1
|
Gaonkar R, Pritmani J, Datar M, Singh D, Balasinor N, Nishi K. Long-term effects of sub-chronic exposure to L-NAME on reproductive system of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03609-3. [PMID: 39545987 DOI: 10.1007/s00210-024-03609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Nω-nitro-l-arginine methyl ester (L-NAME) has been utilized as a nitric oxide synthase antagonist for many years in both basic and clinical research settings to assess its therapeutic potential. Though a number of studies have shown the effect of L-NAME on testicular function, the information regarding the reversibility of these effects upon L-NAME withdrawal is limited. In the present study, male rats (68-80 days old) divided randomly into three groups received different doses of L-NAME, i.e. 20 mg/kg bw (L20) and 10 mg/kg bw (L10) in drinking water, and drinking water only (control) through oral gavage daily for three weeks. The rats were monitored for and sacrificed after 60 days of L-NAME treatment termination. The animals had a significantly higher (p < 0.01) mean blood pressure compared to control. Aberrant histological changes were observed in the testes of L-NAME-treated rats. A significant reduction (p < 0.05) in the sperm count and an increase in abnormal sperm morphology (p < 0.05) was observed in L-NAME treated rats. Moreover, the spermatogenic cycle was found to be altered in L-NAME treated rats. No change was observed in serum estradiol levels, while serum testosterone levels were significantly increased (p < 0.05) in L10 and L20 animals. The intra-testicular testosterone was increased significantly (p < 0.01) in L20 animals. A significant decrease (p < 0.05) in superoxide dismutase activity was observed in L20 animals. The sub-chronic exposure to L-NAME resulted in higher mean arterial blood pressure and long-term testicular tissue damage, affecting sperm quality and spermatogenesis.
Collapse
Affiliation(s)
- Reshma Gaonkar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Janvi Pritmani
- Sunandan Divatia School of Science, NMIMS, Mumbai, Maharashtra, 400056, India
| | - Mamata Datar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
2
|
Chen M, Xu T, Song L, Sun T, Xu Z, Zhao Y, Du P, Xiong L, Yang Z, Jing J, Shi H. Nanotechnology based gas delivery system: a "green" strategy for cancer diagnosis and treatment. Theranostics 2024; 14:5461-5491. [PMID: 39310098 PMCID: PMC11413789 DOI: 10.7150/thno.98884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Gas therapy, a burgeoning clinical treatment modality, has garnered widespread attention to treat a variety of pathologies in recent years. The advent of nanoscale gas drug therapy represents a novel therapeutic strategy, particularly demonstrating immense potential in the realm of oncology. This comprehensive review navigates the landscape of gases endowed with anti-cancer properties, including hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), oxygen (O2), sulfur dioxide (SO2), hydrogen sulfide (H2S), ozone (O3), and heavier gases. The selection of optimal delivery vectors is also scrutinized in this review to ensure the efficacy of gaseous agents. The paper highlights the importance of engineering stimulus-responsive delivery systems that enable precise and targeted gas release, thereby augmenting the therapeutic efficiency of gas therapy. Additionally, the review examines the synergistic potential of integrating gas therapy with conventional treatments such as starvation therapy, ultrasound (US) therapy, chemotherapy, radiotherapy (RT), and photodynamic therapy (PDT). It also discusses the burgeoning role of advanced multimodal and US imaging in enhancing the precision of gas therapy applications. The insights presented are pivotal in the strategic development of nanomedicine platforms designed for the site-specific delivery of therapeutic gases, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
- Meixu Chen
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Tianyue Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Linlin Song
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Ting Sun
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Zihan Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Yujie Zhao
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Peixin Du
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Ling Xiong
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Zhankun Yang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei, China, 050035
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| |
Collapse
|
3
|
Liu B, Du F, Feng Z, Xiang X, Guo R, Ma L, Zhu B, Qiu L. Ultrasound-augmented cancer immunotherapy. J Mater Chem B 2024; 12:3636-3658. [PMID: 38529593 DOI: 10.1039/d3tb02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects. Ultrasound is considered to possess significant therapeutic potential in the antitumor field because of its inherent characteristics, including cavitation, pyrolysis, and sonoporation. Herein, this timely review presents the comprehensive and systematic research progress of ultrasound-enhanced cancer immunotherapy, focusing on the various ultrasound-related mechanisms and strategies. Moreover, this review summarizes the design and application of current sonosensitizers based on sonodynamic therapy, with an attempt to provide guidance on new directions for future cancer therapy.
Collapse
Affiliation(s)
- Bingjie Liu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fangxue Du
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ziyan Feng
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruiqian Guo
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
5
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Shami PJ. Development of JS-K, a First-in-Class Arylated Diazeniumdiolate, for the Treatment of Cancer. Crit Rev Oncog 2023; 28:57-62. [PMID: 37824387 DOI: 10.1615/critrevoncog.2023048725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Paul J Shami
- Department of Medicine, Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, 2000 Circle of Hope, Suite 2100, University of Utah, Salt Lake City
| |
Collapse
|
7
|
Intralesional TLR4 agonist treatment strengthens the organ defense against colonizing cancer cells in the brain. Oncogene 2022; 41:5008-5019. [PMID: 36224342 DOI: 10.1038/s41388-022-02496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022]
Abstract
Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries. In contrast, we demonstrated that TLR4 stimulation reduces microglia-assisted breast cancer cell invasion. However, the expression, prognostic value, or therapeutic potential of TLR signaling in breast cancer brain metastasis have not been investigated. We thus tested the prognostic value of various TLRs in two brain-metastasis gene sets. Furthermore, we investigated different TLR agonists, as well as MyD88 and TRIF-deficient microenvironments in organotypic brain-slice ex vivo co-cultures and in vivo colonization experiments. These experiments underline the ambiguous roles of TLR4, its adapter MyD88, and the target nitric oxide (NO) during brain colonization. Moreover, analysis of the gene expression datasets of breast cancer brain metastasis patients revealed associations of TLR1 and IL6 with poor overall survival. Finally, our finding that a single LPS application at the onset of colonization shapes the later microglia/macrophage reaction at the macro-metastasis brain-parenchyma interface (MMPI) and reduces metastatic infiltration into the brain parenchyma may prove useful in immunotherapeutic considerations.
Collapse
|
8
|
Simultaneous determination of NO released inside and outside cells at the single-cell level using CE-LIF. ANAL SCI 2022; 38:913-916. [DOI: 10.1007/s44211-022-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 11/01/2022]
|
9
|
Pillars and Gaps of S-Nitrosylation-Dependent Epigenetic Regulation in Physiology and Cancer. Life (Basel) 2021; 11:life11121424. [PMID: 34947954 PMCID: PMC8704633 DOI: 10.3390/life11121424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates in pathophysiological responses of many different tissues, inducing concentration-dependent effect. Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cytotoxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO might exert epigenetic regulation through direct effects on both DNA and histones as well as through indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects different cell pathways and functions ranging from the impairment of DNA damage repair to the modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene expression programs in health and disease.
Collapse
|
10
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
11
|
Orchestration of myeloid-derived suppressor cells in the tumor microenvironment by ubiquitous cellular protein TCTP released by tumor cells. Nat Immunol 2021; 22:947-957. [PMID: 34239121 DOI: 10.1038/s41590-021-00967-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
One of most challenging issues in tumor immunology is a better understanding of the dynamics in the accumulation of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TIME), as this would lead to the development of new cancer therapeutics. Here, we show that translationally controlled tumor protein (TCTP) released by dying tumor cells is an immunomodulator crucial to full-blown MDSC accumulation in the TIME. We provide evidence that extracellular TCTP mediates recruitment of the polymorphonuclear MDSC (PMN-MDSC) population in the TIME via activation of Toll-like receptor-2. As further proof of principle, we show that inhibition of TCTP suppresses PMN-MDSC accumulation and tumor growth. In human cancers, we find an elevation of TCTP and an inverse correlation of TCTP gene dosage with antitumor immune signatures and clinical prognosis. This study reveals the hitherto poorly understood mechanism of the MDSC dynamics in the TIME, offering a new rationale for cancer immunotherapy.
Collapse
|
12
|
Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The Role of Nitric Oxide in Cancer: Master Regulator or NOt? Int J Mol Sci 2020; 21:ijms21249393. [PMID: 33321789 PMCID: PMC7763974 DOI: 10.3390/ijms21249393] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.
Collapse
Affiliation(s)
- Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Dibyangana D. Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Jake D. McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Katrina M. Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
13
|
Edwards SC, Hoevenaar WHM, Coffelt SB. Emerging immunotherapies for metastasis. Br J Cancer 2020; 124:37-48. [PMID: 33262520 PMCID: PMC7782509 DOI: 10.1038/s41416-020-01160-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Major advances in cancer immunotherapy have dramatically expanded the potential to manipulate immune cells in cancer patients with metastatic disease to counteract cancer spread and extend patient lifespan. One of the most successful types of immunotherapy is the immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1, that keep anti-tumour T cells active. However, not every patient with metastatic disease benefits from this class of drugs and patients often develop resistance to these therapies over time. Tremendous research effort is now underway to uncover new immunotherapeutic targets that can be used in patients who are refractory to anti-CTLA-4 or anti-PD-1 treatment. Here, we discuss results from experimental model systems demonstrating that modulating the immune response can negatively affect metastasis formation. We focus on molecules that boost anti-tumour immune cells and opportunities to block immunosuppression, as well as cell-based therapies with enhanced tumour recognition properties for solid tumours. We also present a list of challenges in treating metastatic disease with immunotherapy that must be considered in order to move laboratory observations into clinical practice and maximise patient benefit. ![]()
Collapse
Affiliation(s)
- Sarah C Edwards
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wilma H M Hoevenaar
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Lee JC, Mehdizadeh S, Smith J, Young A, Mufazalov IA, Mowery CT, Daud A, Bluestone JA. Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci Immunol 2020; 5:eaba0759. [PMID: 33008914 PMCID: PMC7755924 DOI: 10.1126/sciimmunol.aba0759] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Patients with cancer with liver metastasis demonstrate significantly worse outcomes than those without liver metastasis when treated with anti-PD-1 immunotherapy. The mechanism of liver metastases-induced reduction in systemic antitumor immunity is unclear. Using a dual-tumor immunocompetent mouse model, we found that the immune response to tumor antigen presence within the liver led to the systemic suppression of antitumor immunity. The immune suppression was antigen specific and associated with the coordinated activation of regulatory T cells (Tregs) and modulation of intratumoral CD11b+ monocytes. The dysfunctional immune state could not be reversed by anti-PD-1 monotherapy unless Treg cells were depleted (anti-CTLA-4) or destabilized (EZH2 inhibitor). Thus, this study provides a mechanistic understanding and rationale for adding Treg and CD11b+ monocyte targeting agents in combination with anti-PD-1 to treat patients with cancer with liver metastasis.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD11b Antigen/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Female
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/secondary
- Lymphocyte Depletion/methods
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice
- Mice, Transgenic
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- James C Lee
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sadaf Mehdizadeh
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Smith
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arabella Young
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Ilgiz A Mufazalov
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cody T Mowery
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adil Daud
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
15
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
16
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
17
|
Cheng Y, Kiene NJ, Tatarian A, Eix EF, Schorey JS. Host cytosolic RNA sensing pathway promotes T Lymphocyte-mediated mycobacterial killing in macrophages. PLoS Pathog 2020; 16:e1008569. [PMID: 32463840 PMCID: PMC7282665 DOI: 10.1371/journal.ppat.1008569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 04/22/2020] [Indexed: 01/28/2023] Open
Abstract
Mycobacterial infection leads to activation of the RIG-I/MAVS/TBK1 RNA sensing pathway in macrophages but the consequences of this activation remains poorly defined. In this study, we determined that activation of this RNA sensing pathway stimulates ICAM-1 expression in M.avium-infected macrophage through the inhibition of the E3 ubiquitin ligase CRL4COP1/DET1. CRL4 when active targets the transcription factor ETV5 for degradation by the ubiquitin-proteasome system. In the absence of the ETV5 transcription factor, ICAM-1 expression is significantly decreased. The M.avium-induced ICAM-1 production is required for the formation of immune synapse between infected macrophages and antigen-specific CD4+ T lymphocytes, and is essential for CD4+ T lymphocyte-mediated mycobacterial killing in vitro and in mice. This study demonstrates a previously undefined mechanism by which a host cytosolic RNA sensing pathway contributes to the interplay between mycobacteria infected macrophages and antigen-specific T lymphocytes.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nicholas J. Kiene
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alexandra Tatarian
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Emily F. Eix
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffrey S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: Current status and future developments. J Control Release 2020; 323:12-23. [PMID: 32302759 DOI: 10.1016/j.jconrel.2020.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has considerable potential in eliminating cancers by activating the host's own immune system, while the thermal and mechanical effects of ultrasound have various applications in tumor therapy. Hyperthermia, ablation, histotripsy, and microbubble stable/inertial cavitation can alter the tumor microenvironment to enhance immunoactivation to inhibit tumor growth. Microbubble cavitation can increase vessel permeability and thereby improve the delivery of immune cells, cytokines, antigens, and antibodies to tumors. Violent microbubble cavitation can disrupt tumor cells and efficiently expose them to numerous antigens so as to promote the maturity of antigen-presenting cells and subsequent adaptive immune-cell activation. This review provides an overview and compares the mechanisms of ultrasound-induced immune modulation for peripheral and brain tumor therapy, even degenerative brain diseases therapy. The possibility of reversing tumors to an immunoactive microenvironment by utilizing the cavitation of microbubbles loaded with therapeutic gases is also proposed as another potential pathway for immunotherapy. Finally, we disuss the challenges and opportunities of ultrasound in immunotherapy for future development.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ju-Pi Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
19
|
Mir MA, Mehraj U. Double-crosser of the Immune System: Macrophages in Tumor Progression and Metastasis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666190611122818] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are the phagocytic sentinel cells of our body, with high plasticity required to maintain homeostasis. This incredibly diverse set of cells, in response to various environmental stimuli such as cytokines and other factors, constantly alters their functional state/phenotype. They undergo polarization not only into conventional M1/M2 axis but also undergo a diverse spectrum of macrophage subtypes which play critical roles in various immune functions and homeostasis. In the tumor microenvironment, monocytes polarize along with the alternatively activated macrophages AAM or M2 macrophages associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Tumor-Associated Macrophage (TAM) infiltration has long been associated with poor prognosis and therefore represents potential diagnostic and prognostic biomarkers in solid tumors. Inhibiting the recruitment of monocytes into the tumor microenvironment and targeted deletion of TAMs have shown promising results. Targeting the TAMs towards M1-like macrophages has also demonstrated to be an efficient way to prevent tumor progression and metastasis. Here in this article, we review how TAMs orchestrate different steps in tumor progression and metastasis and the opportunities to target them in the quest for cancer prevention and treatment. Further, we explore how chemotherapies and immunotherapies can target TAM reprogramming and depletion to serve as a strategy for the control of various types of cancers in the future.
Collapse
Affiliation(s)
- Manzoor Ahmed Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
20
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
21
|
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J. Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis. Onco Targets Ther 2019; 12:8687-8699. [PMID: 31695427 PMCID: PMC6814357 DOI: 10.2147/ott.s216355] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) that appear in every stage of cancer progression are usually tumor-promoting cells and are present abundantly in the tumor-associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is a relatively efficient TAM parameter for predicting the prognosis of patients, especially for serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development, metastasis and invasion of ovarian cancer, but the underlying mechanism is barely understood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian cancer-associated death can primarily be attributed to cancer metastasis. The majority of patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the effectiveness of surgery and chemotherapy. In addition, unlike other well-documented cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian cancer. This review sheds light on TAMs and the main process and mechanism of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayao Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Annapurna Sadhukhan
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
22
|
Avtandilyan N, Javrushyan H, Karapetyan A, Trchounian A. RETRACTED ARTICLE: Inhibition of Tumor Progression by N G-Nitro-L-arginine Methyl Ester in 7,12- dimethylbenz(a)anthracene Induced Breast Cancer: Nitric Oxide Synthase Inhibition as an Antitumor Prevention. J Mammary Gland Biol Neoplasia 2019; 24:199. [PMID: 30806909 DOI: 10.1007/s10911-019-09428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Nikolay Avtandilyan
- Laboratory of Biochemistry, Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Republic of Armenia
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025, 1 Alex Manoogian, Yerevan, Republic of Armenia
| | - Hayarpi Javrushyan
- Laboratory of Biochemistry, Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Republic of Armenia
| | - Anna Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Republic of Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025, 1 Alex Manoogian, Yerevan, Republic of Armenia.
| |
Collapse
|
23
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
24
|
Huo Y, Miao J, Fang J, Shi H, Wang J, Guo W. Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chem Sci 2019; 10:145-152. [PMID: 30713625 PMCID: PMC6328002 DOI: 10.1039/c8sc03694b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs), constituting up to 50% of the solid tumor mass and commonly having a pro-tumoral M2 phenotype, are closely associated with decreased survival in patients. Based on the highly dynamic properties of macrophages, in recent years the repolarization of TAMs from pro-tumoral M2 phenotype to anti-tumoral M1 phenotype by various strategies has emerged as a promising cancer immunotherapy approach for improving cancer therapy. Herein, we present an aromatic secondary amine-functionalized Bodipy dye 1 and its mitochondria-targetable derivative Mito1 as fluorescent NO probes for discriminating M1 macrophages from M2 macrophages in terms of their difference in inducible NO synthase (iNOS) levels. The two probes possess the unique ability to simultaneously respond to two secondary oxides of NO, i.e., N2O3 and ONOO-, thus being more sensitive and reliable for reflecting intracellular NO than most of the existing fluorescent NO probes that usually respond to N2O3 only. With 1 as a representative, the discrimination between M1 and M2 macrophages, evaluation of the repolarization of TAMs from pro-tumoral M2 phenotype to anti-tumoral M1 phenotype, and visualization of NO communication during the immune-mediated phagocytosis of cancer cells by M1 macrophages have been realized. These results indicate that our probes should hold great potential for imaging applications in cancer immunotherapy studies and relevant anti-cancer drug screening.
Collapse
Affiliation(s)
- Yingying Huo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Junfeng Miao
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Junru Fang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Hu Shi
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Juanjuan Wang
- Scientific Instrument Center , Shanxi University , Taiyuan 030006 , China
| | - Wei Guo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| |
Collapse
|
25
|
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM, Dueñas M. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? Clin Transl Oncol 2018; 21:391-403. [PMID: 30291519 DOI: 10.1007/s12094-018-1952-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Macrophages are major components of the immune infiltration in cancer where they can affect tumor behavior. In the bladder, they play important roles during the resolution of infectious processes and they have been associated with a worse clinical prognosis in bladder cancer. The present review focused on the characteristics of these important immune cells, not only eliciting an innate immune surveillance, but also on their importance during the cancer immunoediting process. We further discuss the potential of targeting macrophages for anticancer therapy, the current strategies and the state of the art as well as the foreseen role on combined therapies on the near future. This review shows how a comprehensive understanding of macrophages within the tumor should translate to better clinical outcome and new therapeutic strategies focusing especially on bladder cancer.
Collapse
Affiliation(s)
- C Rubio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - E Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - I Lodewijk
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - C Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - V Karaivanova
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - R Ruiz-Palomares
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - J M Paramio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - M Dueñas
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
26
|
Utispan K, Pugdee K, Koontongkaew S. Porphyromonas gingivalis lipopolysaccharide-induced macrophages modulate proliferation and invasion of head and neck cancer cell lines. Biomed Pharmacother 2018; 101:988-995. [DOI: 10.1016/j.biopha.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022] Open
|
27
|
Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of Kras mutation-positive, non-small cell lung cancer. Oncotarget 2018; 7:42385-42392. [PMID: 27285753 PMCID: PMC5173142 DOI: 10.18632/oncotarget.9874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
Oncogenic mutations in the gene KRAS are commonly detected in non-small cell lung cancer (NSCLC). This disease is inherently difficult to treat, and combinations involving platinum-based drugs remain the therapeutic mainstay. In terms of novel, pharmacologically actionable targets, nitric oxide synthases (NOS) have been implicated in the etiology of KRAS-driven cancers, including lung cancer, and small molecular weight NOS inhibitors have been developed for the treatment of other diseases. Thus, we evaluated the anti-neoplastic activity of the oral NOS inhibitor L-NAME in a randomized preclinical trial using a genetically engineered mouse model of Kras and p53 mutation-positive NSCLC. We report here that L-NAME decreased lung tumor growth in vivo, as assessed by sequential radiological imaging, and provided a survival advantage, perhaps the most difficult clinical parameter to improve upon. Moreover, L-NAME enhanced the therapeutic benefit afforded by carboplatin chemotherapy, provided it was administered as maintenance therapy after carboplatin. Collectively, these results support the clinical evaluation of L-NAME for the treatment of KRAS mutation-positive NSCLC.
Collapse
|
28
|
Mandal P. Molecular signature of nitric oxide on major cancer hallmarks of colorectal carcinoma. Inflammopharmacology 2017; 26:331-336. [PMID: 29289998 DOI: 10.1007/s10787-017-0435-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Colorectal cancer (CRC) is the one of the most important diseases throughout the world. Several aetiological risk factors, viz. sedentary life style, smoking, alcohol intake, less physical activity, red meat, and microbiota, are associated with the development of CRC. Molecular pathophysiology of CRC implies inflammation, metastasis, apotosis and angiogenesis. Inflammation involves interaction between various immune cells, inflammatory cells, chemokines, cytokines, and pro-inflammatory mediators, such as cyclooxygenase (COX) and lipoxygenase (LOX) pathways, which may lead to signalling towards, tumour cell proliferation, growth, and invasion whereas nitric oxide (NO) has been associated with metastasis, apoptosis, and angiogenesis. Therefore, this review emphasises on the potential molecular mechanisms associated with NO with alteration of cancer biomarkers during development of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Paramita Mandal
- Department of Zoology, The University of Burdwan, Burdwan, India.
| |
Collapse
|
29
|
Porta C, Sica A, Riboldi E. Tumor-associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS J 2017; 285:717-733. [PMID: 28985035 DOI: 10.1111/febs.14288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Tumor-associated myeloid cells (TAMCs), mainly represented by tumor-associated macrophages and myeloid-derived suppressor cells, can promote tumor growth directly, by favoring tumor cell proliferation and survival, and indirectly, by creating an immunosuppressive microenvironment. Myeloid cells are characterized by an extreme phenotypical and functional plasticity. Immunometabolism is now emerging as a crucial aspect of TAMCs skewing toward pro-tumoral activities. The metabolic re-education of myeloid cells is a new strategy to boost their antitumor effector functions. Several anticancer therapies targeting TAMCs are already under investigation. Nowadays, the hot topic of cancer immunotherapy is represented by immune checkpoint inhibitors. These drugs unrestrain T-cell-mediated tumor elimination by removing suppressive signals delivered by tumor-associated cells. The efficacy of immune checkpoint blockade can be enhanced using coordinated strategies to counteract the TAMCs-dependent impairment of immune adaptive responses. In the first part of the review, we will describe the association between metabolic reprogramming and TAMCs biological activities. In the second part, we will illustrate the potential of combination therapies associating TAMC-targeting drugs with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara, Italy
| |
Collapse
|
30
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
Affiliation(s)
- Géraldine Genard
- URBC - NARILIS, University of Namur, Namur, Belgium.,Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
31
|
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.
Collapse
|
32
|
Andrejeva G, Rathmell JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 2017; 26:49-70. [PMID: 28683294 PMCID: PMC5555084 DOI: 10.1016/j.cmet.2017.06.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from resting tissues. More recently understood is that this metabolic phenotype is not unique to cancer cells but instead reflects characteristics of proliferating cells. Similar metabolic transitions also occur in the immune system as cells transition from resting state to stimulated effectors. A key finding in immune metabolism is that the metabolic programs of different cell subsets are distinctly associated with immunological function. Further, interruption of those metabolic pathways can shift immune cell fate to modulate immunity. These studies have identified numerous metabolic similarities between cancer and immune cells but also critical differences that may be exploited and that affect treatment of cancer and immunological diseases.
Collapse
Affiliation(s)
- Gabriela Andrejeva
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Contribution of the Microenvironmental Niche to Glioblastoma Heterogeneity. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630875 PMCID: PMC5467280 DOI: 10.1155/2017/9634172] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the heterogeneous nature of the tumor, which in addition to intrinsic molecular and genetic changes is also influenced by the microenvironmental niche in which the glioma cells reside. The cancer stem cells (CSCs) hypothesis suggests that all cancers arise from CSCs that possess the ability to self-renew and initiate tumor formation. CSCs reside in specialized niches where interaction with the microenvironment regulates their stem cell behavior. The reciprocal interaction between glioma stem cells (GSCs) and cells from the microenvironment, such as endothelial cells, immune cells, and other parenchymal cells, may also promote angiogenesis, invasion, proliferation, and stemness of the GSCs and be likely to have an underappreciated role in their responsiveness to therapy. This crosstalk may also promote molecular transition of GSCs. Hence the inherent plasticity of GSCs can be seen as an adaptive response, changing according to the signaling cue from the niche. Given the association of GSCs with tumor recurrence and treatment sensitivity, understanding this bidirectional crosstalk between GSCs and its niche may provide a framework to identify more effective therapeutic targets and improve treatment outcome.
Collapse
|
34
|
Dong R, Wang X, Wang H, Liu Z, Liu J, Saavedra JE. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells. Biomed Pharmacother 2017; 88:367-373. [DOI: 10.1016/j.biopha.2017.01.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022] Open
|
35
|
Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S, Sasso MS, Qualls JE, Kratochvill F, Zanovello P, Molon B, Ries CH, Runza V, Hoves S, Bilocq AM, Bindea G, Mazza EMC, Bicciato S, Galon J, Murray PJ, Bronte V. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell 2016; 30:377-390. [PMID: 27622331 PMCID: PMC5023283 DOI: 10.1016/j.ccell.2016.08.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022]
Abstract
Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.
Collapse
Affiliation(s)
- Ilaria Marigo
- Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy.
| | - Serena Zilio
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | | | - Bernhard Mlecnik
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris 75006, France; Université Paris Descartes, Paris 75006, France; Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris 75006, France
| | - Andrielly H R Agnellini
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Stefano Ugel
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Maria Stella Sasso
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Joseph E Qualls
- Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Franz Kratochvill
- Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paola Zanovello
- Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy; Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Barbara Molon
- Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy
| | - Carola H Ries
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Valeria Runza
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Sabine Hoves
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Amélie M Bilocq
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris 75006, France; Université Paris Descartes, Paris 75006, France; Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris 75006, France
| | - Gabriela Bindea
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris 75006, France; Université Paris Descartes, Paris 75006, France; Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris 75006, France
| | - Emilia M C Mazza
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Jérôme Galon
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris 75006, France; Université Paris Descartes, Paris 75006, France; Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris 75006, France
| | - Peter J Murray
- Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy.
| |
Collapse
|
36
|
Vahora H, Khan MA, Alalami U, Hussain A. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention. J Cancer Prev 2016; 21:1-12. [PMID: 27051643 PMCID: PMC4819660 DOI: 10.15430/jcp.2016.21.1.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Huzefa Vahora
- School of Life Sciences, Manipal University, Zayed University, Dubai, United Arab Emirates
| | - Munawwar Ali Khan
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Usama Alalami
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal University, Zayed University, Dubai, United Arab Emirates
| |
Collapse
|
37
|
Vahora H, Khan MA, Alalami U, Hussain A. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention. J Cancer Prev 2016. [DOI: 10.15430/jcp.2016.21.1.1\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Huzefa Vahora
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Munawwar Ali Khan
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Usama Alalami
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| |
Collapse
|
38
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|
39
|
Branković B, Stanojević G, Nestorović M, Veljković A, Stojanović I, Petrović D, Pavlović D, Kocić G, Đinđić B, Krivokapić Z. TROSATIVE STRESS PARAMETERS IN COLON CANCER TUMOR, ADJACENT AND HEALTHY TISSUE. ACTA MEDICA MEDIANAE 2016. [DOI: 10.5633/amm.2016.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Kiraz Y, Baran Y, Nalbant A. T cells in tumor microenvironment. Tumour Biol 2015; 37:39-45. [PMID: 26476540 DOI: 10.1007/s13277-015-4241-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tumors progress in a specific area, which supports its development, spreading or shrinking in time with the presence of different factors that effect the fate of the cancer cells. This specialized site is called "tumor microenvironment" and has a composition of heterogenous materials. The immune cells are also residents of this stromal, cancerous, and inflammatory environment, and their types, densities, or functional differences are one of the key factors that mediate the fate of a tumor. T cells as a vital part of the immune system also are a component of tumor microenvironment, and their roles have been elucidated in many studies. In this review, we focused on the immune system components by focusing on T cells and detailed T helper cell subsets in tumor microenvironment and how their behaviors affect either the tumor or the patient's outcome.
Collapse
Affiliation(s)
- Yağmur Kiraz
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey
- Faculty of Life and Natural Sciences, Abdullah Gul University, 38080, Kayseri, Turkey
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey
- Faculty of Life and Natural Sciences, Abdullah Gul University, 38080, Kayseri, Turkey
| | - Ayten Nalbant
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey.
| |
Collapse
|
41
|
He Q, Guo S, Qian Z, Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev 2015; 44:6258-6286. [PMID: 26056688 PMCID: PMC4540626 DOI: 10.1039/c4cs00511b] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulae provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines.
Collapse
Affiliation(s)
- Qianjun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 2015; 125:3365-76. [PMID: 26325033 DOI: 10.1172/jci80006] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The generation of an inflammatory environment is favorable and often decisive for the growth of both primary tumors and metastases. Tumor cells either express membrane molecules or release tumor-derived soluble factors able to alter myelopoiesis. Tumor-reprogrammed myeloid cells not only create a tolerogenic environment by blocking T cell functions and proliferation, but also directly drive tumor growth by promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. In this Review, we discuss the interplay between immunosuppressive and protumoral myeloid cells and detail their immune-regulatory mechanisms, the molecular pathways involved in their differentiation, as well as their potential role as prognostic and diagnostic biomarkers and prospective targets for innovative approaches to treat tumor-bearing hosts.
Collapse
|
43
|
Yu N, Fu S, Xu Z, Liu Y, Hao J, Zhang A, Wang B. Synergistic antitumor responses by combined GITR activation and sunitinib in metastatic renal cell carcinoma. Int J Cancer 2015; 138:451-62. [PMID: 26239999 DOI: 10.1002/ijc.29713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Sunitinib, a multitargeted tyrosine kinase inhibitor, is the frontline therapy for renal and gastrointestinal cancers. In view of its well-documented proapoptotic and immunoadjuvant properties, we speculate that combination of Sunitinib and immunotherapy would provide a synergistic antitumor effect. Here, we report that a remarkably synergistic antitumor responses elicited by the combined treatment of Sunitinib and an agonistic antibody against glucocorticoid-induced TNFR related protein (GITR) in a model of metastatic renal cell carcinoma. Sunitinib significantly increased the infiltration, activation, and proliferation and/or cytotoxicity of CD8(+) T cells and NK cells in liver metastatic foci when combined with the anti (α)-GITR agonist, which was associated with treatment-induced prominent upregulation of Th1-biased immune genes in the livers from mice receiving combined therapy versus single treatment. Sunitinib/α-GITR treatment also markedly promoted the maturation, activation and cytokine production of liver-resident macrophages and DCs compared with that achieved by α-GITR or Sunitinib treatment alone in mice. Cell depletion experiments demonstrated that CD8(+) T cells, NK cells and macrophage infiltrating liver metastatic foci all contribute to the antitumor effect induced by combined treatment. Furthermore, mechanistic investigation revealed that Sunitinib treatment reprograms tumor-associated macrophages toward classically activated or "M1" polarization upon GITR stimulation and consequently mounts an antitumor CD8(+) T and NK cell response via inhibiting STAT3 activity. Thus, our findings provide a proof of concept that Sunitinib can synergize with α-GITR treatment to remodel the tumor immune microenvironment to trigger regressions of an established metastatic cancer.
Collapse
Affiliation(s)
- Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Shuai Fu
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Jinan, Shandong, China
| | - Yi Liu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Junwen Hao
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Aimin Zhang
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Baocheng Wang
- Department of Oncology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| |
Collapse
|
44
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
45
|
Shiri S, Alizadeh AM, Baradaran B, Farhanghi B, Shanehbandi D, Khodayari S, Khodayari H, Tavassoli A. Dendrosomal Curcumin Suppresses Metastatic Breast Cancer in Mice by Changing M1/M2 Macrophage Balance in the Tumor Microenvironment. Asian Pac J Cancer Prev 2015; 16:3917-22. [DOI: 10.7314/apjcp.2015.16.9.3917] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| |
Collapse
|
47
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
|
48
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|
49
|
Fionda C, Abruzzese MP, Zingoni A, Soriani A, Ricci B, Molfetta R, Paolini R, Santoni A, Cippitelli M. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer 2015; 15:17. [PMID: 25609078 PMCID: PMC4311457 DOI: 10.1186/s12885-015-1023-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Background DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. Methods Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). Results Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. Conclusions The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1023-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Maria Pia Abruzzese
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Biancamaria Ricci
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy. .,Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, IS, Italy.
| | - Marco Cippitelli
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
50
|
Van Overmeire E, Laoui D, Keirsse J, Bonelli S, Lahmar Q, Van Ginderachter JA. STAT of the union: dynamics of distinct tumor-associated macrophage subsets governed by STAT1. Eur J Immunol 2014; 44:2238-42. [PMID: 24975396 DOI: 10.1002/eji.201444870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/06/2023]
Abstract
The tumor stroma has long been ignored as therapeutic target, but it has become clear that several stromal cell types play a nonredundant role during tumor progression. In particular, macrophages possess the capacity to stimulate tumor growth and metastasis via multiple mechanisms. In this issue of the European Journal of Immunology, a study by Tymoszuk et al. Eur. J. Immunol. 2014. 44: 2247-2262 demonstrates that both monocyte recruitment and local macrophage proliferation determines the tumor-associated macrophage (TAM) pool size in HER2/Neu-driven mammary carcinomas. These tumors contain two main TAM subsets--MHC class II (MHC-II)(lo) F4/80(hi) and MHC-II(hi) F4/80(lo)--similar to what was observed in other tumor models. Interestingly, only the MHC-II(lo) F4/80(hi) subset is largely absent in a STAT1-deficient background. STAT1 induces the expression of CSF-1, which in turn drives TAM proliferation and possibly also the M2 gene signature of MHC-II(lo) F4/80(hi) TAM. Conversely, STAT1 deficiency upregulates M2 gene expression in MHC-II(hi) F4/80(lo) TAM, demonstrating that both TAM subsets are differentially regulated, probably as a consequence of their distinct intratumoral localization. In this Commentary, we place these findings in the context of current knowledge and propose new avenues for future research.
Collapse
Affiliation(s)
- Eva Van Overmeire
- Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|