1
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024:217306. [PMID: 39426662 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030.
| |
Collapse
|
2
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Tokunaga A, Kimura N, Masuda T, Hanaoka T, Matsubara E. Objectively measured prolonged sleep is associated with plasma cytokines in older adults with mild cognitive impairment. J Sleep Res 2024; 33:e14135. [PMID: 38212137 DOI: 10.1111/jsr.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
This study aimed to determine whether objective sleep time is associated with the concentrations of various plasma cytokines in older adults with mild cognitive impairment (MCI). In total, 118 adults with MCI (66 women; mean age: 75.7 years) participated in this prospective cohort study. All participants were required to wear a wristband sensor for 7.8 days, on average, every 3 months for 1 year and undergo measurement of 27 plasma cytokines using multiplex immunoassays. After adjusting for potential confounders, the associations of total sleep time with cytokine concentrations were assessed by multiple linear regression analysis. The total sleep time was significantly correlated with plasma interleukin (IL)-9 and macrophage inflammatory protein (MIP)-1β levels (r = 0.239, p = 0.009, and r = 0.242, p = 0.008, respectively). Moreover, these associations remained significant after adjusting for covariates, including demographic characteristics, lifestyle-related diseases, and apolipoprotein E status (β = 0.272, 95% confidence interval: 0.095-0.448, p = 0.003, and β = 0.27, 95% confidence interval: 0.092-0.449, p = 0.003, respectively). Thus, this study is the first to demonstrate the association between objective prolonged sleep and higher plasma IL-9 and MIP-1β levels in older adults with MCI.
Collapse
Affiliation(s)
- Akari Tokunaga
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takuya Hanaoka
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
4
|
Xiong Y, Xiang W, Xiao W. Targeting the serum marker interleukin 9 improves the underlying characterization and immune homeostasis in rheumatoid arthritis. Cent Eur J Immunol 2024; 49:132-146. [PMID: 39381556 PMCID: PMC11457572 DOI: 10.5114/ceji.2024.141695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPA) are serological markers used for diagnosing rheumatoid arthritis (RA), an autoimmune disease characterized by inflammatory joint damage. However, there is a subset of RA patients who test negative for both RF and ACPA, known as seronegative rheumatoid arthritis (SNRA). Material and methods The levels of serum markers were examined in both clinical samples and a rat model of type II collagen-induced RA (CIA). The effect of interleukin 9 (IL-9) on RA was investigated using recombinant rat IL-9 (rrIL-9), anti-rat IL-9 neutralizing monoclonal antibody (mAb), and control IgG antibody in the CIA rat. The severity of arthritis was assessed. Treg and Th17 cells, M1 and M2 macrophages, and inflammatory cytokine levels were analyzed. Results We observed higher levels of IL-9 in clinical samples from SNRA patients compared to the normal group. Rat models of CIA exhibit increased arthritis scores, weight loss, paw swelling, and severe joint damage. IL-9 was the most sensitive serum marker for the diagnosis of RA in serum assays of CIA rats. IL-9 increased arthritis scores and cartilage damage, whereas treatment with IL-9 inhibitors produced the opposite effect. IL-9 inhibitors promoted Treg/Th17 homeostasis, decreased M1 macrophages, increased M2 macrophages, and decreased levels of inflammatory cytokines in joint tissues. Conclusions These results suggest that IL-9 has potential as a diagnostic marker for SNRA. Inhibition of IL-9 could reduce the severity of arthritis in CIA rats by ameliorating inflammation and modulating the Treg/Th17 immune balance, M2 and M1 macrophage activation.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Wei Xiao
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| |
Collapse
|
5
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
6
|
Guadalupi L, Vanni V, Balletta S, Caioli S, De Vito F, Fresegna D, Sanna K, Nencini M, Donninelli G, Volpe E, Mariani F, Battistini L, Stampanoni Bassi M, Gilio L, Bruno A, Dolcetti E, Buttari F, Mandolesi G, Centonze D, Musella A. Interleukin-9 protects from microglia- and TNF-mediated synaptotoxicity in experimental multiple sclerosis. J Neuroinflammation 2024; 21:128. [PMID: 38745307 PMCID: PMC11092167 DOI: 10.1186/s12974-024-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.
Collapse
Affiliation(s)
- Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Sara Balletta
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | | | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Gloria Donninelli
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome, 00143, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome, 00143, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome, 00143, Italy
| | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
- Ph.D. Program in Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, 00166, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy.
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy.
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, 00166, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, 00166, Italy
| |
Collapse
|
7
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili SA, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - MohammadHossein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Tsiapalis D, Floudas A, Tertel T, Boerger V, Giebel B, Veale DJ, Fearon U, O’Driscoll L. Therapeutic Effects of Mesenchymal/Stromal Stem Cells and Their Derived Extracellular Vesicles in Rheumatoid Arthritis. Stem Cells Transl Med 2023; 12:849-862. [PMID: 37934808 PMCID: PMC10726408 DOI: 10.1093/stcltm/szad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/04/2023] [Indexed: 11/09/2023] Open
Abstract
Currently available therapies for rheumatoid arthritis (RA) are inadequate to alleviate the inflammation and reduce joint damage. While the immune-regulatory effect of human mesenchymal/stromal stem cells (MSCs) extracellular vesicles (EVs) has been tested in many inflammation-related diseases, little is known regarding their effect on patients with RA. Thus, we assessed the effect of human MSCs and MSC-EVs (from naïve or IFN-β-primed MSCs) on CD4+ T cells from patients with RA. Moreover, we investigated the effect of MSC-EVs on RA patients-derived synovial fibroblasts (FLS). MSC-EVs were prepared using a PEG precipitation followed by ultracentrifugation-based protocol. Applied to RA CD4+ T cells, EVs from IFN-β-primed MSCs, suppressed the expression of more key RA-associated cytokines (IL-4, GM-CSF IFN-γ, IL-2, TNF-α), and decreased CD4+ T-cell polyfunctionality than MSCs or EVs from naïve MSCs. MSCs mediated a slight decrease in the frequency of T-regulatory cells, while MSC-EVs rescued the frequency of T-regulatory cells. MSCs significantly inhibited CD4+ T-cell proliferation (P < .05), while no inhibition was observed in response to EV preparations. EVs from IFN-β-primed MSCs inhibited (P < .01) RA FLS migration and downregulated (P < .05) RA FLS surface markers CD34 and HLA-DR. Collectively, we demonstrated the immune-modulatory function of MSCs and their derived EVs in RA CD4+ T cells, which could be further enhanced by priming MSCs with IFN-β. Moreover, EVs from IFN-β-primed MSCs more efficiently inhibit RA FLS migration, and expression of RA FLS-related surface markers, suggesting these EVs as a potent therapy for RA.
Collapse
Affiliation(s)
- Dimitrios Tsiapalis
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin and Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, UCD, Dublin, Ireland
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Boerger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, UCD, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, UCD, Dublin, Ireland
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin and Trinity St. James’s Cancer Institute, Dublin, Ireland
| |
Collapse
|
9
|
Yuan C, Rayasam A, Moe A, Hayward M, Wells C, Szabo A, Mackenzie A, Salzman N, Drobyski WR. Interleukin-9 production by type 2 innate lymphoid cells induces Paneth cell metaplasia and small intestinal remodeling. Nat Commun 2023; 14:7963. [PMID: 38042840 PMCID: PMC10693577 DOI: 10.1038/s41467-023-43248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/03/2023] [Indexed: 12/04/2023] Open
Abstract
Paneth cell metaplasia (PCM) typically arises in pre-existing gastrointestinal (GI) diseases; however, the mechanistic pathway that induces metaplasia and whether PCM is initiated exclusively by disorders intrinsic to the GI tract is not well known. Here, we describe the development of PCM in a murine model of chronic myelogenous leukemia (CML) that is driven by an inducible bcr-abl oncogene. Mechanistically, CML induces a proinflammatory state within the GI tract that results in the production of epithelial-derived IL-33. The binding of IL-33 to the decoy receptor ST2 leads to IL-9 production by type 2 innate lymphoid cells (ILC2) which is directly responsible for the induction of PCM in the colon and tissue remodeling in the small intestines, characterized by goblet and tuft cell hyperplasia along with expansion of mucosal mast cells. Thus, we demonstrate that an extra-intestinal disease can trigger an ILC2/IL-9 immune circuit, which induces PCM and regulates epithelial cell fate decisions in the GI tract.
Collapse
Affiliation(s)
- Chengyin Yuan
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aditya Rayasam
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison Moe
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Hayward
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Nita Salzman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William R Drobyski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Chakraborty S, Gupta R, Kubatzky KF, Kar S, Kraus FV, Souto-Carneiro MM, Lorenz HM, Kumar P, Kumar V, Mitra DK. Negative impact of Interleukin-9 on synovial regulatory T cells in rheumatoid arthritis. Clin Immunol 2023; 257:109814. [PMID: 37879380 PMCID: PMC7615987 DOI: 10.1016/j.clim.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
In Rheumatoid Arthritis (RA), regulatory T cells (Tregs) have been found to be enriched in the synovial fluid. Despite their accumulation, they are unable to suppress synovial inflammation. Recently, we showed the synovial enrichment of interleukin-9 (IL-9) producing helper T cells and its positive correlation with disease activity. Therefore, we investigated the impact of IL-9 on synovial Tregs in RA. Here, we confirmed high synovial Tregs in RA patients, however these cells were functionally impaired in terms of suppressive cytokine production (IL-10 and TGF-β). Abrogating IL-9/ IL-9 receptor interaction could restore the suppressive cytokine production of synovial Tregs and reduce the synovial inflammatory T cells producing IFN-γ, TNF-α, IL-17. However, blocking these inflammatory cytokines failed to show any effect on IL-9 producing T cells, highlighting IL-9's hierarchy in the inflammatory network. Thus, we propose that blocking IL-9 might dampen synovial inflammation by restoring Tregs function and inhibiting inflammatory T cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ranjan Gupta
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Santanu Kar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Franziska V Kraus
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - M Margarida Souto-Carneiro
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Pankaj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
11
|
Zhang Z, Zhu T, Zhang L, Xing Y, Yan Z, Li Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023; 56:2174531. [PMID: 36762543 DOI: 10.1080/08916934.2023.2174531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gastric cancer (GC) is a type of the most common cancers. Autoimmune gastritis (AIG) and infection with Helicobacter pylori (HP) are the risk factors of triggering GC. With the emphasis on the treatment of HP, the incidence and prevalence of HP infection in population is decreasing. However, AIG lacks accurate diagnosis and treatment methods, which occupies high cancer risk factors. AIG is controlled by the immune environment of the stomach, including immune cells, inflammatory cells, and infiltrating intercellular material. Various immune cells or cytokines play a central role in the process of regulating gastric parietal cells. Abnormal expression levels of cytokines involved in immunity are bound to face the risk of tumorigenesis. Therefore, it is particularly important for preventing or treating AIG and avoiding the risk of gastric cancer to clarify the confirmed action mode of immune cells and cytokines in the gastric system. Herein, we briefly reviewed the role of the immune environment under AIG, focussing on describing these double-edged effects between immune cells and cytokines, and pointing out potential research challenges.
Collapse
Affiliation(s)
- Zepeng Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tongtong Zhu
- Kunshan Hospital of Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Lei Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yanchao Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yan
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Qingsong Li
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Guan S, Bai X, Ding J, Zhuang R. Circulating inflammatory cytokines and hypertensive disorders of pregnancy: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1297929. [PMID: 38035087 PMCID: PMC10687474 DOI: 10.3389/fimmu.2023.1297929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Background Hypertensive disorders of pregnancy (HDP) pose a significant risk to maternal and fetal well-being; however, the etiology and pathogenesis of HDP remain ambiguous. It is now widely acknowledged that inflammatory response and the immune system are closely related to HDP. Previous research has identified several inflammatory cytokines are associated with HDP. This study applied Mendelian randomization (MR) analysis to further assess causality. Methods Patients with HDP who participated in the MR analysis presented with four types of HDP: pre-eclampsia or eclampsia (PE); gestational hypertension (GH); pre-existing hypertension complicating pregnancy, childbirth and the puerperium (EH); and pre-eclampsia or poor fetal growth (PF). A two-sample MR analysis was used to analyze the data in the study. The causal relationship between exposure and outcome was analyzed with inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode methods, where IVW was the primary method employed. Results Our MR analysis demonstrated a reliable causative effect of Interleukin-9 (IL-9) and macrophage migration inhibitory factor (MIF) on reducing HDP risk, while macrophage inflammatory protein 1-beta (MIP1b), Interleukin-13 (IL-13), and Interleukin-16 (IL-16) were associated with promoting HDP risk. Conclusions This study demonstrated that IL-9, MIF, MIP1b, IL-13, and IL-16 may be cytokines associated with the etiology of HDP, and that a number of inflammatory cytokines are probably involved in the progression of HDP. Additionally, our study revealed that these inflammatory cytokines have causal associations with HDP and may likely be potential therapeutic targets for HDP.
Collapse
Affiliation(s)
| | | | | | - Rujin Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alasmari AF, Shahid M, Al-Mazroua HA, Alomar HA, AsSobeai HM, Alshamrani AA, Attia SM. MAP kinase inhibitor PD98059 regulates Th1, Th9, Th17, and natural T regulatory cells in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Eur J Pharmacol 2023; 959:176086. [PMID: 37832863 DOI: 10.1016/j.ejphar.2023.176086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS), provides significant insights into the mechanisms that initiate and drive autoimmunity. MS is a chronic autoimmune disease of the central nervous system, characterized by inflammatory infiltration associated with demyelination. T lymphocyte cells play a crucial role in MS, whereas natural T regulatory (nTreg) cells prevent autoimmune inflammation by suppressing lymphocyte activity. This study sought to investigate the role of PD98059, a selective MAP kinase inhibitor, in Th1, Th9, Th17, and nTreg cells using the SJL/J mouse model of EAE. Following EAE development, the mice were intraperitoneally administered PD98059 (5 mg/kg for two weeks) daily. We evaluated the effects of PD98059 on Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγT), and nTreg (FoxP3 and Helios) cells in the spleen using flow cytometry. Moreover, we explored the effects of PD98059 on the IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγT, FoxP3, and Helios mRNA and protein levels in brain tissues using qRT-PCR and Western blot analyses. PD98059 treatment significantly decreased the proportion of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, CD4+RORγT+, CD4+IL-17A+, and CD4+RORγT+ cells while increasing that of CD4+FoxP3+ and CD4+Helios+ cells. In addition, PD98059 administration decreased the mRNA and protein levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, and RORγT but increased those of FoxP3 and Helios in the brain tissue of EAE mice. Our findings suggest that PD98059 corrects immune dysfunction in EAE mice, which is concurrent with the modulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Marin NSI, Fuente-Muñoz EDL, Gil-Laborda R, Villegas Á, Alonso-Arenilla B, Cristóbal I, Pilar-Suárez L, Jiménez-Huete A, Calvo M, Sarria B, Mansilla-Ruiz M, Ochoa J, Fernández-Arquero M, Sánchez-Ramón S. Myeloid-derived suppressor cells as a potential biomarker for recurrent pregnancy loss and recurrent implantation failure: Increased levels of MDSCs in recurrent reproductive failure. Am J Reprod Immunol 2023; 90:e13783. [PMID: 37881123 DOI: 10.1111/aji.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) represent distinct clinical conditions with established definitions, both of which have been linked to an underlying pro-inflammatory state. This study aimed to explore the levels of monocytic-myeloid-derived suppressor cells (M-MDSCs) and regulatory T cells (TReg ) in a cohort of RPL and RIF women and their potential contribution to RPL and RIF. METHOD OF STUDY One hundred and eight non-pregnant women were evaluated: 40 RPL, 41 RIF, and 27 fertile healthy controls (HC). A multiparametric flow cytometry approach was utilized to measure and quantify the frequency of M-MDSCs and TReg cells. Cytokine levels in plasma samples were evaluated through a multiplex assay. M-MDSCs levels were significantly higher in RPL and RIF patients compared to HC. RESULTS M-MDSCs levels were significantly higher in RPL (9.4% [7-11.6]) and RIF (8.1% [5.9-11.6]) patients compared to HC (6% [4.2-7.6]). An optimal cut-off of 6.1% for M-MDSCs disclosed a sensitivity of 75.6% and 89.7% and a specificity of 57.7% and 57.7% in RIF and RPL groups, respectively. A significant negative correlation was observed between M-MDSCs and TReg (p = .002, r = -.51). CONCLUSIONS Our preliminary data allowed us to build a predictive model that may aid as a potential diagnostic tool in the clinic. These findings could provide a better understanding of these pathologies and a better definition of patients that could benefit from personalized treatments to promote pregnancy. Additional exploration and confirmation in distinct study groups are needed to fully assess the diagnostic capabilities of this biomarker.
Collapse
Affiliation(s)
- Nabil Subhi-Issa Marin
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | | | - Raquel Gil-Laborda
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Ángela Villegas
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Ignacio Cristóbal
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | - Lydia Pilar-Suárez
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Marta Calvo
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz Sarria
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mariló Mansilla-Ruiz
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Juliana Ochoa
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
15
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
16
|
Riekert M, Almanzar G, Schmalzing M, Schütze N, Jakob F, Prelog M. Mesenchymal stem cells modulate IL-17 and IL-9 production induced by Th17-inducing cytokine conditions in autoimmune arthritis: an explorative analysis. Adv Rheumatol 2023; 63:37. [PMID: 37525265 DOI: 10.1186/s42358-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. METHODS Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27-), memory (CD45RA-CD27+), effector (CD45RA-CD27-) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. RESULTS In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. CONCLUSION The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.
Collapse
Affiliation(s)
- Maximilian Riekert
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany.
- Department of Oral and Craniomaxillofacial and Plastic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50924, Cologne, Germany.
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Norbert Schütze
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Chakraborty S, Schneider J, Mitra DK, Kubatzky KF. Mechanistic insight of interleukin-9 induced osteoclastogenesis. Immunology 2023; 169:309-322. [PMID: 36732282 PMCID: PMC7615986 DOI: 10.1111/imm.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-9 is an emerging player in the pathogenesis of various chronic inflammatory diseases including bone disorders like rheumatoid arthritis (RA) and psoriatic arthritis. Recently, IL-9 was shown to enhance the osteoclast formation and their function in RA. However, the mechanisms by which IL-9 influences osteoclastogenesis are not known. Therefore, in this study we aimed to unravel the direct and indirect ways by which IL-9 can influence osteoclast formation. We used mouse bone marrow precursor cells for checking the effect of IL-9 on osteoclast differentiation and its function. Next, IL-9 induced signalling pathway were checked in the process of osteoclastogenesis. T cells play an important role in enhancing osteoclastogenesis in inflammatory conditions. We used splenic T cells to understand the impact of IL-9 on the functions of T effector (Teff) and regulatory T (Treg) cells. Furthermore, the effect of IL-9 mediated modulation of the T cell response on osteoclasts was checked using a coculture model of T cells with osteoclast precursors. We showed that IL-9 enhanced osteoclast formation and its function. We found that IL-9 activates STAT3, P38 MAPK, ERK1/2, NFκB and we hypothesize that it mediates the effect on osteoclastogenesis by accelerating mitochondrial biogenesis. Additionally, IL-9 was observed to facilitate the functions of pro-osteoclastogenic IL-17 producing T cells, but inhibits the function of anti-osteoclastogenic Treg cells. Our observations suggest that IL-9 can influence osteoclastogenesis directly by modulating the signalling cascade in the precursor cells; indirectly by enhancing IL-17 producing T cells and by reducing the functions of Treg cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jakob Schneider
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Blask C, Schulze J, Rümpel S, Süße M, Grothe M, Gross S, Dressel A, Müller R, Ruhnau J, Vogelgesang A. Modulation of cytokine release from peripheral blood mononuclear cells from multiple sclerosis patients by coenzyme A and soraphen A. J Neuroimmunol 2023; 381:578135. [PMID: 37364515 DOI: 10.1016/j.jneuroim.2023.578135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
By applying the acetyl-CoA-carboxylase inhibitors soraphen A (SorA) and coenzyme A (CoA) ex vivo, we aimed to reduce proinflammatory cytokine release by PBMCs and increase anti-inflammatory cytokine levels, thereby demonstrating a possible application of those pathways in future multiple sclerosis (MS) therapy. In a prospective exploratory monocentric study, we analysed cytokine production by PBMCs treated with SorA (10 or 50 nM) and CoA (600 μM). Thirty-one MS patients were compared to 18 healthy age-matched controls. We demonstrated the immunomodulatory potential of SorA and CoA in targeting the immune function of MS patients, with an overall reduction of cytokines except of IL-2, IL-6 and IL-10.
Collapse
Affiliation(s)
- Carolin Blask
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Sarah Rümpel
- Dept. of Neurology, University Medicine Greifswald, Germany
| | - Marie Süße
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Stefan Gross
- Dept. of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Johanna Ruhnau
- Dept. of Neurology, University Medicine Greifswald, Germany.
| | | |
Collapse
|
20
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
21
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Kung VL, Avasare R, Friedman MA, Koon SM, Neff TL, Protzek S, Corless C, Krajbich V, Setthavongsack N, Ditmore R, Woltjer R, Andeen NK. Targeted Transcriptional Analysis of IgA Vasculitis, IgA Nephropathy, and IgA-Dominant Infection-Related Glomerulonephritis Reveals Both Distinct and Overlapping Immune Signatures. KIDNEY360 2023; 4:e759-e768. [PMID: 37036681 PMCID: PMC10371378 DOI: 10.34067/kid.0000000000000123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
Key Points Skin IL-9, calprotectin, and KIR gene expression may be predictive of subsequent kidney involvement in patients with IgAV. Histologically similar patients with IgAN, IgAV, and IgA-IRGN can be distinguished by their immune transcriptomes. Kidney biopsies from patients with IgA-IRGN are enriched for transcripts involved in granulocyte chemotaxis. Background IgA vasculitis (IgAV), IgA nephropathy (IgAN), and IgA-dominant infection-related glomerulonephritis (IgA-IRGN) have shared histopathologic features, but differences in clinical management and prognosis. The most serious IgAV organ involvement is in the kidneys (IgAV nephritis). In this study, we hypothesized that targeted immune transcript profiling could aid in (1 ) predicting the development of IgAV nephritis in patients with cutaneous IgAV and (2 ) differentiating IgAN, IgAV, and IgA-IRGN. Methods RNA was extracted from 24 formalin-fixed paraffin-embedded tissue specimens (16 kidney, 8 skin) from 21 patients with IgAV nephritis (n=7), IgAN (n=5), and IgA-IRGN (n=4), and IgAV skin biopsies from patients with (n=3) and without (n=5) IgAV nephritis. Differential gene expression and gene set enrichment analysis were performed on a total of 594 transcripts (Nanostring immunology panel) profiled using the nCounter system. Results Skin biopsies in patients with IgAV who develop kidney involvement exhibit reduced S100A8/S100A9 , IL9 , and killer cell immunoglobulin-like receptor expression. The kidney tissue immune transcriptomes of IgAN, IgAV, and IgA-IRGN are largely overlapping. IgA-IRGN kidney biopsies are, however, uniquely enriched for transcripts involved in granulocyte chemotaxis. Conclusion This study identifies immune transcript signatures that may predict IgAV nephritis in skin biopsies and distinguish IgA-IRGN from IgAN and IgAV in kidney biopsies.
Collapse
Affiliation(s)
- Vanderlene L. Kung
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| | - Rupali Avasare
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Marcia A. Friedman
- Department of Medicine, Division of Rheumatology, Oregon Health & Science University, Portland, Oregon
| | | | - Tanaya L. Neff
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
- Knight Diagnostic Laboratories, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Sara Protzek
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
- Knight Diagnostic Laboratories, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Christopher Corless
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
- Knight Diagnostic Laboratories, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Victoria Krajbich
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| | - Naly Setthavongsack
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| | - Rebecca Ditmore
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| | - Randall Woltjer
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| | - Nicole K. Andeen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
23
|
Ohtsuki S, Wang C, Watanabe R, Zhang H, Akiyama M, Bois MC, Maleszewski JJ, Warrington KJ, Berry GJ, Goronzy JJ, Weyand CM. Deficiency of the CD155-CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep Med 2023; 4:101012. [PMID: 37075705 PMCID: PMC10140609 DOI: 10.1016/j.xcrm.2023.101012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.
Collapse
Affiliation(s)
- Shozo Ohtsuki
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chenyao Wang
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ryu Watanabe
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hui Zhang
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Deptartment of Rheumatology, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Mitsuhiro Akiyama
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth J Warrington
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Gerald J Berry
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Zhang L, Mao J, Lian Y, Liang Q, Li W, Zhao J, Pan H, Gao Z, Fang L, Yuan W, Chu Y, Shi J. Mass cytometry analysis identifies T cell immune signature of aplastic anemia and predicts the response to cyclosporine. Ann Hematol 2023; 102:529-539. [PMID: 36680600 PMCID: PMC9862246 DOI: 10.1007/s00277-023-05097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Aplastic anemia (AA) is an auto-activated T cell-mediated bone marrow failure. Cyclosporine is often used to treat non-severe AA, which demonstrates a more heterogeneous condition than severe AA. The response rate to cyclosporine is only around 50% in non-severe AA. To better predict response to cyclosporine and pinpoint who is the appropriate candidate for cyclosporine, we performed phenotypic and functional T cell immune signature at single cell level by mass cytometry from 30 patients with non-severe AA. Unexpectedly, non-significant differences of T cell subsets were observed between AA and healthy control or cyclosporine-responder and non-responders. Interestingly, when screening the expression of co-inhibitory molecules, T cell trafficking mediators, and cytokines, we found an increase of cytotoxic T lymphocyte antigen 4 (CTLA-4) on T cells in response to cyclosporine and a lower level of CTLA-4 on CD8+ T cells was correlated to hematologic response. Moreover, a decreased expression of sphingosine-1-phosphate receptor 1 (S1P1) on naive T cells and a lower level of interleukin-9 (IL-9) on T helpers also predicted a better response to cyclosporine, respectively. Therefore, the T cell immune signature, especially in CTAL-4, S1P1, and IL-9, has a predictive value for response to cyclosporine. Collectively, our study implies that immune signature analysis of T cell by mass cytometry is a useful tool to make a strategic decision on cyclosporine treatment of AA.
Collapse
Affiliation(s)
- Lele Zhang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jin Mao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yu Lian
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Qian Liang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Weiwang Li
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyu Zhao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Hong Pan
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhen Gao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Liwei Fang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Jun Shi
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
25
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
26
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
27
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
28
|
Kamiya S, Ikegami I, Yanagi M, Takaki H, Kamekura R, Sato T, Kobayashi K, Kamiya T, Kamada Y, Abe T, Inoue KI, Hida T, Uhara H, Ichimiya S. Functional Interplay between IL-9 and Peptide YY Contributes to Chronic Skin Inflammation. J Invest Dermatol 2022; 142:3222-3231.e5. [PMID: 35850207 DOI: 10.1016/j.jid.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/05/2023]
Abstract
Complex interactions between keratinocytes and various cell types, such as inflammatory cells and stromal cells, contribute to the pathogenesis of chronic inflammatory skin lesions. In proinflammatory cytokine‒mediated disease settings, IL-9 plays a pathological role in inflammatory dermatitis. However, IL-9‒related mechanisms remain incompletely understood. In this study, we established tamoxifen-induced keratinocyte-specific IL-9RA-deficient mice (K14CRE/ERTIl9raΔ/Δ mice) to examine the role of IL-9 in multicellular interactions under chronic skin inflammatory conditions. Studies using an imiquimod-induced psoriasis-like model showed that K14CRE/ERTIl9raΔ/Δ mice exhibited a significantly reduced severity of dermatitis and mast cell infiltration compared with control K14WTIl9rafl/fl mice. Transcriptome analyses of psoriasis-like lesions showed that the level of peptide Y-Y (Pyy), a member of the neuropeptide Y family, was markedly downregulated in K14CRE/ERTIl9raΔ/Δ epidermis. Pyy blockade suppressed epidermal thickening and mast cell numbers in imiquimod-treated wild-type mice. Together with in vitro studies indicating that Pyy induced IL-9 production and chemotactic activity in bone marrow‒derived mast cells, these findings suggest that Pyy-mediated interplay between keratinocytes and mast cells contributes to psoriasiform inflammation. Further investigation focusing on the IL-9‒Pyy axis may provide valuable information for the development of new treatment modalities for inflammatory dermatitis.
Collapse
Affiliation(s)
- Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiju Kobayashi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuka Kamada
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
29
|
Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int J Mol Sci 2022; 23:ijms232113177. [PMID: 36361964 PMCID: PMC9657232 DOI: 10.3390/ijms232113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.
Collapse
|
30
|
Park SA, Lim YJ, Ku WL, Zhang D, Cui K, Tang LY, Chia C, Zanvit P, Chen Z, Jin W, Wang D, Xu J, Liu O, Wang F, Cain A, Guo N, Nakatsukasa H, Wu C, Zhang YE, Zhao K, Chen W. Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation. Nat Commun 2022; 13:6069. [PMID: 36241625 PMCID: PMC9568563 DOI: 10.1038/s41467-022-33733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-β), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-β and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.
Collapse
Affiliation(s)
- Sang-A Park
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Yun-Ji Lim
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Wai Lim Ku
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Dunfang Zhang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Liu-Ya Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Cheryl Chia
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Peter Zanvit
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Zuojia Chen
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Wenwen Jin
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Dandan Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Junji Xu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Ousheng Liu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Fu Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Alexander Cain
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Nancy Guo
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Hiroko Nakatsukasa
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Chuan Wu
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Ying E. Zhang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - WanJun Chen
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| |
Collapse
|
31
|
Contreras JA, Aslanyan V, Albrecht DS, Mack WJ, Pa J. Higher baseline levels of CSF inflammation increase risk of incident mild cognitive impairment and Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12346. [PMID: 36187197 PMCID: PMC9484791 DOI: 10.1002/dad2.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Introduction Few studies have investigated how neuroinflammation early in the disease course may affect Alzheimer's disease (AD) progression over time despite evidence that neuroinflammation is associated with AD. Methods Research participants with cerebrospinal fluid (CSF) biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included in this study. Cox models were used to investigate whether baseline CSF neuroinflammation was associated with incident mild cognitive impairment (MCI) or AD. Moderating effects of sex and apolipoprotein E (APOE) ε4 were also examined. Results Elevated levels of tumor necrosis factor α (TNF-α), interleukin (IL)-9, and IL-12p40 at baseline were associated with higher rates of conversion to MCI/AD. Interactions with sex and APOE ε4 were observed, such that women with elevated TNF-α and all APOE ε4 carriers with elevated IL-9 levels had shorter times to conversion. In addition, TNF-α mediated the relationship between elevated IL-12p40 and IL-9. Discussion Elevated neuroinflammation markers are associated with incident MCI/AD, and the factors of sex and APOE ε4 status modify the time to conversion.
Collapse
Affiliation(s)
- Joey A. Contreras
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vahan Aslanyan
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel S. Albrecht
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Judy Pa
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
32
|
Liu M. Effect of crosstalk between Th17 and Th9 cells on the activation of dermal vascular smooth muscle cells in systemic scleroderma and regulation of tanshinone IIA. An Bras Dermatol 2022; 97:716-728. [PMID: 36117047 PMCID: PMC9582889 DOI: 10.1016/j.abd.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To evaluate the effect of T-helper 17 (Th17) cells and Th9 cells on the activation of dermal vascular smooth muscle cells (DVSMCs) in systemic scleroderma (SSc) and regulation of tanshinone IIA. METHODS The expression of interleukin 17 receptor (IL-17R) and interleukin 9 receptor (IL-9R) in the skin of SSc patients was assessed by immunofluorescence. The expression of IL-9 and IL-9R mRNA in peripheral blood mononuclear cells (PBMCs) of SSc patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proportion of Th9 cells in PBMCs of SSc patients was sorted by flow cytometry. The effect of IL-9 on the differentiation of Th17 and IL-17 on that of Th9 was detected by flow cytometry. The proportion of Th9 and Th17 cells in SSc patients was detected by flow cytometry. The level of collagen I, III, α-SMA, IL-9R, IL-17R, JNK, P38, and ERK were analyzed using western blot (WB). RESULTS Th9 cells were highly expressed in SSc. IL-9 stimulated the differentiation of immature T cells into Th17 cells. IL-17 induced the differentiation of immature T cells into Th9 cells. Tanshinone IIA inhibited the differentiation of immature T lymphocytes into Th17 and Th9. WB showed that the combined action of IL-17 and IL-9 upregulated the inflammation and proliferation of DVSMCs. Anti-IL17, anti-IL9, and tanshinone IIA inhibited the functional activation of DVSMCs. STUDY LIMITATIONS For Th17, Th9 and vascular smooth muscle cells, the study on the signal pathway of their interaction is not thorough enough. More detailed studies are needed to explore the mechanism of cell-cell interaction. CONCLUSIONS The current results suggested that Th17 and Th9 cells induced the activation of DVSMCs in SSc through crosstalk in vitro, and tanshinone IIA inhibited the process.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12th Urumqi Road, Shanghai, China.
| |
Collapse
|
33
|
Jehn LB, Costabel U, Boerner E, Wessendorf TE, Theegarten D, Taube C, Bonella F. IL-9 and IL-9 receptor expression in lymphocytes from bronchoalveolar lavage fluid of patients with interstitial lung disease. Immunobiology 2022; 227:152258. [PMID: 35998415 DOI: 10.1016/j.imbio.2022.152258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION IL-9, mainly produced by T helper 9 (Th9) cells, promotes allergic airway inflammation and remodeling through the interaction with its receptor (IL-9R). Th9 cells and IL-9 have also been implicated in tissue fibrosis and autoimmunity pathways. However, the role of IL-9/IL-9R in the pathogenesis of interstitial lung disease (ILD) is unknown. AIM To evaluate IL-9/IL-9R expression in bronchoalveolar lavage fluid (BALF) lymphocytes of patients with various ILDs. METHODS Consecutive patients with ILD, who underwent BAL for diagnostic purposes, were studied. As control group, consecutive patients without evidence of ILD were included. Immunocytochemical staining of BALF lymphocytes for IL-9 and IL-9R was performed and evaluated by two independent readers. RESULTS 45 patients, of them 8 had idiopathic pulmonary fibrosis (IPF), 12 nonspecific interstitial pneumonia (NSIP), 10 sarcoidosis, 9 hypersensitivity pneumonitis (HP), 6 cryptogenic organizing pneumonia (COP), and 24 controls were studied. In the ILD group, the highest BALF lymphocyte count was seen in HP followed by NSIP, COP, sarcoidosis, and IPF (p < 0.05 for HP vs IPF). The highest percentages of IL-9 and IL-9R positive lymphocytes were seen in COP. Conversely, NSIP showed the lowest rate of IL-9, and sarcoidosis the lowest rate of IL-9R positive lymphocytes. Only in NSIP, a direct correlation between IL and 9 and IL-9R positive lymphocytes was seen (r = 0.639, p = 0.025). CONCLUSION BALF lymphocytes IL-9 and IL-9R expression differs between various ILDs and could reflect different pathogenetic mechanisms.
Collapse
Affiliation(s)
- Lutz B Jehn
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Eda Boerner
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Thomas E Wessendorf
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, Essen, Germany.
| | - Christian Taube
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease, Department of Pneumology, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
34
|
Chen W, Cao Y, Zhong Y, Sun J, Dong J. The Mechanisms of Effector Th Cell Responses Contribute to Treg Cell Function: New Insights into Pathogenesis and Therapy of Asthma. Front Immunol 2022; 13:862866. [PMID: 35898499 PMCID: PMC9309477 DOI: 10.3389/fimmu.2022.862866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
CD4 + helper T (Th) cell subsets are critically involved in the pathogenesis of asthma. Naive Th cells differentiate into different subsets under the stimulation of different sets of cytokines, and the differentiation process is dominantly driven by lineage specific transcription factors, such as T-bet (Th1), GATA3 (Th2), RORγt (Th17) and Foxp3 (Treg). The differentiation mechanisms driven by these transcription factors are mutually exclusive, resulting in functional inhibition of these Th subsets to each other, particularly prominent between effector Th cells and Treg cells, such as Th2 versus Treg cells and Th17 versus Treg cells. Being of significance in maintaining immune homeostasis, the balance between effector Th cell response and Treg cell immunosuppression provides an immunological theoretical basis for us to understand the immunopathological mechanism and develop the therapy strategies of asthma. However, recent studies have found that certain factors involved in effector Th cells response, such as cytokines and master transcription factors (IL-12 and T-bet of Th1, IL-4 and GATA3 of Th2, IL-6 and RORγt of Th17), not only contribute to immune response of effector Th cells, but also promote the development and function of Treg cells, therefore bridging the interplay between effector Th cell immune responses and Treg cell immunosuppression. Although we have an abundant knowledge concerning the role of these cytokines and transcription factors in effector Th cell responses, our understanding on their role in Treg cell development and function is scattered thus need to be summarized. This review summarized the role of these cytokines and transcription factors involved in effector Th cell responses in the development and function of Treg cells, in the hope of providing new insights of understanding the immunopathological mechanism and seeking potential therapy strategies of asthma.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| |
Collapse
|
35
|
Fu Y, Pajulas A, Wang J, Zhou B, Cannon A, Cheung CCL, Zhang J, Zhou H, Fisher AJ, Omstead DT, Khan S, Han L, Renauld JC, Paczesny S, Gao H, Liu Y, Yang L, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Sun J, Bilgicer B, Sears CR, Yang K, Kaplan MH. Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9. Nat Commun 2022; 13:3811. [PMID: 35778404 PMCID: PMC9249769 DOI: 10.1038/s41467-022-31596-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cherry Cheuk Lam Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Huaxin Zhou
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amanda Jo Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sabrina Khan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lei Han
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shogo Takatsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Catherine R Sears
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kai Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Xu H, Yu AL, Zhao DP, Meng GY, Wang L, Shan M, Hu NX, Liu YL. Ursolic acid inhibits Th17 cell differentiation via STAT3/RORγt pathway and suppresses Schwann cell-mediated Th17 cell migration by reducing CXCL9/10 expression. Innate Immun 2022; 28:155-163. [PMID: 35548957 PMCID: PMC9189552 DOI: 10.1177/17534259221094559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Th17 cells represent important immune cells. Ursolic acid (UA) can regulate immune cell activities. This study was aimed to explore the effects of UA on Th17 cell differentiation and Schwann cell(SCs)-mediated migration and the potential mechanism. Naïve CD4+ T cells were isolated from rat peripheral blood, induced for Th17 cell differentiation, and treated with UA. The proportion of Th17 cells was detected by flow cytometry assay. SCs were co-cultured with Th17 cells. Th17 cell migration was detected by Transwell assay. The molecule expression was determined by Western blot and qRT-PCR. UA inhibited the Th17 cell differentiation and suppressed the STAT3/RORγt pathway. STAT3 overexpression up-regulated p-STAT3 and RORγt expression and promoted Th17 cell differentiation under the UA treatment. In LPS- and IFN-γ-stimulated-SCs, UA suppressed the expression of chemokines CXCL9/10, but had no significant effect of CCL20 expression. The expression CXCL9/10 receptor CXCR3 was higher in Th17 cells than that in Treg cells, while the expression CCL20 receptor CCR6 was lower in Th17 cells than that in Treg cells. UA, anti-CXCR3, and anti-CCR6 treatment inhibited SCs-mediated Th17 cell migration, and anti-CXCR3 exerted stronger inhibitory effect than Anti-CCR6. UA inhibited Th17 cell differentiation through STAT3/RORγt pathway and suppressed Th17 cell migration through down-regulating CXCL9/10 expression in SCs.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Ai-ling Yu
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Da-peng Zhao
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Guang-yuan Meng
- Clinical laboratory, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Ling Wang
- Department of Hematology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Min Shan
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Nai-xia Hu
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Yun-lin Liu
- Department of Neurology, Taian City Central Hospital, Taian 271000, Shandong, China
| |
Collapse
|
37
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
38
|
Assadiasl S, Fatahi Y, Nicknam MH. T helper-9 cells and Interleukin-9 in transplantation: The open question. Hum Immunol 2022; 83:499-508. [DOI: 10.1016/j.humimm.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
39
|
Fu Y, Wang J, Zhou B, Pajulas A, Gao H, Ramdas B, Koh B, Ulrich BJ, Yang S, Kapur R, Renauld JC, Paczesny S, Liu Y, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Tepper RS, Sun J, Kaplan MH. An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment. Sci Immunol 2022; 7:eabi9768. [PMID: 35179949 PMCID: PMC8991419 DOI: 10.1126/sciimmunol.abi9768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shuangshuang Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200 Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
40
|
Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 2022; 607:360-365. [PMID: 35676488 PMCID: PMC9283313 DOI: 10.1038/s41586-022-04801-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/25/2022] [Indexed: 01/31/2023]
Abstract
Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rβ-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.
Collapse
|
41
|
Zhou R, Li H, Yang H, Jiang F, Cai H, Li J, Chen S, Fang L, Yin J, Zeng Q. Serological markers exploration and real-world effectiveness and safety of teriflunomide in south Chinese patients with multiple sclerosis. Mult Scler Relat Disord 2021; 58:103446. [PMID: 34929454 DOI: 10.1016/j.msard.2021.103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Since September 2012, when teriflunomide was approved as a disease-modifying treatment for relapsing multiple sclerosis, real-world observational studies on teriflunomide in Chinese patients are limited. METHODS We collected demographic characteristics and peripheral blood samples at different time points. Clinical symptoms, magnetic resonance imaging data, and concentrations of neurofilament light chains and multiple cytokines at different time points were compared to assess the efficacy. Moreover, the safety was assessed by blood routine, liver and kidney function, and a questionnaire to report adverse reactions. RESULTS Teriflunomide significantly reduced serum levels of neurofilament light chains and several inflammatory cytokines. After accepting teriflunomide treatment, many clinical symptoms improved, scores of the expanded disability status scale decreased from 2.0 to 1.75, and annualized relapse rates decreased from 1.45 to 0.31. 29 (80.56%) and 15 (78.95%) patients achieved the no evidence of disease activity-3 status after 6 months and 12 months treatment, respectively. Teriflunomide was associated with mild or moderate discomfort, and discontinuation rates due to adverse events were low. CONCLUSION Serum neurofilament light chain protein is sensitive to teriflunomide treatment, suggesting that it has the potential to be used as an indicator to assess the efficacy of teriflunomide. Teriflunomide can significantly reduce the concentrations of inflammatory cytokines, indicating that teriflunomide may regulate neuroinflammation through the inhibitory effect on a variety of immune cells and their cytokines. Teriflunomide can improve clinical symptoms and disease severity in MS patients in southern China, and patients have good compliance.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
42
|
Zha L, Dong J, Chen Q, Liao Y, Zhang H, Xie T, Tang T, Xia N, Zhang M, Jiao J, Zhou Y, Wu J, Yang X, Xu C, Wang QK, Tu X, Cheng X, Nie S. Genetic association analysis between IL9 and coronary artery disease in a Chinese Han population. Cytokine 2021; 150:155761. [PMID: 34814015 DOI: 10.1016/j.cyto.2021.155761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
43
|
Zhang J, Lian M, Li B, Gao L, Tanaka T, You Z, Wei Y, Chen Y, Li Y, Li Y, Huang B, Tang R, Wang Q, Miao Q, Peng Y, Fang J, Lian Z, Okazaki K, Xiao X, Zhang W, Ma X. Interleukin-35 Promotes Th9 Cell Differentiation in IgG4-Related Disorders: Experimental Data and Review of the Literature. Clin Rev Allergy Immunol 2021; 60:132-145. [PMID: 32712804 DOI: 10.1007/s12016-020-08803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IgG4-related disease (IgG4-RD) is characterized by intense infiltration of IgG4-positive plasma cells in affected organs. However, the mechanisms acting in the immune responses in IgG4-RD are not fully understood. The aim of this study was to dissect the mechanism underlying the immunoglobulin class switch in IgG4-RD by addressing the crosstalk between IL-35-producing and Th9 cells. The expression level of IL-35 was examined in plasma samples from patients with hepatobiliary and/or pancreatic manifestations of IgG4-RD. Our data demonstrate that IgG4-RD patients exhibit significantly high-level productions of IL-35 as compared to disease and healthy controls. We detected the two subunits of IL-35, EBI3 and IL-12p35, in the two major affected organs, liver and pancreatic tissue, from IgG4-RD. The EBI3- and IL-12p35-positive cells were significantly higher in affected organs in IgG4-RD as compared to disease controls. The colocalization of EBI3 with CD19 and CD38, markers for B cells, suggest the presence of IL-35-producing B cells in affected organs in IgG4-RD. The effects of IL-35 in Th9 differentiation and IL-9 in production of immunoglobulin were then assessed. Surprisingly, IL-35 treatment promoted naïve CD4 T cell differentiating towards Th9 cells through IRF4 signaling. As a consequence, IL-9 secreted by Th9 cells promoted the differentiation of plasma cells and production of IgG1 and IgG4, predominantly IgG4. In conclusion, our data demonstrate that IL-35 actively participates in the process of inflammation and plays an important role in Th9 differentiation resulting in an immunoglobulin class switch towards IgG4.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Toshihiro Tanaka
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhexiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Weici Zhang
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
44
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
45
|
Sass D, Saligan L, Fitzgerald W, Berger AM, Torres I, Barb JJ, Kupzyk K, Margolis L. Extracellular vesicle associated and soluble immune marker profiles of psychoneurological symptom clusters in men with prostate cancer: an exploratory study. Transl Psychiatry 2021; 11:440. [PMID: 34429399 PMCID: PMC8385103 DOI: 10.1038/s41398-021-01554-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Psychoneurological symptom clusters are co-occurring and interrelated physiological symptoms that may include cancer-related fatigue, pain, depressive symptoms, cognitive disturbances, and sleep disturbances. These symptoms are hypothesized to share a common systemic proinflammatory etiology. Thus, an investigation of systemic immune biomarkers is an important approach to test this hypothesis. Here, we investigated the associations between extracellular vesicle (EV)-associated and soluble cytokines with immune markers and symptom clusters in men with non-metastatic prostate cancer. This observational study included 40 men with non-metastatic prostate cancer at the start (T1) of external beam radiation therapy (EBRT) and 3 months post treatment (T2), as well as 20 men with non-metastatic prostate cancer on active surveillance (AS) seen at one time point. Collected questionnaires assessed patient-reported fatigue, sleep disturbances, depressive symptoms, and cognitive fatigue. In total, 45 soluble and EV-associated biomarkers in plasma were determined by multiplex assays. Principal component analysis (PCA) was used to identify psychoneurological symptom clusters for each study group and their time points. Bivariate correlation analysis was run for each identified PCA cluster with the concentrations of EV-associated and soluble cytokines and immune markers. Both EV-associated and soluble forms of RANTES significantly correlated with the symptom cluster for EBRT at T1, whereas, at T2, soluble IFNα2, IL-9, and IL-17 correlated with the corresponding symptom cluster. For the AS group, soluble survivin correlated with psychoneurological symptoms. Linking specific inflammatory cytokines with psychoneurological symptom clusters in men receiving prostate cancer treatment can enhance understanding of the underlying mechanisms of this phenomenon and aid in developing targeted interventions.
Collapse
Affiliation(s)
- Dilorom Sass
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
- University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Leorey Saligan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ann M Berger
- University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Isaias Torres
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer J Barb
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Kupzyk
- University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021; 22:ijms22158340. [PMID: 34361107 PMCID: PMC8348795 DOI: 10.3390/ijms22158340] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Collapse
|
47
|
EGFR-HIF1α signaling positively regulates the differentiation of IL-9 producing T helper cells. Nat Commun 2021; 12:3182. [PMID: 34075041 PMCID: PMC8169867 DOI: 10.1038/s41467-021-23042-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin 9 (IL-9)-producing helper T (Th9) cells are essential for inducing anti-tumor immunity and inflammation in allergic and autoimmune diseases. Although transcription factors that are essential for Th9 cell differentiation have been identified, other signaling pathways that are required for their generation and functions are yet to be explored. Here, we identify that Epidermal Growth Factor Receptor (EGFR) is essential for IL-9 induction in helper T (Th) cells. Moreover, amphiregulin (Areg), an EGFR ligand, is critical for the amplification of Th9 cells induced by TGF-β1 and IL-4. Furthermore, our data show that Areg-EGFR signaling induces HIF1α, which binds and transactivates IL-9 and NOS2 promoters in Th9 cells. Loss of EGFR or HIF1α abrogates Th9 cell differentiation and suppresses their anti-tumor functions. Moreover, in line with its reliance on HIF1α expression, metabolomics profiling of Th9 cells revealed that Succinate, a TCA cycle metabolite, promotes Th9 cell differentiation and Th9 cell-mediated tumor regression.
Collapse
|
48
|
|
49
|
Heim J, Almanzar G, Schmalzing M, Gernert M, Tony HP, Prelog M. Induction of IL-9 in Peripheral Lymphocytes of Rheumatoid Arthritis Patients and Healthy Donors by Th17-Inducing Cytokine Conditions. Front Immunol 2021; 12:668095. [PMID: 33995403 PMCID: PMC8117786 DOI: 10.3389/fimmu.2021.668095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.
Collapse
Affiliation(s)
- Jana Heim
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hans-Peter Tony
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
50
|
Abstract
CD4 T cell effector subsets not only profoundly affect cancer progression, but recent evidence also underscores their critical contribution to the anticancer efficacy of immune checkpoint inhibitors. In 2012, the two seminal studies suggested the superior antimelanoma activity of TH9 cells over other T cell subsets upon adoptive T cell transfer. While these findings provided great impetus to investigate further the unique functions of TH9 cells and explore their relevance in cancer immunotherapy, the following questions still remain outstanding: are TH9 cell anticancer functions restricted to melanoma? What are the factors favouring TH9 cell effector functions? What is the contribution of TH9 cells to cancer immunotherapy treatments? Can TH9 cells be identified in humans and, if so, what is their clinical relevance? By reviewing the studies addressing these questions, we will discuss how TH9 cells could be therapeutically harnessed for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Isis Benoit-Lizon
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France; Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|