection, Ctsl(-/-) mice demonstrated more body weight loss, greater mortality (22% versus 0%, respectively), and heavier lungs than Ctsl(+/+) mice, but had smaller bronchial lymph nodes. The burden of live mycoplasma in lungs was 247-fold greater in Ctsl(-/-) mice than in Ctsl(+/+) mice after infection for 3 days. Ctsl(-/-) mice exhibited more severe pneumonia and neutrophil-rich, airway-occlusive exudates, which developed more rapidly than in Ctsl(+/+) mice. Compared with the conspicuous remodeling of lymphatics after infection in Ctsl(+/+) mice, little lymphangiogenesis occurred in Ctsl(-/-) mice, but blood vessel remodeling and tissue inflammation were similarly severe. Titers of mycoplasma-reactive IgM, IgA, and IgG in blood in response to live and heat-killed organisms were similar to those in Ctsl(+/+) mice. However, enzyme-linked immunosorbent spot assays revealed profound reductions in the cellular IFN-γ response to mycoplasma antigen. These findings suggest that Ctsl helps contain mycoplasma infection by supporting lymphangiogenesis and cellular immune responses to infection, and our findings predict that the therapeutic inhibition of Ctsl could increase the severity of mycoplasmal infections.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Medicine, University of California at San Francisco, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:181-218. [PMID: 24050624 DOI: 10.1146/annurev-pathol-020712-164023] [Citation(s) in RCA: 836] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 20115;
| | | | | |
Collapse
|
49
|
Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia. Infect Immun 2013; 81:3515-26. [PMID: 23690397 DOI: 10.1128/iai.00380-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.
Collapse
|
50
|
Alcañiz L, Vega A, Chacón P, El Bekay R, Ventura I, Aroca R, Blanca M, Bergstralh DT, Monteseirin J. Histamine production by human neutrophils. FASEB J 2013; 27:2902-10. [PMID: 23572231 DOI: 10.1096/fj.12-223867] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histamine is an important mediator in the development of allergic reactions. Only a small subset of human cell types is able to produce histamine. No previous studies have shown that human neutrophils are among them. The present work was undertaken to analyze whether human neutrophils produce histamine, and to determine what agonists are involved in histamine production by human neutrophils. The expression of histidine decarboxylase in human neutrophils was established by quantitative PCR, Western blotting, and flow cytometry analysis. The activity of the enzyme was determined by ELISA, which measured histamine in the culture supernatant of neutrophils stimulated with a set of classical agonists. Human neutrophils are bona fide histamine-producing cells. Neutrophils store ∼0.29 pg/cell and release ∼50% of the histamine content in an antigen-dependent manner and on stimulation with other neutrophil agonists. Basal expression of histidine decarboxylase, the rate-limiting enzyme in histamine production, is higher in neutrophils from patients with allergies than from healthy donors. Our results cannot be ascribed to cell contamination for several reasons. LPS failed to induce histamine release by basophils, whereas it induced histamine release by neutrophils; and we did not detect basophils, monocytes, or lymphocytes in our neutrophil preparations. Eosinophils, albeit detected, were only 0.001-0.004% of the final cell population, and they did not store or release histamine on antigen or LPS stimulation. Antigens to which patients with allergies were sensitized stimulated release of histamine from neutrophils. These observations represent a novel view of neutrophils as possible source of histamine in the allergic diseases.
Collapse
Affiliation(s)
- Lorena Alcañiz
- Servicio Regional de Inmunología y Alergia, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|