1
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
2
|
Bahat A, Itzhaki E, Weiss B, Tolmasov M, Tsoory M, Kuperman Y, Brandis A, Shurrush KA, Dikstein R. Lowering mutant huntingtin by small molecules relieves Huntington's disease symptoms and progression. EMBO Mol Med 2024; 16:523-546. [PMID: 38374466 PMCID: PMC10940305 DOI: 10.1038/s44321-023-00020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024] Open
Abstract
Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Elad Itzhaki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael Tolmasov
- The Mina & Everard Goodman Faculty of Life-Sciences and The Leslie & Susan Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Khriesto A Shurrush
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Rios L, Pokhrel S, Li SJ, Heo G, Haileselassie B, Mochly-Rosen D. Targeting an allosteric site in dynamin-related protein 1 to inhibit Fis1-mediated mitochondrial dysfunction. Nat Commun 2023; 14:4356. [PMID: 37468472 PMCID: PMC10356917 DOI: 10.1038/s41467-023-40043-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
The large cytosolic GTPase, dynamin-related protein 1 (Drp1), mediates both physiological and pathological mitochondrial fission. Cell stress triggers Drp1 binding to mitochondrial Fis1 and subsequently, mitochondrial fragmentation, ROS production, metabolic collapse, and cell death. Because Drp1 also mediates physiological fission by binding to mitochondrial Mff, therapeutics that inhibit pathological fission should spare physiological mitochondrial fission. P110, a peptide inhibitor of Drp1-Fis1 interaction, reduces pathology in numerous models of neurodegeneration, ischemia, and sepsis without blocking the physiological functions of Drp1. Since peptides have pharmacokinetic limitations, we set out to identify small molecules that mimic P110's benefit. We map the P110-binding site to a switch I-adjacent grove (SWAG) on Drp1. Screening for SWAG-binding small molecules identifies SC9, which mimics P110's benefits in cells and a mouse model of endotoxemia. We suggest that the SWAG-binding small molecules discovered in this study may reduce the burden of Drp1-mediated pathologies and potentially pathologies associated with other members of the GTPase family.
Collapse
Affiliation(s)
- Luis Rios
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sin-Jin Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei City, Taiwan
| | - Gwangbeom Heo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
6
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
7
|
Jia Q, Li S, Li XJ, Yin P. Neuroinflammation in Huntington's disease: From animal models to clinical therapeutics. Front Immunol 2022; 13:1088124. [PMID: 36618375 PMCID: PMC9815700 DOI: 10.3389/fimmu.2022.1088124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by preferential loss of neurons in the striatum in patients, which leads to motor and cognitive impairments and death that often occurs 10-15 years after the onset of symptoms. The expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (HTT) has been defined as the cause of HD, but the mechanism underlying neuronal death remains unclear. Multiple mechanisms, including inflammation, may jointly contribute to HD pathogenesis. Altered inflammation response is evident even before the onset of classical symptoms of HD. In this review, we summarize the current evidence on immune and inflammatory changes, from HD animal models to clinical phenomenon of patients with HD. The understanding of the impact of inflammation on HD would help develop novel strategies to treat HD.
Collapse
Affiliation(s)
| | | | | | - Peng Yin
- *Correspondence: Xiao-Jiang Li, ; Peng Yin,
| |
Collapse
|
8
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
9
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
10
|
de Oliveira Furlam T, Roque IG, Machado da Silva EW, Vianna PP, Costa Valadão PA, Guatimosim C, Teixeira AL, de Miranda AS. Inflammasome activation and assembly in Huntington's disease. Mol Immunol 2022; 151:134-142. [PMID: 36126501 DOI: 10.1016/j.molimm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Inflammasomes are multiprotein complexes capable of sensing pathogen-associated and damage-associated molecular patterns, triggering innate immune pathways. Activation of inflammasomes results in a pro-inflammatory cascade involving, among other molecules, caspases and interleukins. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) is the most studied inflammasome complex, and its activation results in caspase-1 mediated cleavage of the pro-interleukins IL-1β and IL-18 into their mature forms, also inducing a gasdermin D mediated form of pro-inflammatory cell death, i.e. pyroptosis. Accumulating evidence has implicated NLRP3 inflammasome complex in neurodegenerative diseases. The evidence in HD is still scant and mostly derived from pre-clinical studies. This review aims to present the available evidence on NLRP3 inflammasome activation in HD and to discuss whether targeting this innate immune system complex might be a promising therapeutic strategy to alleviate its symptoms.
Collapse
Affiliation(s)
| | | | | | - Pedro Parenti Vianna
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cristina Guatimosim
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Liu C, Fu Z, Wu S, Wang X, Zhang S, Chu C, Hong Y, Wu W, Chen S, Jiang Y, Wu Y, Song Y, Liu Y, Guo X. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Mol Med 2022; 14:e15851. [PMID: 35670111 PMCID: PMC9260212 DOI: 10.15252/emmm.202215851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Chunyue Liu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Zixing Fu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Xiaosong Wang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shengrong Zhang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Chu Chu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Yuan Hong
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Wenbo Wu
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Shengqi Chen
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Yueqing Jiang
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan China
| | - Yongbo Song
- Department of Pharmacology Shenyang Pharmaceutical University Shenyang China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine Interdisciplinary InnoCenter for Organoids Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
| | - Xing Guo
- State Key Laboratory of Reproductive Medicine Key Laboratory of Human Functional Genomics of Jiangsu Province Department of Neurobiology Interdisciplinary InnoCenter for Organoids School of Basic Medical Sciences Nanjing Medical University Nanjing China
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
12
|
Mukherjee R, Tompkins CM, Ostberg NP, Joshi AU, Massis LM, Vijayan V, Gera K, Monack D, Cornell TT, Hall MW, Mochly-Rosen D, Haileselassie B. Drp1/Fis1-Dependent Pathologic Fission and Associated Damaged Extracellular Mitochondria Contribute to Macrophage Dysfunction in Endotoxin Tolerance. Crit Care Med 2022; 50:e504-e515. [PMID: 35067534 PMCID: PMC9133053 DOI: 10.1097/ccm.0000000000005437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis. DESIGN Laboratory investigation. SETTING University laboratory. SUBJECTS C57BL/6 and BALB/C mice. INTERVENTIONS Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge. MEASUREMENTS AND MAIN RESULTS When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 μL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture. CONCLUSIONS Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.
Collapse
Affiliation(s)
- Riddhita Mukherjee
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Carly M. Tompkins
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Nicolai Patrick Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Amit U. Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Vijith Vijayan
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Kanika Gera
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Timothy T. Cornell
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Mark W. Hall
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, 43205; USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Bereketeab Haileselassie
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| |
Collapse
|
13
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Lin AJ, Joshi AU, Mukherjee R, Tompkins CA, Vijayan V, Mochly-Rosen D, Haileselassie B. δPKC-Mediated DRP1 Phosphorylation Impacts Macrophage Mitochondrial Function and Inflammatory Response to Endotoxin. Shock 2022; 57:435-443. [PMID: 34738957 PMCID: PMC8885892 DOI: 10.1097/shk.0000000000001885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies have demonstrated that alterations in mitochondrial dynamics can impact innate immune function. However, the upstream mechanisms that link mitochondrial dynamics to innate immune phenotypes have not been completely elucidated. This study asks if Protein Kinase C, subunit delta (δPKC)-mediated phosphorylation of dynamin-related protein 1 (Drp1), a key driver of mitochondrial fission, impacts macrophage pro-inflammatory response following bacterial-derived lipopolysaccharide (LPS) stimulation. METHODS Using RAW 264.7 cells, bone marrow-derived macrophages from C57BL/6J mice, as well as human monocyte-derived macrophages, we first characterized changes in δPKC-mediated phosphorylation of Drp1 following LPS stimulation. Next, using rationally designed peptides that inhibit δPKC activation (δV1-1) and δPKC-Drp1 interaction (ψDrp1), we determined whether δPKC-mediated phosphorylation of Drp1 impacts LPS-induced changes in mitochondrial morphology, mitochondrial function, and inflammatory response. RESULTS Our results demonstrated that δPKC-dependent Drp1 activation is associated with increased mitochondrial fission, impaired cellular respiration, and increased mitochondrial reactive oxygen species in LPS-treated macrophages. This is reversed using a rationally designed peptide that selectively inhibits δPKC phosphorylation of Drp1 (ψDrp1). Interestingly, limiting excessive mitochondrial fission using ψDrp1 reduced LPS-triggered pro-inflammatory response, including a decrease in NF-κB nuclear localization, decreased iNOS induction, and a reduction in pro-inflammatory cytokines (IL-1β, TNFα, IL-6). CONCLUSION These data suggest that inhibiting Drp1 phosphorylation by δPKC abates the excessive mitochondrial fragmentation and mitochondrial dysfunction that is seen following LPS treatment. Furthermore, these data suggest that limiting δPKC-dependent Drp1 activation decreases the pro-inflammatory response following LPS treatment. Altogether, δPKC-dependent Drp1 phosphorylation might be an upstream mechanistic link between alterations in mitochondrial dynamics and innate immune phenotypes, and may have therapeutic potential.
Collapse
Affiliation(s)
- Amanda J Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Riddhita Mukherjee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carly A Tompkins
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vijith Vijayan
- Department of Pediatrics Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bereketeab Haileselassie
- Department of Pediatrics Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Bečanović K, Asghar M, Gadawska I, Sachdeva S, Walker D, Lazarowski ER, Franciosi S, Park KHJ, Côté HCF, Leavitt BR. Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. NPJ Aging Mech Dis 2021; 7:26. [PMID: 34650085 PMCID: PMC8516942 DOI: 10.1038/s41514-021-00079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial dysfunction and bioenergetics failure are common pathological hallmarks in Huntington's disease (HD) and aging. In the present study, we used the YAC128 murine model of HD to examine the effects of mutant huntingtin on mitochondrial parameters related to aging in brain and skeletal muscle. We have conducted a cross-sectional natural history study of mitochondrial DNA changes in the YAC128 mouse. Here, we first show that the mitochondrial volume fraction appears to increase in the axons and dendrite regions adjacent to the striatal neuron cell bodies in old mice. Mitochondrial DNA copy number (mtDNAcn) was used as a proxy measure for mitochondrial biogenesis and function. We observed that the mtDNAcn changes significantly with age and genotype in a tissue-specific manner. We found a positive correlation between aging and the mtDNAcn in striatum and skeletal muscle but not in cortex. Notably, the YAC128 mice had lower mtDNAcn in cortex and skeletal muscle. We further show that mtDNA deletions are present in striatal and skeletal muscle tissue in both young and aged YAC128 and WT mice. Tracking gene expression levels cross-sectionally in mice allowed us to identify contributions of age and genotype to transcriptional variance in mitochondria-related genes. These findings provide insights into the role of mitochondrial dynamics in HD pathogenesis in both brain and skeletal muscle, and suggest that mtDNAcn in skeletal muscle tissue may be a potential biomarker that should be investigated further in human HD.
Collapse
Affiliation(s)
- Kristina Bečanović
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Asghar
- grid.4714.60000 0004 1937 0626Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Izabella Gadawska
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Shiny Sachdeva
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - David Walker
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - Eduardo. R. Lazarowski
- grid.410711.20000 0001 1034 1720Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC USA
| | - Sonia Franciosi
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC Canada
| | - Kevin H. J. Park
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.253856.f0000 0001 2113 4110Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI USA
| | - Hélène C. F. Côté
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Blair R. Leavitt
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
16
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. The Role of Cell-Free Circulating DNA in the Diagnosis and Prognosis of Breast Cancer. ANNALS OF CANCER RESEARCH AND THERAPY 2021; 29:169-177. [DOI: 10.4993/acrt.29.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne
| |
Collapse
|
17
|
Ferraldeschi M, Romano S, Giglio S, Romano C, Morena E, Mechelli R, Annibali V, Ubaldi M, Buscarinu MC, Umeton R, Sani G, Vecchione A, Salvetti M, Ristori G. Circulating hsa-miR-323b-3p in Huntington's Disease: A Pilot Study. Front Neurol 2021; 12:657973. [PMID: 34025560 PMCID: PMC8131841 DOI: 10.3389/fneur.2021.657973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
The momentum of gene therapy in Huntington's disease (HD) deserves biomarkers from easily accessible fluid. We planned a study to verify whether plasma miRNome may provide useful peripheral "reporter(s)" for the management of HD patients. We performed an exploratory microarray study of whole non-coding RNA profiles in plasma from nine patients with HD and 13 matched controls [eight healthy subjects (HS) and five psychiatric patients (PP) to minimize possible iatrogenic impact on the profile of non-coding RNAs]. We found an HD-specific signature: downregulation of hsa-miR-98 (fold change, -1.5, p = 0.0338 HD vs. HS, and fold change, 1.5, p = 0.0045 HD vs. PP) and upregulation of hsa-miR-323b-3p (fold change, 1.5, p = 0.0007 HD vs. HS, and fold change, 1.5, p = 0.0111 HD vs. PP). To validate this result in an independent cohort, we quantify by digital droplet PCR (ddPCR) the presence of the two microRNA in the plasma of 33 HD patients and 49 matched controls (25 HS and 24 PP patients). We were able to confirm that hsa-miR-323b-3p was upregulated in HD and premanifest HD vs. HS and PP: the median values (first-third quartile) were 4.1 (0.9-10.53) and 5.8 (1.9-10.70) vs. 0.69 (0.3-2.75) and 1.4 (0.78-2.70), respectively, p < 0.05. No significant difference was found for hsa-miR-98. To evaluate the biological plausibility of the hsa-miR-323b-3p as a component of the disease pathophysiology, we performed a bioinformatic analysis based on its targetome and the huntingtin (HTT) interactome. We found a statistically significant overconnectivity between the targetome of hsa-miR-323b-3p and the HTT interactome (p = 1.48e-08). Furthermore, there was a significant transcription regulation of the HTT interactome by the miR-323b-3p targetome (p = 0.02). The availability of handy, reproducible, and minimally invasive biomarkers coming from peripheral miRNome may be valuable to characterize the illness progression, to indicate new therapeutic targets, and to monitor the effect of disease-modifying treatments. Our data deserve further studies with larger sample size and longitudinal design.
Collapse
Affiliation(s)
| | - Silvia Romano
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Simona Giglio
- Department of Experimental Medicine, Policlinico Umberto i of Rome, Sapienza University, Rome, Italy
| | - Carmela Romano
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Emanuele Morena
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, San Raffaele Roma Open University, Rome, Italy
| | - Viviana Annibali
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Martina Ubaldi
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard School of Public Health, Boston, MA, United States
- Weill Cornell Medicine, New York City, NY, United States
| | - Gabriele Sani
- Section of Psychiatry, Department of Neuroscience, University Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Vecchione
- Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Centre for Experimental Neurological Therapies (CENTERS), Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituti di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
18
|
Simmons DA, Mills BD, Butler Iii RR, Kuan J, McHugh TLM, Akers C, Zhou J, Syriani W, Grouban M, Zeineh M, Longo FM. Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington's Disease: Preclinical Evidence with the p75 NTR Ligand LM11A-31. Neurotherapeutics 2021; 18:1039-1063. [PMID: 33786806 PMCID: PMC8423954 DOI: 10.1007/s13311-021-01023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Brian D Mills
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Robert R Butler Iii
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn Akers
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - James Zhou
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maged Grouban
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Benn CL, Gibson KR, Reynolds DS. Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. J Huntingtons Dis 2021; 10:203-220. [PMID: 32925081 PMCID: PMC7990437 DOI: 10.3233/jhd-200421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington’s disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.
Collapse
Affiliation(s)
- Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House, Discovery Park, Sandwich, Kent, UK
| | - David S Reynolds
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
20
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
21
|
Bozzi M, Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington's Disease. Int J Mol Sci 2020; 21:ijms21218314. [PMID: 33167595 PMCID: PMC7664236 DOI: 10.3390/ijms21218314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by pathogenic expansions of the triplet cytosine-adenosine-guanosine (CAG) within the Huntingtin gene. These expansions lead to a prolongation of the poly-glutamine stretch at the N-terminus of Huntingtin causing protein misfolding and aggregation. Huntingtin and its pathological variants are widely expressed, but the central nervous system is mainly affected, as proved by the wide spectrum of neurological symptoms, including behavioral anomalies, cognitive decline and motor disorders. Other hallmarks of HD are loss of body weight and muscle atrophy. This review highlights some key elements that likely provide a major contribution to muscle atrophy, namely, alteration of the transcriptional processes, mitochondrial dysfunction, which is strictly correlated to loss of energy homeostasis, inflammation, apoptosis and defects in the processes responsible for the protein quality control. The improvement of muscular symptoms has proven to slow the disease progression and extend the life span of animal models of HD, underlining the importance of a deep comprehension of the molecular mechanisms driving deterioration of muscular tissue.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento Universitario di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
- Correspondence:
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
| |
Collapse
|
22
|
Valadão PAC, Santos KBS, Ferreira E Vieira TH, Macedo E Cordeiro T, Teixeira AL, Guatimosim C, de Miranda AS. Inflammation in Huntington's disease: A few new twists on an old tale. J Neuroimmunol 2020; 348:577380. [PMID: 32896821 DOI: 10.1016/j.jneuroim.2020.577380] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by prominent loss of neurons in the striatum and cortex. Traditionally research in HD has focused on brain changes as they cause progressive motor dysfunction, cognitive decline and psychiatric disorders. The discovery that huntingtin protein (HTT) and its mutated form (mHTT) are expressed not only in the brain but also in different organs and tissues paved the way for the hypothesis that HD might affect regions beyond the central nervous system (CNS). Besides pathological deposition of mHTT, other mechanisms, including inflammation, seem to underlie HD pathogenesis and progression. Altered inflammation can be evidenced even before the onset of classical symptoms of HD. Herein, we will discuss current pre-clinical and clinical evidence on immune/inflammatory changes in peripheral organs during HD development and progression. The understanding of the impact of inflammation on peripheral organs may open new venues for the development of novel therapeutic targets in HD.
Collapse
Affiliation(s)
| | - Kívia Barretos S Santos
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Talita Hélen Ferreira E Vieira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Fisioterapia, Faculdade Sete Lagoas, Sete Lagoas, MG, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Antonio Lucio Teixeira
- Santa Casa BH Ensino e Pesquisa, Belo Horizonte, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cristina Guatimosim
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
24
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
25
|
Haileselassie B, Joshi AU, Minhas PS, Mukherjee R, Andreasson KI, Mochly-Rosen D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. J Neuroinflammation 2020; 17:36. [PMID: 31987040 PMCID: PMC6986002 DOI: 10.1186/s12974-019-1689-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Out of the myriad of complications associated with septic shock, septic-associated encephalopathy (SAE) carries a significant risk of morbidity and mortality. Blood-brain-barrier (BBB) impairment, which subsequently leads to increased vascular permeability, has been associated with neuronal injury in sepsis. Thus, preventing BBB damage is an attractive therapeutic target. Mitochondrial dysfunction is an important contributor of sepsis-induced multi-organ system failure. More recently, mitochondrial dysfunction in endothelial cells has been implicated in mediating BBB failure in stroke, multiple sclerosis and in other neuroinflammatory disorders. Here, we focused on Drp1-mediated mitochondrial dysfunction in endothelial cells as a potential target to prevent BBB failure in sepsis. Methods We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in a cell culture as well as in murine model of sepsis. BBB disruption was assessed by measuring levels of key tight-junction proteins. Brain cytokines levels, oxidative stress markers, and activity of mitochondrial complexes were measured using biochemical assays. Astrocyte and microglial activation were measured using immunoblotting and qPCR. Transwell cultures of brain microvascular endothelial cells co-cultured with astrocytes were used to assess the effect of LPS on expression of tight-junction proteins, mitochondrial function, and permeability to fluorescein isothiocyanate (FITC) dextran. Finally, primary neuronal cultures exposed to LPS were assessed for mitochondrial dysfunction. Results LPS induced a strong brain inflammatory response and oxidative stress in mice which was associated with increased Drp1 activation and mitochondrial localization. Particularly, Drp1-(Fission 1) Fis1-mediated oxidative stress also led to an increase in expression of vascular permeability regulators in the septic mice. Similarly, mitochondrial defects mediated via Drp1-Fis1 interaction in primary microvascular endothelial cells were associated with increased BBB permeability and loss of tight-junctions after acute LPS injury. P110, an inhibitor of Drp1-Fis1 interaction, abrogated these defects, thus indicating a critical role for this interaction in mediating sepsis-induced brain dysfunction. Finally, LPS mediated a direct toxic effect on primary cortical neurons, which was abolished by P110 treatment. Conclusions LPS-induced impairment of BBB appears to be dependent on Drp1-Fis1-mediated mitochondrial dysfunction. Inhibition of mitochondrial dysfunction with P110 may have potential therapeutic significance in septic encephalopathy.
Collapse
Affiliation(s)
- Bereketeab Haileselassie
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Paras S Minhas
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Riddhita Mukherjee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I Andreasson
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 2019; 22:1635-1648. [PMID: 31551592 PMCID: PMC6764589 DOI: 10.1038/s41593-019-0486-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
In neurodegenerative diseases, debris of dead neurons are thought to trigger glia-mediated neuroinflammation, thus increasing neuronal death. Here we show that the expression of neurotoxic proteins associated with these diseases in microglia alone is sufficient to directly trigger death of naive neurons and to propagate neuronal death through activation of naive astrocytes to the A1 state. Injury propagation is mediated, in great part, by the release of fragmented and dysfunctional microglial mitochondria into the neuronal milieu. The amount of damaged mitochondria released from microglia relative to functional mitochondria and the consequent neuronal injury are determined by Fis1-mediated mitochondrial fragmentation within the glial cells. The propagation of the inflammatory response and neuronal cell death by extracellular dysfunctional mitochondria suggests a potential new intervention for neurodegeneration-one that inhibits mitochondrial fragmentation in microglia, thus inhibiting the release of dysfunctional mitochondria into the extracellular milieu of the brain, without affecting the release of healthy neuroprotective mitochondria.
Collapse
|
27
|
Zhao Y, Sun X, Hu D, Prosdocimo DA, Hoppel C, Jain MK, Ramachandran R, Qi X. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat Commun 2019; 10:1371. [PMID: 30914652 PMCID: PMC6435701 DOI: 10.1038/s41467-019-09291-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fragmentation and bioenergetic failure manifest in Huntington’s disease (HD), a fatal neurodegenerative disease. The factors that couple mitochondrial fusion/fission with bioenergetics and their impacts on neurodegeneration however remain poorly understood. Our proteomic analysis identifies mitochondrial protein ATAD3A as an interactor of mitochondrial fission GTPase, Drp1, in HD. Here we show that, in HD, ATAD3A dimerization due to deacetylation at K135 residue is required for Drp1-mediated mitochondrial fragmentation. Disturbance of ATAD3A steady state impairs mtDNA maintenance by disrupting TFAM/mtDNA binding. Blocking Drp1/ATAD3A interaction with a peptide, DA1, abolishes ATAD3A oligomerization, suppresses mitochondrial fragmentation and mtDNA lesion, and reduces bioenergetic deficits and cell death in HD mouse- and patient-derived cells. DA1 treatment reduces behavioral and neuropathological phenotypes in HD transgenic mice. Our findings demonstrate that ATAD3A plays a key role in neurodegeneration by linking Drp1-induced mitochondrial fragmentation to defective mtDNA maintenance, suggesting that DA1 might be useful for developing HD therapeutics. Huntington’s disease leads to mitochondrial fragmentation and bioenergetic failure, although how the two events are connected is poorly understood. Here, Zhao et al. identify ATAD3A as a molecular linker and show that a peptide inhibitor of ATAD3A oligomerization suppresses HD phenotypes.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute and Harrington Heart and Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Charles Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute and Harrington Heart and Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
28
|
Zadel M, Maver A, Kovanda A, Peterlin B. Transcriptomic Biomarkers for Huntington's Disease: Are Gene Expression Signatures in Whole Blood Reliable Biomarkers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:283-294. [PMID: 29652574 DOI: 10.1089/omi.2017.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder manifesting as progressive impairment of motor function, cognitive decline, psychiatric symptoms, and immunological and endocrine dysfunction. We explored the consistency of blood transcriptomic biomarkers in HD based on a novel Slovene patient cohort and expert review of previous studies. HumanHT-12 v4 BeadChip microarrays were performed on the whole blood samples of a cohort of 23 HD mutation carriers and 23 controls to identify differentially expressed (DE) transcripts. In addition, we performed an expert review of DE transcripts identified in comparable HD studies from whole blood, to identify any consistent signature of HD. In the Slovene cohort, we identified 740 DE transcripts (p < 0.01 and a false discovery rate (FDR) of <0.1) of which 414 were downregulated and 326 were upregulated. Pathway analyses of DE transcripts showed enrichment for pathways involved in systemic, rather than neural processes in HD. With an expert review of comparable studies, we have further identified 15 DE transcripts shared by 3 studies. We suggest transcriptomic changes in blood reflect systemic changes in HD pathogenesis, rather than being a direct result of the neuropathological processes in the central nervous system during HD progression, and thus, have limited value as disease biomarkers.
Collapse
Affiliation(s)
- Maja Zadel
- 1 Community Health Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Anja Kovanda
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Borut Peterlin
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
29
|
Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2019; 10:emmm.201708166. [PMID: 29335339 PMCID: PMC5840540 DOI: 10.15252/emmm.201708166] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioenergetic failure and oxidative stress are common pathological hallmarks of amyotrophic lateral sclerosis (ALS), but whether these could be targeted effectively for novel therapeutic intervention needs to be determined. One of the reported contributors to ALS pathology is mitochondrial dysfunction associated with excessive mitochondrial fission and fragmentation, which is predominantly mediated by Drp1 hyperactivation. Here, we determined whether inhibition of excessive fission by inhibiting Drp1/Fis1 interaction affects disease progression. We observed mitochondrial excessive fragmentation and dysfunction in several familial forms of ALS patient‐derived fibroblasts as well as in cultured motor neurons expressing SOD1 mutant. In both cell models, inhibition of Drp1/Fis1 interaction by a selective peptide inhibitor, P110, led to a significant reduction in reactive oxygen species levels, and to improvement in mitochondrial structure and functions. Sustained treatment of mice expressing G93A SOD1 mutation with P110, beginning at the onset of disease symptoms at day 90, produced an improvement in motor performance and survival, suggesting that Drp1 hyperactivation may be an attractive target in the treatment of ALS patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna D Cunnigham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Abstract
Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
31
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Joshi AU, Ebert AE, Haileselassie B, Mochly-Rosen D. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease. J Mol Cell Cardiol 2018; 127:125-133. [PMID: 30550751 DOI: 10.1016/j.yjmcc.2018.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a fatal hereditary neurodegenerative disorder, best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances, is caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT). However, in addition to the neurological disease, mutant HTT (mHTT), which is ubiquitously expressed in all tissues, impairs other organ systems. Not surprisingly, cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with HD. Mitochondrial dysfunction in the brain and skeletal muscle in HD has been well documented, as the disease progresses. However, not much is known about mitochondrial abnormalities in the heart. In this study, we describe a role for Drp1/Fis1-mediated excessive mitochondrial fission and dysfunction, associated with lysosomal dysfunction in H9C2 expressing long polyglutamine repeat (Q73) and in human iPSC-derived cardiomyocytes transfected with Q77. Expression of long polyglutamine repeat led to reduced ATP production and mitochondrial fragmentation. We observed an increased accumulation of damaged mitochondria in the lysosome that was coupled with lysosomal dysfunction. Importantly, reducing Drp1/Fis1-mediated mitochondrial damage significantly improved mitochondrial function and cell survival. Finally, reducing Fis1-mediated Drp1 recruitment to the mitochondria, using the selective inhibitor of this interaction, P110, improved mitochondrial structure in the cardiac tissue of R6/2 mice. We suggest that drugs focusing on the central nervous system will not address mitochondrial function across all organs, and therefore will not be a sufficient strategy to treat or slow down HD disease progression.
Collapse
Affiliation(s)
- A U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - A E Ebert
- Department of Cardiology and Pneumology, Gottingen University Medical Center, Gottingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Gottingen, Germany
| | - B Haileselassie
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - D Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
33
|
Kornfeld OS, Qvit N, Haileselassie B, Shamloo M, Bernardi P, Mochly-Rosen D. Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci Rep 2018; 8:14034. [PMID: 30232469 PMCID: PMC6145916 DOI: 10.1038/s41598-018-32228-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022] Open
Abstract
Mitochondria form a dynamic network governed by a balance between opposing fission and fusion processes. Because excessive mitochondrial fission correlates with numerous pathologies, including neurodegeneration, the mechanism governing fission has become an attractive therapeutic strategy. However, targeting fission is a double-edged sword as physiological fission is necessary for mitochondrial function. Fission is trigged by Drp1 anchoring to adaptors tethered to the outer mitochondrial membrane. We designed peptide P259 that distinguishes physiological from pathological fission by specifically inhibiting Drp1′s interaction with the Mff adaptor. Treatment of cells with P259 elongated mitochondria and disrupted mitochondrial function and motility. Sustained in vivo treatment caused a decline in ATP levels and altered mitochondrial structure in the brain, resulting in behavioral deficits in wild-type mice and a shorter lifespan in a mouse model of Huntington’s disease. Therefore, the Mff-Drp1 interaction is critical for physiological mitochondrial fission, motility, and function in vitro and in vivo. Tools, such as P259, that differentiate physiological from pathological fission will enable the examination of context-dependent roles of Drp1 and the suitability of mitochondrial fission as a target for drug development.
Collapse
Affiliation(s)
- Opher S Kornfeld
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 12325, Israel
| | - Bereketeab Haileselassie
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, 35122, Italy
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Denis HL, Lamontagne-Proulx J, St-Amour I, Mason SL, Weiss A, Chouinard S, Barker RA, Boilard E, Cicchetti F. Platelet-derived extracellular vesicles in Huntington's disease. J Neurol 2018; 265:2704-2712. [PMID: 30209650 DOI: 10.1007/s00415-018-9022-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023]
Abstract
The production and release of extracellular vesicles (EV) is a property shared by all eukaryotic cells and a phenomenon frequently exacerbated in pathological conditions. The protein cargo of EV, their cell type signature and availability in bodily fluids make them particularly appealing as biomarkers. We recently demonstrated that platelets, among all types of blood cells, contain the highest concentrations of the mutant huntingtin protein (mHtt)-the genetic product of Huntington's disease (HD), a neurodegenerative disorder which manifests in adulthood with a complex combination of motor, cognitive and psychiatric deficits. Herein, we used a cohort of 59 HD patients at all stages of the disease, including individuals in pre-manifest stages, and 54 healthy age- and sex-matched controls, to evaluate the potential of EV derived from platelets as a biomarker. We found that platelets of pre-manifest and manifest HD patients do not release more EV even if they are activated. Importantly, mHtt was not found within EV derived from platelets, despite them containing high levels of this protein. Correlation analyses also failed to reveal an association between the number of platelet-derived EV and the age of the patients, the number of CAG repeats, the Unified Huntington Disease Rating Scale total motor score, the Total Functional Capacity score or the Burden of Disease score. Our data would, therefore, suggest that EV derived from platelets with HD is not a valuable biomarker in HD.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | | | | | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | | | - Sylvain Chouinard
- Centre Hospitalier de l'Université de Montréal et Centre de recherche du Centre Hospitalier de l'Université de Montréal, Département de médecine, Hôpital Notre-Dame, Université de Montréal, Montréal, QC, Canada
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Québec, QC, Canada. .,Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Québec, QC, Canada. .,Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
35
|
Szejko N, Picón C, García-Caldentey J, de Yebenes JG, Alvarez-Cermeño JC, Villar LM, López-Sendón Moreno JL. Quantification of the Light Subunit of Neurofilament Protein in Cerebrospinal Fluid of Huntington's Disease Patients. PLOS CURRENTS 2018; 10. [PMID: 30258698 PMCID: PMC6128703 DOI: 10.1371/currents.hd.280c8f9f7d9fa4f7f0c883d9f8e807da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurofilament light proteins (NFL) are a structural element of the neuronal cytoskeleton and are released with neuronal damage. Its levels are increased in cerebrospinal fluid (CSF) in the setting of neurodegenerative diseases. We investigated the CSF-NFL levels of Huntington´s disease (HD) patients (participating in a clinical trial SAT-HD) as well as of premanifest carriers and compared their results with a sample of healthy controls and correlated CSF-NFL levels with demographic and clinical variables (baseline demographic characteristics and HD measures of disease severity). CSF levels were significantly higher in all HD subjects [5014.4 (1557.3) ng/l] and pre-manifest carriers [1050 (212.13) ng/l as compared to controls [331.4 (200.2) ng/l] (p<0.00) and were correlated with age (correlation coefficient -0.37, p<0.01) and CAG triplet number (0,51, p<0.05) in the subset of HD patients. NFL levels were not correlated with age in the control group. We did not find any correlation with the remaining variables. These results indicate, as in previous studies, that CSF-NFL levels are a marker of neuronal damage in HD. It seems to be a highly sensitive, but non-specific marker of axonal damage. One of the limitations of our study is a very small number of patients in pre-symptomatic group and lack of individuals with very advanced HD. Further investigations should focus on study of CSF-NFL levels in advanced patients, tracking prospectively CSF-NFL levels and analysing its correlation with the clinical course and usefulness to monitor disease progression, validation and quantification of NFL levels in more accessible biofluids.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Poland; Department of Bioethics, Medical University of Warsaw, Poland
| | - Carmen Picón
- Servicio de Inmunología. Hospital Ramón y Cajal. Madrid. Spain
| | | | | | - Jose Carlos Alvarez-Cermeño
- Servicio de Neurología. Hospital Ramón y Cajal de Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain
| | - Luisa Maria Villar
- Servicio de Inmunología. Hospital Ramón y Cajal. Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain
| | - José Luis López-Sendón Moreno
- Servicio de Neurología. Hospital Ramón y Cajal de Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain
| |
Collapse
|
36
|
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138:2-15. [PMID: 30144530 DOI: 10.1016/j.phrs.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are best known for their role in ATP generation. However, studies over the past two decades have shown that mitochondria do much more than that. Mitochondria regulate both necrotic and apoptotic cell death pathways, they store and therefore coordinate cellular Ca2+ signaling, they generate and metabolize important building blocks, by-products and signaling molecules, and they also generate and are targets of free radical species that modulate many aspects of cell physiology and pathology. Most estimates suggest that although the brain makes up only 2 percent of body weight, utilizes about 20 percent of the body's total ATP. Thus, mitochondrial dysfunction greatly impacts brain functions and is indeed associated with numerous neurodegenerative diseases. Furthermore, a number of abnormal disease-associated proteins have been shown to interact directly with mitochondria, leading to mitochondrial dysfunction and subsequent neuronal cell death. Here, we discuss the role of mitochondrial dynamics impairment in the pathological processes associated with neurodegeneration and suggest that a therapy targeting mitochondrialdysfunction holds a great promise.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA.
| |
Collapse
|
37
|
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, Shuhendler AJ, Miao Z, Chin FT, Longo FM. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31. Hum Mol Genet 2018; 27:2893-2912. [PMID: 29860333 PMCID: PMC6077813 DOI: 10.1093/hmg/ddy202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18 kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in two HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFα. These results suggest that [18F]PBR06-PET is a useful surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
38
|
Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci Rep 2018; 8:9817. [PMID: 29959348 PMCID: PMC6026140 DOI: 10.1038/s41598-018-27985-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder primarily affecting the basal ganglia and is caused by expanded CAG repeats in the huntingtin gene. Except for CAG sizing, mitochondrial and nuclear DNA (mtDNA and nDNA) parameters have not yet proven to be representative biomarkers for disease and future therapy. Here, we identified a general suppression of genes associated with aerobic metabolism in peripheral blood mononuclear cells (PBMCs) from HD patients compared to controls. In HD, the complex II subunit SDHB was lowered although not sufficiently to affect complex II activity. Nevertheless, we found decreased level of factors associated with mitochondrial biogenesis and an associated dampening of the mitochondrial DNA damage frequency in HD, implying an early defect in mitochondrial activity. In contrast to mtDNA, nDNA from HD patients was four-fold more modified than controls and demonstrated that nDNA integrity is severely reduced in HD. Interestingly, the level of nDNA damage correlated inversely with the total functional capacity (TFC) score; an established functional score of HD. Our data show that PBMCs are a promising source to monitor HD progression and highlights nDNA damage and diverging mitochondrial and nuclear genome responses representing early cellular impairments in HD.
Collapse
|
39
|
Thornton C, Jones A, Nair S, Aabdien A, Mallard C, Hagberg H. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett 2017; 592:812-830. [PMID: 29265370 DOI: 10.1002/1873-3468.12943] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.
Collapse
Affiliation(s)
- Claire Thornton
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Adam Jones
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Syam Nair
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Afra Aabdien
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK.,Perinatal Center, Department of Clinical Sciences & Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
40
|
Joshi AU, Saw NL, Shamloo M, Mochly-Rosen D. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer's disease. Oncotarget 2017; 9:6128-6143. [PMID: 29464060 PMCID: PMC5814200 DOI: 10.18632/oncotarget.23640] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/26/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dynamics, involving a balance between fusion and fission, regulates mitochondrial quality and number. Increasing evidence suggests that dysfunctional mitochondria play a role in Alzheimer's disease (AD). We observed that Drp1 interaction with one of the adaptors, Fis1, is significantly increased in Aβ-treated neurons and AD patient-derived fibroblasts. P110, a seven-amino acid peptide, which specifically inhibits Drp1/Fis1 interaction without affecting the interaction of Drp1 with its other adaptors, attenuated Aβ42-induced mitochondrial recruitment of Drp1 and prevented mitochondrial structural and functional dysfunction in cultured neurons, in cells expressing mutant amyloid precursor protein (KM670/671NL), and in five different AD patient-derived fibroblasts. Importantly, sustained P110 treatment significantly improved behavioral deficits, and reduced Aβ accumulation, energetic failure and oxidative stress in the brain of the AD mouse model, 5XFAD. This suggests that Drp1/Fis1 interaction and excessive mitochondrial fission greatly contribute to Aβ-mediated and AD-related neuropathology and cognitive decline. Therefore, inhibiting excessive Drp1/Fis1-mediated mitochondrial fission may benefit AD patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|