1
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
2
|
Krupka S, Hoffmann A, Jasaszwili M, Dietrich A, Guiu-Jurado E, Klöting N, Blüher M. Consequences of COVID-19 on Adipose Tissue Signatures. Int J Mol Sci 2024; 25:2908. [PMID: 38474155 DOI: 10.3390/ijms25052908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Since the emergence of coronavirus disease-19 (COVID-19) in 2019, it has been crucial to investigate the causes of severe cases, particularly the higher rates of hospitalization and mortality in individuals with obesity. Previous findings suggest that adipocytes may play a role in adverse COVID-19 outcomes in people with obesity. The impact of COVID-19 vaccination and infection on adipose tissue (AT) is currently unclear. We therefore analyzed 27 paired biopsies of visceral and subcutaneous AT from donors of the Leipzig Obesity BioBank that have been categorized into three groups (1: no infection/no vaccination; 2: no infection but vaccinated; 3: infected and vaccinated) based on COVID-19 antibodies to spike (indicating vaccination) and/or nucleocapsid proteins. We provide additional insights into the impact of COVID-19 on AT biology through a comprehensive histological transcriptome and serum proteome analysis. This study demonstrates that COVID-19 infection is associated with smaller average adipocyte size. The impact of infection on gene expression was significantly more pronounced in subcutaneous than in visceral AT and mainly due to immune system-related processes. Serum proteome analysis revealed the effects of the infection on circulating adiponectin, interleukin 6 (IL-6), and carbonic anhydrase 5A (CA5A), which are all related to obesity and blood glucose abnormalities.
Collapse
Affiliation(s)
- Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mariami Jasaszwili
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Zamani R, Zoghi S, Shahkarami S, Seyedpour S, Jimenez Heredia R, Boztug K, Rezaei N. Novel CARMIL2 (RLTPR) Mutation Presenting with Hyper-IgE and Eosinophilia: A Case Report. Endocr Metab Immune Disord Drug Targets 2024; 24:596-605. [PMID: 37855284 DOI: 10.2174/0118715303263327230922043929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are a growing group of disorders with a wide spectrum of genotypic and phenotypic profiles. CARMIL2 (previously named RLTPR) deficiency is a recently described cause of immune dysregulation, mainly presenting with allergy, mucocutaneous infections, and inflammatory bowel disease. CARMIL2 deficiency is categorized under diseases of immune dysregulation with susceptibility to lymphoproliferative conditions. CASE PRESENTATION Here we describe a 29-years-old male from a consanguineous family, with food and sting allergy, allergic rhinitis, facial molluscum contagiosum (viral infection of the skin in the form of umbilicated papules), eosinophilia and highly elevated serum IgE level. Whole exome sequencing revealed numerous homozygous variants, including a CARMIL2 nonsense mutation, a gene regulating actin polymerization, and promoting cell protrusion formation. CONCLUSION The selective role of CARMIL2 in T cell activation and maturation through cytoskeletal organization is proposed to be the cause of immune dysregulation in individuals with CARMIL2 deficiency. CARMIL2 has an important role in immune pathways regulation, through cell maturation and differentiation, giving rise to a balance between Th1, Th2, and Th17 immune response. This case can improve the understanding of the different impacts of CARMIL2 mutations on immune pathways and further guide the diagnosis of patients with similar phenotypes.
Collapse
Affiliation(s)
- Raha Zamani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians- Universität München (LMU), Munich, Germany
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raúl Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
5
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Joachim A, Aussel R, Gélard L, Zhang F, Mori D, Grégoire C, Villazala Merino S, Gaya M, Liang Y, Malissen M, Malissen B. Defective LAT signalosome pathology in mice mimics human IgG4-related disease at single-cell level. J Exp Med 2023; 220:e20231028. [PMID: 37624388 PMCID: PMC10457416 DOI: 10.1084/jem.20231028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.
Collapse
Affiliation(s)
- Anais Joachim
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Rudy Aussel
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Léna Gélard
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Fanghui Zhang
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Daiki Mori
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Claude Grégoire
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Sergio Villazala Merino
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mauro Gaya
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Yinming Liang
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Marie Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Martínez-Pomar N, Cunill V, Segura-Guerrero M, Pol-Pol E, Escobar Oblitas D, Pons J, Ayestarán I, Pruneda PC, Losada I, Toledo-Pons N, García Gasalla M, Ferrer Balaguer JM. Hyperinflammatory Immune Response in COVID-19: Host Genetic Factors in Pyrin Inflammasome and Immunity to Virus in a Spanish Population from Majorca Island. Biomedicines 2023; 11:2548. [PMID: 37760989 PMCID: PMC10525993 DOI: 10.3390/biomedicines11092548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The hyperinflammatory response caused by SARS-CoV-2 infection contributes to its severity, and many critically ill patients show features of cytokine storm (CS) syndrome. We investigated, by next-generation sequencing, 24 causative genes of primary immunodeficiencies whose defect predisposes to CS. We studied two cohorts with extreme phenotypes of SARS-CoV-2 infection: critical/severe hyperinflammatory patients (H-P) and asymptomatic patients (AM-risk-P) with a high risk (older age) to severe COVID-19. To explore inborn errors of the immunity, we investigated the presence of pathogenic or rare variants, and to identify COVID-19 severity-associated markers, we compared the allele frequencies of common genetic polymorphisms between our two cohorts. We found: 1 H-P carries the likely pathogenic variant c.887-2 A>C in the IRF7 gene and 5 H-P carries variants in the MEFV gene, whose role in the pathogenicity of the familial Mediterranean fever (FMF) disease is controversial. The common polymorphism analysis showed three potential risk biomarkers for developing the hyperinflammatory response: the homozygous haplotype rs1231123A/A-rs1231122A/A in MEFV gene, the IFNAR2 p.Phe8Ser variant, and the CARMIL2 p.Val181Met variant. The combined analysis showed an increased risk of developing severe COVID-19 in patients that had at least one of our genetic risk markers (odds ratio (OR) = 6.2 (95% CI) (2.430-16.20)).
Collapse
Affiliation(s)
- Natalia Martínez-Pomar
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Vanesa Cunill
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Marina Segura-Guerrero
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Elisabet Pol-Pol
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Danilo Escobar Oblitas
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Jaime Pons
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Ignacio Ayestarán
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Intensive Care Unit (ICU), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | | | - Inés Losada
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Internal Medicine, Hospital Universitari Son Llàtzer, 07198 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Pneumology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Mercedes García Gasalla
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Internal Medicine, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Joana Maria Ferrer Balaguer
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| |
Collapse
|
8
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
9
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B, Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220:e20220275. [PMID: 36515678 PMCID: PMC9754768 DOI: 10.1084/jem.20220275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Florian Gothe
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Thomas Magg
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Philipp Peters
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Raedler
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anita Lena Rack-Hoch
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - David Langlais
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Bourgey
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Emmanuel Martin
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Marco Distefano
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | | | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Marian S. Schulz
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Ursula Holzer
- Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Anders Fasth
- Dept. of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Georgios Sogkas
- Dept. of Immunology and Rheumatology, Medical School Hannover, Hanover, Germany
| | - Carsten Speckmann
- Dept. of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology and Center for Chronic Immunodeficiency (CCI), Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Venetia Bigley
- Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Roppelt
- Dept. of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yael Dinur-Schejter
- Dept. of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem, The Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ido Somekh
- Dept. of Pediatric Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Raz Somech
- The Institute of Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S. Shouval
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Israel; The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Hospital, Petach-Tikva, Israel; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jörn-Sven Kühl
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Winnie Ip
- Dept. of Immunology, Great Ormond Street Hospital, London, UK
| | | | - Lucy Cliffe
- Dept. of Pediatrics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ahmet Ozen
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Hemalatha G. Rangarajan
- Division of Hematology, Oncology and Bone Marrow Transplant, Dept. of Pediatrics, Nationwide Children’s Hospital, Columbus, OH
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | | | - Mathieu Fusaro
- Imagine Institute, University of Paris-Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Boutboul
- Dept. of Clinical Immunology, AP-HP, Saint-Louis Hospital, Paris, France
| | - Martin Castelle
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Claire Aguilar
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Olivier Hermine
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Morgane Cheminant
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Felipe Suarez
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alisan Yildiran
- Dept. of Pediatric Immunology and Allergy, Ondokuz Mayis University Medical School, Samsun, Turkey
| | - Aziz Bousfiha
- Clinical Immunology, Inflammation and Auto-immunity Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Intensive Care Unit, Dept. of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Immunology Research Laboratory, Dept. of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children’s Hospital, Ankara, Turkey
| | - Roshini S. Abraham
- Dept. of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Alan P. Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children’s Hospital, St. Louis, MO
| | - Borre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Sagar Bhattad
- Dept. of Pediatrics, Aster CMI Hospital, Bangalore, India
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Tugba Arikoglu
- Dept. of Pediatrics, Division of Pediatric Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology Oncology, Dept. of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Dept. of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Christoph B. Geier
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Dept. of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Christoph Klein
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Dept. of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Fabian Hauck
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
11
|
Vij M, Sivasankaran M, Jayaraman D, Sankaranarayanan S, Kumar V, Munirathnam D, Scott J. CARMIL2 Immunodeficiency with Epstein Barr Virus Associated Smooth Muscle Tumor (EBV-SMT). Report of a Case with Comprehensive Review of Literature. Fetal Pediatr Pathol 2022; 41:1023-1034. [PMID: 34738861 DOI: 10.1080/15513815.2021.2000533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Background: Primary immunodeficiency (PID) having defects related to lymphocyte cytotoxic pathway or T-cell dysfunction are well known for developing opportunistic infections and Epstein-Barr virus (EBV)-associated diseases. CARMIL2 deficiency is a recently described combined immunodeficiency (CID) disorder characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, susceptibility to various infections and Epstein Barr Virus smooth muscle tumor (EBV-SMT). Case report: We report a homozygous CARMIL2 pathogenic variant presenting with recurrent infections and EBV associated smooth muscle tumor (SMT) in a child. Conclusion: The present study reports that EBV SMT may occur in a child with CARMIL2 deficiency.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Meena Sivasankaran
- Paediatric Hematology and Oncology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | - Dhaarani Jayaraman
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Vimal Kumar
- Department of Paediatric Haematology & Oncology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Deenadayalan Munirathnam
- Department of Paediatric Haematology & Oncology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Julius Scott
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
12
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
13
|
Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
|
14
|
Jung G, Pan M, Alexander C, Jin T, Hammer JA. Dual regulation of the actin cytoskeleton by CARMIL-GAP. J Cell Sci 2022; 135:275754. [PMID: 35583107 PMCID: PMC9270954 DOI: 10.1242/jcs.258704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Capping protein Arp2/3 myosin I linker (CARMIL) proteins are multi-domain scaffold proteins that regulate actin dynamics by regulating the activity of capping protein (CP). Here, we characterize CARMIL-GAP (GAP for GTPase-activating protein), a Dictyostelium CARMIL isoform that contains a ∼130 residue insert that, by homology, confers GTPase-activating properties for Rho-related GTPases. Consistent with this idea, this GAP domain binds Dictyostelium Rac1a and accelerates its rate of GTP hydrolysis. CARMIL-GAP concentrates with F-actin in phagocytic cups and at the leading edge of chemotaxing cells, and CARMIL-GAP-null cells exhibit pronounced defects in phagocytosis and chemotactic streaming. Importantly, these defects are fully rescued by expressing GFP-tagged CARMIL-GAP in CARMIL-GAP-null cells. Finally, rescue with versions of CARMIL-GAP that lack either GAP activity or the ability to regulate CP show that, although both activities contribute significantly to CARMIL-GAP function, the GAP activity plays the bigger role. Together, our results add to the growing evidence that CARMIL proteins influence actin dynamics by regulating signaling molecules as well as CP, and that the continuous cycling of the nucleotide state of Rho GTPases is often required to drive Rho-dependent biological processes. Summary:Dictyostelium CARMIL-GAP supports phagocytosis and chemotaxis by regulating both capping protein and Rac1.
Collapse
Affiliation(s)
- Goeh Jung
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - Chris Alexander
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| |
Collapse
|
15
|
Kolukisa B, Baser D, Akcam B, Danielson J, Eltan SB, Haliloglu Y, Sefer AP, Babayeva R, Akgun G, Charbonnier LM, Schmitz-Abe K, Demirkol YK, Zhang Y, Gonzaga-Jauregui C, Heredia RJ, Kasap N, Kiykim A, Yucel EO, Gok V, Unal E, Kisaarslan AP, Nepesov S, Baysoy G, Onal Z, Yesil G, Celkan TT, Cokugras H, Camcioglu Y, Eken A, Boztug K, Lo B, Karakoc-Aydiner E, Su HC, Ozen A, Chatila TA, Baris S. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 2022; 77:1004-1019. [PMID: 34287962 PMCID: PMC9976932 DOI: 10.1111/all.15010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.
Collapse
Affiliation(s)
- Burcu Kolukisa
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Dilek Baser
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Bengu Akcam
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Asena Pinar Sefer
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Royale Babayeva
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Gamze Akgun
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Louis-Marie Charbonnier
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Boston Children’s Hospital, Division of Immunology
and Newborn Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasemin Kendir Demirkol
- Genomic Laboratory (GLAB), Umraniye Teaching and Research
Hospital, University of Health Sciences, Istanbul, Turkey
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | | | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Nurhan Kasap
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Ozek Yucel
- Istanbul University, Istanbul Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Veysel Gok
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | | | - Serdar Nepesov
- Medipol University Medical Faculty, Department of
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Gokhan Baysoy
- Medipol University Medical Faculty, Department of
Pediatric Gastroenterology, Istanbul, Turkey
| | - Zerrin Onal
- Istanbul University, Istanbul Faculty of Medicine,
Department of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul,
Turkey
| | - Gozde Yesil
- Istanbul University, Istanbul Faculty of Medicine,
Department of Medical Genetics, Istanbul, Turkey
| | - Tulin Tiraje Celkan
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Division of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Haluk Cokugras
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Yildiz Camcioglu
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ahmet Eken
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Bernice Lo
- Sidra Medicine, Research Branch, Division of
Translational Medicine, Doha, Qatar,College of Health and Life Sciences, Hamad Bin Khalifa
University, Doha, Qatar
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Talal A. Chatila
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| |
Collapse
|
16
|
Zhu Y, Ye L, Huang H, Xu X, Liu Y, Wang J, Jin Y. Case report: Primary immunodeficiency due to a novel mutation in CARMIL2 and its response to combined immunomodulatory therapy. Front Pediatr 2022; 10:1042302. [PMID: 36727012 PMCID: PMC9884805 DOI: 10.3389/fped.2022.1042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) is necessary for invadopodia formation, cell polarity, lamellipodial assembly, membrane ruffling, acropinocytosis, and collective cell migration. CARMIL2 deficiency is a rare autosomal recessive disease characterized by dysfunction in naïve T-cell activation, proliferation, differentiation, and effector function and insufficient responses in T-cell memory. In this paper, we report a 9-year-old female patient with a novel pathogenic variant in CARMIL2 (c.2063C > G:p.Thr688Arg) who presented with various symptoms of primary immunodeficiencies including recurrent upper and lower respiratory infections, perioral and perineum papules, reddish impetiginized atopic dermatitis, oral ulcer, painful urination and vaginitis, otitis media, and failure to thrive. A missense mutation leading to insufficient CARMIL2 protein expression, reduced absolute T-cell and natural killer cell (NK cell) counts, and marked skewing to the naïve T-cell form was identified and indicated defective maturation of T cells and B cells. Following 1 year of multitargeted treatment with corticosteroids, hydroxychloroquine, mycophenolate mofetil, and thymosin, the patient presented with significant regression in rashes. CD4+ T-cell, CD8+ T-cell, and NK cell counts were significantly improved.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lili Ye
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanliang Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Latour S. Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomed J 2022; 45:321-333. [PMID: 35091087 PMCID: PMC9250091 DOI: 10.1016/j.bj.2022.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
18
|
Okamoto K, Morio T. Inborn errors of immunity with eosinophilia. Allergol Int 2021; 70:415-420. [PMID: 34456137 DOI: 10.1016/j.alit.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Monogenic diseases of the immune system, also known as inborn errors of immunity (IEIs), are caused by single-gene mutations and result in immune deficiency and dysregulation. More than 400 monogenic diseases have been described to date, and this number is rapidly expanding. The increasing availability of next-generation sequencing is now facilitating the diagnosis of IEIs. It is known that IEIs can predispose a person to not only infectious diseases but also cancer and immune disorders, such as inflammatory, autoimmune, and atopic diseases. IEIs with eosinophilia and atopic diseases can occur in several disorders. IEIs with eosinophilia have provided insights into human immunity and the pathogenesis of allergic diseases. Eosinophilia is not a rare finding in clinical practice, and it often poses problems in terms of etiologic research and differential diagnoses. Secondary eosinophilia is the most common form. The main underlying conditions are infectious diseases such as parasitic infections, allergic disorders, drug reactions, and of course IEIs. In clinical settings, the recognition of IEIs in the context of an allergic phenotype with eosinophilia is critical for prompt diagnosis and appropriate treatment aimed at modulating pathophysiological mechanisms and improving clinical symptoms.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Béziat V, Casanova JL, Jouanguy E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr Opin Virol 2021; 51:9-15. [PMID: 34555675 DOI: 10.1016/j.coviro.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for cutaneous and mucosal lesions. Persistent HPV infection remains a leading cause of uterine cancer in women, but also of cutaneous squamous cell carcinoma in patients with epidermodysplasia verruciformis (EV), and of rare and devastating benign tumors, such as 'tree-man' syndrome. HPV infections are usually asymptomatic or benign in the general population. Severe manifestations in otherwise healthy subjects can attest to inherited immunodeficiencies. The human genetic dissection of these cases has identified critical components of the immune response to HPVs, including the non-redundant roles of keratinocyte-intrinsic immunity in controlling β-HPVs, and of T cell-dependent adaptive immunity for controlling all HPV types. A key role of the CD28 T-cell costimulation pathway in controlling common warts due to HPVs was recently discovered. This review summarizes the state of the art in the human genetics of HPV infection, focusing on two key affected cell types: keratinocytes and T cells.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| |
Collapse
|
20
|
Wang Q, Zhou D, Wu F, Liang Q, He Q, Peng M, Yao T, Hu Y, Qian B, Tang J, Wang X, Liu W, Yu F, Chen C. Immune Microenvironment Signatures as Biomarkers to Predict Early Recurrence of Stage Ia-b Lung Cancer. Front Oncol 2021; 11:680287. [PMID: 34395248 PMCID: PMC8356052 DOI: 10.3389/fonc.2021.680287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Approximately 30% of patients diagnosed with stage Ia-b NSCLC die of recurrent disease after surgery. This study aimed to identify immune-related biomarkers that might predict tumor recurrence in stage Ia-b NSCLC within 40 months after curative resection. Methods Gene expression data of stage Ia-b NSCLC samples was retrieved from the TCGA database, the GEO databases, and the Second Xiangya hospital (XXEYY) database. 22 types of tumors infiltrating immune cells and the expression of immune-associated genes were investigated using CIBERSORT, immunohistochemical staining, and GSEA analyses in a total of 450 patients (80 in the training cohort and 370 in the validation cohorts). Recurrence-related immune features were selected based on the LASSO Cox regression model. Results High density of Tregs, Macrophages M0 and M1 cell could be observed in recurrence group while the memory B cell was more frequently enriched in controls, yet Tregs alone was significantly associated with tumor early recurrence in TCGA cohort, XYEYY cohort and GSE37745 dataset. A handful of immune-related genes were identified in the recurrence group. Based on Lasso regression analysis, the expressions of five immune-related genes, RLTPR, SLFN13, MIR4500HG, HYDIN and TPRG1 were closely correlated with tumor early recurrence. In the training cohort (TCGA), the combination of these five genes has sensitivity and specificity of 85% and 85%, with AUC of 0.91 (95% CI 0.84-0.98) for lung cancer early recurrence prediction, whereas in validation cohorts, the sensitivity and specificity using this panel was 61-89% and 54-82%, with AUC of 0.62-0.84. Conclusion Our study demonstrated that the immune microenvironment signatures were closely related to tumor early recurrence. Compared to tumor-infiltrating lymphocytes, the expression of five immune-related genes could be robust biomarkers to predict early recurrence of stage Ia-b NSCLC after curative resection.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Danting Zhou
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qingchun Liang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tianyu Yao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Banglun Qian
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
22
|
Chaudhry IUH, Alshaer A, Al Jassas B, Alkhunizi A, Alsaiary M, AlMubayaedh TA, AlMalki AA, Almesfer A. Bronchopleural fistula in a 5- years old child with novel CARMIL 2 mutation: A rare disease and a rare case. Ann Med Surg (Lond) 2021; 66:102443. [PMID: 34150204 PMCID: PMC8193081 DOI: 10.1016/j.amsu.2021.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022] Open
Abstract
A five year girl had eczema and allergic rhinitis in the past, presented with a history of cough, shortness of breath for the last one month. Her chest -X-ray showed a left side pleural effusion, and a computed tomographic scan (CT) of the chest showed left side hydropneumothorax. Left side 21 Fr drain was inserted. Her clinical condition deteriorated despite antimicrobial therapy, and she required mechanical ventilatory support due to respiratory distress. She also developed a right-sided pneumothorax that was managed by inserting a 21 Fr chest drain. A video-assisted thoracoscopic VATS procedure was done to staple the lung bullae and drain the empyema. Her post-operative chest X-ray showed good lung expansion. Pleural fluid culture report was positive for candida. She was commenced on antifungal microbial therapy. Two days later, she developed again left side pneumothorax, which was again managed by left intercostal drain. We were unable to wean her off from mechanical ventilatory support due to a significant air leak due to bronchopleural fistula. A posterolateral thoracotomy was performed, and the bronchopleural fistula was closed. She was extubated the next day, and intercostal drains were removed on the 4th post-operative day.
Collapse
Affiliation(s)
- Ikram ul Haq Chaudhry
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Ahmed Alshaer
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Burair Al Jassas
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Amal Alkhunizi
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Mohammad Alsaiary
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Tasneem A. AlMubayaedh
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Abass A. AlMalki
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| | - Ahmed Almesfer
- Department of Pediatric Thoracic Surgery and Intensive Care Medicine, Infectious Disease, and Immunology, Maternity and Children Hospital, Dammam, Saudi Arabia
| |
Collapse
|
23
|
Abstract
Epigenetic modifications have been implicated to mediate several complications of diabetes mellitus (DM), especially nephropathy and retinopathy. Our aim was to ascertain whether epigenetic alterations in whole blood discriminate among patients with DM with normal, delayed, and rapid gastric emptying (GE).
Collapse
|
24
|
Fournier B, Latour S. Immunity to EBV as revealed by immunedeficiencies. Curr Opin Immunol 2021; 72:107-115. [PMID: 33989894 DOI: 10.1016/j.coi.2021.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is the most common viral latent infection in humans and represents one prototypical model to study immunity to viral infections. In that respect, inborn errors of immunity (IEIs) or primary immunodeficiencies (PIDs) predisposing to severe and chronic EBV infections provide peculiar examples to decipher-specific molecular and cellular components involved in the immune control of EBV-infected cells. Herein, we discuss the recent knowledge and concepts arising from these studies, with a particular focus on 'atypical' EBV infections when EBV enters T, NK and smooth muscle cells, instead of the common 'typical' infection of B cells.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France.
| |
Collapse
|
25
|
Bosa L, Batura V, Colavito D, Fiedler K, Gaio P, Guo C, Li Q, Marzollo A, Mescoli C, Nambu R, Pan J, Perilongo G, Warner N, Zhang S, Kotlarz D, Klein C, Snapper SB, Walters TD, Leon A, Griffiths AM, Cananzi M, Muise AM. Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease. Sci Rep 2021; 11:5945. [PMID: 33723309 PMCID: PMC7960730 DOI: 10.1038/s41598-021-85399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
CARMIL2 is required for CD28-mediated co-stimulation of NF-κB signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD.
Collapse
Affiliation(s)
- Luca Bosa
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Vritika Batura
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paola Gaio
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Qi Li
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, 35127, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Padova University Hospital, 35128, Padua, Italy
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama, Saitama, 330-8777, Japan
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Mara Cananzi
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.
| |
Collapse
|
26
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
27
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
28
|
Zhao N, Dong W, Kim H, Moallemian R, Lv J, Wang H, Zheng H, Wei F, Ma X. Capping protein regulator and myosin 1 linker 3 regulates transcription of key cytokines in activated phagocytic cells. Cell Signal 2020; 78:109848. [PMID: 33246003 DOI: 10.1016/j.cellsig.2020.109848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023]
Abstract
We have recently reported that capping protein regulator and myosin 1 linker 3 (CARMIL3), first identified as an oncofetal-like gene, is required for metastasis of breast and prostate cancer cells via regulating the actin cytoskeletal dynamics near the plasma membrane. Here, we demonstrate a novel function of CARMIL3 as an essential regulator of the transcription of several key proinflammatory cytokines in macrophages engulfing apoptotic cells and/or exposed to lipopolysaccharides (LPS). CARMIL3-deficient macrophages expressed strongly abrogated levels of interleukin (IL)-6, TNF-α, IL-1β and IL-23 in response to LPS, whereas IL-10 expression was enhanced. An RNA-seq analysis of CARMIL3-deficient and wild-type (WT) RAW264.7 cells stimulated with LPS revealed many differentially expressed genes, impacting several important inflammatory pathways. At the molecular level, CARMIL3 deficiency caused a strong impairment in LPS-activated nuclear factor-κB (NF-κB) signaling with decreased IKKα/β and IκBα phosphorylation and severely reduced p65 protein levels. This study uncovers a crucial role of CARMIL3 in impacting the balance between inflammation and tissue homeostasis via regulating major cytokines production in phagocytic cells.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Dong
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hajeong Kim
- Department of Physiology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Rezvan Moallemian
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Wang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
29
|
Uchida Y, Yoshimitsu M, Hachiman M, Kusano S, Arima N, Shima K, Hayashida M, Kamada Y, Nakamura D, Arai A, Tanaka Y, Hara H, Ishitsuka K. RLTPR Q575E: A novel recurrent gain-of-function mutation in patients with adult T-cell leukemia/lymphoma. Eur J Haematol 2020; 106:221-229. [PMID: 33098696 DOI: 10.1111/ejh.13540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATL) is an intractable T-cell malignancy caused by long-term infection with human T-cell leukemia virus type-1 (HTLV-1). While ATL pathogenesis has been associated with HTLV-1-derived oncogenic proteins, including Tax and HBZ, the contribution of genomic aberrations remains poorly defined. METHODS To elucidate the genomic basis of ATL, whole exome sequencing was performed on cells from 47 patients with aggressive ATL. RESULTS We discovered the novel mutation RLTPR Q575E in four patients (8.5%) with a median variant allele frequency of 0.52 (range 0.11-0.68). Despite being reported in cutaneous T-cell lymphoma, three ATL patients carrying RLTPR Q575E lacked skin involvement. Patients carrying RLTPR Q575E also harbored CARD11 (75%), PLCG1 (25%), PRKCB (25%), or IKBKB (25%) mutations related to TCR/NF-κB signaling. Jurkat cells transfected with RLTPR Q575E cDNA displayed increased NF-κB activity and significantly increased IL-2 mRNA levels under stimulation. RLTPR Q575E increased the interaction between RLTPR and CARD11, while RLTPR directly interacted with Tax. CONCLUSIONS We identified, and functionally validated, a novel gain-of-function mutation in patients with aggressive ATL. During TCR activation by Tax or gain-of-function mutations, RLTPR Q575E selectively upregulates NF-κB signaling and may exert oncogenic effects on ATL pathogenesis.
Collapse
Affiliation(s)
- Yuichiro Uchida
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Miho Hachiman
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Naosuke Arima
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kodai Shima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Maiko Hayashida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuhei Kamada
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Daisuke Nakamura
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Akihiko Arai
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuetsu Tanaka
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
30
|
|
31
|
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG, Alshahrani M, Varga E, Cripe TP, Abraham RS. A Novel Pathogenic Variant in CARMIL2 ( RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 2020; 11:884. [PMID: 32625199 PMCID: PMC7314954 DOI: 10.3389/fimmu.2020.00884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
CARMIL2 deficiency is a rare combined immunodeficiency (CID) characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, and susceptibility to Epstein Barr Virus smooth muscle tumors (EBV-SMTs). Case reports associated with EBV-SMTs are limited. We describe herein a novel homozygous CARMIL2 variant (c.1364_1393del) in two Saudi Arabian male siblings born to consanguineous parents who developed EBV-SMTs. CARMIL2 protein expression was significantly reduced in CD4+ T cells and CD8+ T cells. T cell proliferation on stimulation with soluble (s) anti-CD3 or (s) anti-CD3 plus anti-CD28 antibodies was close to absent in the proband, confirming altered CD28-mediated co-signaling. CD28 expression was substantially reduced in the proband's T cells, and was diminished to a lesser degree in the T cells of the younger sibling, who has a milder clinical phenotype. Defects in both T and B cell compartments were observed, including absent central memory CD8+ T cells, and decreased frequencies of total and class-switched memory B cells. FOXP3+ regulatory T cells (Treg) were also quantitatively decreased, and furthermore CD25 expression within the Treg subset was substantially reduced. These data confirm the pathogenicity of this novel loss-of-function (LOF) variant in CARMIL2 and expand the genotypic and phenotypic spectrum of CIDs associated with EBV-SMTs.
Collapse
Affiliation(s)
- Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ajay Gupta
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarajan
- Division of Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mohammad Alshahrani
- Department of Pediatric Hematology-Oncology, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | - Elizabeth Varga
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Timothy P Cripe
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
32
|
Shamriz O, Simon AJ, Lev A, Megged O, Ledder O, Picard E, Joseph L, Molho-Pessach V, Tal Y, Millman P, Slae M, Somech R, Toker O, Berger M. Exogenous interleukin-2 can rescue in-vitro T cell activation and proliferation in patients with a novel capping protein regulator and myosin 1 linker 2 mutation. Clin Exp Immunol 2020; 200:215-227. [PMID: 32201938 PMCID: PMC7232008 DOI: 10.1111/cei.13432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) deficiency is characterized by impaired T cell activation, which is attributed to defective CD28-mediated co-signaling. Herein, we aimed to analyze the effect of exogenous interleukin (IL)-2 on in-vitro T cell activation and proliferation in a family with CARMIL2 deficiency. This study included four children (one male and three females; aged 2·5-10 years at presentation). The patients presented with inflammatory bowel disease and recurrent viral infections. Genetic analysis revealed a novel homozygous 25-base pairs deletion in CARMIL2. Immunoblotting demonstrated the absence of CARMIL2 protein in all four patients and confirmed the diagnosis of CARMIL2 deficiency. T cells were activated in-vitro with the addition of IL-2 in different concentrations. CD25 and interferon (IFN)-γ levels were measured after 48 h and 5 days of activation. CD25 surface expression on activated CD8+ and CD4+ T cells was significantly diminished in all patients compared to healthy controls. Additionally, CD8+ T cells from all patients demonstrated significantly reduced IFN-γ production. When cells derived from CARMIL2-deficient patients were treated with IL-2, CD25 and IFN-γ production increased in a dose-dependent manner. T cell proliferation, as measured by Cell Trace Violet, was impaired in one patient and it was also rescued with IL-2. In conclusion, we found that IL-2 rescued T cell activation and proliferation in CARMIL2-deficient patients. Thus, IL-2 should be further studied as a potential therapeutic modality for these patients.
Collapse
Affiliation(s)
- O. Shamriz
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - A. J. Simon
- Sheba Cancer Research Center and Institute of HematologySheba Medical CenterTel HaShomerRamat‐GanIsrael
| | - A. Lev
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Megged
- Pediatric Infectious diseases UnitShaare Zedek Medical CenterJerusalemIsrael
| | - O. Ledder
- Juliet Keidan Institute of Pediatric Gastroenterology and NutritionShaare Zedek Medical CenterJerusalemIsrael
| | - E. Picard
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - L. Joseph
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - V. Molho-Pessach
- Department of DermatologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Y. Tal
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - P. Millman
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - M. Slae
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - R. Somech
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Toker
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Allergy and Clinical Immunology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - M. Berger
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
33
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Lyons JJ, Milner JD. The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunol Rev 2019; 287:135-144. [PMID: 30565252 DOI: 10.1111/imr.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
Dynamic changes in metabolism have long been understood as critical for both the initiation and maintenance of innate and adaptive immune responses. A number of recent advances have clarified details of how metabolic pathways can specifically affect cellular function in immune cells. Critical to this understanding is ongoing study of the congenital disorders of glycosylation and other genetic disorders of metabolism that lead to altered immune function in humans. While there are a number of immune phenotypes associated with metabolic derangements caused by single gene disorders, several genetic mutations have begun to link discrete alterations in metabolism and growth specifically with allergic disease. This subset of primary atopic disorders is of particular interest as they illuminate how hypomorphic mutations which allow for some residual function of mutated protein products permit the "abnormal" allergic response. This review will highlight how mutations altering sugar metabolism and mTOR activation place similar constraints on T lymphocyte metabolism to engender atopy, and how alterations in JAK/STAT signaling can impair growth and cellular metabolism while concomitantly promoting allergic diseases and reactions in humans.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Thauland TJ, Khan HA, Butte MJ. The Actin-Capping Protein Alpha-Adducin Is Required for T-Cell Costimulation. Front Immunol 2019; 10:2706. [PMID: 31824498 PMCID: PMC6879651 DOI: 10.3389/fimmu.2019.02706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Alpha-adducin (Add1) is a critical component of the actin-spectrin network in erythrocytes, acting to cap the fast-growing, barbed ends of actin filaments, and recruiting spectrin to these junctions. Add1 is highly expressed in T cells, but its role in T-cell activation has not been examined. Using a conditional knockout model, we show that Add1 is necessary for complete activation of CD4+ T cells in response to low levels of antigen but is dispensable for CD8+ T cell activation and response to infection. Surprisingly, costimulatory signals through CD28 were completely abrogated in the absence of Add1. This study is the first to examine the role of actin-capping in T cells, and it reveals a previously unappreciated role for the actin cytoskeleton in regulating costimulation.
Collapse
Affiliation(s)
| | | | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Wang H, Wang C, Peng G, Yu D, Cui XG, Sun YH, Ma X. Capping Protein Regulator and Myosin 1 Linker 3 Is Required for Tumor Metastasis. Mol Cancer Res 2019; 18:240-252. [PMID: 31694931 DOI: 10.1158/1541-7786.mcr-19-0722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Huan Wang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guang Peng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Doudou Yu
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Gongli Hospital, Shanghai, China.
- Department of Urinary Surgery, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Second Military Medical University, Shanghai, China
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
39
|
Maccari ME, Speckmann C, Heeg M, Reimer A, Casetti F, Has C, Ehl S, Castro CN. Profound immunodeficiency with severe skin disease explained by concomitant novel CARMIL2 and PLEC1 loss-of-function mutations. Clin Immunol 2019; 208:108228. [DOI: 10.1016/j.clim.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
|
40
|
Lim EL, Okkenhaug K. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019; 157:210-218. [PMID: 31107985 PMCID: PMC6587315 DOI: 10.1111/imm.13082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Ee Lyn Lim
- Laboratory of Experimental ImmunologyImmunology Frontier Research CentreOsaka UniversitySuitaJapan
| | - Klaus Okkenhaug
- Division of ImmunologyDepartment of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
41
|
Kurolap A, Eshach Adiv O, Konnikova L, Werner L, Gonzaga-Jauregui C, Steinberg M, Mitsialis V, Mory A, Nunberg MY, Wall S, Shaoul R, Overton JD, Shuldiner AR, Zohar Y, Paperna T, Snapper SB, Shouval DS, Baris Feldman H. A Unique Presentation of Infantile-Onset Colitis and Eosinophilic Disease without Recurrent Infections Resulting from a Novel Homozygous CARMIL2 Variant. J Clin Immunol 2019; 39:430-439. [PMID: 31079270 DOI: 10.1007/s10875-019-00631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/14/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to characterize the clinical phenotype, genetic basis, and consequent immunological phenotype of a boy with severe infantile-onset colitis and eosinophilic gastrointestinal disease, and no evidence of recurrent or severe infections. METHODS Trio whole-exome sequencing (WES) was utilized for pathogenic variant discovery. Western blot (WB) and immunohistochemical (IHC) staining were used for protein expression analyses. Immunological workup included in vitro T cell studies, flow cytometry, and CyTOF analysis. RESULTS WES revealed a homozygous variant in the capping protein regulator and myosin 1 linker 2 (CARMIL2) gene: c.1590C>A; p.Asn530Lys which co-segregated with the disease in the nuclear family. WB and IHC analyses demonstrated reduced protein levels in patient's cells compared with controls. Moreover, comprehensive immunological workup revealed severely diminished blood-borne regulatory T cell (Treg) frequency and impaired in vitro CD4+ T cell proliferation and Treg generation. CyTOF analysis showed significant shifts in the patient's innate and adaptive immune cells compared with healthy controls and ulcerative colitis patients. CONCLUSIONS Pathogenic variants in CARMIL2 have been implicated in an immunodeficiency syndrome characterized by recurrent infections, occasionally with concurrent chronic diarrhea. We show that CARMIL2-immunodeficiency is associated with significant alterations in the landscape of immune populations in a patient with prominent gastrointestinal disease. This case provides evidence that CARMIL2 should be a candidate gene when diagnosing children with very early onset inflammatory and eosinophilic gastrointestinal disorders, even when signs of immunodeficiency are not observed.
Collapse
Affiliation(s)
- Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orly Eshach Adiv
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Pediatric Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Liza Konnikova
- Devision of Newborn Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Maya Steinberg
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Moran Y Nunberg
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Ron Shaoul
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Pediatric Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | | | | | - Yaniv Zohar
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33:8782-8798. [PMID: 31063705 DOI: 10.1096/fj.201900092r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Hammer JA, Wang JC, Saeed M, Pedrosa AT. Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse. Annu Rev Immunol 2019; 37:201-224. [PMID: 30576253 PMCID: PMC8343269 DOI: 10.1146/annurev-immunol-042718-041341] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
Collapse
Affiliation(s)
- John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jia C Wang
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mezida Saeed
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Antonio T Pedrosa
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
44
|
Kunkl M, Mastrogiovanni M, Porciello N, Caristi S, Monteleone E, Arcieri S, Tuosto L. CD28 Individual Signaling Up-regulates Human IL-17A Expression by Promoting the Recruitment of RelA/NF-κB and STAT3 Transcription Factors on the Proximal Promoter. Front Immunol 2019; 10:864. [PMID: 31068940 PMCID: PMC6491678 DOI: 10.3389/fimmu.2019.00864] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023] Open
Abstract
CD28 is an important co-stimulatory receptor for T lymphocytes that, in humans, delivers TCR-independent signal leading to the up-regulation of pro-inflammatory cytokines. We have recently reported that CD28 autonomous signaling induces the expression of IL-17A in peripheral CD4+ T lymphocytes from healthy donors, multiple sclerosis, and type 1 diabetes patients. Due to the relevance of IL-17A in the pathophysiology of several inflammatory and autoimmune diseases, we characterized the mechanisms and signaling mediators responsible for CD28-induced IL-17A expression. Here we show that CD28-mediated up-regulation of IL-17A gene expression depends on RelA/NF-κB and IL-6-associated STAT3 transcriptions factors. In particular, we found that CD28-activated RelA/NF-κB induces the expression of IL-6 that, in a positive feedback loop, mediates the activation and nuclear translocation of tyrosine phosphorylated STAT3 (pSTAT3). pSTAT3 in turn cooperates with RelA/NF-κB by binding specific sequences within the proximal promoter of human IL-17A gene, thus inducing its expression. Finally, by using specific inhibitory drugs, we also identified class 1A phosphatidylinositol 3-kinase (PI3K) as a critical upstream regulator of CD28-mediated RelA/NF-κB and STAT3 recruitments and trans-activation of IL-17A promoter. Our findings reveal a novel mechanism by which human CD28 may amplify IL-17A expression in human T lymphocytes and provide biological bases for immunotherapeutic approaches targeting CD28-associated class 1A PI3K to dampen IL-17A-mediated inflammatory response in autoimmune/inflammatory disorders.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Pasteur Institute, Paris, France
| | - Nicla Porciello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| |
Collapse
|
45
|
A Novel CARMIL2 Mutation Resulting in Combined Immunodeficiency Manifesting with Dermatitis, Fungal, and Viral Skin Infections As Well as Selective Antibody Deficiency. J Clin Immunol 2019; 39:274-276. [DOI: 10.1007/s10875-019-00628-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
|
46
|
Molecular Dynamics of Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:135-152. [DOI: 10.1007/978-981-32-9717-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
48
|
McDonald-Hyman C, Muller JT, Loschi M, Thangavelu G, Saha A, Kumari S, Reichenbach DK, Smith MJ, Zhang G, Koehn BH, Lin J, Mitchell JS, Fife BT, Panoskaltsis-Mortari A, Feser CJ, Kirchmeier AK, Osborn MJ, Hippen KL, Kelekar A, Serody JS, Turka LA, Munn DH, Chi H, Neubert TA, Dustin ML, Blazar BR. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. J Clin Invest 2018; 128:4604-4621. [PMID: 30106752 PMCID: PMC6159973 DOI: 10.1172/jci95713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T cells, in which protein kinase C-θ (PKC-θ) localizes to the contact point between T cells and antigen-presenting cells, in human and mouse Tregs, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Tregs with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Tregs were significantly better than controls at suppressing alloreactive T cell priming in graft-versus-host disease (GVHD) and GVHD lethality, using a complete MHC-mismatch mouse model of acute GVHD (C57BL/6 donor into BALB/c host). Interestingly, vimentin disruption augmented the suppressor function of PKC-θ-deficient mouse Tregs. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrate that vimentin is a key metabolic and functional controller of Treg activity and provide proof of principle that disruption of vimentin is a feasible, translationally relevant method to enhance Treg potency.
Collapse
Affiliation(s)
- Cameron McDonald-Hyman
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James T. Muller
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Guoan Zhang
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Brent H. Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jiqiang Lin
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Jason S. Mitchell
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J. Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Kemal Kirchmeier
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli L. Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David H. Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - Hongbo Chi
- Department of Immunology, Saint Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Thomas A. Neubert
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. J Mol Biol 2018; 430:3545-3564. [DOI: 10.1016/j.jmb.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
|
50
|
Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, Mace EM, Vogel TP, Abhyankar HA, Diaz MI, Heslop HE, Krance RA, Martinez CA, Nguyen TC, Bashir DA, Goldman JR, Stray-Pedersen A, Pedroza LA, Poli MC, Aldave-Becerra JC, McGhee SA, Al-Herz W, Chamdin A, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Cao TN, Hong DN, Gibbs RA, Lupski JR, Orange JS, McClain KL, Allen CE. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 2018; 132:89-100. [PMID: 29632024 PMCID: PMC6034641 DOI: 10.1182/blood-2017-11-814244] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/03/2018] [Indexed: 11/20/2022] Open
Abstract
The HLH-2004 criteria are used to diagnose hemophagocytic lymphohistiocytosis (HLH), yet concern exists for their misapplication, resulting in suboptimal treatment of some patients. We sought to define the genomic spectrum and associated outcomes of a diverse cohort of children who met the HLH-2004 criteria. Genetic testing was performed clinically or through research-based whole-exome sequencing. Clinical metrics were analyzed with respect to genomic results. Of 122 subjects enrolled over the course of 17 years, 101 subjects received genetic testing. Biallelic familial HLH (fHLH) gene defects were identified in only 19 (19%) and correlated with presentation at younger than 1 year of age (P < .0001). Digenic fHLH variants were observed but lacked statistical support for disease association. In 28 (58%) of 48 subjects, research whole-exome sequencing analyses successfully identified likely molecular explanations, including underlying primary immunodeficiency diseases, dysregulated immune activation and proliferation disorders, and potentially novel genetic conditions. Two-thirds of patients identified by the HLH-2004 criteria had underlying etiologies for HLH, including genetic defects, autoimmunity, and malignancy. Overall survival was 45%, and increased mortality correlated with HLH triggered by infection or malignancy (P < .05). Differences in survival did not correlate with genetic profile or extent of therapy. HLH should be conceptualized as a phenotype of critical illness characterized by toxic activation of immune cells from different underlying mechanisms. In most patients with HLH, targeted sequencing of fHLH genes remains insufficient for identifying pathogenic mechanisms. Whole-exome sequencing, however, may identify specific therapeutic opportunities and affect hematopoietic stem cell transplantation options for these patients.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Olive S Eckstein
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Erin C Peckham-Gregory
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Baruch R Goldberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Sarah K Nicholas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Harshal A Abhyankar
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Maria I Diaz
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Helen E Heslop
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Robert A Krance
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Caridad A Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Trung C Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX
| | - Dalia A Bashir
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX
| | - Jordana R Goldman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Critical Care Medicine, Texas Children's Hospital, Houston, TX
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
| | - Luis A Pedroza
- Universidad San Francisco de Quito, Colegio de Ciencias de la Salud-Hospital de los Valles, Quito, Ecuador
| | - M Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Universidad del Desarrollo, Clinica Alemana de Santiago, Santiago, Chile
| | - Juan C Aldave-Becerra
- Division of Allergy and Immunology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Sean A McGhee
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Waleed Al-Herz
- Department of Pediatrics, Kuwait University, Kuwait City, Kuwait
| | - Aghiad Chamdin
- Department of Pediatrics and Human Development, Michigan State University, Lansing, MI; and
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Diana N Hong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Immunology/Allergy/Rheumatology and
| | - Kenneth L McClain
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, TX
| |
Collapse
|