1
|
Santarelli R, Pascucci GR, Presti SL, Di Crosta M, Benedetti R, Neri A, Gonnella R, Cirone M. EBV infection alters DNA methylation in primary human colon cells: A path to inflammation and carcinogenesis? BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024:195064. [PMID: 39427708 DOI: 10.1016/j.bbagrm.2024.195064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Epstein-Barr Virus (EBV) is associated with several types of human cancers, and changes in DNA methylation are reported to contribute to viral-driven carcinogenesis, particularly in cancers of epithelial origin. In a previous study, we demonstrated that EBV infects human primary colonic cells (HCoEpC) and replicates within these cells, leading to pro-inflammatory and pro-tumorigenic effects. Notably, these effects were mostly prevented by inhibiting viral replication with PAA. Interestingly, the EBV-induced effects correlated with the upregulation of DNMT1 and were counteracted by pretreating cells with 5-AZA, suggesting a role for DNA hypermethylation. Building on this background, the current study investigates the methylation changes induced by EBV infection in HCoEpC, both in the presence and absence of PAA, or ERK1/2 and STAT3 inhibitors, pathways known to be activated by EBV and involved in the dysregulation of methylation in tumor cells. The genome-wide methylation analysis conducted in this study allowed us to identify several biological processes and genes affected by these epigenetic changes, providing insights into the possible underlying mechanisms leading to the pathological effects induced by EBV. Specifically, we found that the virus induced significant methylation changes, with hypermethylation being more prevalent than hypomethylation. Several genes involved in embryogenesis, carcinogenesis, and inflammation were affected.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Giuseppe Ruben Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Salvatore Lo Presti
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Michele Di Crosta
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Alessia Neri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
2
|
Liu H, Yue W, Shao S, Sun J, Yang Y, Dai X. Global analysis of DNA methylation changes during experimented lingual carcinogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:319-328. [PMID: 39049651 PMCID: PMC11190864 DOI: 10.7518/hxkq.2024.2023416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aims to assess the role of DNA methylation changes in tongue cancer through a comprehensive analysis of global DNA methylation alterations during experimental lingual carcinogenesis. METHODS C57BL/6J mice were subjected to 16-week oral administration of 4-nitroquinoline-1-oxide (4NQO, 50 mg/L). Lingual mucosa samples, being representative of normal tissue (week 0) and early (week 12) and advanced (week 28) tumorigenesis, were harvested for microarray and methylated DNA immunoprecipitation sequencing (MeDIP-Seq). The mRNA and promoter methylation of transforming growth factor-beta-signaling protein 1 (SMAD1) were evaluated with real-time quantitative reverse transcription polymerase chain reaction and Massarray in human lingual mucosa and tongue cancer cell lines. RESULTS The cytosine guanine island (CGI) methylation level observed at 28 weeks surpassed that of both 12 weeks and 0 weeks. The promoter methylation level at 12 weeks exceeded that at 0 weeks. Notably, 208 differentially expressed genes were negatively correlated to differential methylation in promoters among 0, 12, and 28 weeks. The mRNA of SMAD1 was upregulated, concurrent with a decrease in promoter methylation levels in cell lines compared to normal mucosa. CONCLUSIONS DNA methylation changed during lingual carcinogenesis. Overexpression of SMAD1 was correlated to promoter hypomethylation in tongue cancer cell lines.
Collapse
Affiliation(s)
- Hua Liu
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Wanyuan Yue
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Shuai Shao
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Jiaping Sun
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Ying Yang
- Dept. of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Xiaoming Dai
- Maxillofacial Service of Department of Plastic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| |
Collapse
|
3
|
Cao L, Ma J, Chen P, Hou X, Yang N, Lu Y, Huang H. Exploring the influence of DNA methylation and single nucleotide polymorphisms of the Myostatin gene on growth traits in the hybrid grouper ( Epinephelus fuscoguttatus (female) × Epinephelus polyphekadion (male)). Front Genet 2024; 14:1277647. [PMID: 38259615 PMCID: PMC10801740 DOI: 10.3389/fgene.2023.1277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Investigations into the correlation between growth characteristics and DNA methylation levels, along with genetic variations, can provide fundamental insights to enhance growth performance in groupers. The Myostatin (mstn) gene plays a vital role in regulating skeletal muscle development and growth. This study scrutinized the DNA methylation levels of the mstn gene across hybrid groupers (E. fuscoguttatus (♀) × E. polyphekadion (♂)) and their parental species, to evaluate its impact on growth attributes in grouper fish. The nucleotide sequence of the mstn gene was directly sequenced in the hybrid grouper, exhibiting different growth performance to identify the single nucleotide polymorphisms (SNPs) of the mstn gene and explore their correlation with growth characteristics. The findings revealed no significant differences in global DNA methylation levels within muscle tissue among the hybrid grouper and parents. However, significant differences in DNA methylation sites were discovered between the hybrid grouper and E. polyphekadion at sites 824 and 1521 (located at exon 2 and intron 2, respectively), and between E. fuscoguttatus and E. polyphekadion at site 1521. These variations could potentially influence the mRNA expression of the mstn gene. The study also identified that SNP g.1003 T > C in exon 2 of the mstn gene was significantly associated with various growth traits including body weight, total length, body length, head length, caudal peduncle height, and body height (p < 0.01). Specimens with the TT genotype at site 1003 demonstrated superior growth performance compared to those with the TC genotype. Furthermore, microstructural analyses of muscle tissue showed that the average area and diameter of muscle fibers in TT genotype individuals were significantly greater than those in TC genotype individuals. Therefore, this research provides robust evidence linking the DNA methylation level and polymorphisms of the mstn gene with growth traits, which could be beneficial for grouper breeding programs.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
4
|
Puri D, Maaßen C, Varona Baranda M, Zeevaert K, Hahnfeld L, Hauser A, Fornero G, Elsafi Mabrouk MH, Wagner W. CTCF deletion alters the pluripotency and DNA methylation profile of human iPSCs. Front Cell Dev Biol 2023; 11:1302448. [PMID: 38099298 PMCID: PMC10720430 DOI: 10.3389/fcell.2023.1302448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination. We generated human induced pluripotent stem cell (iPSC) lines with deletions in the protein-coding region in exon 3 of CTCF, resulting in shorter transcripts and overall reduced protein expression. Chromatin immunoprecipitation showed a considerable loss of CTCF binding to target sites. The CTCF deletions resulted in slower growth and modest global changes in gene expression, with downregulation of a subset of pluripotency-associated genes and neuroectodermal genes. CTCF deletion also evoked DNA methylation changes, which were moderately associated with differential gene expression. Notably, CTCF-deletions lead to upregulation of endo-mesodermal associated marker genes and epigenetic signatures, whereas ectodermal differentiation was defective. These results indicate that CTCF plays an important role in the maintenance of pluripotency and differentiation, especially towards ectodermal lineages.
Collapse
Affiliation(s)
- Deepika Puri
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Catharina Maaßen
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Monica Varona Baranda
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Kira Zeevaert
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Lena Hahnfeld
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Annika Hauser
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Giulia Fornero
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
5
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
6
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
7
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
8
|
Atallah-Yunes SA, Robertson MJ, Davé UP. Epigenetic Aberrations and Targets in Peripheral T-Cell Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:659-665. [PMID: 35577752 DOI: 10.1016/j.clml.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 06/02/2023]
Abstract
Peripheral T cell lymphomas (PTCL) comprise a diverse group of aggressive T-cell and NK-cell lymphomas with many subtypes sharing same treatment algorithms despite having different pathobiology and responses to treatment. The molecular advances made in discovery of genetic mutations that disrupt epigenetic modulation in some subtypes of PTCL such as angioimmunoblastic T cell lymphoma and PTCL-not otherwise specified (NOS) may explain the poor outcomes and unsatisfactory responses to frontline line CHOP and CHOP-like therapy seen in this group of lymphomas. In this article, we address the main genetic mutations such as IDH2, TET2 and DNMT3A seen in PTCL and that disrupt the epigenetic modulation pathways, focusing on acetylation, deacetylation and methylation. Since therapeutic agents that target the disrupted epigenetic modulation pathways in PTCL may change treatment landscape in the near future, we will highlight the ones approved for treatment of refractory and/or relapsed PTCL and also the pivotal regimens being evaluated in clinical trials for treatment of frontline and refractory relapsed disease. We stress the importance of determining whether there is an association between the discussed genetic mutations and responses to the highlighted therapeutic agents such that treatments could be better tailored in patients with this kind of lymphoma with unmet needs.
Collapse
Affiliation(s)
- Suheil Albert Atallah-Yunes
- Division of Hematology and Medical Oncology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN.
| | - Michael J Robertson
- Lymphoma Program, Division of Hematology and Medical Oncology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Utpal P Davé
- Departments of Medicine and Microbiology and Immunology, Division of Hematology/Oncology, R.L. Roudebush VA Medical Center, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
Ignatavicius P, Dauksa A, Zilinskas J, Kazokaite M, Riauka R, Barauskas G. DNA Methylation of HOXA11 Gene as Prognostic Molecular Marker in Human Gastric Adenocarcinoma. Diagnostics (Basel) 2022; 12:diagnostics12071686. [PMID: 35885590 PMCID: PMC9317388 DOI: 10.3390/diagnostics12071686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Hypermethylation of tumor suppressor genes and hypomethylation of oncogenes might be identified as possible biomarkers in gastric cancer (GC). We aimed to assess the DNA methylation status of selected genes in GC tissue samples and evaluate these genes’ prognostic importance on patient survival. Patients (99) diagnosed with GC and who underwent gastrectomy were included. We selected a group of genes (RAD51B, GFRA3, AKR7A3, HOXA11, TUSC3, FLI1, SEZ6L, GLDC, NDRG) which may be considered as potential tumor suppressor genes and oncogenes. Methylation of the HOXA11 gene promoter was significantly more frequent in GC tumor tissue (p = 0.006) than in healthy gastric mucosa. The probability of surviving longer (71.2 months (95% CI 57–85.3) vs. 44.3 months (95% CI 34.8–53.9)) was observed with unmethylated HOXA11 promoter in cancer tissues. Survival in patients with a methylation of HOXA11 promoter either in healthy gastric mucosa or gastric cancer tissue was twice as high as in patients with a methylation of HOXA11 promoter in both healthy gastric mucosa and cancer tissue (61.2 months (95% CI 50.9–71.4) vs. 28.5 months (95% CI 20.8–36.2)). Multivariate Cox analysis revealed the HOXA11 methylation as significantly associated with patients’ survival (HR = 2.4, 95% CI 1.19–4.86). Our results suggest that the HOXA11 gene might be a potential prognostic molecular marker in patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Povilas Ignatavicius
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
- Correspondence: ; Tel.: +370-37-326751
| | - Albertas Dauksa
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
- Institute of Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Justas Zilinskas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| | - Mintaute Kazokaite
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Romualdas Riauka
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| | - Giedrius Barauskas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| |
Collapse
|
10
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
11
|
Gao X, Song Y, Wu J, Lu S, Min X, Liu L, Hu L, Zheng M, Du P, Yu Y, Long H, Wu H, Jia S, Yu D, Lu Q, Zhao M. Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus. J Clin Invest 2022; 132:152345. [PMID: 35499082 PMCID: PMC9057600 DOI: 10.1172/jci152345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Yang Song
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Jiali Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Xiaoli Min
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Yaqin Yu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Di Yu
- Diamantina Institute, The University of Queensland, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| |
Collapse
|
12
|
Li Z, Zhou X, Cai S, Fan J, Wei Z, Chen Y, Cao G. Key roles of CCCTC-binding factor in cancer evolution and development. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The processes of cancer and embryonic development have a partially overlapping effect. Several transcription factor families, which are highly conserved in the evolutionary history of biology, play a key role in the development of cancer and are often responsible for the pivotal developmental processes such as cell survival, expansion, senescence, and differentiation. As an evolutionary conserved and ubiquitously expression protein, CCCTC-binding factor (CTCF) has diverse regulatory functions, including gene regulation, imprinting, insulation, X chromosome inactivation, and the establishment of three-dimensional (3D) chromatin structure during human embryogenesis. In various cancers, CTCF is considered as a tumor suppressor gene and plays homeostatic roles in maintaining genome function and integrity. However, the mechanisms of CTCF in tumor development have not been fully elucidated. Here, this review will focus on the key roles of CTCF in cancer evolution and development (Cancer Evo-Dev) and embryogenesis.
Collapse
Affiliation(s)
- Zishuai Li
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xinyu Zhou
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shiliang Cai
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Junyan Fan
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Zhimin Wei
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yifan Chen
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Frazzi R, Cusenza VY, Pistoni M, Canovi L, Cascione L, Bertoni F, Merli F. KLF4, DAPK1 and SPG20 promoter methylation is not affected by DNMT1 silencing and hypomethylating drugs in lymphoma cells. Oncol Rep 2021; 47:10. [PMID: 34751409 PMCID: PMC8600396 DOI: 10.3892/or.2021.8221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
Promoter methylation represents one of the major epigenetic mechanisms responsible for the regulation of gene expression. Hypomethylating drugs are currently approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia, and some studies have recently been carried out on diffuse large B cell lymphoma (DLBCL). DLBCL is a type of Non-Hodgkin lymphoma. The aim of the present study was to assess the role of DNA methyltransferase (DNMT)1 in mediating the epigenetic regulation of some key targets previously emerged as hypermethylated in Non-Hodgkin lymphoma. Reverse transcription-quantitative PCR, genome-wide arrays and methylation-specific PCR were used to determine the level of methylation of specific targets. Gene silencing, gene expression and immunoblotting were used to investigate the role of DNMT1 and DNMT3a in lymphoma cells. The present study showed that lymphoma cell lines displayed a completely different methylation profile on selected targets compared with primary B lymphocytes and peripheral blood mononuclear cells. 5′-aza-cytidine (5AZA) and 5′-aza-2-deoxycitidine (decitabine) exerted their activity through, at least in part, mechanisms independent of DNMT1 downregulation. Despite a global hypomethylating effect of 5AZA and decitabine, DNMT1 was not found to be necessary to maintain the hypermethylation of Krüppel-like factor 4 (KLF4), death associated protein 1 (DAPK1) and spastic paraplegia 20 (SPG20). SPG20 was found to be a completely methylated target in all the tested cell lines, but not in peripheral blood mononuclear cells, suggesting its association with malignancy. The highest methylation was clustered upstream of the transcription starting site in a panel of 28 DLBCL cell lines and the results were unaffected by the silencing of DNMT1 expression. These data demonstrated the epigenetic regulation of SPG20 in lymphoid cells and identified a number of novel markers associated with lymphomas that deserve further investigation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Laura Canovi
- Immunohematology and Transfusional Medicine Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Merli
- Hematology Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| |
Collapse
|
14
|
Dynamic CTCF binding directly mediates interactions among cis-regulatory elements essential for hematopoiesis. Blood 2021; 137:1327-1339. [PMID: 33512425 DOI: 10.1182/blood.2020005780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
While constitutive CCCTC-binding factor (CTCF)-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell-type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell-type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors. These dynamic sites are enriched for single-nucleotide polymorphisms that are associated with blood cell traits in different linages, and they coincide with the key regulatory elements governing hematopoiesis. CRISPR-Cas9-based perturbation experiments demonstrated that these dynamic CTCF-binding sites play a critical role in red blood cell development. Furthermore, precise deletion of CTCF-binding motifs in dynamic sites abolished interactions of erythroid genes, such as RBM38, with their associated enhancers and led to abnormal erythropoiesis. These results suggest a novel, cell-type-specific function for CTCF in which it may serve to facilitate interaction of distal regulatory emblements with target promoters. Our study of the dynamic, cell-type-specific binding and function of CTCF provides new insights into transcriptional regulation during hematopoiesis.
Collapse
|
15
|
Soejima S, Kondo K, Tsuboi M, Muguruma K, Tegshee B, Kawakami Y, Kajiura K, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GAD1 expression and its methylation as indicators of malignant behavior in thymic epithelial tumors. Oncol Lett 2021; 21:483. [PMID: 33968199 PMCID: PMC8100960 DOI: 10.3892/ol.2021.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Thymic epithelial tumors (TETs) comprise thymomas and thymic carcinoma (TC). TC has more aggressive features and a poorer prognosis than thymomas. Genetic and epigenetic alterations in thymomas and TC have been investigated in an attempt to identify novel target molecules for TC. In the present study, genome-wide screening was performed on aberrantly methylated CpG islands in thymomas and TC, and the glutamate decarboxylase 1 gene (GAD1) was identified as the 4th significantly hypermethylated CpG island in TC compared with thymomas. GAD1 catalyzes the production of γ-aminobutyric acid from L-glutamic acid. GAD1 expression is abundant in the brain but rare in other tissues, including the thymus. A total of 73 thymomas and 17 TC tissues were obtained from 90 patients who underwent surgery or biopsy at Tokushima University Hospital between 1990 and 2017. DNA methylation was examined by bisulfite pyrosequencing, and the mRNA and protein expression levels of GAD1 were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The DNA methylation levels of GAD1 were significantly higher in TC tissues than in the normal thymus and thymoma tissues, and GAD1 methylation exhibited high sensitivity and specificity for discriminating between TC and thymoma. The mRNA and protein expression levels of GAD1 were significantly higher in TC tissues than in thymomas. Patients with TET with high GAD1 DNA hypermethylation and high mRNA and protein expression levels had significantly shorter relapse-free survival rates than those with low levels. In conclusion, significantly more epigenetic alterations were observed in TC tissues compared with in thymomas, which may contribute to the clinical features and prognosis of patients.
Collapse
Affiliation(s)
- Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
16
|
Cheng X, Joseph A, Castro V, Chen-Liaw A, Skidmore Z, Ueno T, Fujisawa JI, Rauch DA, Challen GA, Martinez MP, Green P, Griffith M, Payton JE, Edwards JR, Ratner L. Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathog 2021; 17:e1009577. [PMID: 34019588 PMCID: PMC8174705 DOI: 10.1371/journal.ppat.1009577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/03/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion. Human T-cell leukemia virus type 1 (HTLV-1) is a cause of leukemia and lymphoma as well as several inflammatory medical disorders. The virus integrates in the host cell DNA, and it has a single binding site for a protein designated CTCF. This protein is important in the regulation of many DNA viruses, as well as many properties of normal and malignant cells. In order to define the role of CTCF binding to HTLV, we analyzed a mutant virus lacking the binding site. We found that this mutation variably affected gene expression, DNA and histone modification, suggesting a key role in regulation of virus replication in infected cells.
Collapse
Affiliation(s)
- Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Victor Castro
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Alice Chen-Liaw
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Zachary Skidmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Grant A. Challen
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael P. Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John R. Edwards
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Phamacogenomics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
17
|
Qian S, Sun S, Zhang L, Tian S, Xu K, Zhang G, Chen M. Integrative Analysis of DNA Methylation Identified 12 Signature Genes Specific to Metastatic ccRCC. Front Oncol 2020; 10:556018. [PMID: 33134164 PMCID: PMC7578385 DOI: 10.3389/fonc.2020.556018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Abnormal epigenetic alterations can contribute to the development of human malignancies. Identification of these alterations for early screening and prognosis of clear cell renal cell carcinoma (ccRCC) has been a highly sought-after goal. Bioinformatic analysis of DNA methylation data provides broad prospects for discovery of epigenetic biomarkers. However, there is short of exploration of methylation-driven genes of ccRCC. Methods: Gene expression data and DNA methylation data in metastatic ccRCC were sourced from the Gene Expression Omnibus (GEO) database. Differentially methylated genes (DMGs) at 5′-C-phosphate-G- 3′ (CpG) sites and differentially expressed genes (DEGs) were screened and the overlapping genes in DMGs and DEGs were then subject to gene set enrichment analysis. Next, the weighted gene co-expression network analysis (WGCNA) was used to search hub DMGs associated with ccRCC. Cox regression and ROC analyses were performed to screen potential biomarkers and develop a prognostic model based on the screened hub genes. Results: Three hundred and fourteen overlapping DMGs were obtained from two independent GEO datasets. The turquoise module contained 79 hub DMGs, which represent the most significant module screened by WGCNA. Furthermore, a total of 12 hub genes (CETN3, DCAF7, GPX4, HNRNPA0, NUP54, SERPINB1, STARD5, TRIM52, C4orf3, C12orf51, and C17orf65) were identified in the TCGA database by multivariate Cox regression analyses. All the 12 genes were then used to generate the model for diagnosis and prognosis of ccRCC. ROC analysis showed that these genes exhibited good diagnostic efficiency for metastatic and non-metastatic ccRCC. Furthermore, the prognostic model with the 12 methylation-driven genes demonstrated a good prediction of 5-year survival rates for ccRCC patients. Conclusion: Integrative analysis of DNA methylation data identified 12 signature genes, which could be used as epigenetic biomarkers for prognosis of metastatic ccRCC. This prognostic model has a good prediction of 5-year survival for ccRCC patients.
Collapse
Affiliation(s)
- Siwei Qian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Shengwei Tian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kai Xu
- Department of Urology, Changzhou No. 2 People's Hospital, Changzhou, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Han Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, Hapala J, Koop BE, Strathmann K, Ritz-Timme S, Wagner W. New targeted approaches for epigenetic age predictions. BMC Biol 2020; 18:71. [PMID: 32580727 PMCID: PMC7315536 DOI: 10.1186/s12915-020-00807-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. Results In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. Conclusion Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.
Collapse
Affiliation(s)
- Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Stiehl
- Interdisciplinary Center for Scientific Computing (IWR), Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Jan Hapala
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute for Legal Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
20
|
Wu J, Zhang L, Song Q, Yu L, Wang S, Zhang B, Wang W, Xia P, Chen X, Xiao Y, Xu C. Systematical identification of cell-specificity of CTCF-gene binding based on epigenetic modifications. Brief Bioinform 2020; 22:589-600. [PMID: 32022856 DOI: 10.1093/bib/bbaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.
Collapse
Affiliation(s)
- Jie Wu
- Bioinformatics at Harbin Medical University, China
| | - Li Zhang
- Bioinformatics at Harbin Medical University, China
| | - Qian Song
- Bioinformatics at Harbin Medical University, China
| | - Lei Yu
- Bioinformatics at Harbin Medical University, China
| | - Shuyuan Wang
- Bioinformatics at Harbin Medical University, China
| | - Bo Zhang
- Bioinformatics at Harbin Medical University, China
| | - Weida Wang
- Bioinformatics at Harbin Medical University, China
| | - Peng Xia
- Bioinformatics at Harbin Medical University, China
| | - Xiaowen Chen
- Bioinformatics at Harbin Medical University, China
| | - Yun Xiao
- Bioinformatics at Harbin Medical University, China
| | - Chaohan Xu
- Bioinformatics at Harbin Medical University, China
| |
Collapse
|
21
|
Suppression of BCL6 function by HDAC inhibitor mediated acetylation and chromatin modification enhances BET inhibitor effects in B-cell lymphoma cells. Sci Rep 2019; 9:16495. [PMID: 31712669 PMCID: PMC6848194 DOI: 10.1038/s41598-019-52714-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.
Collapse
|
22
|
Yin J, Hu W, Xue X, Fu W, Dai L, Jiang Z, Zhong S, Deng B, Zhao J. Epigenetic activation of hepatocyte growth factor is associated with epithelial-mesenchymal transition and clinical outcome in non-small cell lung cancer. J Cancer 2019; 10:5070-5081. [PMID: 31602259 PMCID: PMC6775597 DOI: 10.7150/jca.30034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) expression is repressed in normal differentiated lung epithelial cells, but its expression is aberrantly upregulated in non-small cell lung cancer (NSCLC) and acts as a poor prognostic factor. The underlying molecular mechanisms of aberrant HGF expression are unclear. In this study, a novel differential methylation region located in the HGF promoter was identified, which was associated with aberrant HGF expression in NSCLC. The correlations of HGF promoter methylation detected by methylation specific PCR and HGF expression detected by immunohistochemistry with clinical outcomes were assessed in NSCLC patients. DNA methylation of the HGF promoter was correlated with the activation of HGF expression, which induced epithelial-mesenchymal transition, cell migration and invasion. According to the clinical correlation analysis in 63 NSCLC patients, those with high methylation were more likely to have stages III and IV (51.6% vs. 25.0%, P<0.05) and metastasis (57.5% vs. 16.7%, P<0.05) than patients with low methylation. In addition, compared with the protein marker of HGF expression, the DNA methylation marker of the HGF promoter had higher specificity for prognostic analysis of metastases in NSCLC. Our study indicated the regulatory mechanisms related to DNA methylation of the HGF promoter for HGF expression in NSCLC epithelial cells, and suggested that the DNA methylation signature of the HGF promoter could potentially be employed as a biomarker to improve the prognostic accuracy of NSCLC.
Collapse
Affiliation(s)
- Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weimin Hu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingyang Xue
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengpeng Zhong
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Boyun Deng
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Zhang X, Wang Y, Chiang HC, Hsieh YP, Lu C, Park BH, Jatoi I, Jin VX, Hu Y, Li R. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells. Breast Cancer Res 2019; 21:51. [PMID: 30995943 PMCID: PMC6472090 DOI: 10.1186/s13058-019-1132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Background BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells. Methods H3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1mut/+) and non-carriers (BRCA1+/+). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells. Results Here, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1mut/+ MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1mut/+ MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1mut/+ MCF10A cells. Conclusions H3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13058-019-1132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
24
|
Lio CWJ, Rao A. TET Enzymes and 5hmC in Adaptive and Innate Immune Systems. Front Immunol 2019; 10:210. [PMID: 30809228 PMCID: PMC6379312 DOI: 10.3389/fimmu.2019.00210] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/24/2019] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is an abundant and stable epigenetic modification that allows inheritance of information from parental to daughter cells. At active genomic regions, DNA methylation can be reversed by TET (Ten-eleven translocation) enzymes, which are responsible for fine-tuning methylation patterns. TET enzymes oxidize the methyl group of 5-methylcytosine (5mC) to yield 5-hydroxymethylcytosine (5hmC) and other oxidized methylcytosines, facilitating both passive and active demethylation. Increasing evidence has demonstrated the essential functions of TET enzymes in regulating gene expression, promoting cell differentiation, and suppressing tumor formation. In this review, we will focus on recent discoveries of the functions of TET enzymes in the development and function of lymphoid and myeloid cells. How TET activity can be modulated by metabolites, including vitamin C and 2-hydroxyglutarate, and its potential application in shaping the course of immune response will be discussed.
Collapse
Affiliation(s)
- Chan-Wang J. Lio
- Division of Signaling and Gene Expression, La Jolla Institute, La Jolla, CA, United States
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute, La Jolla, CA, United States
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, San Diego, CA, United States
| |
Collapse
|
25
|
Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in Cancer: An Analysis from Published Genomic Studies. High Throughput 2018; 7:ht7040030. [PMID: 30275357 PMCID: PMC6306835 DOI: 10.3390/ht7040030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
CTCF (CCCTC-binding factor) is a transcription regulator with hundreds of binding sites in the human genome. It has a main function as an insulator protein, defining together with cohesins the boundaries of areas of the genome called topologically associating domains (TADs). TADs contain regulatory elements such as enhancers which function as regulators of the transcription of genes inside the boundaries of the TAD while they are restricted from regulating genes outside these boundaries. This paper will examine the most common genetic lesions of CTCF as well as its related protein CTCFL (CTCF-like also called BORIS) in cancer using publicly available data from published genomic studies. Cancer types where abnormalities in the two genes are more common will be examined for possible associations with underlying repair defects or other prevalent genetic lesions. The putative functional effects in CTCF and CTCFL lesions will also be explored.
Collapse
|
26
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Role of CTCF in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:61-68. [PMID: 31395350 DOI: 10.1016/j.mrrev.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
CCCTC-binding factor (CTCF) is a highly conserved, ubiquitously expressed zinc finger protein. CTCF is a multifunctional protein, associated with a number of vital cellular processes such as transcriptional activation, repression, insulation, imprinting and genome organization. Emerging evidence indicates that CTCF is also involved in DNA damage response. In this review, we focus on the newly identified role of CTCF in facilitating DNA double-strand break repair. Due to the large number of cellular processes in which CTCF is involved, factors that functionally affect CTCF could have serious implications on genomic stability. It is becoming increasingly clear that exposure to environmental toxicants could have adverse effects on CTCF functions. Here we discuss the various ways that environmental toxicants could impact CTCF functions and the potential consequences on DNA damage response.
Collapse
|
28
|
Analyzing DNA Methylation Patterns During Tumor Evolution. Methods Mol Biol 2018. [PMID: 29344884 DOI: 10.1007/978-1-4939-7493-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Epigenetic modifications play a key role in cellular development and tumorigenesis. Recent large-scale genomic studies have shown that mutations in players of the epigenetic machinery and concomitant perturbation of epigenomic patterning are frequent events in tumors. Among epigenetic marks, DNA methylation is one of the best studied. Hyper- and hypo-methylation events of specific regulatory elements (such as promoters and enhancers) are sometimes thought to be correlated with expression of nearby genes. High-throughput bisulfite converted sequencing is currently the technology of choice for studying DNA methylation in base-pair resolution and on whole-genome scale. Such broad and high-resolution coverage investigations of the epigenome provide unprecedented opportunities to analyze DNA methylation patterns, which are correlated with tumorigenesis, tumor evolution, and tumor progression. However, few computational pipelines are available to the public to perform systematic DNA methylation analysis. Utilizing open source tools, we here describe a comprehensive computational methodology to thoroughly analyze DNA methylation patterns during tumor evolution based on bisulfite converted sequencing data, including intra-tumor methylation heterogeneity.
Collapse
|
29
|
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| |
Collapse
|
30
|
Song SH, Kim TY. CTCF, Cohesin, and Chromatin in Human Cancer. Genomics Inform 2017; 15:114-122. [PMID: 29307136 PMCID: PMC5769866 DOI: 10.5808/gi.2017.15.4.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Sang-Hyun Song
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Tae-You Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
31
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
32
|
Alavian-Ghavanini A, Rüegg J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin Pharmacol Toxicol 2017; 122:38-45. [PMID: 28842957 DOI: 10.1111/bcpt.12878] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are man-made chemicals that interfere with hormonal signalling pathways. They are used in, for example, production of common household materials, in resin-based medical supplies and in pesticides. Thus, they are environmentally ubiquitous and human beings and wildlife are exposed to them on a daily basis. Early-life exposure to EDCs has been associated with later-life adversities such as obesity, diabetes and cancer. Mechanisms underlying such associations are unknown but are likely to be mediated by epigenetic changes induced by EDCs. Epigenetics is the study of changes in gene function that are heritable but do not entail a change in DNA sequence. EDCs have been shown to affect epigenetic marks such as DNA methylation and histone modifications. The scope of this article was to review today's knowledge about mechanisms involved in EDC-induced epigenetic changes and to discuss how this knowledge could be used for designing novel methods addressing epigenetic effects of EDCs.
Collapse
Affiliation(s)
- Ali Alavian-Ghavanini
- Unit of Toxicology Sciences, Swetox, Department of Clinical Neurosciences, Karolinska Institutet, Södertälje, Sweden
| | - Joëlle Rüegg
- Unit of Toxicology Sciences, Swetox, Department of Clinical Neurosciences, Karolinska Institutet, Södertälje, Sweden
| |
Collapse
|
33
|
Kim TG, Kim S, Jung S, Kim M, Yang B, Lee MG, Kim HP. CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice. Exp Mol Med 2017; 49:e371. [PMID: 28857086 PMCID: PMC5579513 DOI: 10.1038/emm.2017.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis involves a series of lineage differentiation programs initiated in hematopoietic stem cells (HSCs) found in bone marrow (BM). To ensure lifelong hematopoiesis, various molecular mechanisms are needed to maintain the HSC pool. CCCTC-binding factor (CTCF) is a DNA-binding, zinc-finger protein that regulates the expression of its target gene by organizing higher order chromatin structures. Currently, the role of CTCF in controlling HSC homeostasis is unknown. Using a tamoxifen-inducible CTCF conditional knockout mouse system, we aimed to determine whether CTCF regulates the homeostatic maintenance of HSCs. In adult mice, acute systemic CTCF ablation led to severe BM failure and the rapid shrinkage of multiple c-Kithi progenitor populations, including Sca-1+ HSCs. Similarly, hematopoietic system-confined CTCF depletion caused an acute loss of HSCs and highly increased mortality. Mixed BM chimeras reconstituted with supporting BM demonstrated that CTCF deficiency-mediated HSC depletion has both cell-extrinsic and cell-intrinsic effects. Although c-Kithi myeloid progenitor cell populations were severely reduced after ablating Ctcf, c-Kitint common lymphoid progenitors and their progenies were less affected by the lack of CTCF. Whole-transcriptome microarray and cell cycle analyses indicated that CTCF deficiency results in the enhanced expression of the cell cycle-promoting program, and that CTCF-depleted HSCs express higher levels of reactive oxygen species (ROS). Importantly, in vivo treatment with an antioxidant partially rescued c-Kithi cell populations and their quiescence. Altogether, our results suggest that CTCF is indispensable for maintaining adult HSC pools, likely by regulating ROS-dependent HSC quiescence.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sueun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soyeon Jung
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bobae Yang
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
van den Brand M, Scheijen B, Hess CJ, van Krieken JHJ, Groenen PJTA. Pathways towards indolent B-cell lymphoma - Etiology and therapeutic strategies. Blood Rev 2017; 31:426-435. [PMID: 28802906 DOI: 10.1016/j.blre.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/07/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Although patients with indolent B-cell lymphomas have a relatively good survival rate, conventional chemotherapy is not curative. Disease courses are typically characterized by multiple relapses and progressively shorter response duration with subsequent lines of therapy. There has been an explosion of innovative targeted agents in the past years. This review discusses current knowledge on the etiology of indolent B-cell lymphomas with respect to the role of micro-organisms, auto-immune diseases, and deregulated pathways caused by mutations. In particular, knowledge on the mutational landscape of indolent B-cell lymphomas has strongly increased in recent years and harbors great promise for more accurate decision making in the current wide range of therapeutic options. Despite this promise, only in chronic lymphocytic leukemia the detection of TP53 mutations and/or del17p currently have a direct effect on treatment decisions. Nevertheless, it is expected that in the near future the role of genetic testing will increase for prediction of response to targeted treatment as well as for more accurate prediction of prognosis in indolent B-cell lymphomas.
Collapse
MESH Headings
- Animals
- DNA Damage
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/microbiology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell, Marginal Zone/etiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Follicular/etiology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/microbiology
- Lymphoma, Follicular/therapy
- Molecular Targeted Therapy/methods
- Mutation
- Signal Transduction
Collapse
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands; Pathology-DNA, location Rijnstate, Wagnerlaan 55, 6815AD Arnhem, The Netherlands.
| | - Blanca Scheijen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Corine J Hess
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - J Han Jm van Krieken
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Patricia J T A Groenen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Niu X, Liu F, Zhou Y, Zhou Z, Zhou D, Wang T, Li Z, Ye X, Yu Y, Weng X, Zhang H, Ye J, Liao M, Liu Y, Chen Z, Lu S. Genome-wide DNA Methylation Analysis Reveals GABBR2 as a Novel Epigenetic Target for EGFR 19 Deletion Lung Adenocarcinoma with Induction Erlotinib Treatment. Clin Cancer Res 2017; 23:5003-5014. [PMID: 28490462 DOI: 10.1158/1078-0432.ccr-16-2688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/05/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The past decade has witnessed the rapid development of personalized targeted therapies in lung cancer. It is still unclear whether epigenetic changes are involved in the response to tyrosine kinase inhibitor (TKI) treatment in epidermal growth factor receptor (EGFR)-mutated lung cancer.Experimental Design: Methyl-sensitive cut counting sequencing (MSCC) was applied to investigate the methylation changes in paired tissues before and after erlotinib treatment for 42 days with partial response (PR) from stage IIIa (N2) lung adenocarcinoma patients (N = 2) with EGFR 19 deletion. The Sequenom EpiTYPER assay was used to validate the changed methylated candidate genes. Up- or downregulation of the candidate gene was performed to elucidate the potential mechanism in the regulation of erlotinib treatment response.Results: Sixty aberrant methylated genes were screened using MSCC sequencing. Two aberrant methylated genes, CBFA2T3 and GABBR2, were clearly validated. A same differential methylated region (DMR) between exon 2 and exon 3 of GABBR2 gene was confirmed consistently in both patients. GABBR2 was significantly downregulated in EGFR 19 deletion cells, HCC4006 and HCC827, but remained conserved in EGFR wild-type A549 cells after erlotinib treatment. Upregulation of GABBR2 expression significantly rescued erlotinib-induced apoptosis in HCC827 cells. GABBR2 was significantly downregulated, along with the reduction of S6, p-p70 S6, and p-ERK1/2, demonstrating that GABBR2 may play an important role in EGFR signaling through the ERK1/2 pathway.Conclusions: We demonstrated that GABBR2 gene might be a novel potential epigenetic treatment target with induction erlotinib treatment for stage IIIa (N2) EGFR 19 deletion lung adenocarcinoma. Clin Cancer Res; 23(17); 5003-14. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Fatao Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi Zhou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Zhen Zhou
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ting Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiangyun Ye
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongfeng Yu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoling Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Hong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Junyi Ye
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China.,Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Meilin Liao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Zhiwei Chen
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
36
|
Shimbo T, Dunnick JK, Brix A, Mav D, Shah R, Roberts JD, Wade PA. DNA Methylation Changes in Tbx3 in a Mouse Model Exposed to Polybrominated Diphenyl Ethers. Int J Toxicol 2017; 36:229-238. [PMID: 28466692 DOI: 10.1177/1091581817706676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DE-71, a commercial mixture of polybrominated diphenyl ethers widely used in flame retardants, is a pervasive environmental contaminant due to its continuing release from waste material and its long half-life in humans. Although the genotoxic potential of DE-71 appears to be low based on bacterial mutagenicity, it remains a public health concern due to its reported involvement in tumor development. Molecular mechanisms by which DE-71 influences tumor incidence or progression remain understudied. We used liver carcinoma tissue from mice exposed to DE-71 to test the hypothesis that epigenetic alterations consistent with tumor development, specifically DNA methylation, result from long-term DE-71 exposure. We profiled DNA methylation status using the methylated-CpG island recovery assay coupled with microarray analysis of hepatocellular carcinoma DNA from animals exposed to DE-71. DE-71 exposure had little impact on global DNA methylation. However, we detected gene body-specific hypomethylation within the Tbx3 locus, a transcription factor important in liver tumorigenesis and in embryonic and cancer stem cell proliferation. This nonpromoter hypomethylation was accompanied by upregulation of Tbx3 mRNA and protein and by alterations in downstream cell cycle-associated marker expression. Thus, exposure to DE-71 may facilitate tumor development by inducing epigenetic programs that favor expansion of progenitor cell populations.
Collapse
Affiliation(s)
- Takashi Shimbo
- 1 Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - June K Dunnick
- 2 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Amy Brix
- 2 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.,3 EPL Inc, Research Triangle Park, NC, USA
| | - Deepak Mav
- 4 Sciome LLC, Research Triangle Park, NC, USA
| | - Ruchir Shah
- 4 Sciome LLC, Research Triangle Park, NC, USA
| | - John D Roberts
- 1 Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paul A Wade
- 1 Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Rossi EL, Dunlap SM, Bowers LW, Khatib SA, Doerstling SS, Smith LA, Ford NA, Holley D, Brown PH, Estecio MR, Kusewitt DF, deGraffenried LA, Bultman SJ, Hursting SD. Energy Balance Modulation Impacts Epigenetic Reprogramming, ERα and ERβ Expression, and Mammary Tumor Development in MMTV-neu Transgenic Mice. Cancer Res 2017; 77:2500-2511. [PMID: 28373182 DOI: 10.1158/0008-5472.can-16-2795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/14/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERβ expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERβ expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERβ. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500-11. ©2017 AACR.
Collapse
Affiliation(s)
- Emily L Rossi
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah M Dunlap
- Department of Nutritional Sciences, University of Texas, Austin, Texas
| | - Laura W Bowers
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Subreen A Khatib
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven S Doerstling
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura A Smith
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikki A Ford
- Department of Nutritional Sciences, University of Texas, Austin, Texas
| | - Darcy Holley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Powel H Brown
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Donna F Kusewitt
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas
| | | | - Scott J Bultman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Marshall AD, Bailey CG, Champ K, Vellozzi M, O'Young P, Metierre C, Feng Y, Thoeng A, Richards AM, Schmitz U, Biro M, Jayasinghe R, Ding L, Anderson L, Mardis ER, Rasko JEJ. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic. Oncogene 2017; 36:4100-4110. [PMID: 28319062 PMCID: PMC5519450 DOI: 10.1038/onc.2017.25] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer.
Collapse
Affiliation(s)
- A D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - C G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - K Champ
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M Vellozzi
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - P O'Young
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - C Metierre
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Y Feng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A Thoeng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A M Richards
- Gynaecological Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - U Schmitz
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M Biro
- Cell Motility and Mechanobiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R Jayasinghe
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - L Ding
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - L Anderson
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - E R Mardis
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - J E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Willemsen M, Schouten HC. Inappropriate costimulation and aberrant DNA methylation as therapeutic targets in angioimmunoblastic T-cell lymphoma. Biomark Res 2017; 5:6. [PMID: 28194275 PMCID: PMC5299773 DOI: 10.1186/s40364-017-0085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is one of the most common subtypes of peripheral T-cell lymphoma. Advances in understanding the mutational landscape of AITL have not resulted in improved prognosis nor consensus regarding optimal first-line and second-line treatment. The recently proposed multistep tumorigenesis model for AITL provides a theoretical framework of AITL oncogenesis. In this model, early mutations in epigenetic modifiers interact with late cooperative mutations to enable malignant transformation. Frequent mutations in epigenetic modifiers suggest that aberrant DNA methylation contributes to AITL oncogenesis. Several research groups have reported findings suggesting that inappropriate costimulation acts as a late cooperative mutation. Drugs targeting inappropriate costimulation have already been approved for the treatment of several malignancies or autoimmune diseases. Additionally, aberrant DNA methylation was recently shown to potentiate inappropriate costimulation in a subset of AITL cases. Therefore, drugs targeting inappropriate costimulation and hypomethylating agents might have synergistic effects. Both offer promising new therapeutic options in AITL treatment. This commentary summarizes the main findings on aberrant DNA methylation and inappropriate costimulation in AITL and proposes several already approved drugs for AITL treatment. Hopefully, these will contribute to improving the still dismal prognosis of AITL patients.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Harry C Schouten
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
40
|
Nishizawa S, Sakata-Yanagimoto M, Hattori K, Muto H, Nguyen T, Izutsu K, Yoshida K, Ogawa S, Nakamura N, Chiba S. BCL6 locus is hypermethylated in angioimmunoblastic T-cell lymphoma. Int J Hematol 2016; 105:465-469. [PMID: 27921272 DOI: 10.1007/s12185-016-2159-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
BCL6, a master transcription factor for differentiation of follicular helper T (TFH) cells, is highly expressed in angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphomas (PTCL) containing tumor cells with TFH features. TET2, encoding an epigenetic regulator, is frequently mutated in AITL/PTCL. We previously reported that Tet2 knockdown mice developed T-cell lymphomas with TFH features. Hypermethylation of the Bcl6 locus followed by BCL6 upregulation was thought to be the key event for lymphoma development in mice. The mechanisms by which BCL6 expression is upregulated in human AITL/PTCL, however, have not been elucidated. Here, we investigated the impact of TET2 mutations on methylation of BCL6 locus in human AITL/PTCL samples. Hypermethylation of the BCL6 locus was more frequent in PTCL samples than B-cell lymphoma samples (PTCL vs B-cell lymphomas: 9/42 vs 0/35). PTCL samples with TET2 mutations were more frequently hypermethylated than those without TET2 mutations (PTCL with TET2 mutations vs without mutations: 6/22 vs 0/17). BCL6 expression in hypermethylated samples was higher than that in low methylated samples. Deregulated BCL6 expression caused by hypermethylation and TET2 mutations may result in skewed TFH differentiation and eventually contribute to AITL/PTCL development in patients, as well as lymphoma development in Tet2 knockdown mice.
Collapse
Affiliation(s)
- Shoko Nishizawa
- Department of Hematology, Comprehensive Human, Biosciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Comprehensive Human, Biosciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Hematology, University of Tsukuba Hospital, Amakubo, Tsukuba, Ibaraki, Japan.
| | - Keiichiro Hattori
- Department of Hematology, Comprehensive Human, Biosciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hideharu Muto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Hematology, University of Tsukuba Hospital, Amakubo, Tsukuba, Ibaraki, Japan
| | - Tran Nguyen
- Department of Hematology, Comprehensive Human, Biosciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Koji Izutsu
- Department of Hematology, Toranomon Hospital, Toranomon, Minato-ku, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon, Minato-ku, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto-shi, Sakyo-ku, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto-shi, Sakyo-ku, Kyoto, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Shigeru Chiba
- Department of Hematology, Comprehensive Human, Biosciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Hematology, University of Tsukuba Hospital, Amakubo, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
41
|
Cardenas MG, Oswald E, Yu W, Xue F, MacKerell AD, Melnick AM. The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clin Cancer Res 2016; 23:885-893. [PMID: 27881582 DOI: 10.1158/1078-0432.ccr-16-2071] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
BCL6 was initially discovered as an oncogene in B-cell lymphomas, where it drives the malignant phenotype by repressing proliferation and DNA damage checkpoints and blocking B-cell terminal differentiation. BCL6 mediates its effects by binding to hundreds of target genes and then repressing these genes by recruiting several different chromatin-modifying corepressor complexes. Structural characterization of BCL6-corepressor complexes suggested that BCL6 might be a druggable target. Accordingly, a number of compounds have been designed to bind to BCL6 and block corepressor recruitment. These compounds, based on peptide or small-molecule scaffolds, can potently block BCL6 repression of target genes and kill lymphoma cells. In the case of diffuse large B-cell lymphomas (DLBCL), BCL6 inhibitors are equally effective in suppressing both the germinal center B-cell (GCB)- and the more aggressive activated B-cell (ABC)-DLBCL subtypes, both of which require BCL6 to maintain their survival. In addition, BCL6 is implicated in an expanding scope of hematologic and solid tumors. These include, but are not limited to, B-acute lymphoblastic leukemia, chronic myeloid leukemia, breast cancer, and non-small cell lung cancer. BCL6 inhibitors have been shown to exert potent effects against these tumor types. Moreover, mechanism-based combinations of BCL6 inhibitors with other agents have yielded synergistic and often quite dramatic activity. Hence, there is a compelling case to accelerate the development of BCL6-targeted therapies for translation to the clinical setting. Clin Cancer Res; 23(4); 885-93. ©2016 AACR.
Collapse
Affiliation(s)
- Mariano G Cardenas
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Erin Oswald
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Ari M Melnick
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
42
|
Marullo R, Rutherford SC, Leonard JP, Cerchietti L. Therapeutic implication of concomitant chromosomal aberrations in patients with aggressive B-cell lymphomas. Cell Cycle 2016; 15:2241-7. [PMID: 27419806 DOI: 10.1080/15384101.2016.1207839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A subset of diffuse large B-cell lymphomas (DLBCL) harbors concomitant rearrangements of MYC, BCL2 and BCL6 and is characterized by clinical aggressiveness and intrinsic refractoriness to standard chemo-immunotherapy. Commonly identified as "double or triple hit" lymphomas, these diseases represent a therapeutic challenge to chemotherapy-based regimens and likely require a more targeted approach. Herein we summarize the unique biological behavior of double and triple hit lymphomas focusing on the coordinated network of pathways that enable cancer cells to tolerate the oncogenic stress imposed by the co-expression of MYC, BCL2 and BCL6. We discuss how these enabling pathways contribute to the chemo-refractoriness of these tumors. We propose to exploit lymphoma cells' addiction to these oncogenic networks to design combinatorial treatments for this aggressive disease based on the modulation of epigenetically-silenced pathways and decreasing expression and activity of these oncogenic drivers.
Collapse
Affiliation(s)
- Rossella Marullo
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - Sarah C Rutherford
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - John P Leonard
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - Leandro Cerchietti
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| |
Collapse
|
43
|
Luo H, Schmidt JA, Lee YS, Oltz EM, Payton JE. Targeted epigenetic repression of a lymphoma oncogene by sequence-specific histone modifiers induces apoptosis in DLBCL. Leuk Lymphoma 2016; 58:445-456. [PMID: 27268204 DOI: 10.1080/10428194.2016.1190973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations to the epigenetic landscape of diffuse large B-cell lymphoma (DLBCL) play a fundamental role in deregulating genes involved in normal lymphocyte differentiation. To determine whether targeted epigenetic therapy could reverse these pathogenic chromatin changes and suppress the expression of a lymphoma oncogene, we focused on BCL6, a transcriptional repressor whose aberrant expression is tightly linked to DLBCL proliferation and survival. We fused zinc-finger (ZF) domains specific for regulatory regions in the BCL6 locus to a repressive epigenetic modifier, the Kruppel-associated box (KRAB) repressor domain. Distinct ZF-KRAB fusions repressed the local chromatin landscape, suppressed BCL6 expression, significantly impaired DLBCL growth, and caused widespread cell death in a BCL6-dependent manner. Importantly, expression of ectopic BCL6 protein rescued ZF-KRAB-induced cell death, demonstrating the modifiers' specificity. We show that sequence-specific epigenetic modifiers can alter oncogene expression and induce apoptosis in cancer cells, underscoring their potential for future development as targeted epigenetic protein therapies.
Collapse
Affiliation(s)
- Hong Luo
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jennifer A Schmidt
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Yi-Shan Lee
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Eugene M Oltz
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jacqueline E Payton
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
44
|
A promising hypothesis of c-KIT methylation/ expression paradox in c-KIT (+) squamous cell carcinoma of uterine cervix ----- CTCF transcriptional repressor regulates c-KIT proto-oncogene expression. Diagn Pathol 2015; 10:207. [PMID: 26607501 PMCID: PMC4660683 DOI: 10.1186/s13000-015-0438-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
We recently reported one interesting case showing mutation-free c-KIT proto-oncogene overexpression and paradoxical hypermethylation in 54 cases of primary squamous cell carcinoma of uterine cervix (SCC). However, its molecular mechanisms still remain unknown. We propose the hypothesis that increased methylation at the CpG islands on the promoter near the first exon region might interfere with the binding of CTCF repressor with c-KIT promoter that regulates c-KIT proto-oncogene expression in such case. Further studies focusing on the status of epigenetic modifications of mutation-free c-KIT (+) tumors are encouraged.
Collapse
|
45
|
DNA methylation reactivates GAD1 expression in cancer by preventing CTCF-mediated polycomb repressive complex 2 recruitment. Oncogene 2015; 35:3995-4008. [PMID: 26549033 DOI: 10.1038/onc.2015.423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/06/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Levels of γ-aminobutyric acid (GABA) and glutamic acid decarboxylase 1 (GAD1), the enzyme that synthesizes GABA, are significantly increased in neoplastic tissues. However, the mechanism underlying this increase remains elusive. Instead of silencing gene transcription, we showed that the GAD1 promoter was hypermethylated in both colon and liver cancer cells, leading to the production of high levels of GAD1. GAD1 is a target gene that is silenced by H3K27me3. The key locus responsible for GAD1 reactivation was mapped to a DNA methylation-sensitive CTCF-binding site (CTCF-BS3) within the third intron of GAD1. Chromosome configuration capture (3C) analysis indicated that an intrachromosomal loop was formed by CTCF self-dimerisation in normal cells (CTCF binds to both unmethylated CTCF-BS3 and CTCF-BS2). The CTCF dimer then interacted with suppressor of zeste 12 homologue (SUZ12), which is a domain of Polycomb repressive complex 2 (PRC2), promoting the methylation of H3K27 and the silencing of GAD1 expression. This silencing was shown to be inhibited by DNA methylation in cancer cells. These findings strongly suggest that GAD1 is reactivated by DNA methylation, which provided a model for DNA methylation and the active orchestration of oncogenic gene expression by CTCF in cancer cells.
Collapse
|
46
|
Kang JY, Song SH, Yun J, Jeon MS, Kim HP, Han SW, Kim TY. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression. Oncogene 2015; 34:5677-84. [PMID: 25703332 DOI: 10.1038/onc.2015.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/15/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
The CCCTC-binding factor (CTCF)/cohesin complex regulates gene transcription via high-order chromatin organization of the genome. De novo methylation of CpG islands in the promoter region is an epigenetic hallmark of gene silencing in cancer. Although the CTCF/cohesin complex preferentially targets hypomethylated DNA, it remains unclear whether the CTCF/cohesin-mediated high-order chromatin structure is affected by DNA methylation during tumorigenesis. We found that DNA methylation downregulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), which is an inducible, rate-limiting enzyme for prostaglandin synthesis, by disrupting CTCF/cohesin-mediated chromatin looping. We show that the CTCF/cohesin complex is enriched near a CpG island associated with PTGS2 and that the PTGS2 locus forms chromatin loops through methylation-sensitive binding of the CTCF/cohesin complex. DNA methylation abolishes the association of the CTCF/cohesin complex with the PTGS2 CpG island. Disruption of chromatin looping by DNA methylation abrogates the enrichment of transcriptional components, such as positive elongation factor b, at the transcriptional start site of the PTGS2 locus. These alterations result in the downregulation of PTGS2. Our results provide evidence that CTCF/cohesin-mediated chromatin looping of the PTGS2 locus is dynamically influenced by the DNA methylation status.
Collapse
Affiliation(s)
- J Y Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S H Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J Yun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - M S Jeon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H P Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S W Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - T Y Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
47
|
Batlle-López A, Cortiguera MG, Delgado MD. The epigenetic regulator CTCF modulates BCL6 in lymphoma. Oncoscience 2015; 2:783-4. [PMID: 26682243 PMCID: PMC4671918 DOI: 10.18632/oncoscience.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/12/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ana Batlle-López
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria) Santander, Spain
| | - María G Cortiguera
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria) Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria) Santander, Spain
| |
Collapse
|
48
|
Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6:6921. [PMID: 25891015 PMCID: PMC4411286 DOI: 10.1038/ncomms7921] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse. The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here the authors characterize epigenetic evolution in aggressive B-cell lymphoma and find that epigenomic heterogeneity may not only support and drive the relapse phenotype but also be used to predict lymphoma relapse.
Collapse
|
49
|
Abstract
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) is strongly linked to perturbation of epigenetic mechanisms. The germinal center (GC) B cells from which DLBCLs arise are prone to instability in their cytosine methylation patterns. DLBCLs inherit this epigenetic instability and display variable degrees of epigenetic heterogeneity. Greater epigenetic heterogeneity is linked with poor clinical outcome. Somatic mutations of histone-modifying proteins have also emerged as a hallmark of DLBCL. The effect of these somatic mutations may be to disrupt epigenetic switches that control the GC phenotype and "lock in" certain oncogenic features of GC B cells, resulting in malignant transformation. DNA methyltransferase and histone methyltransferase inhibitors are emerging as viable therapeutic approaches to erase aberrant epigenetic programming, suppress DLBCL growth, and overcome chemotherapy resistance. This review will discuss these recent advances and their therapeutic implications.
Collapse
Affiliation(s)
- Yanwen Jiang
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
50
|
Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J 2014; 4:e264. [PMID: 25501021 PMCID: PMC4315889 DOI: 10.1038/bcj.2014.83] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/11/2022] Open
Abstract
TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30–83%) or peripheral T-cell lymphoma, not otherwise specified (10–49%), as well as myeloid malignancies. Here, we show that middle-aged Tet2 knockdown (Tet2gt/gt) mice exhibit Tfh-like cell overproduction in the spleen compared with control mice. The Tet2 knockdown mice eventually develop T-cell lymphoma with Tfh-like features after a long latency (median 67 weeks). Transcriptome analysis revealed that these lymphoma cells had Tfh-like gene expression patterns when compared with splenic CD4-positive cells of wild-type mice. The lymphoma cells showed lower hmC densities around the transcription start site (TSS) and higher mC densities at the regions of the TSS, gene body and CpG islands. These epigenetic changes, seen in Tet2 insufficiency-triggered lymphoma, possibly contributed to predated outgrowth of Tfh-like cells and subsequent lymphomagenesis. The mouse model described here suggests that TET2 mutations play a major role in the development of T-cell lymphoma with Tfh-like features in humans.
Collapse
|