1
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2025; 182:3-25. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Zhao H, Xu J, Zhong Y, He S, Hao Z, Zhang B, Liu Z, Zhou X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int Immunopharmacol 2024; 142:113034. [PMID: 39226826 DOI: 10.1016/j.intimp.2024.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1β production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Han Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 210017 Nanjing, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shiqing He
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 221009 Xuzhou, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
3
|
Chen H, Xie S, Zhou Y, Chen L, Xu J, Cai J. MEK1/2 promote ROS production and deubiquitinate NLRP3 independent of ERK1/2 during NLRP3 inflammasome activation. Biochem Pharmacol 2024; 230:116572. [PMID: 39396647 DOI: 10.1016/j.bcp.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Inflammasomes are cytosolic supramolecular complexes that play a key role in the innate immune response. Overactivation of NLR family pyrin domain containing 3 (NLRP3) inflammasome leads to multiple diseases. Post-translational modifications (PTMs) are essential modulators of inflammasomes especially in activation phase. Here we found that MEK1/2 kinase activity was indispensable in NLRP3 inflammasome activation both in vitro and in vivo. Inhibition of MEK1/2 resulted in reactive oxygen species (ROS) scavenging and ubiquitination of NLRP3, which further blocked NLRP3 inflammasome activation. These effects were independent of ERK1/2, which were classic downstream of MEK1/2. These investigations proposed a mechanism that MEK1/2 regulated inflammation via non-transcriptional regulation of NLRP3 inflammasome and might help better understanding the effects and side-effects of MEK inhibitors in clinical use.
Collapse
Affiliation(s)
- Hanwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, PR China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, PR China
| | - Yichen Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Lin Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, PR China
| | - Jian Xu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, PR China.
| |
Collapse
|
4
|
Chai Y, Xiang H, Ma Y, Feng W, Jiang Z, Zhu Q, Chen Y, Liu Q, Zhang J, Ouyang J, Gao P, Zhang X, Chen S, Jin L, Lu H. S1PR1 suppresses lung adenocarcinoma progression through p-STAT1/miR-30c-5 p/FOXA1 pathway. J Exp Clin Cancer Res 2024; 43:304. [PMID: 39551792 PMCID: PMC11571582 DOI: 10.1186/s13046-024-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate receptor 1 (S1PR1) is considered to be closely related to a variety of malignant tumors, but the role and mechanism of S1PR1 in lung adenocarcinoma are not fully understood. In this study, we aim to explore the role and downstream signaling pathways of S1PR1 in the malignant biological functions of lung adenocarcinoma (LUAD). METHODS Bioinformatics analysis, RT-qPCR, western blot and immunohistochemistry (IHC) were was used to investigate the expression of S1PR1 in LUAD. The prognosis of S1PR1 was also analyzed. CCK-8 assay, colony formation assay, scratch assay, transwell migration and invasion assay, cell adhesion assay were performed to examine the effect of S1PR1 on LUAD. RNA sequencing was employed to analyze the DEGs in LUAD cells overexpressing S1PR1. Enrichment pathway analysis using KEGG, GO, and GSEA was conducted to predict potential signaling pathways and downstream targets. chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay were performed to verify the direct regulation between FOXA1 and the target genes. Then FOXA1 overexpression were performed to functional rescue experiments. miRNA-30c-5p was identified as a microRNA regulating FOXA1 by dual luciferase reporter assay. The downstream signaling pathways of S1PR1 was detected to clarify the specific pathways to regulates miR-30c-5p. RESULTS S1PR1 is significantly decreased in LUAD and is positively correlated with the prognosis. Overexpression of S1PR1 inhibits the proliferation, migration, invasion and adhesion function of LUAD cells by suppressing the expression of COL5A1, MMP1, and SERPINE1. FOXA1 is a key transcription factor regulating the expression of MMP1, COL5A1 and SERPINE1. S1PR1 inhibits the expression of FOXA1 through p-STAT1/miR-30c-5p, thereby suppressing the malignant function of LUAD cells. CONCLUSIONS The expression of S1PR1 is downregulated in LUAD, which is positively correlated with prognosis. S1PR1 regulates the malignant function of LUAD cells by inhibiting the expression of COL5A1, MMP1 and SERPINE1 through the p-STAT1/miR-30c-5p/FOXA1 signaling pathway.
Collapse
Affiliation(s)
- Yanfei Chai
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Thoracic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Hong Xiang
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuchao Ma
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qianjun Zhu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yingji Chen
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Quanjun Liu
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Zhang
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Hongwei Lu
- Department of Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China.
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Liu Z, Xu S, Chen L, Gong J, Wang M. The role of pyroptosis in cancer: key components and therapeutic potential. Cell Commun Signal 2024; 22:548. [PMID: 39548573 PMCID: PMC11566483 DOI: 10.1186/s12964-024-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Pyroptosis is a lytic and inflammatory form of gasdermin protein-mediated programmed cell death that is typically initiated by inflammasomes. The inflammasome response is an effective mechanism for eradicating germs and cancer cells in the event of cellular injury. The gasdermin family is responsible for initiating pyroptosis, a process in which holes are made in the cell membrane to allow inflammatory chemicals to escape. Mounting evidence indicates that pyroptosis is critical for controlling the development of cancer. In this review, we provide a general overview of pyroptosis, examine the relationship between the primary elements of pyroptosis and tumors, and stress the necessity of pyroptosis-targeted therapy in tumors. Furthermore, we explore its dual nature as a double-edged sword capable of both inhibiting and facilitating the growth of cancer, depending on the specific conditions. Ultimately, pyroptosis is a phenomenon that has both positive and negative effects on tumors. Using this dual impact in a reasonable manner may facilitate investigation into the initiation and progression of tumors and offer insights for the development of novel treatments centered on pyroptosis.
Collapse
Affiliation(s)
- Zixi Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Simiao Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lin Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
8
|
Zhao Z, Ma D, Qin Y, Xu Y, Li S, Liu H. Melatonin downregulates angiogenesis and lymphangiogenesis by regulating tumor-associated macrophages via NLRP3 inflammasomes in lung adenocarcinoma. Aging (Albany NY) 2024; 16:12225-12238. [PMID: 39230586 PMCID: PMC11424589 DOI: 10.18632/aging.206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
Tumor-associated macrophages (TAMs), present within the tumor microenvironment (TME), strictly modulate tumor angiogenesis and lymphangiogenesis. Nevertheless, the associated signaling networks and candidate drug targets for these events remains to be elucidated. Given its antioxidative activities, we speculated that melatonin may reduce pyroptosis, and thereby modulate both angiogenesis and lymphangiogenesis. We revealed that a co-culture of A549 cells and THP-1 macrophages strongly enhanced expressions of the NLRP3 inflammasome axis members, and augmented angiogenesis and lymphangiogenesis. Next, we overexpressed NLRP3 in the A549 cells, and demonstrated that excess NLRP3 expression substantially upregulated VEGF and CXCL cytokine expressions, and enhanced lymphatic endothelial cells (LECs) tube formation. In contrast, NLRP3 inhibition produced the opposite effect. In addition, relative to controls, melatonin administration strongly inhibited the NLRP3 inflammasome axis, as well as angiogenesis and lymphangiogenesis in the co-culture system. Subsequent animal experiments using a Lewis Lung Carcinoma (LLC) subcutaneous tumor model in mice corroborate these findings. Melatonin treatment and NLRP3 knockdown significantly inhibit tumor growth and downregulate NLRP3 and IL-1β expression in tumor tissues. Furthermore, melatonin downregulates the expression of angiogenic and lymphangiogenic markers in tumor tissues. Taken together, the evidence suggested that a THP-1 macrophage and A549 cell co-culture stimulates angiogenesis and lymphangiogenesis via the NLRP3 axis. Melatonin protected against the TAMs- and NLRP3 axis-associated promotion of the aforementioned events in vitro and in vivo. Hence, melatonin is a promising candidate for managing for tumor-related angiogenesis and lymphangiogenesis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhewei Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dongjie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
10
|
Qian D, Qiu J, Xu Y, Hong W, He C, Guan D, Zheng Q, Liu X, Wu C, Meng X, Tang H. Whole transcriptome sequencing indicated the Anti-tumor immunity of NLRP3 in breast cancer. Genomics 2024; 116:110930. [PMID: 39214479 DOI: 10.1016/j.ygeno.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer (BC) is a prevalent cancer of the female reproductive system and a major contributor to cancer-related mortality. The activation of NLRP3, a key inflammasome, has been extensively associated with tumor-related molecular and cellular processes; however, the regulatory mechanisms and specific role of NLRP3 in breast cancer remain incompletely elucidated. This study aimed to evaluate the molecular mechanisms of NLRP3-related genes in BC. Utilizing bioinformatics methods, the present research analyzed the TCGA-BRCA dataset, which included four groups of transcriptome sequencing data as follows, normal (WT), NLRP3 knockout (KO), non-knockout-BRCA (BC-WT), and NLRP3-knockout-BRCA (BC-KO). Results indicated that NLRP3 was significantly down-regulated in TCGA-BRCA. Key module genes were mainly enriched in leukocyte cell-cell adhesion and cytokine-cytokine receptor interaction. Moreover, correlation analysis showed that NLRP3 was positively associated with cancer-associated fibroblasts and negatively associated with CD4+ Th1 T-cells. In addition, the DEGs1 and DEGs2 overlapping indicated 505 feature genes, with Chac1 (negative) and Ugt8a (positive) had the strongest correlation with differential immune cells (class-switched memory B cells). Pathway intersection revealed 13 co-KEGG pathways. The BC-KO group indicated markedly reduced levels of four genes (Ccl19, Ccl20, Ccl21a, and H2-Oa) and increased levels of two genes (Il2ra and H2-Ob). This study delved into the role of NLRP3 in BC, exploring its regulatory mechanisms and the impact gene knockout. Bioinformatics approaches identified NLRP3-associated genes, their enriched pathways, and interactions within the tumor microenvironment (TME), providing novel insights into NLRP3 function, TME dynamics, and potential targets for BC prevention and treatment.
Collapse
Affiliation(s)
- Da Qian
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China; Department of Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, China
| | - Jie Qiu
- Department of Thyroid and Breast surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Yadan Xu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Weimin Hong
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Chaoqi He
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Dandan Guan
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Qinghui Zheng
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Xiaozhen Liu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China
| | - Chaoshen Wu
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, China.
| | - Xuli Meng
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China.
| | - Hongchao Tang
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; China Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310014, China.
| |
Collapse
|
11
|
da Silva P, Mora J, You X, Wiechmann S, Putyrski M, Garcia-Pardo J, Kannt A, Ernst A, Bruene B, Weigert A. Neutralizing IL-38 activates γδ T cell-dependent antitumor immunity and sensitizes for chemotherapy. J Immunother Cancer 2024; 12:e008641. [PMID: 39209451 PMCID: PMC11367332 DOI: 10.1136/jitc-2023-008641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The interleukin (IL)-1-family receptor antagonist IL-38 has emerged as a negative regulator of auto-inflammation. Given the intricate interplay between antitumor immunity and auto-inflammation, we hypothesized that blocking IL-38 may enhance tumor immune control. METHODS Our hypothesis was tested in the transgenic polyoma virus middle T oncoprotein mammary carcinoma model that is suitable for identifying strong immunomodulators. To investigate the effect of acute IL-38 blockade, we used a neutralizing antibody, alone or in combination with chemotherapy. Immune cell composition and location in tumors were determined by flow cytometry and immunohistochemistry, respectively. The role of γδ T cells was studied using an antibody blocking γδ T-cell receptor signaling. Whole transcriptome RNA sequencing and RNA expression analysis were employed to determine mechanisms downstream of IL-38 neutralization. Additionally, in vitro assays with γδ T cells, CD8+ T cells and cDC1, followed by in vivo CD8+ T cell depletion, were performed to study the underlying mechanistic pathways. RESULTS Both, genetic ablation of IL-38 and neutralization with the antibody, reduced tumorigenesis, and IL-38 blockade improved chemotherapy efficacy. This was accompanied by an augmented lymphocyte infiltrate dominated by γδ T cells and CD8+ T cells, and signaling through the γδ-T-cell receptor was required for CD8+ T cell infiltration. Rather than directly interacting with CD8+ T cells, γδ T cells recruited conventional dendritic cells (cDC1) into tumors via the chemokine Xcl1. cDC1 in turn activated CD8+ T cells via the Notch pathway. Moreover, IL-38 negatively correlated with cDC1, XCL1-producing γδ T cells, T-cell infiltrates and survival in patients with mammary carcinoma. CONCLUSIONS These data suggest that interfering with IL-38 improves antitumor immunity even in immunologically cold tumors.
Collapse
Affiliation(s)
- Priscila da Silva
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Javier Mora
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
- Centro de Investigación en Cirugía y Cancer (CICICA), University of Costa Rica, 2060 San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), University of Costa Rica, San José, Costa Rica
| | - Xin You
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Svenja Wiechmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Mateusz Putyrski
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Javier Garcia-Pardo
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Ernst
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Faculty of Medicine, Institute of Biochemistry II, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Bruene
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Yu M, Zhang K, Wang S. High expression levels of S1PR3 and PDGFRB indicates unfavorable clinical outcomes in colon adenocarcinoma. Heliyon 2024; 10:e35532. [PMID: 39170287 PMCID: PMC11336742 DOI: 10.1016/j.heliyon.2024.e35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Background Studies verified that sphingosine kinase 1 (SPHK1)/sphingosine 1-phosphate receptors (S1PRs) and platelet-derived growth factor receptors (PDGFRs) play important roles in tumor occurrence and progression. However, the expression and clinical value of SPHK1/S1PRs and PDGFRs in colon adenocarcinoma (COAD) remains unclear. This study aimed to explore the expression of SPHK1/S1PRs and PDGFRs in COAD and further investigate their roles in predicting the prognosis of patients with COAD. Methods SPHK1/S1PRs and PDGFRs expression in tissues from patient with COAD were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Kaplan-Meier survival analysis was used to evaluate the prognostic roles of SPHK1/S1PRs and PDGFRs in patients with COAD. Spearman's correlation analysis was performed to assess the relationship between SPHK1/S1PRs and PDGFRs in COAD. Then, χ2 test was performed to analyze the correlation between SPHK1/S1PR3/PDGFRB and clinicopathological characteristics of the patients. Additionally, possible signaling pathways co-regulated by S1PR3 and PDGFRB were predicted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to identify hub genes that co-regulated S1PR3 and PDGFRB expression. A prognostic model based on hub genes was constructed for patients with COPD. Finally, the relationship between the hub genes and tumor immune cell infiltration was investigated. Results The expression levels of SPHK1 and PDGFRB were significantly upregulated in COAD patient tissues (P < 0.001 and P < 0.001, respectively). Moreover, Kaplan-Meier analysis showed that patients with COAD with high expression levels of SPHK1 and S1PR3 had shorter overall survival (OS) than those with low expression levels (P = 0.013 and P = 0.005, respectively). Spearman's correlation analysis verified a strong positive correlation (P < 0.001, r = 0.790) between the expression of S1PR3 and PDGFRB. In addition, we found that high SPHK1 and PDGGRB expression levels were associated with perineural invasion (P < 0.001 and P = 0.011, respectively). High expression of S1PR3 and PDGGRB was prominently associated with N stage (P = 0.002 and P = 0.021, respectively). High levels of SPHK1, S1PR3, and PDGFRB were associated with lymph node invasion. (P = 0.018, P = 0.004, and P = 0.001, respectively). GO and KEGG results revealed that S1PR3 and PDGFRB may participate in COAD cell extracellular matrix organization and cellular signal transduction. Five hub genes, SFRP2, GPRC5B, RSPO3, FGF14, and TCF7L1, were identified using LASSO regression. Survival analysis showed that the OS in the high-risk group was remarkably shorter than that in the low-risk group. The results indicated that tumor immune cells were significantly increased in the high-risk group compared to those in the low-risk group. Conclusions S1PR3 and PDGFRB may be important markers for predicting lymphatic metastasis and poor prognosis in patients with COAD. The underlying mechanisms may involve immune cell infiltration.
Collapse
Affiliation(s)
- Mengsi Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kainan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Song Wang
- Department of Ophthalmology, General Hospital of Xinjiang Military Command, Urumqi, China
| |
Collapse
|
13
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Zhu Y, Chen P, Hu B, Zhong S, Yan K, Wu Y, Li S, Yang Y, Xu Z, Lu Y, Ouyang Y, Bao H, Gu W, Wen L, Zhang Y. MDSC-targeting gold nanoparticles enhance PD-1 tumor immunotherapy by inhibiting NLRP3 inflammasomes. Biomaterials 2024; 307:122533. [PMID: 38493671 DOI: 10.1016/j.biomaterials.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in the immune escape mechanisms that limit the efficacy of immunotherapeutic strategies. In the tumor microenvironment, NLRP3 inflammasome-driven Interleukin-1β (IL-1β) production serves to dampen antitumor immune responses, promoting tumor growth, progression, and immunosuppression. In this study, we revealed that gold nanoparticles (Au NPs) with a size of 30 nm disrupted NLRP3 inflammasome, but not other inflammasomes, in bone marrow-derived macrophages through abrogating NLRP3-NEK7 interactions mediated by reactive oxygen species (ROS). Density functional theory (DFT) calculations provided insights into the mechanism underlying the exceptional ROS scavenging capabilities of Au NPs. Additionally, when coupled with H6, a small peptide targeting MDSCs, Au NPs demonstrated the capacity to effectively reduce IL-1β levels and diminish the MDSCs population in tumor microenvironment, leading to enhanced T cell activation and increased immunotherapeutic efficacy in mouse tumor models that are sensitive and resistant to PD-1 inhibition. Our findings unraveled a novel approach wherein peptide-modified Au NPs relieved the suppressive impact of the tumor microenvironment by inhibiting MDSCs-mediated IL-1β release, which is the first time reported the employing a nanostrategy at modulating MDSCs to reverse the immunosuppressive microenvironment and may hold promise as a potential therapeutic agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Yangyang Zhu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Bochuan Hu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Suqin Zhong
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shanshan Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yinyin Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zexin Xu
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Ying Ouyang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; China-Singapore International Joint Research Institute, Guangzhou, 510700, China
| | - Hui Bao
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiguang Gu
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
Xu L, Li W, Liu D, Cao J, Ge J, Liu X, Wang Y, Teng Y, Liu P, Guo X, He C, Liu M, Tian L. ANXA3-Rich Exosomes Derived from Tumor-Associated Macrophages Regulate Ferroptosis and Lymphatic Metastasis of Laryngeal Squamous Cell Carcinoma. Cancer Immunol Res 2024; 12:614-630. [PMID: 38393971 DOI: 10.1158/2326-6066.cir-23-0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor-associated macrophages (TAM) induce immunosuppression in laryngeal squamous cell carcinoma (LSCC). The interaction between LSCC cells and TAMs affects the progression of laryngeal cancer through exosomes, but the underlying molecular mechanism remains unclear. Proteomics analysis of TAMs isolated from human laryngeal tumor tissues obtained from patients with confirmed lymphatic metastasis revealed an upregulation of annexin A3 (ANXA3). In TAMs, ANXA3 promoted macrophages to polarize to an M2-like phenotype by activating the AKT-GSK3β-β-catenin pathway. In addition, ANXA3-rich exosomes derived from TAMs inhibited ferroptosis in laryngeal cancer cells through an ATF2-CHAC1 axis, and this process was associated with lymphatic metastasis. Mechanistically, ANXA3 in exosomes inhibited the ubiquitination of ATF2, whereas ATF2 acted as a transcription factor to regulate the expression of CHAC1, thus inhibiting ferroptosis in LSCC cells. These data indicate that abnormal ANXA3 expression can drive TAM reprogramming and promote an immunosuppressive microenvironment in LSCC. Meanwhile, ANXA3-rich exosomes inhibit ferroptosis of LSCC cells and promote lymphatic metastasis, thus promoting tumor progression.
Collapse
Affiliation(s)
- Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Hepatosplenic Surgery Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Ge
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujian Teng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyue Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen He
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Parveen R, Kashif M, Srinivasan H, Khan J, Yousif A, Ghataty DS, Ali N, Attia SM, Waseem M. An In Silico Investigation of Pharmacological Modulators and Inflammasomes in Glioblastoma Multiforme. Appl Biochem Biotechnol 2024; 196:2771-2797. [PMID: 37466884 DOI: 10.1007/s12010-023-04655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
For the past decades, inflammatory signals have been considered a possible key for pharmacological interventions. There are several compounds and/or molecules that have been known as most promising medication against inflammation and its mediated chronic disorders. Inflammasomes could be recognized as a trigger by detrimental stimuli as pathogenic attack and endogenous signals mediated injury inside the cells. In addition, there has been an inflammatory key mechanism involved in cancers including glioblastoma multiforme (GBM). GBM has been considered the foremost aggressive primary brain tumors in adult stage. There is a scattered beam of light on both cellular and molecular links in inflammation and GBM. However, the immune response of GBM has been characterized extensively by macrophages and lymphocytes related to tumors, and some recent investigations have pinpointed the focus of inflammasomes on the progression of GBM. Nevertheless, risk factors linked with GBM are still debatable. In our study, the most considerable compounds and their bonded and/or targeted proteins have depicted the most promising highlights under in silico condition. Our in silico investigations have revealed a powerful pharmacological agents/compound against inflammasome-mediated GBM.
Collapse
Affiliation(s)
- Roohi Parveen
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Jasim Khan
- UAB Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amar Yousif
- School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
18
|
Han M, Liu X, Hailati S, Nurahmat N, Dilimulati D, Baishan A, Aikebaier A, Zhou W. Evaluation of the Efficacy of OSU-2S in the Treatment of Non-Small-Cell Lung Cancer and Screening of Potential Targets of Action. Pharmaceuticals (Basel) 2024; 17:582. [PMID: 38794152 PMCID: PMC11124116 DOI: 10.3390/ph17050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: OSU-2S is a derivative of FTY720 and exhibits significant inhibitory effects on various cancer cells. There is currently no research on the mechanism of the impact of OSU-2S on NSCLC development. We analysed and validated the hub genes and pharmacodynamic effects of OSU-2S to treat NSCLC. (2) Methods: The hub genes of OSU-2S for the treatment of NSCLC were screened in PharmMapper, genecard, and KM Plotter database by survival and expression analysis. The effect of OSU-2S on hub gene expression was verified by Western blot analysis. The ex vivo and in vivo efficacy of OSU-2S on tumour growth was verified using A549 cells and a xenografted animal model. (3) Results: A total of 7 marker genes for OSU-2S treatment of NSCLC were obtained. AURKA and S1PR1 were screened as hub genes. Significant differences in the expression of AURKA and S1PR1 between normal and lung adenocarcinoma (LUAD) tissues were found in the GEPIA2 database; Western blot showed that OSU-2S could affect p-AURKA and S1PR1 protein expression. OSU-2S significantly inhibited tumour growth in A549 cells and xenografted animal models. (4) Conclusions: Our study confirms the inhibitory effect of OSU-2S on NSCLC, screens and demonstrates its potential targets AURKA(p-AURKA) and S1PR1, and provides a research basis for treating NSCLC with OSU-2S.
Collapse
Affiliation(s)
- Mengyuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Xiangran Liu
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Nurbiya Nurahmat
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (M.H.); (X.L.); (S.H.); (N.N.); (D.D.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi 830017, China
| |
Collapse
|
19
|
Yang W, Wu Z, Cai S, Li Z, Wang W, Wu J, Luo H, Ye X. Tumor lymphangiogenesis index reveals the immune landscape and immunotherapy response in lung adenocarcinoma. Front Immunol 2024; 15:1354339. [PMID: 38638428 PMCID: PMC11024352 DOI: 10.3389/fimmu.2024.1354339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Background Lymphangiogenesis (LYM) has an important role in tumor progression and is strongly associated with tumor metastasis. However, the clinical application of LYM has not progressed as expected. The potential value of LYM needs to be further developed in lung adenocarcinoma (LUAD) patients. Methods The Sequencing data and clinical characteristics of LUAD patients were downloaded from The Cancer Genome Atlas and GEO databases. Multiple machine learning algorithms were used to screen feature genes and develop the LYM index. Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore the correlation of LYM index with immune profile and anti-tumor therapy. Results We screened four lymphangiogenic feature genes (PECAM1, TIMP1, CXCL5 and PDGFB) to construct LYM index based on multiple machine learning algorithms. We divided LUAD patients into the high LYM index group and the low LYM index group based on the median LYM index. LYM index is a risk factor for the prognosis of LUAD patients. In addition, there was a significant difference in immune profile between high LYM index and low LYM index groups. LUAD patients in the low LYM index group seemed to benefit more from immunotherapy based on the results of TIDE algorithm. Conclusion Overall, we confirmed that the LYM index is a prognostic risk factor and a valuable predictor of immunotherapy response in LUAD patients, which provides new evidence for the potential application of LYM.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shanshan Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Li B, Liu Y, Chen D, Sun S. Comprehensive Analysis of Predictive Value and the potential therapeutic target of NLRP3 inflammasome in glioma based on tumor microenvironment. Clin Immunol 2024; 261:109918. [PMID: 38307475 DOI: 10.1016/j.clim.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glioma exhibits high recurrence rates and poor prognosis. The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in inflammation. There is a lack of research exploring the NLRP3 in glioma. METHODS We used several databases, networks, Western blotting, multiple immunofluorescence staining to analyze the role of NLRP3 in inflammatory tumor microenvironment (TME). RESULTS NLRP3 is higher-expression in glioma with a low mutation load. NLRP3 expression is linked to the infiltration of immune cells, chemokines, immunomodulators, and the TME. Signaling pathways, co-expression genes and interacting proteins contribute to the up-regulation of NLRP3. Patients responding to immunotherapy positively tend to have lower NLRP3 expression relating to the overall survival based on nomogram. Sensitivity to molecular medicines is observed in relation to NLRP3. CONCLUSION The NLRP3 inflammasome plays a pivotal role in TME which could serve as a higher predictive value biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bihan Li
- Nanjing municipal center for disease control and prevention, Nanjing, Jiangsu, China; Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Dawei Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
21
|
Fukushima H, Furusawa A, Takao S, Matikonda SS, Kano M, Okuyama S, Yamamoto H, Choyke PL, Schnermann MJ, Kobayashi H. Phototruncation cell tracking with near-infrared photoimmunotherapy using heptamethine cyanine dye to visualise migratory dynamics of immune cells. EBioMedicine 2024; 102:105050. [PMID: 38490105 PMCID: PMC10951901 DOI: 10.1016/j.ebiom.2024.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Noninvasive in vivo cell tracking is valuable in understanding the mechanisms that enhance anti-cancer immunity. We have recently developed a new method called phototruncation-assisted cell tracking (PACT), that uses photoconvertible cell tracking technology to detect in vivo cell migration. This method has the advantages of not requiring genetic engineering of cells and employing tissue-penetrant near-infrared light. METHODS We applied PACT to monitor the migration of immune cells between a tumour and its tumour-draining lymph node (TDLN) after near-infrared photoimmunotherapy (NIR-PIT). FINDINGS PACT showed a significant increase in the migration of dendritic cells (DCs) and macrophages from the tumour to the TDLN immediately after NIR-PIT. This migration by NIR-PIT was abrogated by inhibiting the sphingosine-1-phosphate pathway or Gαi signaling. These results were corroborated by intranodal immune cell profiles at two days post-treatment; NIR-PIT significantly induced DC maturation and increased and activated the CD8+ T cell population in the TDLN. Furthermore, PACT revealed that NIR-PIT significantly enhanced the migration of CD8+ T cells from the TDLN to the tumour four days post-treatment, which was consistent with the immunohistochemical assessment of tumour-infiltrating lymphocytes and tumour regression. INTERPRETATION Immune cells dramatically migrated between the tumour and TDLN following NIR-PIT, indicating its potential as an immune-stimulating therapy. Also, PACT is potentially applicable to a wide range of immunological research. FUNDING This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Centre for Cancer Research (grant number: ZIA BC011513 and ZIA BC011506).
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Makoto Kano
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
24
|
Lin M, Chen D, Shao Z, Liu Q, Hao Z, Xin Z, Chen Y, Wu W, Chen X, He T, Wu D, Wu P. Inflammatory dendritic cells restrain CD11b +CD4 + CTLs via CD200R in human NSCLC. Cell Rep 2024; 43:113767. [PMID: 38354085 DOI: 10.1016/j.celrep.2024.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
CD4+ cytotoxic T lymphocytes (CD4+ CTLs) are suggested to play a crucial role in inflammatory diseases, including cancer, but their characteristics in human non-small cell lung cancer (NSCLC) remain unknown. Here, using the cell surface marker CD11b, we identify CD11b+CD4+ CTLs as a cytotoxic subset of CD4+ T cells in multiple tissues of NSCLC patients. In addition, tumor-infiltrating CD11b+CD4+ CTLs show a dysfunctional phenotype with elevated expression of CD200 receptor (CD200R), a negatively immunomodulatory receptor. CD4+ regulatory T (Treg) cells restrain the anti-tumor role of CD11b+CD4+ CTLs via CD200. Mechanistically, inflammatory dendritic cells promote the CD200R expression of CD11b+CD4+ CTLs by secreting interleukin-1β (IL-1β). Finally, we demonstrate that CD200 blockade can revive the tumor-killing role of CD11b+CD4+ CTLs and prolong the survival of tumor-bearing mice. Taken together, our study identifies CD11b+CD4+ CTLs in NSCLC with decreased cytotoxicity that can be reinvigorated by CD200 blockade, suggesting that targeting CD200 is a promising immunotherapy strategy in NSCLC.
Collapse
Affiliation(s)
- Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Teng He
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Infectious Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
25
|
Wu K, Li Y, Ji Y, Liu C, Wang X, Guo H, Zhang J, He Y. Tumor-Derived RAB21+ABHD12+ sEVs Drive the Premetastatic Microenvironment in the Lung. Cancer Immunol Res 2024; 12:161-179. [PMID: 38215051 DOI: 10.1158/2326-6066.cir-23-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Tumor metastasis is a spatial and temporal process that starts with remodeling to generate a proper premetastatic niche in a distant tissue. Infiltration of immunosuppressive macrophages is one of the notable characteristics in the premetastatic niche, which is a fundamental requirement for primary tumor metastasis. Here, we demonstrated that small extracellular vesicles (sEV) carrying RAB21 homed to lung macrophages and interacted with integrin-β1 on macrophages. ABHD12 expression was high in lung metastatic tumors and was mostly expressed by macrophages. Head and neck squamous cell carcinoma (HNSCC)-derived sEVs carrying ABHD12-polarized macrophages toward an immunosuppressive phenotype, driving premetastatic niche formation, which facilitated lung metastasis. ABHD12 additionally upregulated S1PR1 by activating the AKT-FoxO1 pathway in macrophages, and significantly enhanced antitumor responses were observed in tumor models treated with agents targeting both S1PR1 and PD-1. Collectively, our study suggests that RAB21+ABHD12+ sEVs derived from HNSCC cells contribute to the formation of the immunosuppressive microenvironment in the premetastatic niche and are a potential therapeutic target for enhancing the antitumor efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Kun Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
26
|
Chen Q, Sun Y, Wang S, Xu J. New prospects of cancer therapy based on pyroptosis and pyroptosis inducers. Apoptosis 2024; 29:66-85. [PMID: 37943371 DOI: 10.1007/s10495-023-01906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiaoyun Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Siliang Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jingyan Xu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
27
|
Lyu C, Sun H, Sun Z, Liu Y, Wang Q. Roles of exosomes in immunotherapy for solid cancers. Cell Death Dis 2024; 15:106. [PMID: 38302430 PMCID: PMC10834551 DOI: 10.1038/s41419-024-06494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Although immunotherapy has made breakthrough progress, its efficacy in solid tumours remains unsatisfactory. Exosomes are the main type of extracellular vesicles that can deliver various intracellular molecules to adjacent or distant cells and organs, mediating various biological functions. Studies have found that exosomes can both activate the immune system and inhibit the immune system. The antigen and major histocompatibility complex (MHC) carried in exosomes make it possible to develop them as anticancer vaccines. Exosomes derived from blood, urine, saliva and cerebrospinal fluid can be used as ideal biomarkers in cancer diagnosis and prognosis. In recent years, exosome-based therapy has made great progress in the fields of drug transportation and immunotherapy. Here, we review the composition and sources of exosomes in the solid cancer immune microenvironment and further elaborate on the potential mechanisms and pathways by which exosomes influence immunotherapy for solid cancers. Moreover, we summarize the potential clinical application prospects of engineered exosomes and exosome vaccines in immunotherapy for solid cancers. Eventually, these findings may open up avenues for determining the potential of exosomes for diagnosis, treatment, and prognosis in solid cancer immunotherapy.
Collapse
Affiliation(s)
- Cong Lyu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
28
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
29
|
Bui I, Bonavida B. Polarization of M2 Tumor-Associated Macrophages (TAMs) in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:75-95. [PMID: 38989739 DOI: 10.1615/critrevoncog.2024053830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Indy Bui
- University of California Los Angeles
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
30
|
Che N, Li M, Liu X, Cui CA, Gong J, Xuan Y. Macelignan prevents colorectal cancer metastasis by inhibiting M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155144. [PMID: 37925889 DOI: 10.1016/j.phymed.2023.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) metastasis is a complicated process that not only involves tumor cells but also the effects of M2 type tumor-associated macrophages, a key component of the tumor microenvironment (TME), act a crucial role in cancer metastasis. Macelignan, an orally active lignan isolated from Myristica fragrans, possesses various beneficial biological activities, including anti-cancer effects, but its effect on macrophage polarization in the TME remains unknown. PURPOSE To evaluate the inhibitory potency and prospective mechanism of macelignan on M2 polarization of macrophages and CRC metastasis. METHODS The polarization and specific mechanism of M1 and M2 macrophage regulated by macelignan were determined by western blot, flow cytometry, immunofluorescence and network pharmacology. In vitro and in vivo function assays were performed to investigate the roles of macelignan in CRC metastasis. RESULTS Macelignan efficiently inhibited IL-4/13-induced polarization of M2 macrophages by suppressing the PI3K/AKT pathway in a reactive oxygen species (ROS)-dependent manner. The proportion of CD206+ M2 macrophages was elevated in patients with CRC liver metastasis. Furthermore, macelignan inhibited M2 macrophage-mediated metastasis of CRC cells in vitro and in vivo. Mechanistically, macelignan reduced secretion of IL-1β from M2 macrophages, which in turn blocked NF-κB p65 nuclear translocation and inhibited metastasis. CONCLUSION Macelignan suppressed macrophage M2 polarization via ROS-mediated PI3K/AKT signaling pathway, thus preventing IL-1β/NF-κB-dependent CRC metastasis. In the present study, we reveal a previously unrecognized mechanism of macelignan in the prevention of CRC metastasis and demonstrate its effectively and safely therapeutic potential in CRC treatment.
Collapse
Affiliation(s)
- Nan Che
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Mengxuan Li
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Xingzhe Liu
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Chun-Ai Cui
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Jie Gong
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yanhua Xuan
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China; Department of Pathology, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
31
|
Zhu QM, Li HX, Ma PQ, Wu LX, Wang TH, Li WB, Zhang L, Yang X, Kong X, Sun YL, Yan T. A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway. BMC Cancer 2023; 23:1163. [PMID: 38031068 PMCID: PMC10685553 DOI: 10.1186/s12885-023-11609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The NOD-, LRR- and pyrin domain‑containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1β, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pei-Qing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tai-Hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Bin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
32
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
33
|
Hou J, Li T, Hsu JM, Zhang X, Hung MC. Gasdermins and cancers. Semin Immunol 2023; 70:101833. [PMID: 37647772 DOI: 10.1016/j.smim.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
The identification of gasdermin as the executor of pyroptosis has opened new avenues for the study of this process. Although pyroptosis research has mainly focused on immune cells since it was discovered three decades ago, accumulating evidence suggests that pyroptosis plays crucial roles in many biological processes. One example is the discovery of gasdermin-mediated cancer cell pyroptosis (CCP) which has become an important and frontier field in oncology. Recent studies have shown that CCP induction can heat tumor microenvironment (TME) and thereby elicit the robust anti-tumor immunity to suppress tumor growth. As a newly discovered form of tumor cell death, CCP offers promising opportunities for improving tumor treatment and developing new drugs. Nevertheless, the research on CCP is still in its infancy, and the molecular mechanisms underlying the expression, regulation and activation of gasdermins are not yet fully understood. In this review, we summarize the recent progress of gasdermin research in cancer area, and propose that the anti-tumor effect of immune cell pyroptosis (ICP) and CCP depends on their duration, intensity, and the type of cells undergoing pyroptosis within TME.
Collapse
Affiliation(s)
- Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China; Xiangya Cancer Center, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.
| | - Tiansheng Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China; Xiangya Cancer Center, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China; Xiangya Cancer Center, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
35
|
Wen JY, Li X, Chen JN, Chen J, Zhang JY, Du Y, Zhu WH, Chen YJ, Yang RH, Shao CK. CD45 - erythroid progenitor cells promote lymph node metastasis in gastric cancer by inducing a hybrid epithelial/mesenchymal state in lymphatic endothelial cells. Gastric Cancer 2023; 26:918-933. [PMID: 37676622 DOI: 10.1007/s10120-023-01425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Specific mechanisms of lymph node (LN) metastasis in early-stage gastric cancer (GC) have not been elucidated. The role of anemia, a vital clinical feature of GC, in LN metastasis is also unclear. Since the number of erythroid progenitor cells (EPCs) is increased in chronic anemia, we investigated its association with LN metastasis in GC. METHODS Flow cytometry and immunofluorescence analyses were performed to sort and study EPCs from the circulation and tumors of patients with stage I-III GC. The effect of these EPCs on the activation of T and B cells and on the functions of lymphatic endothelial cells (LECs) was determined, and their ability to promote LN metastasis was evaluated using a footpad-popliteal LN metastasis model based on two human adenocarcinoma GC cell lines in nude mice. The prognostic value of EPCs was also analyzed. RESULTS The proportion of CD45- EPCs was higher in the mononuclear cells in the circulation, tumors, and LNs of GC patients with LN metastasis (N+) than in those of GC patients without LN metastasis (N0). In N+ patients, CD45- EPCs were more abundant in metastatic LNs than in non-metastatic LNs. Lymphatic vessel endothelial hyaluronan receptor 1 immunoreactivity in tumors revealed that CD45- EPCs were positively associated with nodal stages and lymph vessel density. Furthermore, CD45- EPCs increased LEC proliferation and migration through their S100A8/A9 heterodimer-induced hybrid epithelial/mesenchymal (E/M) state; however, they did not influence the invasion and tubulogenesis of LECs or T and B cell proliferation. CD45- EPCs promoted LN metastasis in vivo; the S100A8/A9 heterodimer mimicked this phenomenon. Finally, CD45- EPCs predicted the overall and disease-free survival of stage I-III GC patients after radical resection. CONCLUSIONS The CD45- EPCs accumulated in GC tissues and metastatic LNs and promoted LN metastasis via the S100A8/9-induced hybrid E/M state of LECs, which was the specific mechanism of LN metastasis in the early stages of GC.
Collapse
Affiliation(s)
- Jing-Yun Wen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jie Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Wei-Hang Zhu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yong-Jian Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ri-Hong Yang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
36
|
Tao YP, Zhu HY, Shi QY, Wang CX, Hua YX, Hu HY, Zhou QY, Zhou ZL, Sun Y, Wang XM, Wang Y, Zhang YL, Guo YJ, Wang ZY, Che X, Xu CW, Zhang XC, Heger M, Tao SP, Zheng X, Xu Y, Ao L, Liu AJ, Liu SB, Cheng SQ, Pan WW. S1PR1 regulates ovarian cancer cell senescence through the PDK1-LATS1/2-YAP pathway. Oncogene 2023; 42:3491-3502. [PMID: 37828220 PMCID: PMC10656284 DOI: 10.1038/s41388-023-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.
Collapse
Affiliation(s)
- Yi-Ping Tao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Heng-Yan Zhu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qian-Yuan Shi
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Cai-Xia Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu-Xin Hua
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Han-Yin Hu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qi-Yin Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Lu Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ying Sun
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xiao-Min Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ya-Ling Zhang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yan-Jun Guo
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Ying Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xuan Che
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Chun-Wei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 Banshan East Street, Gongshu District, Hangzhou, 310022, China
| | - Xian-Chao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Su-Ping Tao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Xin Zheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Lei Ao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ai-Jun Liu
- Department of Pathology, the 7th Medical Center, General Hospital of PLA, Beijing, 100700, China
| | - Sheng-Bing Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
- G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| |
Collapse
|
37
|
Liang T, Cheng M, Lu L, Liu R. Competing endogenous RNA network characterization of lymph node metastases in Leuran gastric cancer subtypes. J Cancer Res Clin Oncol 2023; 149:16043-16053. [PMID: 37688630 DOI: 10.1007/s00432-023-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Gastric cancer is a kind of tumor with strong heterogeneity. Long noncoding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) play significant roles in the development of tumors. In this study, we divided all TCGA gastric cancer patients into the whole, intestinal and diffuse cohorts for further analysis, and constructed competitive endogenous RNA network and evaluated immune cells using CIBERSORTx. The support vector machines recursive feature elimination (SVM-RFE) was used for screening significant signatures and the support vector machines (SVM) for establishing model predicting the lymph node metastasis. The performance of SVM model was good in the intestinal and diffuse cohort, while the model in the whole cohort was relatively poor. Some important co-expression patterns between immune cells and ceRNAs network indicated significant correlation CD70 with dendritic cells and so on. Our research inferred competing endogenous RNA network of lymph node metastasis and built an excellent predicting model.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Minjun Cheng
- Intensive Care Unit, Chun'an First People's Hospital (Chun'an Branch of Zhejiang Provincial People's Hospital and Chun'an Hospital Affiliated to Hangzhou Medical College), Hangzhou, China
| | - Ling Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
38
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
39
|
Wang Y, Zhang B, Zhang Z, Ge J, Xu L, Mao J, Zhou X, Mao L, Xu Q, Sang M. Predicting Prognosis and Immunotherapy Response in Multiple Cancers Based on the Association of PANoptosis-Related Genes with Tumor Heterogeneity. Genes (Basel) 2023; 14:1994. [PMID: 38002938 PMCID: PMC10671595 DOI: 10.3390/genes14111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Boyu Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Jia Ge
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Lin Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Jiawei Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| |
Collapse
|
40
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
41
|
Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers (Basel) 2023; 15:4787. [PMID: 37835481 PMCID: PMC10572000 DOI: 10.3390/cancers15194787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Chuanwen Fan
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Huan Zhang
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
42
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
43
|
Shadab A, Mahjoor M, Abbasi-Kolli M, Afkhami H, Moeinian P, Safdarian AR. Divergent functions of NLRP3 inflammasomes in cancer: a review. Cell Commun Signal 2023; 21:232. [PMID: 37715239 PMCID: PMC10503066 DOI: 10.1186/s12964-023-01235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023] Open
Abstract
The cancer is a serious health problem, which is The cancer death rate (cancer mortality) is 158.3 per 100,000 men and women per year (based on 2013-2017 deaths). Both clinical and translational studies have demonstrated that chronic inflammation is associated with Cancer progression. However, the precise mechanisms of inflammasome, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the "inflammasome" a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in cancer pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the malignancy condition consequences of the inflammation. Video Abstract.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Reza Safdarian
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno TACT), Universal Scientific Education and Research Network (USERN) Chicago, Chicago, IL, USA.
- Department of Immunology and Microbiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran.
| |
Collapse
|
44
|
Su H, Luo Y, Chen Y, Lin Z, Fu X, Zhu S, Yin J. Blood biomarkers in the application of diagnosis and prediction of overall survival for 1089 patients with nasopharyngeal carcinoma. Sci Rep 2023; 13:15082. [PMID: 37699964 PMCID: PMC10497678 DOI: 10.1038/s41598-023-42216-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have indicated that some blood metrics play a crucial role in the diagnostic and prognostic values of various solid tumours. However, their comprehensive and unbiased comparison for nasopharyngeal carcinoma (NPC) has not been performed. Twenty blood metrics evaluated in tumours or noncancerous diseases were selected. We selected 1089 patients with NPC and analyzed the relationship between these metrics, clinical characteristics, and overall survival (OS). The albumin and prognostic nutritional index (PNI) exhibited a high area under the curve (AUC) value (> 0.7) together with high "sensitivity (Sen) + specificity (Spe) (> 1.5)" or Youden index (> 0.5) when compared to healthy populations. In comparing NPC and nasal polyps, 9 of 20 blood metrics showed a high AUC value (> 0.7). However, only the PNI and international normalised ratio show a sufficiently high Sen + Spe or Youden Index. None of them could distinguish the status of the TNM classification well. Only the lymphocyte-to-monocyte ratio (LMR) could predict the OS of patients with NPC (cut-off, 4.91; p = 0.0069). Blood metrics as non-invasive biomarkers are valuable tools for clinical management. Among these indicators, PNI is the most ideal indicator to distinguish NPC from healthy and nasal polyps. The LMR has good prognostic value.
Collapse
Affiliation(s)
- Hangjiu Su
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Yu Luo
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Yanyun Chen
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Zhongyuan Lin
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Xiafei Fu
- Department of Pediatrics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, P.R. China
| | - Songshan Zhu
- Guangdong Medical University, Dongguan, P.R. China.
| | - Jun Yin
- Transplant Medical Center of The Second Affiliated Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Organ Transplantation, Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, P.R. China.
| |
Collapse
|
45
|
Bien-Möller S, Chen F, Xiao Y, Köppe H, Jedlitschky G, Meyer U, Tolksdorf C, Grube M, Marx S, Tzvetkov MV, Schroeder HWS, Rauch BH. The Putative S1PR1 Modulator ACT-209905 Impairs Growth and Migration of Glioblastoma Cells In Vitro. Cancers (Basel) 2023; 15:4273. [PMID: 37686550 PMCID: PMC10486705 DOI: 10.3390/cancers15174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is still a deadly tumor due to its highly infiltrative growth behavior and its resistance to therapy. Evidence is accumulating that sphingosine-1-phosphate (S1P) acts as an important tumor-promoting molecule that is involved in the activation of the S1P receptor subtype 1 (S1PR1). Therefore, we investigated the effect of ACT-209905 (a putative S1PR1 modulator) on the growth of human (primary cells, LN-18) and murine (GL261) GBM cells. The viability and migration of GBM cells were both reduced by ACT-209905. Furthermore, co-culture with monocytic THP-1 cells or conditioned medium enhanced the viability and migration of GBM cells, suggesting that THP-1 cells secrete factors which stimulate GBM cell growth. ACT-209905 inhibited the THP-1-induced enhancement of GBM cell growth and migration. Immunoblot analyses showed that ACT-209905 reduced the activation of growth-promoting kinases (p38, AKT1 and ERK1/2), whereas THP-1 cells and conditioned medium caused an activation of these kinases. In addition, ACT-209905 diminished the surface expression of pro-migratory molecules and reduced CD62P-positive GBM cells. In contrast, THP-1 cells increased the ICAM-1 and P-Selectin content of GBM cells which was reversed by ACT-209905. In conclusion, our study suggests the role of S1PR1 signaling in the growth of GBM cells and gives a partial explanation for the pro-tumorigenic effects that macrophages might have on GBM cells.
Collapse
Affiliation(s)
- Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Fan Chen
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Yong Xiao
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hanjo Köppe
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Markus Grube
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mladen V. Tzvetkov
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
46
|
Ji X, Huang X, Li C, Guan N, Pan T, Dong J, Li L. Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal 2023; 21:197. [PMID: 37542283 PMCID: PMC10401873 DOI: 10.1186/s12964-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 08/06/2023] Open
Abstract
Macrophages are immune cells with high plasticity that are widely distributed in all tissues and organs of the body. Under the influence of the immune microenvironment of breast tumors, macrophages differentiate into various germline lineages. They exert pro-tumor or tumor-suppressive effects by secreting various cytokines. Pyroptosis is mediated by Gasdermin family proteins, which form holes in cell membranes and cause a violent inflammatory response and cell death. This is an important way for the body to fight off infections. Tumor cell pyroptosis can activate anti-tumor immunity and inhibit tumor growth. At the same time, it releases inflammatory mediators and recruits tumor-associated macrophages (TAMs) for accumulation. Macrophages act as "mediators" of cytokine interactions and indirectly influence the pyroptosis pathway. This paper describes the mechanism of action on the part of TAM in affecting the pyroptosis process of breast tumor cells, as well as its key role in the tumor microenvironment. Additionally, it provides the basis for in-depth research on how to use immune cells to affect breast tumors and guide anti-tumor trends, with important implications for the prevention and treatment of breast tumors. Video Abstract.
Collapse
Affiliation(s)
- XuLing Ji
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxia Huang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ningning Guan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tingting Pan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
47
|
Ma H, Zhang Z, Hu Q, Chen H, Wu G, Zhou Y, Xue Q. Shedding light on macrophage immunotherapy in lung cancer. J Cancer Res Clin Oncol 2023; 149:8143-8152. [PMID: 37052632 DOI: 10.1007/s00432-023-04740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
The search for therapeutic options for lung cancer continues to advance, with rapid advances in the search for therapies to improve patient prognosis. At present, systemic chemotherapy, immune checkpoint inhibitor therapy, antiangiogenic therapy, and targeted therapy for driver gene positivity are available in the clinic. Common clinical treatments fail to achieve desired outcomes due to immunosuppression of the tumor microenvironment (TME). Tumor immune evasion is mediated by cytokines, chemokines, immune cells, and other cells such as vascular endothelial cells within the tumor immune microenvironment. Tumor-associated macrophages (TAMs) are important immune cells in the TME, inducing tumor angiogenesis, encouraging tumor cell proliferation and migration, and suppressing antitumor immune responses. Thus, TAM targeting becomes the key to lung cancer immunotherapy. This review focuses on macrophage phenotype, polarization mechanism, role in lung cancer, and advances in macrophage centric immunotherapies.
Collapse
Affiliation(s)
- Huiyun Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhouwei Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Hongyu Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Gujie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
48
|
Tian J, Chang S, Wang J, Chen J, Xu H, Huang T, Wang J, Kang J, Fan W, Wang Y. S1P/S1PR1 axis promotes macrophage M1 polarization through NLRP3 inflammasome activation in Lupus nephritis. Mol Immunol 2023; 160:55-66. [PMID: 37379683 DOI: 10.1016/j.molimm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) as well as the leading cause of mortality in patients. Previous studies revealed that S1P level is elevated in plasma samples of SLE patients and murine lupus models. FTY720, targeting S1P receptors, exhibited therapeutic effects in improving the nephritis symptoms of lupus mouse models. However, few studies have discussed the potential relevance of S1P/S1PR to the pathogenesis of LN. Macrophages have been shown to be an important causative agent of renal inflammation, while the pro-inflammatory M1-type promotes kidney injury and inflammation during LN. Importantly, macrophages express various S1P receptors, and how they respond to S1P in the setting of LN remains unclear. Therefore, we examined the level of S1P in the lupus MRL/lpr mice and explored the ensuing interaction of macrophages and S1P. We found that S1P level was elevated in the MRL/lpr mice with a subsequent enhancement of the S1PR1 expression, and blocking S1PR1 by FTY720, the nephritis symptoms of MRL/lpr mice were improved. Mechanistically, we demonstrated that elevated S1P level increase the M1-type macrophage accumulation. And the in-vitro studies proved that S1P/S1PR1 was involved in the promotion of macrophage polarization towards M1 type through activation of NLRP3 inflammasome. These findings confer a novel role to macrophage S1PR1 and provide a new perspective for targeting S1P during LN.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
49
|
Davuluri GVN, Chan CH. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J 2023; 290:3040-3058. [PMID: 35486022 PMCID: PMC10711806 DOI: 10.1111/febs.16465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
Tumour-associated macrophages (TAMs) are highly plastic and are broadly grouped into two major functional states, namely the pro-inflammatory M1-type and the pro-tumoural M2-type. Conversion of the functional states of TAMs is regulated by various cytokines, chemokines growth factors and other secreted factors in the microenvironment. Dysregulated metabolism is a hallmark of cancer. Emerging evidence suggests that metabolism governs the TAM differentiation and functional conversation in support of tumour growth and metastasis. Aside from the altered metabolism reprogramming in TAMs, extracellular metabolites secreted by cancer, stromal and/or other cells within the tumour microenvironment have been found to regulate TAMs through passive competition for metabolite availability and direct regulation via receptor/transporter-mediated signalling reaction. In this review, we focus on the regulatory roles of different metabolites and metabolic pathways in TAM conversion and function. We also discuss if the dysregulated metabolism in TAMs can be exploited for the development of new therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Chia-Hsin Chan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
50
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|