1
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024:10.1038/s41551-024-01264-w. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
4
|
Wu D, Yin H, Yang C, Zhang Z, Fang F, Wang J, Li X, Xie Y, Hu X, Zhuo R, Chen Y, Yu J, Li T, Li G, Pan J. The BET PROTAC inhibitor GNE-987 displays anti-tumor effects by targeting super-enhancers regulated gene in osteosarcoma. BMC Cancer 2024; 24:928. [PMID: 39090568 PMCID: PMC11292958 DOI: 10.1186/s12885-024-12691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.
Collapse
Affiliation(s)
- Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Tiandan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| |
Collapse
|
5
|
Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2023; 37:101864. [PMID: 37625930 DOI: 10.1016/j.berh.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberto Depascale
- Unit of Rheumatology, Department of Medicine, University of Padova, Padova, Italy
| | - Ana Luisa Stefanski
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Eva Schrezenmeier
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Siegler BH, Thon JN, Altvater M, Schenz J, Larmann J, Weigand MA, Weiterer S. Abdominal surgery induces long-lasting changes in expression and binding of CTCF with impact on Major Histocompatibility Complex II transcription in circulating human monocytes. PLoS One 2023; 18:e0293347. [PMID: 37878653 PMCID: PMC10599505 DOI: 10.1371/journal.pone.0293347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Niklas Thon
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Marc Altvater
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Judith Schenz
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Larmann
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Markus Alexander Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
7
|
Pennesi M, Benvenuto S. Lupus Nephritis in Children: Novel Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1841. [PMID: 37893559 PMCID: PMC10607957 DOI: 10.3390/medicina59101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Childhood-onset systemic lupus erythematosus is an inflammatory and autoimmune condition characterized by heterogeneous multisystem involvement and a chronic course with unpredictable flares. Kidney involvement, commonly called lupus nephritis, mainly presents with immune complex-mediated glomerulonephritis and is more frequent and severe in adults. Despite a considerable improvement in long-term renal prognosis, children and adolescents with lupus nephritis still experience significant morbidity and mortality. Moreover, current literature often lacks pediatric-specific data, leading clinicians to rely exclusively on adult therapeutic approaches. This review aims to describe pediatric lupus nephritis and provide an overview of the novel perspectives on the pathogenetic mechanisms, histopathological classification, therapeutic approach, novel biomarkers, and follow-up targets in children and adolescents with lupus nephritis.
Collapse
Affiliation(s)
- Marco Pennesi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Simone Benvenuto
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
9
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
10
|
Yeo SJ, Ying C, Fullwood MJ, Tergaonkar V. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains. Trends Genet 2023; 39:217-232. [PMID: 36642680 DOI: 10.1016/j.tig.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.
Collapse
Affiliation(s)
- Samuel Jianjie Yeo
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 308232, Singapore
| | - Chen Ying
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Pathology and the Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
11
|
Boss JM. The Regulation of Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2450-2455. [PMID: 35595305 DOI: 10.4049/jimmunol.2290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President's Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI '94; AAI president 2019–2020), and Jenny P.-Y. Ting, Ph.D. (AAI '97; AAI president 2020–2021), welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective president's address to open the meeting.
Collapse
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
12
|
Xia Y, Liu X, Mu W, Ma C, Wang L, Jiao Y, Cui B, Hu S, Gao Y, Liu T, Sun H, Zong S, Liu X, Zhao Y. Capturing 3D Chromatin Maps of Human Primary Monocytes: Insights From High-Resolution Hi-C. Front Immunol 2022; 13:837336. [PMID: 35309301 PMCID: PMC8927851 DOI: 10.3389/fimmu.2022.837336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Although the variation in chromatin architecture during adaptive immune responses has been thoroughly investigated, the 3D landscape of innate immunity is still unknown. Herein, chromatin regulation and heterogeneity among human primary monocytes were investigated. Peripheral blood was collected from two healthy persons and two patients with systemic lupus erythematosus (SLE), and CD14+ monocytes were selected to perform Hi-C, RNA-seq, ATAC-seq and ChIP-seq analyses. Raw data from the THP1 cell line Hi-C library were used for comparison. For each sample, we constructed three Hi-C libraries and obtained approximately 3 billion paired-end reads in total. Resolution analysis showed that more than 80% of bins presented depths greater than 1000 at a 5 kb resolution. The constructed high-resolution chromatin interaction maps presented similar landscapes in the four individuals, which showed significant divergence from the THP1 cell line chromatin structure. The variability in chromatin interactions around HLA-D genes in the HLA complex region was notable within individuals. We further found that the CD16-encoding gene (FCGR3A) is located at a variable topologically associating domain (TAD) boundary and that chromatin loop dynamics might modulate CD16 expression. Our results indicate both the stability and variability of high-resolution chromatin interaction maps among human primary monocytes. This work sheds light on the potential mechanisms by which the complex interplay of epigenetics and spatial 3D architecture regulates chromatin in innate immunity.
Collapse
Affiliation(s)
- Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunyan Ma
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengnan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ying Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Tao Liu
- Bioinformation Center, Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuai Zong
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Farina F, Pisapia L, Laezza M, Serena G, Rispo A, Ricciolino S, Gianfrani C, Fasano A, Del Pozzo G. Effect of Gliadin Stimulation on HLA-DQ2.5 Gene Expression in Macrophages from Adult Celiac Disease Patients. Biomedicines 2021; 10:biomedicines10010063. [PMID: 35052743 PMCID: PMC8773327 DOI: 10.3390/biomedicines10010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in the pathogenesis of celiac disease (CD) because they are involved in both inflammatory reaction and antigen presentation. We analyzed the expression of CD-associated HLA-DQ2.5 risk alleles on macrophages isolated by two cohorts of adult patients, from the U.S. and Italy, at different stages of disease and with different genotypes. After isolating and differentiating macrophages from PBMC, we assessed the HLA genotype and quantified the HLA-DQ2.5 mRNAs by qPCR, before and after gliadin stimulation. The results confirmed the differences in expression between DQA1*05:01 and DQB1*02:01 predisposing alleles and the non-CD associated alleles, as previously shown on other types of APCs. The gliadin challenge confirmed the differentiation of macrophages toward a proinflammatory phenotype, but above all, it triggered an increase of DQA1*05:01 mRNA, as well as a decrease of the DQB1*02:01 transcript. Furthermore, we observed a decrease in the DRB1 genes expression and a downregulation of the CIITA transactivator. In conclusion, our findings provide new evidences on the non-coordinated regulation of celiac disease DQ2.5 risk genes and support the hypothesis that gliadin could interfere in the three-dimensional arrangement of chromatin at the HLA locus.
Collapse
Affiliation(s)
- Federica Farina
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Laura Pisapia
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Mariavittoria Laezza
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Simona Ricciolino
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research (CNR), 80131 Naples, Italy;
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
- Correspondence:
| |
Collapse
|
14
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
15
|
Piekos SN, Gaddam S, Bhardwaj P, Radhakrishnan P, Guha RV, Oro AE. Biomedical Data Commons (BMDC) prioritizes B-lymphocyte non-coding genetic variants in Type 1 Diabetes. PLoS Comput Biol 2021; 17:e1009382. [PMID: 34543288 PMCID: PMC8483327 DOI: 10.1371/journal.pcbi.1009382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/30/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
The repurposing of biomedical data is inhibited by its fragmented and multi-formatted nature that requires redundant investment of time and resources by data scientists. This is particularly true for Type 1 Diabetes (T1D), one of the most intensely studied common childhood diseases. Intense investigation of the contribution of pancreatic β-islet and T-lymphocytes in T1D has been made. However, genetic contributions from B-lymphocytes, which are known to play a role in a subset of T1D patients, remain relatively understudied. We have addressed this issue through the creation of Biomedical Data Commons (BMDC), a knowledge graph that integrates data from multiple sources into a single queryable format. This increases the speed of analysis by multiple orders of magnitude. We develop a pipeline using B-lymphocyte multi-dimensional epigenome and connectome data and deploy BMDC to assess genetic variants in the context of Type 1 Diabetes (T1D). Pipeline-identified variants are primarily common, non-coding, poorly conserved, and are of unknown clinical significance. While variants and their chromatin connectivity are cell-type specific, they are associated with well-studied disease genes in T-lymphocytes. Candidates include established variants in the HLA-DQB1 and HLA-DRB1 and IL2RA loci that have previously been demonstrated to protect against T1D in humans and mice providing validation for this method. Others are included in the well-established T1D GRS2 genetic risk scoring method. More intriguingly, other prioritized variants are completely novel and form the basis for future mechanistic and clinical validation studies The BMDC community-based platform can be expanded and repurposed to increase the accessibility, reproducibility, and productivity of biomedical information for diverse applications including the prioritization of cell type-specific disease alleles from complex phenotypes.
Collapse
Affiliation(s)
- Samantha N. Piekos
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
- Google Data Commons, Mountain View, California, United States of America
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
| | - Pranav Bhardwaj
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | | | - Ramanathan V. Guha
- Google Data Commons, Mountain View, California, United States of America
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
16
|
Houtman M, Hesselberg E, Rönnblom L, Klareskog L, Malmström V, Padyukov L. Haplotype-Specific Expression Analysis of MHC Class II Genes in Healthy Individuals and Rheumatoid Arthritis Patients. Front Immunol 2021; 12:707217. [PMID: 34484204 PMCID: PMC8416041 DOI: 10.3389/fimmu.2021.707217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023] Open
Abstract
HLA-DRB1 alleles have been associated with several autoimmune diseases. For anti-citrullinated protein antibody positive rheumatoid arthritis (RA), HLA-DRB1 shared epitope (SE) alleles are the major genetic risk factors. In order to study the genetic regulation of major histocompatibility complex (MHC) Class II gene expression in immune cells, we investigated transcriptomic profiles of a variety of immune cells from healthy individuals carrying different HLA-DRB1 alleles. Sequencing libraries from peripheral blood mononuclear cells, CD4+ T cells, CD8+ T cells, and CD14+ monocytes of 32 genetically pre-selected healthy female individuals were generated, sequenced and reads were aligned to the standard reference. For the MHC region, reads were mapped to available MHC reference haplotypes and AltHapAlignR was used to estimate gene expression. Using this method, HLA-DRB and HLA-DQ were found to be differentially expressed in different immune cells of healthy individuals as well as in whole blood samples of RA patients carrying HLA-DRB1 SE-positive versus SE-negative alleles. In contrast, no genes outside the MHC region were differentially expressed between individuals carrying HLA-DRB1 SE-positive and SE-negative alleles, thus HLA-DRB1 SE alleles have a strong cis effect on gene expression. Altogether, our findings suggest that immune effects associated with different allelic forms of HLA-DR and HLA-DQ may be associated not only with differences in the structure of these proteins, but also with differences in their expression levels.
Collapse
Affiliation(s)
- Miranda Houtman
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Hesselberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Kim J, Kang J, Kim YW, Kim A. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. FASEB J 2021; 35:e21669. [PMID: 34033138 DOI: 10.1096/fj.202002337r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
The human β-globin locus control region (LCR) hypersensitive site 2 (HS2) is one of enhancers for transcription of the β-like globin genes in erythroid cells. Our previous study showed that the LCR HS2 has active chromatin structure before transcriptional induction of the β-globin gene, while another enhancer LCR HS3 is activated by the induction. To compare functional difference between them, we deleted each HS (ΔHS2 and ΔHS3) from the human β-globin locus in hybrid MEL/ch11 cells. Deletion of either HS2 or HS3 dramatically diminished the β-globin transcription and disrupted locus-wide histone H3K27ac and chromatin interaction between LCR HSs and gene. Surprisingly, ΔHS2 weakened interactions between CTCF sites forming the β-globin topologically associating domain (TAD), while ΔHS3 did not. CTCF occupancy and chromatin accessibility were reduced at the CTCF sites in the ΔHS2 locus. To further characterize the HS2, we deleted the maf-recognition elements for erythroid activator NF-E2 at HS2. This deletion decreased the β-globin transcription and enhancer-promoter interaction, but did not affect interactions between CTCF sites for the TAD. In light of these results, we propose that the HS2 has a role in forming a β-globin TAD by activating neighboring CTCF sites and this role is beyond typical enhancer activity.
Collapse
Affiliation(s)
- Jiwook Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
18
|
Majumder P, Lee JT, Barwick BG, Patterson DG, Bally APR, Scharer CD, Boss JM. The Murine MHC Class II Super Enhancer IA/IE-SE Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2221-2232. [PMID: 33863790 DOI: 10.4049/jimmunol.2001089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
19
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
20
|
Wiggins KJ, Scharer CD. Roadmap to a plasma cell: Epigenetic and transcriptional cues that guide B cell differentiation. Immunol Rev 2020; 300:54-64. [PMID: 33278036 DOI: 10.1111/imr.12934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) or plasma cells secrete antibodies and form a cornerstone of humoral immunity. B cells that receive activation signals in the presence or absence of T cells initiate a differentiation program that requires epigenetic and transcriptional reprogramming in order to ultimately form ASC. Reprogramming is accomplished through the interplay of transcription factors that initiate gene expression programs and epigenetic mechanisms that maintain these programs and cell fates. An important consideration is that all of these factors are operating in the context of cell division. Recent technical advances now allow mechanistic studies to move beyond genetic studies to identify the promoters and enhancer repertoires that are regulated by epigenetic mechanisms and transcription factors in rare cell types and differentiation stages in vivo. This review will detail efforts to integrate transcriptional and epigenetic changes during B cell differentiation with cell division in vivo. What has emerged is a multiphased differentiation model that requires distinct transcription factors and epigenetic programs at each step. The identification of markers that define each phase will help facilitate the manipulation of B cell differentiation for vaccine development or to treat diseases where antibodies are a component.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Carlsson A, Elding Larsson H, Ludvigsson J, Marcus C, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Diabetes 2020; 69:2523-2535. [PMID: 32868339 PMCID: PMC7576571 DOI: 10.2337/db20-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (αa1, α157, α196, β9, β30, β57, and β70) that are resistant to T1D among subjects with DQ4-, 5-, 6-, and 7-resistant DQ haplotypes. These 7 residues form 13 common motifs: 6 motifs are significantly resistant, 6 motifs have modest or no associations (P values >0.05), and 1 motif has 7 copies observed among control subjects only. The motifs "DAAFYDG," "DAAYHDG," and "DAAYYDR" have significant resistance to T1D (odds ratios [ORs] 0.03, 0.25, and 0.18; P = 6.11 × 10-24, 3.54 × 10-15, and 1.03 × 10-21, respectively). Remarkably, a change of a single residue from the motif "DAAYHDG" to "DAAYHSG" (D to S at β57) alters the resistance potential, from resistant motif (OR 0.15; P = 3.54 × 10-15) to a neutral motif (P = 0.183), the change of which was significant (Fisher P value = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, peptide-MHC class II complex stability, β167-169 RGD loop, T-cell receptor binding, formation of homodimer of α-β heterodimers, and cholesterol binding in the cell membrane rafts. Identification of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environment, Ionian University, Argostoli, Cephalonia, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|