1
|
Adams NM, Galitsyna A, Tiniakou I, Esteva E, Lau CM, Reyes J, Abdennur N, Shkolikov A, Yap GS, Khodadadi-Jamayran A, Mirny LA, Reizis B. Cohesin-mediated chromatin remodeling controls the differentiation and function of conventional dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613709. [PMID: 39345451 PMCID: PMC11430140 DOI: 10.1101/2024.09.18.613709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The cohesin protein complex extrudes chromatin loops, stopping at CTCF-bound sites, to organize chromosomes into topologically associated domains, yet the biological implications of this process are poorly understood. We show that cohesin is required for the post-mitotic differentiation and function of antigen-presenting dendritic cells (DCs), particularly for antigen cross-presentation and IL-12 secretion by type 1 conventional DCs (cDC1s) in vivo. The chromatin organization of DCs was shaped by cohesin and the DC-specifying transcription factor IRF8, which controlled chromatin looping and chromosome compartmentalization, respectively. Notably, optimal expression of IRF8 itself required CTCF/cohesin-binding sites demarcating the Irf8 gene. During DC activation, cohesin was required for the induction of a subset of genes with distal enhancers. Accordingly, the deletion of CTCF sites flanking the Il12b gene reduced IL-12 production by cDC1s. Our data reveal an essential role of cohesin-mediated chromatin regulation in cell differentiation and function in vivo, and its bi-directional crosstalk with lineage-specifying transcription factors.
Collapse
Affiliation(s)
- Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Colleen M. Lau
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Jojo Reyes
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers University, Newark NJ 07101, USA
| | - Nezar Abdennur
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - George S. Yap
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers University, Newark NJ 07101, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Suzuki K, Koyama D, Oka Y, Sato Y, Sekine R, Fukatsu M, Hayashi K, Takano M, Hashimoto Y, Ikezoe T. Myeloid sarcoma with plasmacytoid dendritic cell-like proliferation associated with IKZF1, ETV6 and DNMT3A mutations. Int J Hematol 2024; 120:382-388. [PMID: 38861243 DOI: 10.1007/s12185-024-03806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The classification of clonal plasmacytoid dendritic cell (pDC) proliferation associated with myeloid neoplasms remains a topic of ongoing debate. Although the fifth edition of the World Health Organization classification classifies clonal pDC proliferation into two categories, it is unclear whether this classification adequately captures the complexities of clonal pDC pathogenesis. We present a clinical case featuring myeloid sarcoma with pDC-like cells in cervical lymph nodes and bone marrow (BM). Analysis of biopsy specimens and BM aspirate revealed two distinct cellular populations expressing myeloid and pDC markers. One population exhibited myeloid leukemia and monocyte markers, including MPO, CD13, CD33, CD11b, and CD14, while the other manifested an immunophenotype reminiscent of pDCs, characterized by expression of CD56 and CD123. Additionally, whole exome sequencing and RNA sequencing of BM mononuclear cells were conducted to explore the pathophysiology of this rare malignancy, and unveiled pDC-like cell proliferation driven by IKZF1 and ETV6 mutations originating from clonal hematopoiesis initiated by a DNMT3A mutation. Notably, venetoclax-based therapy exhibited efficacy for achieving and sustaining complete remission. This case provides pivotal insights into the mechanistic aspects of pDC/pDC-like cell proliferation in myeloid sarcoma, offering valuable perspectives on therapeutic strategies.
Collapse
Affiliation(s)
- Kengo Suzuki
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan.
| | - Yuka Oka
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Rei Sekine
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Motoki Takano
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| |
Collapse
|
3
|
Shen X, Li X, Wu T, Guo T, Lv J, He Z, Luo M, Zhu X, Tian Y, Lai W, Dong C, Hu X, Wu L. TRIM33 plays a critical role in regulating dendritic cell differentiation and homeostasis by modulating Irf8 and Bcl2l11 transcription. Cell Mol Immunol 2024; 21:752-769. [PMID: 38822080 PMCID: PMC11214632 DOI: 10.1038/s41423-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.
Collapse
Affiliation(s)
- Xiangyi Shen
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaoguang Li
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tao Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tingting Guo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jiaoyan Lv
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhimin He
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Maocai Luo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinyi Zhu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yujie Tian
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenlong Lai
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Chen Dong
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
- Westlake University School of Medicine, Hangzhou, 310024, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
| | - Li Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China.
| |
Collapse
|
4
|
Tiniakou I, Hsu PF, Lopez-Zepeda LS, Garipler G, Esteva E, Adams NM, Jang G, Soni C, Lau CM, Liu F, Khodadadi-Jamayran A, Rodrick TC, Jones D, Tsirigos A, Ohler U, Bedford MT, Nimer SD, Kaartinen V, Mazzoni EO, Reizis B. Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation. Sci Immunol 2024; 9:eadi1023. [PMID: 38608038 PMCID: PMC11182672 DOI: 10.1126/sciimmunol.adi1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
Collapse
Affiliation(s)
- Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Lorena S. Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Görkem Garipler
- Department of Biology, New York University; New York, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Colleen M. Lau
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine; Ithaca, NY, USA
| | - Fan Liu
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Tori C. Rodrick
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Drew Jones
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry; Ann Arbor, MI, USA
| | | | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| |
Collapse
|
5
|
Amon L, Seichter A, Vurnek D, Heger L, Lächele L, Tochoedo NR, Kaszubowski T, Hatscher L, Baranska A, Tchitashvili G, Nimmerjahn F, Lehmann CHK, Dudziak D. Clec12A, CD301b, and FcγRIIB/III define the heterogeneity of murine DC2s and DC3s. Cell Rep 2024; 43:113949. [PMID: 38492222 DOI: 10.1016/j.celrep.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Lächele
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christian Herbert Kurt Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany.
| |
Collapse
|
6
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Bloom M, Oak N, Baskin-Doerfler R, Feng R, Iacobucci I, Baviskar P, Zhao X, Stroh AN, Li C, Ozark P, Tillman HS, Li Y, Verbist KC, Albeituni S, Scott DC, King MT, McKinney-Freeman SL, Weiss MJ, Yang JJ, Nichols KE. ETV6 represses inflammatory response genes and regulates HSPC function during stress hematopoiesis in mice. Blood Adv 2023; 7:5608-5623. [PMID: 37522715 PMCID: PMC10514086 DOI: 10.1182/bloodadvances.2022009313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X. Under homeostatic conditions, all HSPC subpopulations are present in the bone marrow (BM) of Etv6R355X/+ mice; however, these animals display shifts in the proportions and/or numbers of progenitor subtypes. To examine whether the Etv6R355X/+ mutation affects HSPC function, we performed serial competitive transplantation and observed that Etv6R355X/+ lineage-sca1+cKit+ (LSK) cells exhibit impaired reconstitution, with near complete failure to repopulate irradiated recipients by the tertiary transplant. Mechanistic studies incorporating cleavage under target and release under nuclease assay, assay for transposase accessible chromatin sequencing, and high-throughput chromosome conformation capture identify ETV6 binding at inflammatory gene loci, including multiple genes within the tumor necrosis factor (TNF) signaling pathway in ETV6-sufficient mouse and human HSPCs. Furthermore, single-cell RNA sequencing of BM cells isolated after transplantation reveals upregulation of inflammatory genes in Etv6R355X/+ progenitors when compared to Etv6+/+ counterparts. Corroborating these findings, Etv6R355X/+ HSPCs produce significantly more TNF than Etv6+/+ cells post-transplantation. We conclude that ETV6 is required to repress inflammatory gene expression in HSPCs under conditions of hematopoietic stress, and this mechanism may be critical to sustain HSPC function.
Collapse
Affiliation(s)
- Mackenzie Bloom
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Ruopeng Feng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pradyumna Baviskar
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Alexa N. Stroh
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Patrick Ozark
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather S. Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Sabrin Albeituni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Danny C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Moeko T. King
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
8
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Tong C, Liang Y, Han X, Zhang Z, Zheng X, Wang S, Song B. Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines 2023; 11:1673. [PMID: 37371768 DOI: 10.3390/biomedicines11061673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Dendritic cells are the only antigen-presenting cells capable of activating naive T cells in humans and mammals and are the most effective antigen-presenting cells. With deepening research, it has been found that dendritic cells have many subsets, and the surface receptors of each subset are different. Specific receptors targeting different subsets of DCs will cause different immune responses. At present, DC-targeted research plays an important role in the treatment and prevention of dozens of related diseases in the clinic. This article focuses on the current status of DC surface receptors and targeted applications.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xianle Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| |
Collapse
|
10
|
Single-cell chemokine receptor profiles delineate the immune contexture of tertiary lymphoid structures in head and neck squamous cell carcinoma. Cancer Lett 2023; 558:216105. [PMID: 36841416 DOI: 10.1016/j.canlet.2023.216105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells associated with favourable prognosis and response to immunotherapy in cancer, but the immune architecture of TLSs remains poorly elucidated. Here, we hypothesize that the spatial architecture of leukocytes in TLSs can be reconstructed de novo, at least partially, by cell-inherent chemokine receptors profiles. Single-cell RNA-sequencing (scRNA-seq) revealed 47 subpopulations of leukocytes in head and neck squamous cell carcinoma (HNSC). Combined with bulk RNA-seq, we observed that CXCR3, CCR7, CCR6, CXCR5, and CCR1 are TLS-associated chemokine receptors. According to the spatial reference, the cellular atlas with TLS-associated chemokine receptors in HNSC TLSs was elaborately portrayed by multiplex immunohistochemistry (mIHC). Subsequently, we explored the functions and evolutionary trajectory of cells distributed in TLSs. Our investigation presents an approach to reconstructing the immune architecture of TLSs, which would help boost the antitumor immune response by inducing neogenesis TLSs in HNSC.
Collapse
|
11
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
12
|
Kirkling ME, Reizis B. In Vitro Generation of Murine CD8α + DEC205 + XCR1 + Cross-Presenting Dendritic Cells from Bone Marrow-Derived Hematopoietic Progenitors. Methods Mol Biol 2023; 2618:109-119. [PMID: 36905512 DOI: 10.1007/978-1-0716-2938-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) comprise a heterogeneous population of antigen (Ag)-presenting cells that play a critical role in both innate and adaptive immunity. DCs orchestrate protective responses against pathogens and tumors while mediating tolerance to host tissues. Evolutionary conservation between species has allowed the successful use of murine models to identify and characterize DC types and functions relevant to human health. Among DCs, type 1 classical DCs (cDC1) are uniquely capable of inducing antitumor responses and therefore present a promising therapeutic target. However, the rarity of DCs, particularly cDC1, limits the number of cells that can be isolated for study. Despite significant effort, progress in the field has been hampered by inadequate methods to produce large quantities of functionally mature DCs in vitro. To overcome this challenge, we developed a culture system in which mouse primary bone marrow cells are cocultured with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) to produce CD8α+ DEC205+ XCR1+ cDC1 (Notch cDC1). This novel method provides a valuable tool to facilitate the generation of unlimited cDC1 for functional studies and translational applications such as antitumor vaccination and immunotherapy.
Collapse
Affiliation(s)
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Villar J, Cros A, De Juan A, Alaoui L, Bonte PE, Lau CM, Tiniakou I, Reizis B, Segura E. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate commitment. Nat Immunol 2023; 24:84-95. [PMID: 36543959 PMCID: PMC9810530 DOI: 10.1038/s41590-022-01374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
In inflamed tissues, monocytes differentiate into macrophages (mo-Macs) or dendritic cells (mo-DCs). In chronic nonresolving inflammation, mo-DCs are major drivers of pathogenic events. Manipulating monocyte differentiation would therefore be an attractive therapeutic strategy. However, how the balance of mo-DC versus mo-Mac fate commitment is regulated is not clear. In the present study, we show that the transcriptional repressors ETV3 and ETV6 control human monocyte differentiation into mo-DCs. ETV3 and ETV6 inhibit interferon (IFN)-stimulated genes; however, their action on monocyte differentiation is independent of IFN signaling. Instead, we find that ETV3 and ETV6 directly repress mo-Mac development by controlling MAFB expression. Mice deficient for Etv6 in monocytes have spontaneous expression of IFN-stimulated genes, confirming that Etv6 regulates IFN responses in vivo. Furthermore, these mice have impaired mo-DC differentiation during inflammation and reduced pathology in an experimental autoimmune encephalomyelitis model. These findings provide information about the molecular control of monocyte fate decision and identify ETV6 as a therapeutic target to redirect monocyte differentiation in inflammatory disorders.
Collapse
Affiliation(s)
- Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | | | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France.
| |
Collapse
|
14
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
15
|
Lança T, Ungerbäck J, Da Silva C, Joeris T, Ahmadi F, Vandamme J, Svensson-Frej M, Mowat AM, Kotarsky K, Sigvardsson M, Agace WW. IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity 2022; 55:1431-1447.e11. [PMID: 35830859 DOI: 10.1016/j.immuni.2022.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDCs) consist of two major functionally and phenotypically distinct subsets, cDC1 and cDC2, whose development is dependent on distinct sets of transcription factors. Interferon regulatory factor 8 (IRF8) is required at multiple stages of cDC1 development, but its role in committed cDC1 remains unclear. Here, we used Xcre-cre to delete Irf8 in committed cDC1 and demonstrate that Irf8 is required for maintaining the identity of cDC1. In the absence of Irf8, committed cDC1 acquired the transcriptional, functional, and chromatin accessibility properties of cDC2. This conversion was independent of Irf4 and was associated with the decreased accessibility of putative IRF8, Batf3, and composite AP-1-IRF (AICE)-binding elements, together with increased accessibility of cDC2-associated transcription-factor-binding elements. Thus, IRF8 expression by committed cDC1 is required for preventing their conversion into cDC2-like cells.
Collapse
Affiliation(s)
- Telma Lança
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Clément Da Silva
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Thorsten Joeris
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Fatemeh Ahmadi
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Julien Vandamme
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Marcus Svensson-Frej
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Knut Kotarsky
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - William W Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden.
| |
Collapse
|
16
|
Singh Rawat B, Venkataraman R, Budhwar R, Tailor P. Methionine- and Choline-Deficient Diet Identifies an Essential Role for DNA Methylation in Plasmacytoid Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:881-897. [PMID: 35101891 DOI: 10.4049/jimmunol.2100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.
Collapse
Affiliation(s)
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Roli Budhwar
- Bionivid Technology Private Ltd., Bengaluru, Karnataka, India; and
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India;
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Nagel S, Pommerenke C, Meyer C, Drexler HG. NKL Homeobox Gene VENTX Is Part of a Regulatory Network in Human Conventional Dendritic Cells. Int J Mol Sci 2021; 22:ijms22115902. [PMID: 34072771 PMCID: PMC8198381 DOI: 10.3390/ijms22115902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.
Collapse
|
19
|
Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, Punie K, Neven P, Garg AD, Wildiers H, Qian J, Smeets A, Lambrechts D. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 2021; 27:820-832. [PMID: 33958794 DOI: 10.1038/s41591-021-01323-8] [Citation(s) in RCA: 354] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response in breast cancer. To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or triple-negative breast cancer were treated with anti-PD1 before surgery. Paired pre- versus on-treatment biopsies from treatment-naive patients receiving anti-PD1 (n = 29) or patients receiving neoadjuvant chemotherapy before anti-PD1 (n = 11) were subjected to single-cell transcriptome, T cell receptor and proteome profiling. One-third of tumors contained PD1-expressing T cells, which clonally expanded upon anti-PD1 treatment, irrespective of tumor subtype. Expansion mainly involved CD8+ T cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and exhaustion markers (HAVCR2, LAG3), and CD4+ T cells characterized by expression of T-helper-1 (IFNG) and follicular-helper (BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1+), specific macrophage phenotypes (CCR2+ or MMP9+) and cancer cells exhibiting major histocompatibility complex class I/II expression correlated positively with T cell expansion. Conversely, undifferentiated pre-effector/memory T cells (TCF7+, GZMK+) or inhibitory macrophages (CX3CR1+, C3+) were inversely correlated with T cell expansion. Collectively, our data identify various immunophenotypes and associated gene sets that are positively or negatively correlated with T cell expansion following anti-PD1 treatment. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.
Collapse
Affiliation(s)
- Ayse Bassez
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Hanne Vos
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Laurien Van Dyck
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging & Pathology, Laboratory of Translational Cell & Tissue Research and Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | | | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kathleen Lambein
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Cancer Biology, Leuven, Belgium.
| |
Collapse
|
20
|
Lukowski SW, Rødahl I, Kelly S, Yu M, Gotley J, Zhou C, Millard S, Andersen SB, Christ AN, Belz G, Frazer IH, Chandra J. Absence of Batf3 reveals a new dimension of cell state heterogeneity within conventional dendritic cells. iScience 2021; 24:102402. [PMID: 33997687 PMCID: PMC8105636 DOI: 10.1016/j.isci.2021.102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional dendritic cells (cDCs) are traditionally subdivided into cDC1 and cDC2 lineages. Batf3 is a cDC1-required transcription factor, and we observed that Batf3−/− mice harbor a population of cDC1-like cells co-expressing cDC2-associated surface molecules. Using single-cell RNA sequencing with integrated cell surface protein expression (CITE-seq), we found that Batf3−/− mitotic immature cDC1-like cells showed reduced expression of cDC1 features and increased levels of cDC2 features. In wild type, we also observed a proportion of mature cDC1 cells expressing surface features characteristic to cDC2 and found that overall cDC cell state heterogeneity was mainly driven by developmental stage, proliferation, and maturity. We detected population diversity within Sirpa+ cDC2 cells, including a Cd33+ cell state expressing high levels of Sox4 and lineage-mixed features characteristic to cDC1, cDC2, pDCs, and monocytes. In conclusion, these data suggest that multiple cDC cell states can co-express lineage-overlapping features, revealing a level of previously unappreciated cDC plasticity. Single-cell proteogenomics identifies additional layers of DC heterogeneity cDC diversity is driven by proliferation, developmental stage, and maturation Lack of Batf3 increases cDCs with lineage-mixed features Sox4+ cDCs represent a cell state of lineage-mixed features
Collapse
Affiliation(s)
- Samuel W. Lukowski
- The Institute for Molecular Bioscience, The University of Queensland, 4067, QLD, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Inga Rødahl
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Samuel Kelly
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Meihua Yu
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - James Gotley
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Susan Millard
- Mater Research, Translational Research Institute, Woolloongabba, 4102 QLD, Australia
| | - Stacey B. Andersen
- The Institute for Molecular Bioscience, The University of Queensland, 4067, QLD, Australia
| | - Angelika N. Christ
- The Institute for Molecular Bioscience, The University of Queensland, 4067, QLD, Australia
| | - Gabrielle Belz
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Corresponding author
| |
Collapse
|
21
|
Zhang S, Coughlan HD, Ashayeripanah M, Seizova S, Kueh AJ, Brown DV, Cao W, Jacquelot N, D'Amico A, Lew AM, Zhan Y, Tonkin CJ, Villadangos JA, Smyth GK, Chopin M, Nutt SL. Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Sci Immunol 2021; 6:6/58/eabf4432. [PMID: 33811060 DOI: 10.1126/sciimmunol.abf4432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The functional diversification of dendritic cells (DCs) is a key step in establishing protective immune responses. Despite the importance of DC lineage diversity, its genetic basis is not fully understood. The transcription factor DC-SCRIPT is expressed in conventional DCs (cDCs) and their committed bone marrow progenitors but not in plasmacytoid DCs (pDCs). We show that mice lacking DC-SCRIPT displayed substantially impaired development of IRF8 (interferon regulatory factor 8)-dependent cDC1, whereas cDC2 numbers increased marginally. The residual DC-SCRIPT-deficient cDC1s had impaired capacity to capture and present cell-associated antigens and to secrete IL-12p40, two functional hallmarks of this population. Genome-wide mapping of DC-SCRIPT binding and gene expression analyses revealed a key role for DC-SCRIPT in maintaining cDC1 identity via the direct regulation of cDC1 signature genes, including Irf8 Our study reveals DC-SCRIPT to be a critical component of the gene regulatory program shaping the functional attributes of cDC1s.
Collapse
Affiliation(s)
- Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah D Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Simona Seizova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel V Brown
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Angela D'Amico
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Sadiq BA, Mantel I, Blander JM. A Comprehensive Experimental Guide to Studying Cross-Presentation in Dendritic Cells In Vitro. CURRENT PROTOCOLS IN IMMUNOLOGY 2020; 131:e115. [PMID: 33316130 PMCID: PMC9060150 DOI: 10.1002/cpim.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cross-presentation was first observed serendipitously in the 1970s. The importance of it was quickly realized and subsequently attracted great attention from immunologists. Since then, our knowledge of the ability of certain antigen presenting cells to internalize, process, and load exogenous antigens onto MHC-I molecules to cross-prime CD8+ T cells has increased significantly. Dendritic cells (DCs) are exceptional cross-presenters, thus making them a great tool to study cross-presentation but the relative rarity of DCs in circulation and in tissues makes it challenging to isolate sufficient numbers of cells to study this process in vitro. In this paper, we describe in detail two methods to culture DCs from bone-marrow progenitors and a method to expand the numbers of DCs present in vivo as a source of endogenous bona-fide cross-presenting DCs. We also describe methods to assess cross-presentation by DCs using the activation of primary CD8+ T cells as a readout. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of bone marrow progenitor cells Basic Protocol 2: In vitro differentiation of dendritic cells with GM-CSF Support Protocol 1: Preparation of conditioned medium from GM-CSF producing J558L cells Basic Protocol 3: In vitro differentiation of dendritic cells with Flt3L Support Protocol 2: Preparation of Flt3L containing medium from B16-Flt3L cells Basic Protocol 4: Expansion of cDC1s in vivo for use in ex vivo experiments Basic Protocol 5: Characterizing resting and activated dendritic cells Basic Protocol 6: Dendritic cell stimulation, antigenic cargo, and fixation Support Protocol 3: Preparation of model antigen coated microbeads Support Protocol 4: Preparation of apoptotic cells Support Protocol 5: Preparation of recombinant bacteria Basic Protocol 7: Immunocytochemistry immunofluorescence (ICC/IF) Support Protocol 6: Preparation of Alcian blue-coated coverslips Basic Protocol 8: CD8+ T cell activation to assess cross-presentation Support Protocol 7: Isolation and labeling of CD8+ T cells with CFSE.
Collapse
Affiliation(s)
- Barzan A. Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York
| | - J. Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
23
|
Kim S, Bagadia P, Anderson DA, Liu TT, Huang X, Theisen DJ, O'Connor KW, Ohara RA, Iwata A, Murphy TL, Murphy KM. High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity 2020; 53:759-774.e9. [PMID: 32795402 PMCID: PMC8193644 DOI: 10.1016/j.immuni.2020.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/20/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022]
Abstract
Development and function of conventional dendritic cell (cDC) subsets, cDC1 and cDC2, depend on transcription factors (TFs) IRF8 and IRF4, respectively. Since IRF8 and IRF4 can each interact with TF BATF3 at AP1-IRF composite elements (AICEs) and with TF PU.1 at Ets-IRF composite elements (EICEs), it is unclear how these factors exert divergent actions. Here, we determined the basis for distinct effects of IRF8 and IRF4 in cDC development. Genes expressed commonly by cDC1 and cDC2 used EICE-dependent enhancers that were redundantly activated by low amounts of either IRF4 or IRF8. By contrast, cDC1-specific genes relied on AICE-dependent enhancers, which required high IRF concentrations, but were activated by either IRF4 or IRF8. IRF8 was specifically required only by a minority of cDC1-specific genes, such as Xcr1, which could distinguish between IRF8 and IRF4 DNA-binding domains. Thus, these results explain how BATF3-dependent Irf8 autoactivation underlies emergence of the cDC1-specific transcriptional program.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - David A Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kevin W O'Connor
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Nutt SL, Chopin M. Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity 2020; 52:942-956. [DOI: 10.1016/j.immuni.2020.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
|
25
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
26
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
27
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
28
|
Ou P, Wen L, Liu X, Huang J, Huang X, Su C, Wang L, Ni H, Reizis B, Yang CY. Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells. J Exp Med 2019; 216:2091-2112. [PMID: 31262842 PMCID: PMC6719428 DOI: 10.1084/jem.20190041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Crosspriming of CD8+ T cells by dendritic cells is crucial for host response against cancer and intracellular microbial infections. Ou et al. demonstrates that palmitoyl-protein thioesterase PPT1 is a phagosomal pH rheostat enabling both viral resistance and efficient crosspriming in cDC1s. Conventional type 1 dendritic cells (cDC1s) are inherently resistant to many viruses but, paradoxically, possess fewer acidic phagosomes that enable antigen retention and cross-presentation. We report that palmitoyl-protein thioesterase 1 (PPT1), which catabolizes lipid-modified proteins in neurons, is highly expressed in cDC1s. PPT1-deficient DCs are more susceptible to vesicular stomatitis virus (VSV) infection, and mice with PPT1 deficiency in cDC1s show impaired response to VSV. Conversely, PPT1-deficient cDC1s enhance the priming of naive CD8+ T cells into tissue-resident KLRG1+ effectors and memory T cells, resulting in rapid clearance of tumors and Listeria monocytogenes. Mechanistically, PPT1 protects steady state DCs from viruses by promoting antigen degradation and endosomal acidification via V-ATPase recruitment. After DC activation, immediate down-regulation of PPT1 is likely to facilitate efficient cross-presentation, production of costimulatory molecules and inflammatory cytokines. Thus, PPT1 acts as a molecular rheostat that allows cDC1s to crossprime efficiently without compromising viral resistance. These results suggest potential therapeutics to enhance cDC1-dependent crosspriming.
Collapse
Affiliation(s)
- Pengju Ou
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Department of Chemotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lifen Wen
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Liu
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Chaofei Su
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Hai Ni
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Cliff Y Yang
- Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China .,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Musumeci A, Lutz K, Winheim E, Krug AB. What Makes a pDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Front Immunol 2019; 10:1222. [PMID: 31191558 PMCID: PMC6548821 DOI: 10.3389/fimmu.2019.01222] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells (APCs) that originate in the bone marrow and are continuously replenished from hematopoietic progenitor cells. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are distinguished by morphology and function, and can be easily discriminated by surface marker expression, both in mouse and man. Classification of DCs based on their ontology takes into account their origin as well as their requirements for transcription factor (TF) expression. cDCs and pDCs of myeloid origin differentiate from a common DC progenitor (CDP) through committed pre-DC stages. pDCs have also been shown to originate from a lymphoid progenitor derived IL-7R+ FLT3+ precursor population containing cells with pDC or B cell potential. Technological advancements in recent years have allowed unprecedented resolution in the analysis of cell states, down to the single cell level, providing valuable information on the commitment, and dynamics of differentiation of all DC subsets. However, the heterogeneity and functional diversification of pDCs still raises the question whether different ontogenies generate restricted pDC subsets, or fully differentiated pDCs retain plasticity in response to challenges. The emergence of novel techniques for the integration of high-resolution data in individual cells promises interesting discoveries regarding DC development and plasticity in the near future.
Collapse
Affiliation(s)
- Andrea Musumeci
- Institute for Immunology, Biomedical Center, Ludwig-Maximilian-University, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Ludwig-Maximilian-University, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Ludwig-Maximilian-University, Munich, Germany
| | - Anne Barbara Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
30
|
Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 2019; 50:37-50. [PMID: 30650380 PMCID: PMC6342491 DOI: 10.1016/j.immuni.2018.12.027] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Pathology and Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|