1
|
Rondeau V, Kalogeraki M, Roland L, Nader ZA, Gourhand V, Bonaud A, Lemos J, Khamyath M, Moulin C, Schell B, Delord M, Bidaut G, Lecourt S, Freitas C, Anginot A, Mazure N, McDermott DH, Parietti V, Setterblad N, Dulphy N, Bachelerie F, Aurrand-Lions M, Stockholm D, Lobry C, Murphy PM, Espéli M, Mancini SJC, Balabanian K. CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism. Sci Signal 2024; 17:eadl5100. [PMID: 39471249 DOI: 10.1126/scisignal.adl5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
Both cell-intrinsic and niche-derived, cell-extrinsic cues drive the specification of hematopoietic multipotent progenitors (MPPs) in the bone marrow, which comprise multipotent MPP1 cells and lineage-restricted MPP2, MPP3, and MPP4 subsets. Patients with WHIM syndrome, a rare congenital immunodeficiency caused by mutations that prevent desensitization of the chemokine receptor CXCR4, have an excess of myeloid cells in the bone marrow. Here, we investigated the effects of increased CXCR4 signaling on the localization and fate of MPPs. Knock-in mice bearing a WHIM syndrome-associated CXCR4 mutation (CXCR41013) phenocopied the myeloid skewing of bone marrow in patients. Whereas MPP4 cells in wild-type mice differentiated into lymphoid cells, MPP4s in CXCR41013 knock-in mice differentiated into myeloid cells. This myeloid rewiring of MPP4s in CXCR41013 knock-in mice was associated with enhanced signaling mediated by the kinase mTOR and increased oxidative phosphorylation (OXPHOS). MPP4s also localized further from arterioles in the bone marrow of knock-in mice compared with wild-type mice, suggesting that the loss of extrinsic cues from the perivascular niche may also contribute to their myeloid skewing. Chronic treatment with the CXCR4 antagonist AMD3100 or the mTOR inhibitor rapamycin restored the lymphoid potential of MPP4s in knock-in mice. Thus, CXCR4 desensitization drives the lymphoid potential of MPP4 cells by dampening the mTOR-dependent metabolic changes that promote myeloid differentiation.
Collapse
Affiliation(s)
- Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Clémentine Moulin
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Direction à la Recherche Clinique et à l'Innovation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Ghislain Bidaut
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Séverine Lecourt
- INSERM U1279, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christelle Freitas
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Nathalie Mazure
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Nice, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Véronique Parietti
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Niclas Setterblad
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Michel Aurrand-Lions
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Camille Lobry
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, Paris, France
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
2
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
3
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2024:10.1007/s12015-024-10761-z. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
4
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
5
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
6
|
Boccon-Gibod C, Sourdeau E, Morel P, Chapiro E, Nguyen-Khac F, Bravetti C, Davi F, Morel V, Gauthier N, Grenier A, Boussen I, Choquet S, Leblond V, Le Garff-Tavernier M, Baron M, Roos-Weil D. Circulating tumor cells in Waldenström macroglobulinemia. Leukemia 2024; 38:903-907. [PMID: 38332185 DOI: 10.1038/s41375-024-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Affiliation(s)
- Clémentine Boccon-Gibod
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.
| | - Elise Sourdeau
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | | | - Elise Chapiro
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France
| | - Florence Nguyen-Khac
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France
| | - Clotilde Bravetti
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France
| | - Frédéric Davi
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France
| | - Véronique Morel
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Nicolas Gauthier
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Adrien Grenier
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Inès Boussen
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Sylvain Choquet
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Véronique Leblond
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Magali Le Garff-Tavernier
- Sorbonne Université, Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France
| | - Marine Baron
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Damien Roos-Weil
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.
- Drug Resistance in Hematological Malignancies, Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, F-75006, Paris, France.
| |
Collapse
|
7
|
Moulin C, Beaupain B, Suarez F, Bertrand Y, Beaussant SC, Fischer A, Durin J, Ranta D, Espéli M, Bachelerie F, Bellanné-Chantelot C, Molina T, Emile JF, Balabanian K, Deback C, Donadieu J. CXCR4 WHIM syndrome is a cancer predisposition condition for virus-induced malignancies. Br J Haematol 2024; 204:1383-1392. [PMID: 38442908 DOI: 10.1111/bjh.19373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome (WHIMS) is a rare combined primary immunodeficiency caused by the gain of function of the CXCR4 chemokine receptor. We present the prevalence of cancer in WHIMS patients based on data from the French Severe Chronic Neutropenia Registry and an exhaustive literature review. The median follow-up of the 14 WHIMS 'patients was 28.5 years. A central review and viral evaluation of pathological samples were organized, and we conducted a thorough literature review to identify all reports of WHIMS cases. Six French patients were diagnosed with cancer at a median age of 37.6 years. The 40-year risk of malignancy was 39% (95% confidence interval [CI]: 6%-74%). We observed two human papillomavirus (HPV)-induced vulvar carcinomas, three lymphomas (two Epstein-Barr virus [EBV]-related) and one basal cell carcinoma. Among the 155 WHIMS cases from the literature, 22 cancers were reported in 16 patients, with an overall cancer 40-year risk of 23% (95% CI: 13%-39%). Malignancies included EBV-associated lymphoproliferative disorders and HPV-positive genital and anal cancers as in the French cohort. Worldwide, nine cases of malignancy were associated with HPV and four with EBV. Immunocompromised WHIMS patients appear to be particularly susceptible to developing early malignancy, mainly HPV-induced carcinomas, followed by EBV-related lymphomas.
Collapse
Affiliation(s)
- Clémentine Moulin
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Blandine Beaupain
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Felipe Suarez
- Service d'hématologie, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Yves Bertrand
- Institut d'hémato oncologie Pédiatrique, Hospice Civil de Lyon, Paris, France
| | - Sarah Cohen Beaussant
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Alain Fischer
- Centre de référence des déficits immunitaires héréditaires, Unité d'Immuno-Hématologie Pédiatrique, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Julie Durin
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Dana Ranta
- Service d'hématologie, CHU Nancy, Nancy, France
| | - Marion Espéli
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | | | - Thierry Molina
- Service d'anatomie pathologique Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Jean François Emile
- Service d'anatomie pathologique Hôpital Ambroise Paré, APHP, Boulogne-Billancourt, France
| | - Karl Balabanian
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Claire Deback
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
- Laboratoire de Virologie, Hôpitaux Universitaires Paris-Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, France
| | - Jean Donadieu
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| |
Collapse
|
8
|
Majumdar S, Pontejo SM, Jaiswal H, Gao JL, Salancy A, Stassenko E, Yamane H, McDermott DH, Balabanian K, Bachelerie F, Murphy PM. Severe CD8+ T Lymphopenia in WHIM Syndrome Caused by Selective Sequestration in Primary Immune Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1913-1924. [PMID: 37133343 PMCID: PMC10247468 DOI: 10.4049/jimmunol.2200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.
Collapse
Affiliation(s)
- Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hemant Jaiswal
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Abigail Salancy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Stassenko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Karl Balabanian
- Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Anginot A, Nguyen J, Abou Nader Z, Rondeau V, Bonaud A, Kalogeraki M, Boutin A, Lemos JP, Bisio V, Koenen J, Hanna Doumit Sakr L, Picart A, Coudert A, Provot S, Dulphy N, Aurrand-Lions M, Mancini SJC, Lazennec G, McDermott DH, Guidez F, Blin-Wakkach C, Murphy PM, Cohen-Solal M, Espéli M, Rouleau M, Balabanian K. WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nat Commun 2023; 14:2058. [PMID: 37045841 PMCID: PMC10097661 DOI: 10.1038/s41467-023-37791-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.
Collapse
Affiliation(s)
- Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julie Nguyen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Julia P Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Valeria Bisio
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Joyce Koenen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Lea Hanna Doumit Sakr
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amandine Picart
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amélie Coudert
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Sylvain Provot
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Michel Aurrand-Lions
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane J C Mancini
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Gwendal Lazennec
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Fabien Guidez
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1131, Paris, France
| | | | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martine Cohen-Solal
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France.
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
10
|
Khamyath M, Bonaud A, Balabanian K, Espéli M. [CXCR4 as a rheostat of humoral response]. Med Sci (Paris) 2023; 39:23-30. [PMID: 36692314 DOI: 10.1051/medsci/2022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CXCR4 is a chemokine receptor that plays a central role in cell migration but also in other essential processes such as the development of the immune system. Together with its ligand, the chemokine CXCL12, this signalling axis plays an important role in B lymphocyte biology from their early differentiation in the bone marrow to their activation and differentiation into antibody secreting cells, also called plasma cells. Gain-of-function mutations of CXCR4 are found in a rare immunodeficiency, the WHIM Syndrome. These mutations affect the desensitization of the receptor and lead to a gain of function in response to CXCL12. This review summarizes the role of CXCR4 in the humoral immune responses and using the WHIM Syndrome as a paradigm, highlights the critical regulatory role of CXCR4 desensitization in these processes. Indeed, recent works report that fine-tuning of CXCR4 signalling is essential to limit the extra-follicular immune response and support long term antibody-mediated protection.
Collapse
Affiliation(s)
- Mélanie Khamyath
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
11
|
Zehentmeier S, Lim VY, Ma Y, Fossati J, Ito T, Jiang Y, Tumanov AV, Lee HJ, Dillinger L, Kim J, Csomos K, Walter JE, Choi J, Pereira JP. Dysregulated stem cell niches and altered lymphocyte recirculation cause B and T cell lymphopenia in WHIM syndrome. Sci Immunol 2022; 7:eabo3170. [PMID: 36149943 PMCID: PMC9614684 DOI: 10.1126/sciimmunol.abo3170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTβR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTβR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTβR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTβR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Yawen Jiang
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Lukas Dillinger
- X4 Pharmaceuticals Inc., Cambridge, MA, USA
- X4 Pharmaceuticals Inc., Vienna, Austria
| | - Jihyun Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Division Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jungmin Choi
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| |
Collapse
|
12
|
Li L, Kim JH, Lu W, Williams DM, Kim J, Cope L, Rampal RK, Koche RP, Xian L, Luo LZ, Vasiljevic M, Matson DR, Zhao ZJ, Rogers O, Stubbs MC, Reddy K, Romero AR, Psaila B, Spivak JL, Moliterno AR, Resar LMS. HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood 2022; 139:2797-2815. [PMID: 35286385 PMCID: PMC9074401 DOI: 10.1182/blood.2021013925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.
Collapse
Affiliation(s)
- Liping Li
- Division of Hematology, Department of Medicine, and
| | | | - Wenyan Lu
- Division of Hematology, Department of Medicine, and
| | | | - Joseph Kim
- Division of Hematology, Department of Medicine, and
| | - Leslie Cope
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Raajit K Rampal
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Institute, New York, NY
| | - Richard P Koche
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Institute, New York, NY
| | | | - Li Z Luo
- Division of Hematology, Department of Medicine, and
| | | | - Daniel R Matson
- Blood Cancer Research Institute, Department of Cell and Regenerative Biology, UW Carbone Cancer Center, University of Wisconsin School of Medicine, Madison, WI
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Karen Reddy
- Department of Biologic Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Antonio-Rodriguez Romero
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institutes of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; and
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institutes of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; and
| | - Jerry L Spivak
- Division of Hematology, Department of Medicine, and
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Linda M S Resar
- Division of Hematology, Department of Medicine, and
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program and
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Brozowski JM, Timoshchenko RG, Serafin DS, Allyn B, Koontz J, Rabjohns EM, Rampersad RR, Ren Y, Eudy AM, Harris TF, Abraham D, Mattox D, Rubin CT, Hilton MJ, Rubin J, Allbritton NL, Billard MJ, Tarrant TK. G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Res Ther 2022; 13:37. [PMID: 35093170 PMCID: PMC8800243 DOI: 10.1186/s13287-022-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bone marrow niche supports hematopoietic cell development through intimate contact with multipotent stromal mesenchymal stem cells; however, the intracellular signaling, function, and regulation of such supportive niche cells are still being defined. Our study was designed to understand how G protein receptor kinase 3 (GRK3) affects bone marrow mesenchymal stem cell function by examining primary cells from GRK3-deficient mice, which we have previously published to have a hypercellular bone marrow and leukocytosis through negative regulation of CXCL12/CXCR4 signaling. METHODS Murine GRK3-deficient bone marrow mesenchymal stromal cells were harvested and cultured to differentiate into three lineages (adipocyte, chondrocyte, and osteoblast) to confirm multipotency and compared to wild type cells. Immunoblotting, modified-TANGO experiments, and flow cytometry were used to further examine the effects of GRK3 deficiency on bone marrow mesenchymal stromal cell receptor signaling. Microcomputed tomography was used to determine trabecular and cortical bone composition of GRK3-deficient mice and standard ELISA to quantitate CXCL12 production from cellular cultures. RESULTS GRK3-deficient, bone marrow-derived mesenchymal stem cells exhibit enhanced and earlier osteogenic differentiation in vitro. The addition of a sphingosine kinase inhibitor abrogated the osteogenic proliferation and differentiation, suggesting that sphingosine-1-phosphate receptor signaling was a putative G protein-coupled receptor regulated by GRK3. Immunoblotting showed prolonged ERK1/2 signaling after stimulation with sphingosine-1-phosphate in GRK3-deficient cells, and modified-TANGO assays suggested the involvement of β-arrestin-2 in sphingosine-1-phosphate receptor internalization. CONCLUSIONS Our work suggests that GRK3 regulates sphingosine-1-phosphate receptor signaling on bone marrow mesenchymal stem cells by recruiting β-arrestin to the occupied GPCR to promote internalization, and lack of such regulation affects mesenchymal stem cell functionality.
Collapse
Affiliation(s)
- Jaime M Brozowski
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Roman G Timoshchenko
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - D Stephen Serafin
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Brittney Allyn
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Jessica Koontz
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Emily M Rabjohns
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Rishi R Rampersad
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Yinshi Ren
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Amanda M Eudy
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Taylor F Harris
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Abraham
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Mattox
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering at Stony, Brook University, Stony Brook, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew J Billard
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Teresa K Tarrant
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA.
- School of Medicine, Duke University, 152 Edwin L. Jones Building, 207 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Luo J, De Pascali F, Richmond GW, Khojah AM, Benovic JL. Characterization of a new WHIM syndrome mutant reveals mechanistic differences in regulation of the chemokine receptor CXCR4. J Biol Chem 2021; 298:101551. [PMID: 34973340 PMCID: PMC8802859 DOI: 10.1016/j.jbc.2021.101551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
WHIM syndrome is a rare immunodeficiency disorder that is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. While several gain-of-function mutations that lead to C-terminal truncations, frame shifts and point mutations in the chemokine receptor CXCR4 have been identified in WHIM syndrome patients, the functional effect of these mutations are not fully understood. Here, we report on a new WHIM syndrome mutation that results in a frame shift within the codon for Ser339 (S339fs5) and compare the properties of S339fs5 with wild-type CXCR4 and a previously identified WHIM syndrome mutant, R334X. The S339fs5 and R334X mutants exhibited significantly increased signaling compared to wild-type CXCR4 including agonist-promoted calcium flux and extracellular-signal-regulated kinase activation. This increase is at least partially due to a significant decrease in agonist-promoted phosphorylation, β-arrestin binding, and endocytosis of S339fs5 and R334X compared with wild-type CXCR4. Interestingly, there were also significant differences in receptor degradation, with S339fs5 having a very high basal level of degradation compared with that of R334X and wild-type CXCR4. In contrast to wild-type CXCR4, both R334X and S339fs5 were largely insensitive to CXCL12-promoted degradation. Moreover, while basal and agonist-promoted degradation of wild-type CXCR4 was effectively inhibited by the CXCR4 antagonist TE-14016, this had no effect on the degradation of the WHIM mutants. Taken together, these studies identify a new WHIM syndrome mutant, CXCR4-S339fs5, which promotes enhanced signaling, reduced phosphorylation, β-arrestin binding and endocytosis, and a very high basal rate of degradation that is not protected by antagonist treatment.
Collapse
Affiliation(s)
- Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - G Wendell Richmond
- Section of Allergy and Immunology, Department of Medicine, Rush University Medical Center, 1725 W. Harrison St. Chicago, IL. 60612
| | - Amer M Khojah
- Allergy, Immunology and Rheumatology, Ann & Robert Lurie Children's Hospital of Chicago, 225 E. Chicago, IL. 60611
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107.
| |
Collapse
|
15
|
Chemokines and Innate Lymphoid Cells in Skin Inflammation. Cells 2021; 10:cells10113074. [PMID: 34831296 PMCID: PMC8621478 DOI: 10.3390/cells10113074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
As the outermost barrier, skin plays an important role in protecting our bodies against outside invasion. Under stable conditions or during inflammation, leukocytes migration is essential for restoring homeostasis in the skin. Immune cells trafficking is orchestrated by chemokines; leukocytes express receptors that bind to chemokines and trigger migration. The homeostasis of the immune ecosystem is an extremely complicated dynamic process that requires the cooperation of innate and adaptive immune cells. Emerging studies have been shedding a light on the unique characteristics of skin-resident innate lymphoid cells (ILCs). In this review, we discuss how chemokines orchestrate skin ILCs trafficking and contribute to tissue homeostasis and how abnormal chemokine–chemokine receptor interactions contribute to and augment skin inflammation, as seen in conditions such as contact hypersensitivity, atopic dermatitis, and psoriasis.
Collapse
|
16
|
Lewis R, Maurer HC, Singh N, Gonzalez-Menendez I, Wirth M, Schick M, Zhang L, Isaakidis K, Scherger AK, Schulze V, Lu J, Zenz T, Steiger K, Rad R, Quintanilla-Martinez L, Espeli M, Balabanian K, Keller U, Habringer S. CXCR4 hyperactivation cooperates with TCL1 in CLL development and aggressiveness. Leukemia 2021; 35:2895-2905. [PMID: 34363012 PMCID: PMC8478649 DOI: 10.1038/s41375-021-01376-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Aberrant CXCR4 activity has been implicated in lymphoma pathogenesis, disease progression, and resistance to therapies. Using a mouse model with a gain-of-function CXCR4 mutation (CXCR4C1013G) that hyperactivates CXCR4 signaling, we identified CXCR4 as a crucial activator of multiple key oncogenic pathways. CXCR4 hyperactivation resulted in an expansion of transitional B1 lymphocytes, which represent the precursors of chronic lymphocytic leukemia (CLL). Indeed, CXCR4 hyperactivation led to a significant acceleration of disease onset and a more aggressive phenotype in the murine Eµ-TCL1 CLL model. Hyperactivated CXCR4 signaling cooperated with TCL1 to cause a distinct oncogenic transcriptional program in B cells, characterized by PLK1/FOXM1-associated pathways. In accordance, Eµ-TCL1;CXCR4C1013G B cells enriched a transcriptional signature from patients with Richter's syndrome, an aggressive transformation of CLL. Notably, MYC activation in aggressive lymphoma was associated with increased CXCR4 expression. In line with this finding, additional hyperactive CXCR4 signaling in the Eµ-Myc mouse, a model of aggressive B-cell cancer, did not impact survival. In summary, we here identify CXCR4 hyperactivation as a co-driver of an aggressive lymphoma phenotype.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Disease Progression
- Female
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Gene Expression Regulation, Leukemic
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Richard Lewis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- School of Medicine, Technische Universität München, Munich, Germany
| | - H Carlo Maurer
- Internal Medicine II, School of Medicine, Technische Universität München, Munich, Germany
| | - Nikita Singh
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Veronika Schulze
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, Universitätsspital and Universität Zürich, Zurich, Switzerland
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marion Espeli
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of Tumor Niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of Tumor Niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité (BIH), Berlin, Germany.
| |
Collapse
|
17
|
Feeder-Free Differentiation Assay for Mouse Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2021. [PMID: 34057713 DOI: 10.1007/978-1-0716-1425-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Hematopoietic stem cells (HSCs) are responsible for replenishing immune cells and reside in bone marrow (BM) niches, which provide all cellular and molecular components required for their lifelong maintenance and differentiation. Although HSCs have been extensively analyzed and characterized, their ex vivo expansion, which constitutes a promising approach for therapeutic development in regenerative medicine, remains challenging. Here, we describe an original in vitro system allowing to quantify by flow cytometry the differentiation of mouse HSCs into lineage-primed multipotent hematopoietic progenitors (MPPs) in a cytokine-supplemented feeder-free medium.
Collapse
|
18
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
19
|
Beuret L, Fortier-Beaulieu SP, Rondeau V, Roy S, Houde N, Balabanian K, Espéli M, Charron J. Mek1 and Mek2 Functional Redundancy in Erythropoiesis. Front Cell Dev Biol 2021; 9:639022. [PMID: 34386488 PMCID: PMC8353236 DOI: 10.3389/fcell.2021.639022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have established the crucial role of the extracellular signal–regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.
Collapse
Affiliation(s)
- Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sophie Roy
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood 2021; 137:2770-2784. [PMID: 33512478 DOI: 10.1182/blood.2020006675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.
Collapse
|
21
|
Bonaud A, Lemos JP, Espéli M, Balabanian K. Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem? Front Immunol 2021; 12:658535. [PMID: 33936091 PMCID: PMC8083056 DOI: 10.3389/fimmu.2021.658535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
The bone marrow is a complex ecosystem in which hematopoietic and non-hematopoietic cells reside. In this review, we discuss the bone marrow niches in mice that facilitate the survival, maintenance, and differentiation of cells of hematopoietic origin based on the recent literature. Our review places a special focus on the hematopoietic multipotent progenitors and on plasma cells, corresponding to the last stage of the B-cell lineage, that play a key role in the humoral memory response. We highlight the similarities between the microenvironments necessary for the establishment and the maintenance of these two immune cell subsets, and how the chemokine CXCL12/CXCR4 signaling axis contributes to these processes. Finally, we bring elements to address the following question: are multipotent progenitors and plasma cells neighbors or roommates within the bone marrow?
Collapse
Affiliation(s)
- Amélie Bonaud
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia P Lemos
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
22
|
Authentication of Primary Murine Cell Lines by a Microfluidics-Based Lab-On-Chip System. Biomedicines 2020; 8:biomedicines8120590. [PMID: 33317212 PMCID: PMC7763653 DOI: 10.3390/biomedicines8120590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
The reliable authentication of cell lines is a prerequisite for the reproducibility and replicability of experiments. A common method of cell line authentication is the fragment length analysis (FLA) of short-tandem repeats (STR) by capillary electrophoresis. However, this technique is not always accessible and is often costly. Using a microfluidic electrophoresis system, we analyzed the quality and integrity of different murine cell lines by STR profiling. As a proof of concept, we isolated and immortalized hematopoietic progenitor cells (HPC) of various genotypes through retroviral transduction of the fusion of the estrogen receptor hormone-binding domain with the coding sequence of HoxB8. Cell lines were maintained in the HPC state with Flt3 ligand (FL) and estrogen treatment and could be characterized upon differentiation. In a validation cohort, we applied this technique on primary mutant Kras-driven pancreatic cancer cell lines, which again allowed for clear discrimination. In summary, our study provides evidence that FLA of STR-amplicons by microfluidic electrophoresis allows for stringent quality control and the tracking of cross-contaminations in both genetically stable HPC lines and cancer cell lines, making it a simple and cost-efficient alternative to traditional capillary electrophoresis.
Collapse
|
23
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Lindner SE, Egelston CA, Huard SM, Lee PP, Wang LD. Arhgap25 Deficiency Leads to Decreased Numbers of Peripheral Blood B Cells and Defective Germinal Center Reactions. Immunohorizons 2020; 4:274-281. [PMID: 32434881 DOI: 10.4049/immunohorizons.2000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Rho family GTPases are critical for normal B cell development and function, and their activity is regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the role of GAPs in B cell development is poorly understood. In this study, we show that the novel Rac-GAP ARHGAP25 is important for B cell development in mice in a CXCR4-dependent manner. We show that Arhgap25 deficiency in mice leads to a significant decrease in peripheral blood B cell numbers as well as defects in mature B cell differentiation. Arhgap25-/- B cells respond to Ag stimulation in vitro and in vivo but have impaired germinal center formation and decreased IgG1 class switching. Additionally, Arhgap25-/- B cells show evidence of increased baseline motility and augmented chemotaxis to CXCL12. Taken together, these studies demonstrate an important role for Arhgap25 in peripheral B cell development and Ag response.
Collapse
Affiliation(s)
- Silke E Lindner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Stephanie M Huard
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and .,Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010
| |
Collapse
|
25
|
Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020; 24:3837-3855. [PMID: 32119183 PMCID: PMC7171406 DOI: 10.1111/jcmm.14973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.
Collapse
Affiliation(s)
- Yahong Liu
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Nephrology, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, China
| | - Qijian Feng
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Lu XJ, Zhu K, Shen HX, Nie L, Chen J. CXCR4s in Teleosts: Two Paralogous Chemokine Receptors and Their Roles in Hematopoietic Stem/Progenitor Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1225-1241. [DOI: 10.4049/jimmunol.1901100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
|
27
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
29
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
31
|
Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, Pereira JP. Cell circuits between B cell progenitors and IL-7 + mesenchymal progenitor cells control B cell development. J Exp Med 2018; 215:2586-2599. [PMID: 30158115 PMCID: PMC6170173 DOI: 10.1084/jem.20180778] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023] Open
Abstract
B cell development is characterized by well-defined transitions. Fistonich et al. demonstrate that two distinct cell circuits formed between proB, preB, and IL-7+ cells regulate the size and quality of B cell progenitors and control B cell development. B cell progenitors require paracrine signals such as interleukin-7 (IL-7) provided by bone marrow stromal cells for proliferation and survival. Yet, how B cells regulate access to these signals in vivo remains unclear. Here we show that proB and IL-7+ cells form a cell circuit wired by IL-7R signaling, which controls CXCR4 and focal adhesion kinase (FAK) expression and restricts proB cell movement due to increased adhesion to IL-7+CXCL12Hi cells. PreBCR signaling breaks this circuit by switching the preB cell behavior into a fast-moving and lower-adhesion state via increased CXCR4 and reduced FAK/α4β1 expression. This behavioral change reduces preB cell exposure to IL-7, thereby attenuating IL-7R signaling in vivo. Remarkably, IL-7 production is downregulated by signals provided by preB cells with unrepaired double-stranded DNA breaks and by preB acute lymphoblastic leukemic cells. Combined, these studies revealed that distinct cell circuits control the quality and homeostasis of B cell progenitors.
Collapse
Affiliation(s)
- Chris Fistonich
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Runfeng Miao
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
32
|
Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19:638-653. [DOI: 10.1038/s41580-018-0049-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Wang D, Li JR, Zhang YH, Chen L, Huang T, Cai YD. Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms. Genes (Basel) 2018. [PMID: 29534550 PMCID: PMC5867876 DOI: 10.3390/genes9030155] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.
Collapse
Affiliation(s)
- Deling Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Jia-Rui Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
34
|
Li Q, Yang Z, Zhao Y, Jia X, Zhou Z, Zhang Y. Phenotypic and Functional Evaluation of Hematopoietic Stem and Progenitor Cells in Toxicology of Heavy Metals. ACTA ACUST UNITED AC 2018; 75:22.7.1-22.7.14. [DOI: 10.1002/cptx.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qian Li
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University Shanghai China
| | - Zhengli Yang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University Shanghai China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University Shanghai China
| | - Xiaodong Jia
- Shanghai Municipal Center for Disease Control and Prevention Shanghai China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University Shanghai China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University Shanghai China
| |
Collapse
|
35
|
How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood 2017; 130:2491-2498. [DOI: 10.1182/blood-2017-02-708552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a genetic disease characterized by neutropenia, lymphopenia, susceptibility to infections, and myelokathexis, which describes degenerative changes of mature neutrophils and hyperplasia of bone marrow myeloid cells. Some patients present with hypogammaglobulinemia and/or refractory warts of skin and genitalia. Congenital cardiac defects constitute uncommon manifestations of the disease. The disorder, which is inherited as an autosomal dominant trait, is caused by heterozygous mutations of the chemokine receptor CXCR4. These mutations lead to an increased sensitivity of neutrophils and lymphocytes to the unique ligand CXCL12 and to an increased accumulation of mature neutrophils in the bone marrow. Despite greatly improved knowledge of the disease, therapeutic choices are insufficient to prevent some of the disease outcomes, such as development of bronchiectasis, anogenital dysplasia, or invasive cancer. The available therapeutic measures aimed at preventing the risk for infection in WHIM patients are discussed. We critically evaluate the diagnostic criteria of WHIM syndrome, particularly when WHIM syndrome should be suspected in patients with congenital neutropenia and lymphopenia despite the absence of hypogammaglobulinemia and/or warts. Finally, we discuss recent results of trials evaluating plerixafor, a selective antagonist of CXCR4, as a mechanism-oriented strategy for treatment of WHIM patients.
Collapse
|
36
|
Sharma D, Jindal AK, Rawat A, Singh S. Approach to a Child with Primary Immunodeficiency Made Simple. Indian Dermatol Online J 2017; 8:391-405. [PMID: 29204384 PMCID: PMC5707833 DOI: 10.4103/idoj.idoj_189_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary immunodeficiency disorders (PIDs) are a group of disorders affecting the capability to fight against infection. These include defects in T cells and B cells affecting cell-mediated and humoral immunity, respectively, combined humoral and cell-mediated immunodeficiency, defects in phagocytosis, complement defects, and defects in cytokine or cytokine signalling pathways which are detrimental for immune function. Depending upon the type and severity, age at onset of symptoms can vary from neonatal period to late childhood. Clinically, this group of disorders can involve any organ system of an individual such as respiratory system, gastrointestinal system, skin and mucous membrane, bone and joints, endocrine organs, and nervous system. Common dermatological manifestations include eczema, warts, molluscum contagiosum, mucocutaneous candidiasis, recurrent nonhealing ulcers, skin abscesses, erythroderma, petechiae, and nail changes. The common skin manifestations of various PIDs include eczema (seen in Wiskott-Aldrich syndrome and autosomal dominant hyper IgE syndrome); erythroderma (in Omen syndrome); viral warts or molluscum contagiosum (in autosomal recessive hyper IgE syndrome); chronic mucocutaneous candidiasis (in hyper IgE syndrome, autoimmune polyendocrinopathy candidiasis ectodermal dysplasia syndrome, Th17 cell defects); recurrent nonhealing ulcers (in leucocyte adhesion defect); skin abscesses (in antibody defects, hyper IgE syndrome, and chronic granulomatous disease); petechial or purpuric spots (in Wiskott-Aldrich syndrome).
Collapse
Affiliation(s)
- Dhrubajyoti Sharma
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K. Jindal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
37
|
de Wit RH, Heukers R, Brink HJ, Arsova A, Maussang D, Cutolo P, Strubbe B, Vischer HF, Bachelerie F, Smit MJ. CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. J Pharmacol Exp Ther 2017; 363:35-44. [PMID: 28768817 DOI: 10.1124/jpet.117.242735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: warts, hypogammaglobulinemia, infections, and myelokathexis, which refers to abnormal accumulation of mature neutrophils in the bone marrow. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4, giving these CXCR4-WHIM mutants a gain of function in response to their ligand CXCL12. Considering the broad functions of CXCR4 in maintaining leukocyte homeostasis, patients are panleukopenic and display altered immune responses, likely as a consequence of impairment in the differentiation and trafficking of leukocytes. Treatment of WHIM patients currently consists of symptom relief, leading to unsatisfactory clinical responses. As an alternative and potentially more effective approach, we tested the potency and efficacy of CXCR4-specific nanobodies on inhibiting CXCR4-WHIM mutants. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy chain antibodies. They combine the advantages of small-molecule drugs and antibody-based therapeutics due to their relative small size, high stability, and high affinity. We compared the potential of monovalent and bivalent CXCR4-specific nanobodies to inhibit CXCL12-induced CXCR4-WHIM-mediated signaling with the small-molecule clinical candidate AMD3100. The CXCR4-targeting nanobodies displace CXCL12 binding and bind CXCR4-wild type and CXCR4-WHIM (R334X/S338X) mutants and with (sub-) nanomolar affinities. The nanobodies' epitope was mapped to extracellular loop 2 of CXCR4, overlapping with the binding site of CXCL12. Monovalent, and in particular bivalent, nanobodies were more potent than AMD3100 in reducing CXCL12-mediated G protein activation. In addition, CXCR4-WHIM-dependent calcium flux and wound healing of human papillomavirus-immortalized cell lines in response to CXCL12 was effectively inhibited by the nanobodies. Based on these in vitro results, we conclude that CXCR4 nanobodies hold significant potential as alternative therapeutics for CXCR4-associated diseases such as WHIM syndrome.
Collapse
Affiliation(s)
- Raymond H de Wit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Hendrik J Brink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Angela Arsova
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - David Maussang
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Pasquale Cutolo
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Beatrijs Strubbe
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Françoise Bachelerie
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| |
Collapse
|