1
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Chen Y, Wang J, Huang Y, Wu J, Wang Y, Chen A, Guo Q, Zhang Y, Zhang S, Wang L, Zou X, Li X. An oncolytic system produces oxygen selectively in pancreatic tumor cells to alleviate hypoxia and improve immune activation. Pharmacol Res 2024; 199:107053. [PMID: 38176529 DOI: 10.1016/j.phrs.2023.107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Hypoxia is one of the important reasons for the poor therapeutic efficacy of current pancreatic cancer treatment, and the dense stroma of pancreatic cancer restricts the diffusion of oxygen within the tumor. METHODS A responsive oxygen-self-supplying adv-miRT-CAT-KR (adv-MCK) cascade reaction system to improve hypoxia in pancreatic cancer is constructed. We utilized various experiments at multiple levels (cells, organoids, in vivo) to investigate its effect on pancreatic cancer and analyzed the role of immune microenvironment changes in it through high-throughput sequencing. RESULTS The adv-MCK system is an oncolytic adenovirus system expressing three special components of genes. The microRNA (miRNA) targets (miRTs) enable adv-MCK to selectively replicate in pancreatic cancer cells. Catalase catalyzes the overexpressed hydrogen peroxide in pancreatic cancer cells to generate endogenous oxygen, which is catalyzed by killerRed to generate singlet oxygen (1O2) and further to enhance the oncolytic effect. Meanwhile, the adv-MCK system can specifically improve hypoxia in pancreatic cancer, exert antitumor effects in combination with photodynamic therapy, and activate antitumor immunity, especially by increasing the level of γδ T cells in the tumor microenvironment. CONCLUSION The responsive oxygen-self-supplying adv-MCK cascade reaction system combined with photodynamic therapy can improve the hypoxic microenvironment of pancreatic cancer and enhance antitumor immunity, which provides a promising alternative treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Shin B, Zhou W, Wang J, Gao F, Rothenberg EV. Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms. Nat Immunol 2023; 24:1458-1472. [PMID: 37563311 PMCID: PMC10673614 DOI: 10.1038/s41590-023-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
- BillionToOne, Menlo Park, CA, USA
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Fan Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Bioinformatics Resource Center, Beckman Institute of California Institute of Technology, Pasadena, CA, USA
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Rizk J, Mörbe UM, Agerholm R, Baglioni MV, Catafal Tardos E, Fares da Silva MGF, Ulmert I, Kadekar D, Viñals MT, Bekiaris V. The cIAP ubiquitin ligases sustain type 3 γδ T cells and ILC during aging to promote barrier immunity. J Exp Med 2023; 220:e20221534. [PMID: 37440178 PMCID: PMC10345214 DOI: 10.1084/jem.20221534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Early-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life. We show that cell-intrinsic deficiency of cIAP1/2 at 3-4 wk of life leads to downregulation of the transcription factors cMAF and RORγt and failure to enter the cell cycle, followed by progressive loss of γδT17 cells and ILC3 during aging. Mice deficient in cIAP1/2 have severely reduced γδT17 cells and ILC3, present with suboptimal γδT17 responses in the skin, lack intestinal isolated lymphoid follicles, and cannot control intestinal bacterial infection. Mechanistically, these effects appear to be dependent on overt activation of the non-canonical NF-κB pathway. Our data identify cIAP1/2 as early-life molecular switches that establish effective type 3 immunity during aging.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Urs M. Mörbe
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Elisa Catafal Tardos
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Isabel Ulmert
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
5
|
Liang S, Tran E, Du X, Dong J, Sudholz H, Chen H, Qu Z, Huntington ND, Babon JJ, Kershaw NJ, Zhang ZY, Baell JB, Wiede F, Tiganis T. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat Commun 2023; 14:4524. [PMID: 37500611 PMCID: PMC10374545 DOI: 10.1038/s41467-023-40170-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.
Collapse
Affiliation(s)
- Shuwei Liang
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Eric Tran
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Xin Du
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Harrison Sudholz
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Hao Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas D Huntington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Lyterian Therapeutics, South San Francisco, San Francisco, CA, 94080, USA
| | - Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
6
|
Liang S, Tran E, Du X, Dong J, Sudholz H, Chen H, Qu Z, Huntington N, Babon J, Kershaw N, Zhang ZY, Baell J, Wiede F, Tiganis T. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545220. [PMID: 37397992 PMCID: PMC10312756 DOI: 10.1101/2023.06.16.545220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The inhibition of protein tyrosine phosphatases (PTPs), such as PTP1B and PTPN2 that function as intracellular checkpoints, has emerged as an exciting new approach for bolstering T cell anti-tumor immunity to combat cancer. ABBV-CLS-484 is a dual PTP1B and PTPN2 inhibitor currently in clinical trials for solid tumors. Here we have explored the therapeutic potential of targeting PTP1B and PTPN2 with a related small molecule inhibitor, Compound 182. We demonstrate that Compound 182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances antigen-induced T cell activation and expansion ex vivo and represses the growth of syngeneic tumors in C57BL/6 mice without promoting overt immune-related toxicities. Compound 182 repressed the growth of immunogenic MC38 colorectal and AT3-OVA mammary tumors as well as immunologically cold AT3 mammary tumors that are largely devoid of T cells. Treatment with Compound 182 increased both the infiltration and activation of T cells, as well as the recruitment of NK cells and B cells that promote anti-tumor immunity. The enhanced anti-tumor immunity in immunogenic AT3-OVA tumors could be ascribed largely to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold AT3 tumors, Compound 182 elicited both direct effects on tumor cells and T cells to facilitate T cell recruitment and thereon activation. Importantly, treatment with Compound 182 rendered otherwise resistant AT3 tumors sensitive to anti-PD1 therapy. Our findings establish the potential for small molecule active site inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.
Collapse
|
7
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Zhu Z, Tang R, Huff S, Kummetha IR, Wang L, Li N, Rana TM. Small-molecule PTPN2 Inhibitors Sensitize Resistant Melanoma to Anti-PD-1 Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:119-129. [PMID: 36968224 PMCID: PMC10035454 DOI: 10.1158/2767-9764.crc-21-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/23/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Although immune checkpoint inhibitors targeting T-cell immunoregulatory proteins have revolutionized cancer treatment, they are effective only in a limited number of patients, and new strategies are needed to enhance tumor responses to immunotherapies. Deletion of protein tyrosine phosphatase non-receptor type 2 (Ptpn2), a regulator of growth factor and cytokine signaling pathways, has been shown to sensitize murine B16F10 melanoma cells to IFNγ and anti-PD-1 immunotherapy. Here, we investigated the potential therapeutic utility of small-molecule PTPN2 inhibitors. Ten inhibitors were synthesized on the basis of in silico modeling and structure-based design and functionally tested in vitro and in vivo. We show that the inhibitors had little effect on B16F10 cells alone, but effectively sensitized the tumor cells to IFNγ treatment in vitro and to anti-PD-1 therapy in vivo. Under both conditions, Ptpn2 inhibitor cotreatment suppressed B16F10 cell growth and enhanced Stat1 phosphorylation and expression of IFNγ response genes. In vivo, PTPN2 inhibitor cotreatment significantly reduced melanoma and colorectal tumor growth and enhanced mouse survival compared with anti-PD-1 treatment alone, and this was accompanied by increased tumor infiltration by granzyme B+ CD8+ T cells. Similar results were obtained with representative murine and human colon cancer and lung cancer cell lines. Collectively, these results demonstrate that small-molecule inhibitors of PTPN2 may have clinical utility as sensitizing agents for immunotherapy-resistant cancers. Significance To enhance the effectiveness of immunotherapies in resistant or nonresponsive cancers, it is important to develop inhibitors of enzymes that negatively influence the outcome of treatments. We have designed and evaluated small-molecule inhibitors of PTPN2 demonstrating that these compounds may have clinical utility as sensitizing agents for immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Zhouting Zhu
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Rachel Tang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Sarah Huff
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Indrasena Reddy Kummetha
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Lingling Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Na Li
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
- San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California San Diego, La Jolla, California
| |
Collapse
|
10
|
Hocking AM, Buckner JH. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front Immunol 2022; 13:972121. [PMID: 35979360 PMCID: PMC9376219 DOI: 10.3389/fimmu.2022.972121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic variants associated with susceptibility to autoimmune disease have provided important insight into the mechanisms responsible for the loss of immune tolerance and the subsequent development of autoantibodies, tissue damage, and onset of clinical disease. Here, we review how genetic variants shared across multiple autoimmune diseases have contributed to our understanding of global tolerance failure, focusing on variants in the human leukocyte antigen region, PTPN2 and PTPN22, and their role in antigen presentation and T and B cell homeostasis. Variants unique to a specific autoimmune disease such as those in PADI2 and PADI4 that are associated with rheumatoid arthritis are also discussed, addressing their role in disease-specific immunopathology. Current research continues to focus on determining the functional consequences of autoimmune disease-associated variants but has recently expanded to variants in the non-coding regions of the genome using novel approaches to investigate the impact of these variants on mechanisms regulating gene expression. Lastly, studying genetic risk variants in the setting of autoimmunity has clinical implications, helping predict who will develop autoimmune disease and also identifying potential therapeutic targets.
Collapse
|
11
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Kissler S. Genetic Modifiers of Thymic Selection and Central Tolerance in Type 1 Diabetes. Front Immunol 2022; 13:889856. [PMID: 35464420 PMCID: PMC9021641 DOI: 10.3389/fimmu.2022.889856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Type 1 diabetes (T1D) is caused by the T cell-driven autoimmune destruction of insulin-producing cells in the pancreas. T1D served as the prototypical autoimmune disease for genome wide association studies (GWAS) after having already been the subject of many linkage and association studies prior to the development of GWAS technology. Of the many T1D-associated gene variants, a minority appear disease-specific, while most are shared with one or more other autoimmune condition. Shared disease variants suggest defects in fundamental aspects of immune tolerance. The first layer of protective tolerance induction is known as central tolerance and takes place during the thymic selection of T cells. In this article, we will review candidate genes for type 1 diabetes whose function implicates them in central tolerance. We will describe examples of gene variants that modify the function of T cells intrinsically and others that indirectly affect thymic selection. Overall, these insights will show that a significant component of the genetic risk for T1D - and autoimmunity in general - pertains to the earliest stages of tolerance induction, at a time when protective intervention may not be feasible.
Collapse
Affiliation(s)
- Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States,*Correspondence: Stephan Kissler,
| |
Collapse
|
13
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
14
|
Kuang W, Wang X, Ding J, Li J, Ji M, Chen W, Wang L, Yang P. PTPN2, A Key Predictor of Prognosis for Pancreatic Adenocarcinoma, Significantly Regulates Cell Cycles, Apoptosis, and Metastasis. Front Immunol 2022; 13:805311. [PMID: 35154122 PMCID: PMC8829144 DOI: 10.3389/fimmu.2022.805311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective This study conducted a comprehensive analysis of the members of the PTPN family and emphasized the key role of PTPN2 as a potential therapeutic target and diagnostic biomarker in improving the survival rate of PAAD. Method Oncomine was used to analyze the pan-cancer expression of the PTPN gene family. The Cancer Genome Atlas (TCGA) data as well as Genotype-Tissue Expression (GTEx) data were downloaded to analyze the expression and prognosis of PTPNs. The diagnosis of PTPNs was evaluated by the experimental ROC curve. The protein-protein interaction (PPI) network was constructed by combining STRING and Cytoscape. The genes of 50 proteins most closely related to PTPN2 were screened and analyzed by GO and KEGG enrichment. The differentially expressed genes of PTPN2 were found by RNA sequencing, and GSEA enrichment analysis was carried out to find the downstream pathways and targets, which were verified by online tools and experiments. Finally, the relationship between PTPN2 and immune cell infiltration in PAAD, and the relationship with immune score and immune checkpoint were studied. Result The expression patterns and the prognostic value of multiple PTPNs in PAAD have been reported through bioinformatic analyzes. Among these members, PTPN2 is the most important prognostic signature that regulates the progression of PAAD by activating JAK-STAT signaling pathway. Comparison of two PAAD cell lines with normal pancreatic epithelial cell lines revealed that PTPN2 expression was up-regulated as a key regulator of PAAD, which was associated with poor prognosis. Knockdown of PTPN2 caused a profound decrease in PAAD cell growth, migration, invasion, and induced PAAD cell cycle and apoptosis. In addition, we conducted a series of enrichment analyses to investigate the PTPN2-binding proteins and the PTPN2 expression-correlated genes. We suggest that STAT1 and EGFR are the key factors to regulate PTPN2, which are involved in the progression of PAAD. Meanwhile, the silencing of PTPN2 induced the repression of STAT1 and EGFR expression. Conclusion These findings provide a comprehensive analysis of the PTPN family members, and for PAAD, they also demonstrate that PTPN2 is a diagnostic biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Karaca Atabay E, Mecca C, Wang Q, Ambrogio C, Mota I, Prokoph N, Mura G, Martinengo C, Patrucco E, Leonardi G, Hossa J, Pich A, Mologni L, Gambacorti-Passerini C, Brugières L, Geoerger B, Turner SD, Voena C, Cheong TC, Chiarle R. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood 2022; 139:717-731. [PMID: 34657149 PMCID: PMC8814675 DOI: 10.1182/blood.2020008136] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
Collapse
Affiliation(s)
- Elif Karaca Atabay
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Carmen Mecca
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Qi Wang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Ines Mota
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Leonardi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Jessica Hossa
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Achille Pich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
- Department of Oncology for Children and Adolescents, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8203, Villejuif, France; and
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
16
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
17
|
Katkeviciute E, Hering L, Montalban-Arques A, Busenhart P, Schwarzfischer M, Manzini R, Conde J, Atrott K, Lang S, Rogler G, Naschberger E, Schellerer VS, Stürzl M, Rickenbacher A, Turina M, Weber A, Leibl S, Leventhal GE, Levesque M, Boyman O, Scharl M, Spalinger MR. Protein tyrosine phosphatase nonreceptor type 2 controls colorectal cancer development. J Clin Invest 2021; 131:140281. [PMID: 33001862 DOI: 10.1172/jci140281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set out to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC), as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. In particular, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T cells, and increased PTPN2 levels negatively correlated with expression of PD-1, CTLA4, STAT1, and granzyme A. In vivo, T cell- and DC-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T cells, as well as CD8+ T cell infiltration and cytotoxicity in the tumor. In direct relevance to CRC treatment, T cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced antitumor memory formation upon tumor rechallenge in vivo. Our data suggest a role for PTPN2 in suppressing antitumor immunity and promoting tumor development in patients with CRC. Our in vivo results identify PTPN2 as a key player in controlling the immunogenicity of CRC, with the strong potential to be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Philipp Busenhart
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Javier Conde
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Vera S Schellerer
- Department of Surgery, University Medical Center of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Achim Weber
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Leibl
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
18
|
Marchelletta RR, Krishnan M, Spalinger MR, Placone TW, Alvarez R, Sayoc-Becerra A, Canale V, Shawki A, Park YS, Bernts LH, Myers S, Tremblay ML, Barrett KE, Krystofiak E, Kachar B, McGovern DP, Weber CR, Hanson EM, Eckmann L, McCole DF. T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. J Clin Invest 2021; 131:138230. [PMID: 34623320 DOI: 10.1172/jci138230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.
Collapse
Affiliation(s)
- Ronald R Marchelletta
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Taylaur W Placone
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rocio Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Ali Shawki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Young Su Park
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lucas Hp Bernts
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Stephen Myers
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Evan Krystofiak
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Bechara Kachar
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Elaine M Hanson
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
19
|
Wang YN, Liu S, Jia T, Feng Y, Zhang W, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Osteoimmunology. Front Immunol 2021; 12:620333. [PMID: 33692794 PMCID: PMC7938726 DOI: 10.3389/fimmu.2021.620333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoimmunology highlights the two-way communication between bone and immune cells. T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in regulating immune responses and bone metabolism via dephosphorylating target proteins. Tcptp knockout in systemic or specific immune cells can seriously damage the immune function, resulting in bone metabolism disorders. This review provided fresh insights into the potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis. TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under certain time and conditions. This review offers a comprehensive update on the roles of TCPTP in osteoimmunology, which can be a promising target for the prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
20
|
Huang Z, Liu M, Li D, Tan Y, Zhang R, Xia Z, Wang P, Jiao B, Liu P, Ren R. PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells. J Biol Chem 2020; 295:18343-18354. [PMID: 33122197 PMCID: PMC7939389 DOI: 10.1074/jbc.ra119.011060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.
Collapse
Affiliation(s)
- Zhangsen Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihong Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Flosbach M, Oberle SG, Scherer S, Zecha J, von Hoesslin M, Wiede F, Chennupati V, Cullen JG, List M, Pauling JK, Baumbach J, Kuster B, Tiganis T, Zehn D. PTPN2 Deficiency Enhances Programmed T Cell Expansion and Survival Capacity of Activated T Cells. Cell Rep 2020; 32:107957. [PMID: 32726622 PMCID: PMC7408006 DOI: 10.1016/j.celrep.2020.107957] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 01/18/2023] Open
Abstract
Manipulating molecules that impact T cell receptor (TCR) or cytokine signaling, such as the protein tyrosine phosphatase non-receptor type 2 (PTPN2), has significant potential for advancing T cell-based immunotherapies. Nonetheless, it remains unclear how PTPN2 impacts the activation, survival, and memory formation of T cells. We find that PTPN2 deficiency renders cells in vivo and in vitro less dependent on survival-promoting cytokines, such as interleukin (IL)-2 and IL-15. Remarkably, briefly ex vivo-activated PTPN2-deficient T cells accumulate in 3- to 11-fold higher numbers following transfer into unmanipulated, antigen-free mice. Moreover, the absence of PTPN2 augments the survival of short-lived effector T cells and allows them to robustly re-expand upon secondary challenge. Importantly, we find no evidence for impaired effector function or memory formation. Mechanistically, PTPN2 deficiency causes broad changes in the expression and phosphorylation of T cell expansion and survival-associated proteins. Altogether, our data underline the therapeutic potential of targeting PTPN2 in T cell-based therapies to augment the number and survival capacity of antigen-specific T cells.
Collapse
Affiliation(s)
- Markus Flosbach
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Susanne G Oberle
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefanie Scherer
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Vijaykumar Chennupati
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Josch K Pauling
- ZD.B Junior Research Group LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
23
|
Clinical and biological features of PTPN2-deleted adult and pediatric T-cell acute lymphoblastic leukemia. Blood Adv 2020; 3:1981-1988. [PMID: 31270080 DOI: 10.1182/bloodadvances.2018028993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/06/2019] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is a phosphatase known to be a tumor suppressor gene in T-cell acute lymphoblastic leukemia (T-ALL). Because the full clinicobiologic characteristics of PTPN2 loss remain poorly reported, we aimed to provide a comprehensive analysis of PTPN2 deletions within a cohort of 430 patients, including 216 adults and 214 children treated according to the GRAALL03/05 (#NCT00222027 and #NCT00327678) and the FRALLE2000 protocols, respectively. We used multiplex ligation-dependent probe amplification to identify an 8% incidence of PTPN2 deletion, which was comparable in adult (9%) and pediatric (6%) populations. PTPN2 deletions were significantly associated with an αβ lineage and TLX1 deregulation. Analysis of the mutational genotype of adult T-ALL revealed a positive correlation between PTPN2 deletions and gain-of-function alterations in the IL7R/JAK-STAT signaling pathway as well as PHF6 and WT1 mutations. Of note, PTPN2 and PTEN (phosphatase and tensin homolog) deletions were mutually exclusive. Regarding treatment response, PTPN2-deleted T-ALLs were associated with a higher glucocorticoid response and a trend for improved survival in children, but not in adults, with a 5-year cumulative incidence of relapse of 8% for PTPN2-deleted pediatric cases vs 26% (P = .177).
Collapse
|
24
|
Chen J, Zhao X, Yuan Y, Jing JJ. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers. Cancer Cell Int 2020; 20:238. [PMID: 32536826 PMCID: PMC7291430 DOI: 10.1186/s12935-020-01315-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members, and diagnosis as well as the prognosis of digestive tract cancers. Methods Oncomine and Ualcan were used to analyze PTPN expressions. Data from The Cancer Genome Atlas (TCGA) were downloaded through UCSC Xena for validation and to explore the relationship of the PTPN expression with diagnosis, clinicopathological parameters and survival of digestive tract cancers. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal coupled with Cytoscape. The expression of differentially expressed PTPNs in cancer cell lines were explored using CCLE. Moreover, by histological verification, the expression of four PTPNs in digestive tract cancers were further analyzed. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. Several PTPN members were differentially expressed in digestive tract cancers. For esophageal carcinoma (ESCA), PTPN1 and PTPN12 levels were correlated with incidence; PTPN20 was associated with poor prognosis. For stomach adenocarcinoma (STAD), PTPN2 and PTPN12 levels were correlated with incidence; PTPN3, PTPN5, PTPN7, PTPN11, PTPN13, PTPN14, PTPN18 and PTPN23 were correlated with pathological grade; PTPN20 expression was related with both TNM stage and N stage; PTPN22 was associated with T stage and pathological grade; decreased expression of PTPN5 and PTPN13 implied worse overall survival of STAD, while elevated PTPN6 expression indicated better prognosis. For colorectal cancer (CRC), PTPN2, PTPN21 and PTPN22 levels were correlated with incidence; expression of PTPN5, PTPN12, and PTPN14 was correlated with TNM stage and N stage; high PTPN5 or PTPN7 expression was associated with increased hazards of death. CCLE analyses showed that in esophagus cancer cell lines, PTPN1, PTPN4 and PTPN12 were highly expressed; in gastric cancer cell lines, PTPN2 and PTPN12 were highly expressed; in colorectal cancer cell lines, PTPN12 was highly expressed while PTPN22 was downregulated. Results of histological verification experiment showed differential expressions of PTPN22 in CRC, and PTPN12 in GC and CRC. Conclusions Members of PTPN family were differentially expressed in digestive tract cancers. Correlations were found between PTPN genes and clinicopathological parameters of patients. Expression of PTPN12 was upregulated in both STAD and CRC, and thus could be used as a diagnostic biomarker. Differential expression of PTPN12 in GC and CRC, and PTPN22 in CRC were presented in our histological verification experiment.
Collapse
Affiliation(s)
- Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, 110101 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
25
|
Wiede F, Lu K, Du X, Liang S, Hochheiser K, Dodd GT, Goh PK, Kearney C, Meyran D, Beavis PA, Henderson MA, Park SL, Waithman J, Zhang S, Zhang Z, Oliaro J, Gebhardt T, Darcy PK, Tiganis T. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. EMBO J 2020; 39:e103637. [PMID: 31803974 PMCID: PMC6960448 DOI: 10.15252/embj.2019103637] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Kun‐Hui Lu
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Xin Du
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Shuwei Liang
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Katharina Hochheiser
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - Pei K Goh
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | | | | | - Paul A Beavis
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | | | - Simone L Park
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Jason Waithman
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Jane Oliaro
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Thomas Gebhardt
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| |
Collapse
|
26
|
Wiede F, Brodnicki TC, Goh PK, Leong YA, Jones GW, Yu D, Baxter AG, Jones SA, Kay TWH, Tiganis T. T-Cell-Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes 2019; 68:1251-1266. [PMID: 30936146 DOI: 10.2337/db18-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/17/2019] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic β-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yew A Leong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, U.K
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Chen S, Fan H, Feng Y, Zhang Y, Chen Y, Gu Y, Shi Y, Dai H, Zhang M, Xu X, Chen H, Yang T, Xu K. The association between rs1893217, rs478582 in PTPN2 and T1D risk with different diagnosed age, and related clinical characteristics in Chinese Han population. Autoimmunity 2019; 52:95-101. [PMID: 31030572 DOI: 10.1080/08916934.2019.1608191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the association between polymorphisms in PTPN2 (rs1893217 and rs478582) and type 1 diabetes (T1D) risk with different diagnosed age, as well as related clinical characteristics in Chinese Han population. METHODS A total of 2270 Chinese Han individuals (1023 T1D patients and 1247 healthy controls) were genotyped for rs1893217 and rs478582. And 306 newly diagnosed T1D patients were measured for C-peptide levels based on a standard mixed-meal tolerance test. In addition, 40 healthy controls were analyzed for different T cell subsets by multi-color flow cytometry. RESULTS Neither rs1893217 nor rs478582 showed any association with T1D risk under an additive model. Stratified analysis for T1D diagnosed age revealed that rs1893217, but not rs478582, was significantly associated with T1D patients diagnosed age ≤18 (OR =0.80, 95% CI: 0.67-0.97, p = 0.02). For those diagnosed age >18, neither of them showed any association. We also found that rs1893217 had a higher positive rate of ZnT8A (CC vs. TT carrier, OR = 2.07, 95% CI: 1.07-4.03, p = 0.026) and IA-2A (CT vs. TT carrier, OR = 1.36, 95% CI: 1.02-1.80, p = 0.038). Furthermore, for rs478582, compared with TT, healthy individuals carrying CC/CT carriers had significantly lower frequency and Helios expression of naive Treg subsets (p = 0.049 and 0.048 respectively), but not secreting or activating Treg subsets. In addition, we did not find any association between these two polymorphisms and residual β-cell function in newly diagnosed T1D patients. CONCLUSIONS Our results suggest that rs1893217 may increase the risk of early-onset T1D and affect humoral immunity, while rs478582 may affect Treg subsets.
Collapse
Affiliation(s)
- Shu Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Hongqi Fan
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yingjie Feng
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yuyue Zhang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yang Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yong Gu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yun Shi
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Hao Dai
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Mei Zhang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Xinyu Xu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Heng Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Tao Yang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Kuanfeng Xu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
28
|
Abstract
CD3+CD4-CD8- T cells (double-negative T cells; DNTs) have diverse functions in peripheral immune-related diseases by regulating immunological and inflammatory homeostasis. However, the functions of DNTs in the central nervous system remain unknown. Here, we found that the levels of DNTs were dramatically increased in both the brain and peripheral blood of stroke patients and in a mouse model in a time-dependent manner. The infiltrating DNTs enhanced cerebral immune and inflammatory responses and exacerbated ischemic brain injury by modulating the FasL/PTPN2/TNF-α signaling pathway. Blockade of this pathway limited DNT-mediated neuroinflammation and improved the outcomes of stroke. Our results identified a critical function of DNTs in the ischemic brain, suggesting that this unique population serves as an attractive target for the treatment of ischemic stroke.
Collapse
|
29
|
Svensson MN, Doody KM, Schmiedel BJ, Bhattacharyya S, Panwar B, Wiede F, Yang S, Santelli E, Wu DJ, Sacchetti C, Gujar R, Seumois G, Kiosses WB, Aubry I, Kim G, Mydel P, Sakaguchi S, Kronenberg M, Tiganis T, Tremblay ML, Ay F, Vijayanand P, Bottini N. Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity. J Clin Invest 2019; 129:1193-1210. [PMID: 30620725 DOI: 10.1172/jci123267] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, the presence of which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell-dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, PTPN2 inhibits IL-6-driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17-associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.
Collapse
Affiliation(s)
- Mattias Nd Svensson
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | | | - Benjamin J Schmiedel
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sourya Bhattacharyya
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Bharat Panwar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Florian Wiede
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dennis J Wu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | - Cristiano Sacchetti
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | - Ravindra Gujar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Isabelle Aubry
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Piotr Mydel
- Clinical Science, Broegelmann Research Laboratory, Bergen, Norway.,Department of Microbiology, Jagiellonian University, Krakow, Poland
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Tony Tiganis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Monash Biomedicine Discovery Institute, and.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| |
Collapse
|
30
|
General Principles of Immunotherapy in Neurological Diseases. CONTEMPORARY CLINICAL NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-19515-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell 2018; 175:1289-1306.e20. [PMID: 30454647 PMCID: PMC6242467 DOI: 10.1016/j.cell.2018.09.053] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC. Obesity promotes hepatic STAT-1 and STAT-3 signaling Obesity promotes STAT-1-dependent T cell-infiltration, NASH, and fibrosis Obesity promotes NASH-independent STAT-3-dependent HCC
Collapse
|
32
|
Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun 2018; 9:2024. [PMID: 29789628 PMCID: PMC5964252 DOI: 10.1038/s41467-018-04356-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models. T- and NK-cell lymphomas (TCL) are a group of lymphoid malignancies characterized by poor prognosis, but the absence of appropriate pre-clinical models has hampered the development of effective therapies. Here the authors establish several pre-clinical models and identify vulnerabilities that could be further exploited to treat patients afflicted by these diseases.
Collapse
|
33
|
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|