1
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Gupta RK, Figueroa DS, Fung K, Miki H, Miller J, Ay F, Croft M. LIGHT signaling through LTβR and HVEM in keratinocytes promotes psoriasis and atopic dermatitis-like skin inflammation. J Autoimmun 2024; 144:103177. [PMID: 38368767 DOI: 10.1016/j.jaut.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin β receptor (LTβR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTβR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTβR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.
Collapse
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Gupta RK, Miller J, Croft M. TNF-like weak inducer of apoptosis inhibition is comparable to IL-13 blockade in ameliorating atopic dermatitis inflammation. Allergy 2024; 79:116-127. [PMID: 37650473 PMCID: PMC10840791 DOI: 10.1111/all.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Targeting IL-13 is highly efficacious in patients with Th2-biased atopic dermatitis (AD), but inhibition of other inflammatory molecules might also limit disease. We investigated the importance of the TNF family cytokine TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) to keratinocyte dysregulation and the pathogenesis of AD in mice and also tested if blocking TWEAK has a similar therapeutic effect as targeting IL-13. METHODS Conditional knockout mice lacking Fn14 (TNFRSF12A), the receptor for TWEAK, only in keratinocytes, were repetitively sensitized with house dust mite allergen and analyzed for AD-like skin inflammation. To determine the translational potential, wild-type mice with AD were therapeutically treated with anti-TWEAK and/or anti-IL-13 antibodies, and skin inflammation was assessed. RESULTS Mice deficient in Fn14 in keratinocytes were resistant to developing maximal clinical features of AD, exhibiting reduced epidermal hyperplasia and dermal thickening, less skin infiltration of immune cells, and downregulated inflammatory gene expression. Moreover, therapeutic neutralization of TWEAK in wild-type mice with AD reduced all of the pathological features to a comparable extent as blocking IL-13. CONCLUSIONS The activity of TWEAK in keratinocytes contributes to AD development, and neutralizing TWEAK represents a future potential therapeutic option in human AD similar to targeting IL-13.
Collapse
Affiliation(s)
- Rinkesh K. Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Miki H, Kiosses WB, Manresa MC, Gupta RK, Sethi GS, Herro R, Da Silva Antunes R, Dutta P, Miller M, Fung K, Chawla A, Dobaczewska K, Ay F, Broide DH, Tumanov AV, Croft M. Lymphotoxin beta receptor signaling directly controls airway smooth muscle deregulation and asthmatic lung dysfunction. J Allergy Clin Immunol 2023; 151:976-990.e5. [PMID: 36473503 PMCID: PMC10081945 DOI: 10.1016/j.jaci.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE Our study sought to determine whether signaling via lymphotoxin beta receptor (LTβR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS Conditional knockout mice deficient for LTβR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTβR. RESULTS LTβR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTβR only in smooth muscle cells in smMHCCreLTβRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTβR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTβR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS LTβR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | | | - Mario C Manresa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Gurupreet S Sethi
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Rana Herro
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | | | - Paramita Dutta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Marina Miller
- Department of Medicine, University of California-San Diego, San Diego, Calif
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, Calif
| | - Ashu Chawla
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, Calif
| | | | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - David H Broide
- Department of Medicine, University of California-San Diego, San Diego, Calif
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Tex
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California-San Diego, San Diego, Calif.
| |
Collapse
|
6
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
7
|
The Multiple Roles of Periostin in Non-Neoplastic Disease. Cells 2022; 12:cells12010050. [PMID: 36611844 PMCID: PMC9818388 DOI: 10.3390/cells12010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin.
Collapse
|
8
|
Manresa MC, Miki H, Miller J, Okamoto K, Dobaczewska K, Herro R, Gupta RK, Kurten R, Aceves SS, Croft M. A Deficiency in the Cytokine TNFSF14/LIGHT Limits Inflammation and Remodeling in Murine Eosinophilic Esophagitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:ji2200326. [PMID: 36288906 PMCID: PMC10130236 DOI: 10.4049/jimmunol.2200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic type 2 allergic disease, with esophageal tissue remodeling as the mechanism behind clinical dysphagia and strictures. IL-13 is thought to be a central driver of disease, but other inflammatory factors, such as IFNs and TNF superfamily members, have been hypothesized to play a role in disease pathogenesis. We recently found that the cytokine TNFSF14/LIGHT is upregulated in the esophagus of patients with EoE and that LIGHT promotes inflammatory activity in esophageal fibroblasts. However, the global effects of LIGHT on EoE pathogenesis in vivo remain unknown. We investigated the impact of a LIGHT deficiency in a murine model of EoE driven by house dust mite allergen. Chronic intranasal challenge with house dust mite promoted esophageal eosinophilia and increased CD4+ T cell numbers and IL-13 and CCL11 production in wild-type mice. Esophageal remodeling was reflected by submucosal collagen accumulation, increased muscle density, and greater numbers of fibroblasts. LIGHT-/- mice displayed normal esophageal eosinophilia, but exhibited reduced frequencies of CD4 T cells, IL-13 expression, submucosal collagen, and muscle density and a decrease in esophageal accumulation of fibroblasts. In vitro, LIGHT increased division of human esophageal fibroblasts and selectively enhanced IL-13-mediated expression of a subset of inflammatory and fibrotic genes. These results show that LIGHT contributes to various features of murine EoE, impacting the accumulation of CD4 T cells, IL-13 production, fibroblast proliferation, and esophagus remodeling. These findings suggest that LIGHT may be, to our knowledge, a novel therapeutic target for the treatment of EoE.
Collapse
Affiliation(s)
- Mario C Manresa
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Kevin Okamoto
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Katarzyna Dobaczewska
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Rana Herro
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Richard Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children's Hospital Research Institute, Little Rock, AR; and
| | - Seema S Aceves
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Michael Croft
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA;
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
9
|
Seo GY, Takahashi D, Wang Q, Mikulski Z, Chen A, Chou TF, Marcovecchio P, McArdle S, Sethi A, Shui JW, Takahashi M, Surh CD, Cheroutre H, Kronenberg M. Epithelial HVEM maintains intraepithelial T cell survival and contributes to host protection. Sci Immunol 2022; 7:eabm6931. [PMID: 35905286 PMCID: PMC9422995 DOI: 10.1126/sciimmunol.abm6931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to β1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on β1 integrin binding to collagen IV and showed that β1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of β1 integrin expression by T lymphocytes decreased TCR αβ+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or β1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged β1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.
Collapse
Affiliation(s)
- Goo-Young Seo
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Qingyang Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Angeline Chen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ashu Sethi
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Charles D Surh
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Institute for Basic Science (IBS), Academy of Immunology and Microbiology, Pohang, South Korea
| | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Division of Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Ware CF, Croft M, Neil GA. Realigning the LIGHT signaling network to control dysregulated inflammation. J Exp Med 2022; 219:213236. [PMID: 35604387 PMCID: PMC9130030 DOI: 10.1084/jem.20220236] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin β receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.
Collapse
Affiliation(s)
- Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA
| | | |
Collapse
|
11
|
Wu NL, Huang DY, Hsieh SL, Dai YS, Lin WW. Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation. Exp Mol Med 2022; 54:542-551. [PMID: 35478210 PMCID: PMC9076855 DOI: 10.1038/s12276-022-00762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor for Fas ligand, LIGHT and TL1A, but it also exerts effector functions. Previously, we found that DcR3 is upregulated in the serum and lesional skin of patients with psoriasis and is upregulated by EGFR activation in proliferating primary human epidermal keratinocytes. However, the functional role of intracellular DcR3 in keratinocyte differentiation is still incompletely defined. Herein, primary cultured human epidermal keratinocytes were differentiated by phorbol 12-myristate 13-acetate (PMA) treatment, calcium treatment and cell confluence, which are three standard in vitro differentiation models. We found that the constitutive expression of the DcR3 gene and protein was progressively suppressed during terminal differentiation of keratinocytes. These changes were correlated with downregulation of EGFR activation during keratinocyte differentiation. EGFR inhibition by gefitinib further decreased confluence-induced suppression of DcR3 mRNA expression, and, vice versa, knocking down DcR3 expression attenuated EGFR and EGFR ligand expression as well as EGFR activation. Under conditions without a change in cell growth, DcR3 silencing reduced the expression of involucrin and transglutaminase 1 but enhanced the induction of the terminal differentiation markers keratin 10 and loricrin. Of note, DcR3 interacted with PKCα and PKCδ and enhanced PKC activity. In keratinocytes with PKCα and PKCδ silencing, differentiation markers were differentially affected. In conclusion, DcR3 expression in keratinocytes is regulated by EGFR and forms a positive feedback loop to orchestrate constitutive EGFR and PKC activity. During differentiation, DcR3 is downregulated and involved in modulating the pattern of terminal differentiation. A protein linked to cancer and various inflammatory diseases may also be an important driver for the skin condition in psoriasis. The outer surface of the skin is formed by cells called keratinocytes, which transition from a highly proliferative state to a fully mature state where they no longer divide. This developmental process is disrupted in psoriasis. Researchers led by Wan-Wan Lin at National Taiwan University, Taipei, have now identified a prominent role for a protein called decoy receptor 3 (DcR3), which is a biomarker for a variety of disorders and is also abnormally expressed in keratinocytes in psoriatic lesions. Lin and colleagues demonstrated that DcR3 interacts with multiple cellular signaling pathways that coordinate cell differentiation. These findings reveal how aberrant DcR3 activity might lead to the abnormal keratinocyte developmental behavior observed in psoriasis.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
Behairy OGA, Mohammad OI, Salim RF, Sobeih AA. A study of nasal epithelial cell gene expression in a sample of mild to severe asthmatic children and healthy controls. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Airway epithelium contributes to the natural history of bronchial asthma through the production of various cytokines and chemokines. The purpose of this study was to assess nasal epithelial cell genes (TMEM178, FKBP5, CLCA1, SERPINB2 and periostin) in childhood asthma and their utility in predicting asthma severity, and atopic status. Seventy asthmatic children were included and further subdivided into mild, moderate and severe persistent asthma together with 30 apparently healthy children as a control group. All children were subjected to medical history taking, clinical examination. Nasal epithelial samples were collected for detection of epithelial cell genes (TMEM178, FKBP5, CLCA1, SERPINB2 and periostin) by real-time PCR.
Results
TMEM178 showed significant down-regulation in asthmatic children and its expression levels decreased significantly with the progression of asthma severity. CLCA1, SERPINB2 and periostin showed statistically significant up-regulation in asthmatic children, whereas FKBP5 was increased in asthmatic children but with non-significant up-regulation when compared with the control group. Regarding atopic status, relative gene expression levels of CLCA1, SERPINB2 and periostin were significantly up-regulated in atopic asthma.
Conclusion
Our findings suggest the role of nasal airways epithelial cells in predicting asthma severity and atopic status, as TMEM178 expression gained attention as a predictor of asthma severity. CLCA1, SERPINB2 and periostin expression were up-regulated not only in asthmatic children, but also in atopic asthma.
Collapse
|
14
|
Manresa MC, Wu A, Nhu QM, Chiang AWT, Okamoto K, Miki H, Kurten R, Pham E, Duong LD, Lewis NE, Akuthota P, Croft M, Aceves SS. LIGHT controls distinct homeostatic and inflammatory gene expression profiles in esophageal fibroblasts via differential HVEM and LTβR-mediated mechanisms. Mucosal Immunol 2022; 15:327-337. [PMID: 34903876 PMCID: PMC8866113 DOI: 10.1038/s41385-021-00472-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.
Collapse
Affiliation(s)
- Mario C. Manresa
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Amanda Wu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Quan M. Nhu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.419794.60000 0001 2111 8997Division of Gastroenterology and Hepatology, Scripps Clinic, San Diego, CA USA
| | - Austin W. T. Chiang
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Kevin Okamoto
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Haruka Miki
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Richard Kurten
- grid.239305.e0000 0001 2157 2081Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, Little Rock, AR USA
| | - Elaine Pham
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Loan D. Duong
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Nathan E. Lewis
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Praveen Akuthota
- grid.266100.30000 0001 2107 4242Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA USA
| | - Michael Croft
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Seema S. Aceves
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital San Diego, San Diego, CA USA
| |
Collapse
|
15
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
16
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Steele H, Song B, Willicut A, Grimes HL, Herro R. Isolation of primary immune cells from fibrotic skin, esophageal, and gut tissue. J Immunol Methods 2021; 497:113107. [PMID: 34352237 DOI: 10.1016/j.jim.2021.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 11/15/2022]
Abstract
Understanding the interplay between immune and structural cells is important for studying fibrosis and inflammation; however, primary immune cell isolation from organs that are typically enriched in stromal cells, like the lung, esophagus, or gut, proves to be an ongoing challenge. In fibrotic conditions, this challenge becomes even greater as infiltrating cells become trapped in the robust extracellular matrix (ECM). This protocol details a method to isolate cells at high yield from stroma-rich organs that can be used for further analyses via flow cytometry, stimulation, or culturing. Validation of this method is confirmed by flow cytometry data assessing immune cell populations of interest. This protocol can be completed in approximately 5-6 h.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Willicut
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Shou Y, Koroleva E, Spencer CM, Shein SA, Korchagina AA, Yusoof KA, Parthasarathy R, Leadbetter EA, Akopian AN, Muñoz AR, Tumanov AV. Redefining the Role of Lymphotoxin Beta Receptor in the Maintenance of Lymphoid Organs and Immune Cell Homeostasis in Adulthood. Front Immunol 2021; 12:712632. [PMID: 34335629 PMCID: PMC8320848 DOI: 10.3389/fimmu.2021.712632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023] Open
Abstract
Lymphotoxin beta receptor (LTβR) is a promising therapeutic target in autoimmune and infectious diseases as well as cancer. Mice with genetic inactivation of LTβR display multiple defects in development and organization of lymphoid organs, mucosal immune responses, IgA production and an autoimmune phenotype. As these defects are imprinted in embryogenesis and neonate stages, the impact of LTβR signaling in adulthood remains unclear. Here, to overcome developmental defects, we generated mice with inducible ubiquitous genetic inactivation of LTβR in adult mice (iLTβRΔ/Δ mice) and redefined the role of LTβR signaling in organization of lymphoid organs, immune response to mucosal bacterial pathogen, IgA production and autoimmunity. In spleen, postnatal LTβR signaling is required for development of B cell follicles, follicular dendritic cells (FDCs), recruitment of neutrophils and maintenance of the marginal zone. Lymph nodes of iLTβRΔ/Δ mice were reduced in size, lacked FDCs, and had disorganized subcapsular sinus macrophages. Peyer`s patches were smaller in size and numbers, and displayed reduced FDCs. The number of isolated lymphoid follicles in small intestine and colon were also reduced. In contrast to LTβR-/- mice, iLTβRΔ/Δ mice displayed normal thymus structure and did not develop signs of systemic inflammation and autoimmunity. Further, our results suggest that LTβR signaling in adulthood is required for homeostasis of neutrophils, NK, and iNKT cells, but is dispensable for the maintenance of polyclonal IgA production. However, iLTβRΔ/Δ mice exhibited an increased sensitivity to C. rodentium infection and failed to develop pathogen-specific IgA responses. Collectively, our study uncovers new insights of LTβR signaling in adulthood for the maintenance of lymphoid organs, neutrophils, NK and iNKT cells, and IgA production in response to mucosal bacterial pathogen.
Collapse
Affiliation(s)
- Yajun Shou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | | - Sergey A. Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Anna A. Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kizil A. Yusoof
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amanda R. Muñoz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Alexei V. Tumanov,
| |
Collapse
|
20
|
He W, Zhao J, Liu X, Li S, Mu K, Zhang J, Zhang JA. Associations between CD160 polymorphisms and autoimmune thyroid disease: a case-control study. BMC Endocr Disord 2021; 21:148. [PMID: 34238277 PMCID: PMC8268507 DOI: 10.1186/s12902-021-00810-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent researches suggest that the CD160/HVEM/LIGHT/BTLA signaling pathway may contribute to the pathogeneses of autoimmune diseases, but the relationship between CD160 polymorphisms and autoimmune thyroid disease (AITD) has not been reported yet. This study aimed to evaluate the associations between CD160 polymorphisms and AITD. METHODS A total of 1017 patients with AITD (634 Graves' disease and 383 Hashimoto's thyroiditis) and 856 unrelated healthy controls were recruited into our study. Odds ratios (ORs) with 95% confidence interval (95%CI) were calculated through logistic regression analyses. The CD160 SNPs were detected using Hi-SNP high-throughput genotyping. RESULTS There was a statistically significant difference between Graves' disease patients and the control group with respect to both the genotype distribution (P = 0.014) and allele frequency of rs744877 (P = 0.034). A significant association of CD160 rs744877 with AITD was observed before adjusted age and gender under a dominant model (OR = 0.79, 95%CI 0.66-0.95; P = 0.013) and an additive model (OR = 0.77, 95%CI 0.64-0.94, P = 0.008), and was also observed after adjusted age and gender under a dominant model (OR = 0.78, 95%CI 0.65-0.95; P = 0.011) and an additive model (OR = 0.76, 95%CI 0.63-0.93, P = 0.007). A significant association of rs744877 with Graves' disease was observed under an allele model (OR = 0.84, 95%CI 0.71-0.98, P = 0.027), a dominant model (OR = 0.74, 95%CI 0.60-0.91; P = 0.005), and an additive model (OR = 0.72, 95%CI 0.58-0.90, P = 0.004). Multivariate logistic regression analyses suggested that the association remained significant after adjustment for age and gender. However, rs744877 was not related to Hashimoto's thyroiditis. Furthermore, CD160 rs3766526 was not significantly related to either Graves' disease or Hashimoto's thyroiditis. CONCLUSION This is the first identification of the association of CD160 rs744877 with Graves' disease. Our findings add new data to the genetic contribution to Graves' disease susceptibility and support the crucial role of the CD160/HVEM/LIGHT/BTLA pathway in the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Weiwei He
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201508, China
| | - Jing Zhao
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201508, China
- Department of Endocrinology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, 214000, China
| | - Xuerong Liu
- Department of Endocrinology, Affiliated Hospital of Yanan University, Yan'an, Shanxi, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yanan University, Yan'an, Shanxi, China
| | - Kaida Mu
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201508, China
| | - Jing Zhang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201508, China
| | - Jin-An Zhang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201508, China.
| |
Collapse
|
21
|
Hwang JW, Kim YC, Lee HY, Lee KJ, Kim TH, Lee SH. The tumor necrosis factor family molecules LIGHT and lymphotoxins in sinus mucosa of patients with chronic rhinosinusitis with or without nasal polyps. Cytokine 2021; 148:155594. [PMID: 34083106 DOI: 10.1016/j.cyto.2021.155594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Little is known about the role of lymphotoxins (LTs) family in the sinonasal mucosa of patients with chronic rhinosinusitis (CRS). This study aims at investigating the expression of LIGHT, LTα, LTβ, and their receptors, LTβR and HVEM in normal and inflammatory sinus mucosa, and the effect of LIGHT and LTalpha1beta2 on chemokine secretion in epithelial cells, epithelial permeability, and leukocyte migration. MATERIAL AND METHODS The expression of LTs family in sinonasal mucosa was evaluated with real-time PCR, immunohistochemistry, and western blot. In LTβR, HVEM siRNA, or control siRNA-transfected epithelial cells treated with LIGHT or LTalpha1beta2, the expression of chemokines, the epithelial permeability, and the expression of junctional complex proteins were evaluated using real-time PCR, ELISA, western blot, confocal microscopy, and FITC-dextran. In cultured endothelial cells treated with LIGHT or LTalpha1beta2, the expression of ICAM-1 and VCAM-1, and leukocyte migration were elucidated. RESULTS LTs family was expressed in normal mucosa and their levels were increased in inflammatory mucosa of CRS patients. Recombinant LIGHT and LTalpha1beta2 induced chemokine secretion, increased epithelial permeability, and promoted leukocyte migration. However, the activity of LIGHT and LTalpha1beta2 was attenuated in cells transfected with LTβR and HVEM siRNA. CONCLUSIONS LIGHT and LTs may participate in the ongoing process of chronic inflammation, inducing chemokine secretion, leukocyte migration, and dysregulated epithelial barrier through LTβR and HVEM in sinonasal mucosa.
Collapse
Affiliation(s)
- Jae Woong Hwang
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Young Chan Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Ho Young Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Ki Jeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
22
|
Manresa MC, Chiang AWT, Kurten RC, Dohil R, Brickner H, Dohil L, Herro R, Akuthota P, Lewis NE, Croft M, Aceves SS. Increased Production of LIGHT by T Cells in Eosinophilic Esophagitis Promotes Differentiation of Esophageal Fibroblasts Toward an Inflammatory Phenotype. Gastroenterology 2020; 159:1778-1792.e13. [PMID: 32712105 PMCID: PMC7726704 DOI: 10.1053/j.gastro.2020.07.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Eosinophilic esophagitis (EoE) is an antigen-mediated eosinophilic disease of the esophagus that involves fibroblast activation and progression to fibrostenosis. Cytokines produced by T-helper type 2 cells and transforming growth factor beta 1 (TGFβ1) contribute to the development of EoE, but other cytokines involved in pathogenesis are unknown. We investigate the effects of tumor necrosis factor superfamily member 14 (TNFSF14, also called LIGHT) on fibroblasts in EoE. METHODS We analyzed publicly available esophageal CD3+ T-cell single-cell sequencing data for expression of LIGHT. Esophageal tissues were obtained from pediatric patients with EoE or control individuals and analyzed by immunostaining. Human primary esophageal fibroblasts were isolated from esophageal biopsy samples of healthy donors or patients with active EoE. Fibroblasts were cultured; incubated with TGFβ1 and/or LIGHT; and analyzed by RNA sequencing, flow cytometry, immunoblots, immunofluorescence, or reverse transcription polymerase chain reaction. Eosinophils were purified from peripheral blood of healthy donors, incubated with interleukin 5, cocultured with fibroblasts, and analyzed by immunohistochemistry. RESULTS LIGHT was up-regulated in the esophageal tissues from patients with EoE, compared with control individuals, and expressed by several T-cell populations, including T-helper type 2 cells. TNF receptor superfamily member 14 (TNFRSF14, also called HVEM) and lymphotoxin beta receptor are receptors for LIGHT that were expressed by fibroblasts from healthy donors or patients with active EoE. Stimulation of esophageal fibroblasts with LIGHT induced inflammatory gene transcription, whereas stimulation with TGFβ1 induced transcription of genes associated with a myofibroblast phenotype. Stimulation of fibroblasts with TGFβ1 increased expression of HVEM; subsequent stimulation with LIGHT resulted in their differentiation into cells that express markers of myofibroblasts and inflammatory chemokines and cytokines. Eosinophils tethered to esophageal fibroblasts after LIGHT stimulation via intercellular adhesion molecule-1. CONCLUSIONS T cells in esophageal tissues from patients with EoE express increased levels of LIGHT compared with control individuals, which induces differentiation of fibroblasts into cells with inflammatory characteristics. TGFβ1 increases fibroblast expression of HVEM, a receptor for LIGHT. LIGHT mediates interactions between esophageal fibroblasts and eosinophils via ICAM1. This pathway might be targeted for the treatment of EoE.
Collapse
Affiliation(s)
- Mario C Manresa
- Department of Pediatrics, University of California, San Diego, San Diego; Division of Allergy Immunology; La Jolla Institute for Immunology, La Jolla, California
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, San Diego; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, San Diego, California
| | - Richard C Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| | | | - Howard Brickner
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Lucas Dohil
- Department of Pediatrics, University of California, San Diego, San Diego
| | - Rana Herro
- Cincinnati Children's Hospital Medical Center, Immunobiology Division, Cincinnati, Ohio
| | - Praveen Akuthota
- Division of Gastroenterology, Department of Pediatrics, University of California, San Diego; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, San Diego; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, San Diego, California; Department of Bioengineering, University of California, San Diego, San Diego, California
| | - Michael Croft
- La Jolla Institute for Immunology, La Jolla, California; Division of Gastroenterology, Department of Pediatrics, University of California, San Diego
| | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, San Diego; Division of Allergy Immunology; Rady Children's Hospital, San Diego; Division of Gastroenterology, Department of Pediatrics, University of California, San Diego.
| |
Collapse
|
23
|
Ono J, Takai M, Kamei A, Nunomura S, Nanri Y, Yoshihara T, Ohta S, Yasuda K, Conway SJ, Yokosaki Y, Izuhara K. Periostin forms a functional complex with IgA in human serum. Allergol Int 2020; 69:111-120. [PMID: 31272904 DOI: 10.1016/j.alit.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Periostin is a matricellular protein belonging to the fasciclin family, playing a role for the pathogenesis of allergic diseases by binding to integrins on cell surfaces. Serum periostin is elevated in various allergic diseases reflecting type 2 inflammation and tissue remodeling so that for allergic diseases, periostin is expected to be a novel biomarker for diagnosis, assessing severity or prognosis, and predicting responsiveness to treatments. We have previously shown that most serum periostin exists in the oligomeric form by intermolecular disulfide bonds. METHODS In this study, we examined how periostin forms a complex in serum, whether the periostin complex in serum is functional, and whether the complex formation interferes with reactivity to anti-periostin Abs. RESULTS We found that periostin formed a complex with IgA1 at a 1:1 ratio. The periostin in the serum complex contained at least five different isoforms. However, IgA was not essential for the oligomeric formation of periostin in mouse serum or in IgA-lacking serum. The periostin-IgA complex in human serum was functional, sustaining the ability to bind to αVβ3 integrin on cell surfaces. Moreover, periostin formed the complex with IgA broadly, which interferes the binding of the Abs recognizing all of the domains except the R4 domain to periostin. CONCLUSIONS Periostin is a novel member of the IgA-associated molecules. These results are of great potential use to understand the pathological roles of periostin in allergic diseases and, from a practical standpoint, to develop diagnostics or therapeutic agents against periostin.
Collapse
Affiliation(s)
- Junya Ono
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan; Shino-Test Corporation, Sagamihara, Japan
| | - Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan; Shino-Test Corporation, Sagamihara, Japan
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Tomohito Yoshihara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Lab, Health Administration Office, Hiroshima University, Hiroshima, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| |
Collapse
|
24
|
Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: An emerging biomarker for allergic diseases. Allergy 2019; 74:2116-2128. [PMID: 30964557 DOI: 10.1111/all.13814] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Periostin is a matricellular protein as well as an extracellular matrix (ECM) protein belonging to the fasciclin family. Periostin plays important roles as a matricellular protein in the setting of allergic diseases by binding to several integrins on various cells. Since periostin is induced mainly by IL-4 and IL-13, signature type 2 cytokines, and it is highly expressed in the subepithelial regions of many chronic allergic diseases, periostin has emerged as a novel biomarker reflecting type 2 inflammation in allergic diseases. It has, moreover, been revealed that periostin has characteristics different from other type 2 biomarkers such as eosinophil count and fractional exhaled nitric oxide (FeNO), reflecting fibrosis or tissue remodeling. From this, we may say that serum periostin is a "chronic" type 2 biomarker, whereas FeNO and possibly the eosinophil count are "acute" type 2 biomarkers. In contrast, it is still uncertain how we can apply periostin measurement to the use of biologics for allergic diseases. By examining the roles of periostin in allergy and the utility and potential of periostin in developing diagnostics against allergic diseases, it is hoped that in the near future, we can develop a new strategy to treat allergic patients.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
| | - Junya Ono
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
- Shino‐Test Corporation Sagamihara Japan
| | - Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences Saga Medical School Saga Japan
- Shino‐Test Corporation Sagamihara Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine Saga Medical School Saga Japan
| |
Collapse
|
25
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
26
|
Wang Z, Wang W, Chai Q, Zhu M. Langerhans Cells Control Lymphatic Vessel Function during Inflammation via LIGHT-LTβR Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 202:2999-3007. [PMID: 30952816 DOI: 10.4049/jimmunol.1801578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
The lymphatic vasculature is an important route for dendritic cell (DC) or tumor cell migration from peripheral tissues to draining lymph nodes (DLNs). However, the underlying molecular and cellular mechanisms remain poorly understood. In this study, using conventional bone marrow chimeric mice and additional UVB radiation, we found that deficiency of LIGHT but not lymphotoxin (LT) α1β2, likely on radioresistant Langerhans cells (LCs), resulted in impaired skin DC migration to DLNs during LPS-induced inflammation. In addition, LT β receptor (LTβR), but not herpes virus entry mediator, was found to be the receptor of LIGHT controlling DC migration. Furthermore, conditional deficiency of LTβR in Tie2 cre or Lyve1 cre mice, but not in LTβR-deficient bone marrow chimeric mice, impaired DC migration, suggesting an important role of LTβR in radioresistant lymphatic endothelial cells (LECs), although the role of LTβR in blood endothelial cells remains intriguing. Mechanistically, the gene expression of both CCL21 and CCL19 was found to be reduced in skin LECs isolated from LC-LIGHT-conditionally deficient or Lyve1 cre Ltbr fl/fl mice compared with their controls upon LPS stimulation. Soluble recombinant LIGHT was able to upregulate CCL21 and CCL19 gene expression on SVEC4-10 endothelial cells. Doxycycline, an inhibitor of soluble LIGHT release in the inflamed skin, impaired skin CCL21 and CCL19 expression and DC migration. In addition, melanoma cell metastasis to DLNs was also inhibited in LC-LIGHT-conditionally deficient or Lyve1 cre Ltbr fl/fl mice. Together, our data suggest, to our knowledge, a previously unrecognized scenario in which LCs activate LECs via the LIGHT-LTβR signaling axis to promote DC migration or tumor cell metastasis.
Collapse
Affiliation(s)
- Zhongnan Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
28
|
Herpes Simplex Virus 1 Latency and the Kinetics of Reactivation Are Regulated by a Complex Network of Interactions between the Herpesvirus Entry Mediator, Its Ligands (gD, BTLA, LIGHT, and CD160), and the Latency-Associated Transcript. J Virol 2018; 92:JVI.01451-18. [PMID: 30282707 DOI: 10.1128/jvi.01451-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, we reported that the herpesvirus entry mediator (HVEM; also called TNFRSF14 or CD270) is upregulated by the latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1) and that the absence of HVEM affects latency reactivation but not primary infection in ocularly infected mice. gD has been shown to bind to HVEM. LIGHT (TNFSF14), CD160, and BTLA (B- and T-lymphocyte attenuator) also interact with HVEM and can interfere with HSV gD binding. It was not known if LIGHT, CD160, or BTLA affected the level of latency reactivation in the trigeminal ganglia (TG) of latently infected mice. To address this issue, we ocularly infected LIGHT-/-, CD160-/-, and BTLA-/- mice with LAT(+) and LAT(-) viruses, using similarly infected wild-type (WT) and HVEM-/- mice as controls. The amount of latency, as determined by the levels of gB DNA in the TG of the LIGHT-/-, CD160-/-, and BTLA-/- mice infected with either LAT(+) or LAT(-) viruses, was lower than that in WT mice infected with LAT(+) virus and was similar in WT mice infected with LAT(-) virus. The levels of LAT RNA in HVEM-/-, LIGHT-/-, CD160-/-, and BTLA-/- mice infected with LAT(+) virus were similar and were lower than the levels of LAT RNA in WT mice. However, LIGHT-/-, CD160-/-, and BTLA-/- mice, independent of the presence of LAT, had levels of reactivation similar to those of WT mice infected with LAT(+) virus. Faster reactivation correlated with the upregulation of HVEM transcript. The LIGHT-/-, CD160-/-, and BTLA-/- mice had higher levels of HVEM expression, and this, along with the absence of BTLA, LIGHT, or CD160, may contribute to faster reactivation, while the absence of each molecule, independent of LAT, may have contributed to lower latency. This study suggests that, in the absence of competition with gD for binding to HVEM, LAT RNA is important for WT levels of latency but not for WT levels of reactivation.IMPORTANCE The effects of BTLA, LIGHT, and CD160 on latency reactivation are not known. We show here that in BTLA, LIGHT, or CD160 null mice, latency is reduced; however, HVEM expression is upregulated compared to that of WT mice, and this upregulation is associated with higher reactivation that is independent of LAT but dependent on gD expression. Thus, one of the mechanisms by which BTLA, LIGHT, and CD160 null mice enhance reactivation appears to be the increased expression of HVEM in the presence of gD. Thus, our results suggest that blockade of HVEM-LIGHT-BTLA-CD160 contributes to reduced HSV-1 latency and reactivation.
Collapse
|
29
|
Mitamura Y, Nunomura S, Nanri Y, Ogawa M, Yoshihara T, Masuoka M, Tsuji G, Nakahara T, Hashimoto-Hachiya A, Conway SJ, Furue M, Izuhara K. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy 2018. [PMID: 29528494 DOI: 10.1111/all.13437] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Barrier dysfunction is an important feature of atopic dermatitis (AD) in which IL-4 and IL-13, signature type 2 cytokines, are involved. Periostin, a matricellular protein induced by IL-4 or IL-13, plays a crucial role in the onset of allergic skin inflammation, including barrier dysfunction. However, it remains elusive how periostin causes barrier dysfunction downstream of the IL-13 signal. METHODS We systematically identified periostin-dependent expression profile using DNA microarrays. We then investigated whether IL-24 downregulates filaggrin expression downstream of the IL-13 signals and whether IL-13-induced IL-24 expression and IL-24-induced downregulation of filaggrin expression are dependent on the JAK/STAT pathway. To build on the significance of in vitro findings, we investigated expression of IL-24 and activation of STAT3 in mite-treated mice and in AD patients. RESULTS We identified IL-24 as an IL-13-induced molecule in a periostin-dependent manner. Keratinocytes are the main IL-24-producing tissue-resident cells stimulated by IL-13 in a periostin-dependent manner via STAT6. IL-24 significantly downregulated filaggrin expression via STAT3, contributing to barrier dysfunction downstream of the IL-13/periostin pathway. Wild-type mite-treated mice showed significantly enhanced expression of IL-24 and activation of STAT3 in the epidermis, which disappeared in both STAT6-deficient and periostin-deficient mice, suggesting that these events are downstream of both STAT6 and periostin. Moreover, IL-24 expression was enhanced in the epidermis of skin tissues taken from AD patients. CONCLUSIONS The IL-13/periostin pathway induces IL-24 production in keratinocytes, playing an important role in barrier dysfunction in AD.
Collapse
Affiliation(s)
- Y. Mitamura
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - S. Nunomura
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - Y. Nanri
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - M. Ogawa
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - T. Yoshihara
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - M. Masuoka
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - G. Tsuji
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - T. Nakahara
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - A. Hashimoto-Hachiya
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - S. J. Conway
- HB Wells Center for Pediatric Research; Indiana University School of Medicine; Indianapolis IN USA
| | - M. Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - K. Izuhara
- Division of Medical Biochemistry; Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| |
Collapse
|
30
|
Seo GY, Shui JW, Takahashi D, Song C, Wang Q, Kim K, Mikulski Z, Chandra S, Giles DA, Zahner S, Kim PH, Cheroutre H, Colonna M, Kronenberg M. LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection. Cell Host Microbe 2018; 24:249-260.e4. [PMID: 30092201 PMCID: PMC6132068 DOI: 10.1016/j.chom.2018.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/19/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-γ (IFN-γ) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-γ production, higher bacterial burdens and increased mortality. In addition, IFN-γ production is critical as adoptive transfer of wild-type but not IFN-γ-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-γ production for protection following infection. VIDEO ABSTRACT.
Collapse
MESH Headings
- Adoptive Transfer
- Adult
- Animals
- Cytokines/metabolism
- Disease Models, Animal
- Enterobacteriaceae Infections/pathology
- Enterobacteriaceae Infections/prevention & control
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Host-Pathogen Interactions/immunology
- Host-Pathogen Interactions/physiology
- Humans
- Interferon-gamma/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropeptides/metabolism
- Protein Transport
- Receptors, CCR6/genetics
- Receptors, CCR6/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction
- Spleen/microbiology
- Spleen/pathology
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia enterocolitica/pathogenicity
Collapse
Affiliation(s)
- Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daisuke Takahashi
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Christina Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qingyang Wang
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kenneth Kim
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniel A Giles
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Division of Biology, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|