1
|
Lou Y, Wen X, Song S, Zeng Y, Huang L, Xie Z, Shao T, Wen C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4 + T cell reconstitution. J Nutr Biochem 2024; 133:109699. [PMID: 38972609 DOI: 10.1016/j.jnutbio.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.
Collapse
Affiliation(s)
- Yu Lou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyue Song
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zeng
- Department of Clinical Medicine, The 2ND Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
3
|
Stein C, Voigts J, Niederreiter L, Kowarschik S, Huber R, Lüth VM. Antiproliferative and immunomodulative potential of Citrullus colocynthis and its bioactive compounds in human lymphocytes and lung cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118053. [PMID: 38499257 DOI: 10.1016/j.jep.2024.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrullus colocynthis (L.) Schrad is a member of the Cucurbitaceae plant family which has been used in traditional medicine for the treatment of lung diseases such as asthma and bronchitis. AIM OF THE STUDY The study was conducted to investigate antiproliferative and immunomodulating effects of C. colocynthis and isolated cucurbitacins on human T lymphocytes and lung epithelial cells in order to evaluate their potential in the treatment of airway diseases. MATERIALS AND METHODS Different concentrations of an ethanolic extract of C. colocynthis fruits and cucurbitacins B (CuB), E (CuE) and E-glucopyranoside (CuE-Glu) were analysed for their cytotoxicity and immunomodulatory potential on Peripheral Blood Mononuclear Cells (PBMCs) of healthy donors and on the epithelial lung cancer cell line A549. Viability and proliferation were tested using WST1 and CFSE assays. Flow cytometric analysis of AnnexinV/PI staining was used to investigate cell death through apoptosis/necrosis. Effects on regulatory mechanisms of T lymphocytes, such as CD69 and CD25 marker activation, cytokine production of the cytokines interleukin 2 (IL2), tumor necrosis factor α (TNFα) and interferon γ (IFNy) were also analysed via flow cytometry. Influences on the activator protein 1 (AP1), nuclear factor of activated T-cells (NFAT) or nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) pathways were analysed in the Jurkat reporter cell line. Cytokine secretion in A549 cells stimulated with virus-like particles was analysed using the bead-based Legendplex™ assay. RESULTS Non-toxic concentrations of C. colocynthis and CuE-Glu showed dose-dependent effects on viability and proliferation in both T lymphocytes and A549 cells. The extracts inhibited lymphocyte activation and suppressed T cell effector functions, which was also shown by lower production of cytokines IL2, TNFα and IFNy. A dose dependent inhibition of the pathways NFκB, NFAT and AP1 in Jurkat cells could be observed. In A549 cells, especially CuE and CuE-Glu showed inhibitory effects on cytokine production following a simulated viral infection. Unglycosylated cucurbitacins were more effective in suppressing the immune function in lymphocytes than glycosylated cucurbitacins, however this activity is limited to cytotoxic concentrations. CONCLUSION In our study we could confirm the immunmodulating effect of C. colocynthis and cucurbitacins B, E and E-glucopyranoside in vitro by suppression of different pathways of inflammation and T cell proliferation. Activity in a lung cell model using a virus-like stimulation shows promise for further research regarding cucurbitacins in airway diseases.
Collapse
Affiliation(s)
- Carina Stein
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| | - Johanna Voigts
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| | - Lisa Niederreiter
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| | - Stefanie Kowarschik
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| | - Roman Huber
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| | - Volker M Lüth
- Centre for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, 79102, Freiburg, Germany.
| |
Collapse
|
4
|
Miller-Little WA, Chen X, Salazar V, Liu C, Bulek K, Zhou JY, Li X, Stüve O, Stappenbeck T, Dubyak G, Zhao J, Li X. A T H17-intrinsic IL-1β-STAT5 axis drives steroid resistance in autoimmune neuroinflammation. Sci Immunol 2024; 9:eabq1558. [PMID: 38701190 DOI: 10.1126/sciimmunol.abq1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1β (IL-1β) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1β-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1β synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1β-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.
Collapse
Affiliation(s)
- William A Miller-Little
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Vanessa Salazar
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Xiao Li
- Center for RNA Science and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, Veterans Affairs Medical Center, Dallas, TX, USA
| | - Thaddeus Stappenbeck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - George Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
5
|
Brandao-Rangel MAR, Moraes-Ferreira R, Silva-Reis A, Souza-Palmeira VH, Almeida FM, da Silva Olimpio FR, Oliveira CR, Damaceno-Rodrigues NR, Pesquero JB, Martin L, Aimbire F, Albertini R, Faria SS, Vieira RP. Aerobic physical training reduces severe asthma phenotype involving kinins pathway. Mol Biol Rep 2024; 51:499. [PMID: 38598121 DOI: 10.1007/s11033-024-09474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1β, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1β, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.
Collapse
Affiliation(s)
- Maysa Alves Rodrigues Brandao-Rangel
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Renilson Moraes-Ferreira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Anamei Silva-Reis
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Victor Hugo Souza-Palmeira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Francine Maria Almeida
- Laboratory of Experimental Therapeutic (LIM 20), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - Fabiana Regina da Silva Olimpio
- Post-graduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720, 2º Andar, São Paulo, SP, 04039-002, Brazil
| | - Carlos Rocha Oliveira
- School of Medicine, Anhembi Morumbi University, Avenida Deputado Benedito Matarazzo 6070, São José dos Campos, SP, 12230-002, Brazil
- Post-graduate Program in Biomedical Enginnering, Federal University of São Paulo (UNIFESP), Rua Talim 330, São José dos Campos, SP, 12231-280, Brazil
- GAP Biotech, Rua Comendador Remo Cesaroni 223, São José dos Campos, SP, 12243-020, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cellular Biology (LIM 59 HCFMUSP), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, São Paulo, SP, 04023-062, Brazil
| | - Leonardo Martin
- Department of Biophysics, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, São Paulo, SP, 04023-062, Brazil
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish, Academy of Sciences (IMB-PAS), Lodowa 106, Lodz, 93-232, Poland
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Flavio Aimbire
- Post-graduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720, 2º Andar, São Paulo, SP, 04039-002, Brazil
| | - Regiane Albertini
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil
| | - Sara Socorro Faria
- Post-graduate Programs in Humam Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (UniEvavngelica), Avenida Universitária Km3,5, Anápolis, GO, 75083-515, Brazil
| | - Rodolfo P Vieira
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, 11060-001, Brazil.
- Post-graduate Programs in Humam Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (UniEvavngelica), Avenida Universitária Km3,5, Anápolis, GO, 75083-515, Brazil.
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos, SP, 12245-520, Brazil.
| |
Collapse
|
6
|
Wang Y, Zhao N, Meng Y, Chen J, Qi C, Hu X, Zhu H, Yang D, Zhang X, Ma H, Zhao J, Di T, Li P, Wang Y. Bcat2-Mediated Branched-Chain Amino Acid Catabolism Is Linked to the Aggravated Inflammation in Obese with Psoriasis Mice. Mol Nutr Food Res 2024; 68:e2300720. [PMID: 38581348 DOI: 10.1002/mnfr.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Indexed: 04/08/2024]
Abstract
SCOPE The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.
Collapse
Affiliation(s)
- Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Xueqing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| |
Collapse
|
7
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
9
|
Saha K, Subramenium Ganapathy A, Wang A, Arumugam P, Michael Morris N, Harris L, Yochum G, Koltun W, Perdew GH, Nighot M, Ma T, Nighot P. Alpha-tocopherylquinone-mediated activation of the Aryl Hydrocarbon Receptor regulates the production of inflammation-inducing cytokines and ameliorates intestinal inflammation. Mucosal Immunol 2023; 16:826-842. [PMID: 37716509 PMCID: PMC10809159 DOI: 10.1016/j.mucimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
This study investigated the role of Alpha-tocopherylquinone (TQ) in regulating the intestinal immune system and the underlying mechanisms. In the experimental dextran sodium sulfate and T cell-mediated colitis models, TQ significantly reduced the mRNA levels of interleukin (IL)-6, IL-1β, IL-17A, IL-23, and tumor necrosis factor (TNF)-α and the abundance of proinflammatory macrophages, T helper (Th)17 cells, and ILC3s in the colons of wild-type mice. TQ also prevented lipopolysaccharide (LPS)-induced activation of NFκB and signal transducer and activator of transcription (Stat)-3 pathways in the human macrophage U937 cells. Pharmacological inhibition or CRISPR-Cas-9-mediated knockout of Aryl hydrocarbon Receptor (AhR) prevented the anti-inflammatory effects of TQ in the LPS-treated U937 cells. Furthermore, TQ reduced the mRNA levels of the LPS-induced pro-inflammatory cytokines in the WT but not Ahr-/- mice splenocytes. TQ also reduced IL-6R protein levels and IL-6-induced Stat-3 activation in Jurkat cells and in vitro differentiation of Th17 cells from wild-type but not Ahr-/- mice naive T cells. Additionally, TQ prevented the pro-inflammatory effects of LPS on macrophages and stimulation of T cells in human PBMCs and significantly reduced the abundance of tumor necrosis factor-α, IL-1β, and IL-6hi inflammatory macrophages and Th17 cells in surgically resected Crohn's disease (CD) tissue. Our study shows that TQ is a naturally occurring, non-toxic, and effective immune modulator that activates AhR and suppresses the Stat-3-NFκB signaling.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonard Harris
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
10
|
Cao L, Deng J, Chen W, He M, Zhao N, Huang H, Ling L, Li Q, Zhu X, Wang L. CTRP4/interleukin-6 receptor signaling ameliorates autoimmune encephalomyelitis by suppressing Th17 cell differentiation. J Clin Invest 2023; 134:e168384. [PMID: 38015631 PMCID: PMC10866667 DOI: 10.1172/jci168384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
C1q/TNF-related protein 4 (CTRP4) is generally thought to be released extracellularly and plays a critical role in energy metabolism and protecting against sepsis. However, its physiological functions in autoimmune diseases have not been thoroughly explored. In this study, we demonstrate that Th17 cell-associated experimental autoimmune encephalomyelitis was greatly exacerbated in Ctrp4-/- mice compared with WT mice due to increased Th17 cell infiltration. The absence of Ctrp4 promoted the differentiation of naive CD4+ T cells into Th17 cells in vitro. Mechanistically, CTRP4 interfered with the interaction between IL-6 and the IL-6 receptor (IL-6R) by directly competing to bind with IL-6R, leading to suppression of IL-6-induced activation of the STAT3 pathway. Furthermore, the administration of recombinant CTRP4 protein ameliorated disease symptoms. In conclusion, our results indicate that CTRP4, as an endogenous regulator of the IL-6 receptor-signaling pathway, may be a potential therapeutic intervention for Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Wei Chen
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Minwei He
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Ning Zhao
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - He Huang
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| | - Lu Ling
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Wang
- Department of Immunology, School of Basic Medical Sciences, Health Science Center, and
- Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Science, Peking University, Beijing, China
| |
Collapse
|
11
|
Xing J, Man C, Liu Y, Zhang Z, Peng H. Factors impacting the benefits and pathogenicity of Th17 cells in the tumor microenvironment. Front Immunol 2023; 14:1224269. [PMID: 37680632 PMCID: PMC10481871 DOI: 10.3389/fimmu.2023.1224269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor development is closely associated with a complex tumor microenvironment, which is composed of tumor cells, blood vessels, tumor stromal cells, infiltrating immune cells, and associated effector molecules. T helper type 17 (Th17) cells, which are a subset of CD4+ T cells and are renowned for their ability to combat bacterial and fungal infections and mediate inflammatory responses, exhibit context-dependent effector functions. Within the tumor microenvironment, different molecular signals regulate the proliferation, differentiation, metabolic reprogramming, and phenotypic conversion of Th17 cells. Consequently, Th17 cells exert dual effects on tumor progression and can promote or inhibit tumor growth. This review aimed to investigate the impact of various alterations in the tumor microenvironment on the antitumor and protumor effects of Th17 cells to provide valuable clues for the exploration of additional tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Department of Oncology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Zhao X, Li N, Yang N, Mi B, Dang W, Sun D, Ma S, Nian H, Wei R. Thymosin β4 Alleviates Autoimmune Dacryoadenitis via Suppressing Th17 Cell Response. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37531112 PMCID: PMC10405860 DOI: 10.1167/iovs.64.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose We investigated the therapeutic effect of recombinant thymosin β4 (rTβ4) on rabbit autoimmune dacryoadenitis, an animal model of SS dry eye, and explore its mechanisms. Methods Rabbits were treated topically with rTβ4 or PBS solution after disease onset for 28 days, and clinical scores were determined by assessing tear secretion, break-up time, fluorescein, hematoxylin and eosin staining, and periodic acid-Schiff. The expression of inflammatory mediators in the lacrimal glands were measured by real-time PCR. The expression of T helper 17 (Th17) cell-related transcription factors and cytokines were detected by real-time PCR and Western blotting. The molecular mechanism underlying the effects of rTβ4 on Th17 cell responses was investigated by Western blotting. Results Topical administration of rTβ4 after disease onset efficiently ameliorated the ocular surface inflammation and relieved the clinical symptoms. Further analysis revealed that rTβ4 treatment significantly inhibited the expression of Th17-related genes (RORC, IL-17A, IL-17F, IL-1R1, IL-23R, and granulocyte-macrophage colony-stimulating factor) and IL-17 protein in lacrimal glands, and meanwhile decreased the inflammatory mediators expression. Mechanistically, we demonstrated that rTβ4 repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) both in vivo and in vitro. Activation of the STAT3 signal pathway by Colivelin partly reversed the suppressive effects of rTβ4 on IL-17 expression in vitro. Conclusions rTβ4 could alleviate ongoing autoimmune dacryoadenitis in rabbits, probably by suppressing Th17 response via partly affecting the STAT3 pathway. These data may provide a new insight into the therapeutic effect and mechanism of rTβ4 in dry eye associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ning Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Baoyue Mi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Weiyu Dang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States
| | - Shanshan Ma
- Beijing Northland Biotech. Co., Ltd., Beijing, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
13
|
Yang TT, Chiang MF, Chang CC, Yang SY, Huang SW, Liao NS, Shih HM, Hsu W, Lin KI. SENP2 restrains the generation of pathogenic Th17 cells in mouse models of colitis. Commun Biol 2023; 6:629. [PMID: 37301920 PMCID: PMC10257679 DOI: 10.1038/s42003-023-05009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The molecular mechanisms contributing to the regulation of Th17-mediated inflammation remain underexplored. We here report a SUMO-specific protease (SENP)2-mediated pathway induced in pathogenic Th17 cells that restricts the pathogenesis of inflammatory colitis. SENP2 regulates the maturation of small ubiquitin-like modifiers (SUMO) and recycles SUMO from the substrate proteins. We find higher levels of SENP2 in pathogenic Th17 cells. By deleting Senp2 in T-cell lineages in mice, we demonstrate that the lack of Senp2 exacerbates the severity of experimental colitis, which is linked to elevated levels of GM-CSF+IL-17A+ pathogenic Th17 cells and more severe dysbiosis of the intestinal microbiome. Adoptive transfer experiments demonstrate the cell-autonomous effect of Senp2 in restraining Th17 differentiation and colitis. The enzymatic activity of SENP2 is important for deSUMOylation of Smad4, which reduces Smad4 nuclear entry and Rorc expression. Our findings reveal a SENP2-mediated regulatory axis in the pathogenicity of Th17 cells.
Collapse
Affiliation(s)
- Tsan-Tzu Yang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Feng Chiang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shii-Yi Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Wen Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei Hsu
- Forsyth Institute, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02142, USA
| | - Kuo-I Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
14
|
Kiran S, Mandal M, Rakib A, Bajwa A, Singh UP. miR-10a-3p modulates adiposity and suppresses adipose inflammation through TGF-β1/Smad3 signaling pathway. Front Immunol 2023; 14:1213415. [PMID: 37334370 PMCID: PMC10272755 DOI: 10.3389/fimmu.2023.1213415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Obesity is a multifactorial disease characterized by an enhanced amount of fat and energy storage in adipose tissue (AT). Obesity appears to promote and maintain low-grade chronic inflammation by activating a subset of inflammatory T cells, macrophages, and other immune cells that infiltrate the AT. Maintenance of AT inflammation during obesity involves regulation by microRNAs (miRs), which also regulate the expression of genes implicated in adipocyte differentiation. This study aims to use ex vivo and in vitro approaches to evaluate the role and mechanism of miR-10a-3p in adipose inflammation and adipogenesis. Methods Wild-type BL/6 mice were placed on normal (ND) and high-fat diet (HFD) for 12 weeks and their obesity phenotype, inflammatory genes, and miRs expression were examined in the AT. We also used differentiated 3T3-L1 adipocytes for mechanistic in vitro studies. Results Microarray analysis allowed us to identify an altered set of miRs in the AT immune cells and Ingenuity pathway analysis (IPA) prediction demonstrated that miR-10a-3p expression was downregulated in AT immune cells in the HFD group as compared to ND. A molecular mimic of miR-10a-3p reduced expression of inflammatory M1 macrophages, cytokines, and chemokines, including transforming growth factor-beta 1 (TGF-β1), transcription factor Krüppel-like factor 4 (KLF4), and interleukin 17F (IL-17F) and induced expression of forkhead box P3 (FoxP3) in the immune cells isolated from AT of HFD-fed mice as compared to ND. In differentiated 3T3-L1 adipocytes, the miR-10a-3p mimics also reduced expression of proinflammatory genes and lipid accumulation, which plays a role in the dysregulation of AT function. In these cells, overexpression of miR-10a-3p reduced the expression of TGF-β1, Smad3, CHOP-10, and fatty acid synthase (FASN), relative to the control scramble miRs. Conclusion Our findings suggest that miR-10a-3p mimic mediates the TGF-β1/Smad3 signaling to improve metabolic markers and adipose inflammation. This study provides a new opportunity for the development of miR-10a-3p as a novel therapeutic for adipose inflammation, and its associated metabolic disorders.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Buzzelli AA, McWilliams IL, Shin B, Bryars MT, Harrington LE. Intrinsic STAT4 Expression Controls Effector CD4 T Cell Migration and Th17 Pathogenicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1667-1676. [PMID: 37093664 PMCID: PMC11302403 DOI: 10.4049/jimmunol.2200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.
Collapse
Affiliation(s)
- Ashlyn A. Buzzelli
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Ian L. McWilliams
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Boyoung Shin
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Morgan T. Bryars
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Laurie E. Harrington
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| |
Collapse
|
16
|
Mazgaeen L, Yorek M, Saini S, Vogel P, Meyerholz DK, Kanneganti TD, Gurung P. CD47 halts Ptpn6-deficient neutrophils from provoking lethal inflammation. SCIENCE ADVANCES 2023; 9:eade3942. [PMID: 36608128 PMCID: PMC9821860 DOI: 10.1126/sciadv.ade3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mice with SHP1 proteins, which have a single amino acid substitution from tyrosine-208 residue to asparagine (hereafter Ptpn6spin mice), develop an autoinflammatory disease with inflamed footpads. Genetic crosses to study CD47 function in Ptpn6spin mice bred Ptpn6spin × Cd47-/- mice that were not born at the expected Mendelian ratio. Ptpn6spin bone marrow cells, when transferred into lethally irradiated Cd47-deficient mice, caused marked weight loss and subsequent death. At a cellular level, Ptpn6-deficient neutrophils promoted weight loss and death of the lethally irradiated Cd47-/- recipients. We posited that leakage of gut microbiota promotes morbidity and mortality in Cd47-/- mice receiving Ptpn6spin cells. Colonic cell death and gut leakage were substantially increased in the diseased Cd47-/- mice. Last, IL-1 blockade using anakinra rescued the morbidity and mortality observed in the diseased Cd47-/- mice. These data together demonstrate a protective role for CD47 in tempering pathogenic neutrophils in the Ptpn6spin mice.
Collapse
Affiliation(s)
- Lalita Mazgaeen
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew Yorek
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Saurabh Saini
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | | | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52241, USA
- Center for Immunology and Immune-Based Disease, University of Iowa, Iowa City, IA 52241, USA
- Corresponding author.
| |
Collapse
|
17
|
Duesman SJ, Ortega-Francisco S, Olguin-Alor R, Acevedo-Dominguez NA, Sestero CM, Chellappan R, De Sarno P, Yusuf N, Salgado-Lopez A, Segundo-Liberato M, de Oca-Lagunas SM, Raman C, Soldevila G. Transforming growth factor receptor III (Betaglycan) regulates the generation of pathogenic Th17 cells in EAE. Front Immunol 2023; 14:1088039. [PMID: 36855628 PMCID: PMC9968395 DOI: 10.3389/fimmu.2023.1088039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The transforming growth factor receptor III (TβRIII) is commonly recognized as a co-receptor that promotes the binding of TGFβ family ligands to type I and type II receptors. Within the immune system, TβRIII regulates T cell development in the thymus and is differentially expressed through activation; however, its function in mature T cells is unclear. To begin addressing this question, we developed a conditional knock-out mouse with restricted TβRIII deletion in mature T cells, necessary because genomic deletion of TβRIII results in perinatal mortality. We determined that TβRIII null mice developed more severe autoimmune central nervous neuroinflammatory disease after immunization with myelin oligodendrocyte peptide (MOG35-55) than wild-type littermates. The increase in disease severity in TβRIII null mice was associated with expanded numbers of CNS infiltrating IFNγ+ CD4+ T cells and cells that co-express both IFNγ and IL-17 (IFNγ+/IL-17+), but not IL-17 alone expressing CD4 T cells compared to Tgfbr3fl/fl wild-type controls. This led us to speculate that TβRIII may be involved in regulating conversion of encephalitogenic Th17 to Th1. To directly address this, we generated encephalitogenic Th17 and Th1 cells from wild type and TβRIII null mice for passive transfer of EAE into naïve mice. Remarkably, Th17 encephalitogenic T cells from TβRIII null induced EAE of much greater severity and earlier in onset than those from wild-type mice. The severity of EAE induced by encephalitogenic wild-type and Tgfbr3fl/fl.dLcKCre Th1 cells were similar. Moreover, in vitro restimulation of in vivo primed Tgfbr3fl/fl.dLcKCre T cells, under Th17 but not Th1 polarizing conditions, resulted in a significant increase of IFNγ+ T cells. Altogether, our data indicate that TβRIII is a coreceptor that functions as a key checkpoint in controlling the pathogenicity of autoreactive T cells in neuroinflammation probably through regulating plasticity of Th17 T cells into pathogenic Th1 cells. Importantly, this is the first demonstration that TβRIII has an intrinsic role in T cells.
Collapse
Affiliation(s)
- Samuel J Duesman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandra Ortega-Francisco
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.,National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Roxana Olguin-Alor
- National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Naray A Acevedo-Dominguez
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Christine M Sestero
- Department of Biology, Chemistry, Mathematics and Computer Science, University of Montevallo, Montevello, AL, United States
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrizia De Sarno
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrian Salgado-Lopez
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Marisol Segundo-Liberato
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.,National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Selina Montes de Oca-Lagunas
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.,National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
18
|
Liu X, Jiang Q, Lv J, Yang S, Huang Z, Duan R, Tao T, Li Z, Ju R, Zheng Y, Su W. Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease. JCI Insight 2022; 7:162335. [PMID: 36301664 PMCID: PMC9746911 DOI: 10.1172/jci.insight.162335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
Vogt-Koyanagi-Harada disease (VKH) is an important refractory uveitis mediated by pathological T cells (TCs). Tofacitinib (TOFA) is a JAK- targeted therapy for several autoimmune diseases. However, the specific pathogenesis and targeted therapeutics for VKH remain largely unknown. Based on single-cell RNA sequencing and mass cytometry, we present what we believe is the first multimodal, high-dimensional analysis to generate a comprehensive human immune atlas regarding subset composition, gene signatures, enriched pathways, and intercellular interactions of VKH patients undergoing TOFA therapy. Patients with VKH are characterized by TCs' polarization from naive to effector and memory subsets, together with accrued monocytes and upregulated cytokines and JAK/STAT signaling pathways. In vitro, TOFA reversed Th17/Treg imbalance and inhibited IL-2-induced STAT1/3 phosphorylation. TOFA alleviated VKH symptoms by restoring pathological TCs' polarization and functional marker expression and downregulating cytokine signaling and lymphocyte function. Remarkably, inflammation-related responses and intercellular interactions decreased after TOFA treatment, particularly in monocytes. Notably, we identified 2 inflammation- and JAK-associated monocyte subpopulations that were strongly implicated in VKH pathogenesis and mechanisms involved in TOFA treatment. Here, we provide a potentially novel JAK-targeted therapy for VKH and elaborate on the possible therapeutic mechanisms of TOFA, expanding our knowledge of VKH pathological patterns.
Collapse
|
19
|
PLGA microspheres carrying miR-20a-5p improved intestinal epithelial barrier function in patients with Crohn's disease through STAT3-mediated inhibition of Th17 differentiation. Int Immunopharmacol 2022; 110:109025. [PMID: 35853280 DOI: 10.1016/j.intimp.2022.109025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent studies have shown that microRNAs (miRNAs) are aberrantly expressed in patients with Crohn's disease (CD). This suggests that the aberrant expression of miRNAs may contribute to the development of CD. Currently, the specific miRNAs involved in CD development have not been clearly identified. Therefore, we aimed to identify CD-associated miRNAs and explore their functions. METHODS miRNA microarray analysis was performed to screen for differentially expressed miRNAs in colon tissues from normal controls (NC) and CD patients. The identified miRNAs were validated using quantitative real-time PCR (qPCR). The therapeutic roles of miR-20a-5p mimics via the delivery of poly(lactic-co-glycolic acid) microspheres (PLGA MSs) were further investigated in IL-10-/- mice with spontaneous chronic colitis that were used as a model of CD. The target genes of miR-20a-5p and the associated signaling pathways were identified through bioinformatic analysis and experimental verification of the interactions between the targets predicted by the algorithms and dysregulated mRNAs. RESULTS The analysis showed that miR-20a-5p was the most significantly downregulated miRNA in patients with CD. Treatment with PLGA MSs carrying miR-20a-5p significantly ameliorated the colitis, decreased mucosal inflammation, and improved epithelial barrier function. Bioinformatic analysis and experimental studies showed that miR-20a-5p inhibition enhanced Th17 differentiation and improved intestinal epithelial barrier function by targeting STAT3. CONCLUSIONS Downregulation of miR-20a-5p improved the intestinal epithelial barrier function and prevented CD development through the STAT3/IL-17 signaling pathway. Therefore, the delivery of miR-20a-5p by PLGA MSs may serve as a potential therapeutic strategy for CD treatment.
Collapse
|
20
|
Cinnamoyloxy-mammeisin, a coumarin from propolis of stingless bees, attenuates Th17 cell differentiation and autoimmune inflammation via STAT3 inhibition. Eur J Pharmacol 2022; 929:175127. [PMID: 35787889 DOI: 10.1016/j.ejphar.2022.175127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
T helper 17 (Th17) lymphocytes play a critical role in the pathogenesis of autoimmune diseases, mainly by producing the pro-inflammatory cytokine interleukin-17 (IL-17). Therefore, Th17 lymphocytes have been considered a strategic target for drug discovery and development. In this study, we investigated the activity and possible mechanisms of action of a 4-phenyl coumarin isolated from propolis, named cinnamoyloxy-mammeisin (CNM), in Th17 cell differentiation and the development of experimental Th17-dependent autoimmune encephalomyelitis (EAE). Our data showed that in vitro Th17 cell differentiation was attenuated by CNM treatment in a concentration-dependent manner (1, 3, and 10 μM). This was associated with a reduction in the release of IL-17 (35% inhibition) and interleukin-22 (IL-22, 51% inhibition). Th17-differentiated cells exposed to CNM also downregulated the expression of Th17 hallmarked cell genes, such as RAR-related orphan receptor c (Rorc, 51% inhibition), and interleukin-23 receptor (Il23r, 64% inhibition), indicating possible upstream molecular mechanisms. Mechanistically, CNM significantly reduced the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) during in vitro Th17 cell differentiation. In vivo treatment with CNM (100 μg/kg) reduced the clinical signs of EAE, which was associated with a reduction in Central Nervous System demyelination, neuroinflammation, and Th17 response in the spinal cord and inguinal lymph nodes. Consistent with this, CNM also effectively attenuated human Th17 differentiation in vitro. Collectively, our results highlight the potential of CNM as a new molecule that can modulate Th17 cells via inhibition of STAT3 signaling and, as a result, reduce autoimmune inflammation.
Collapse
|
21
|
Du LJ, Feng YX, He ZX, Huang L, Wang Q, Wen CP, Zhang Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol Sin 2022; 43:1521-1533. [PMID: 34552214 PMCID: PMC9159996 DOI: 10.1038/s41401-021-00773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder associated with severe organ damage. The abnormality of T cell apoptosis is considered as an important pathogenetic mechanism of SLE. Norcantharidin (NCTD), a derivative of Cantharidin, is an efficacious anti-cancer drug by inhibiting cell proliferation and inducing cell apoptosis. Besides, NCTD has also been proved to protect the function of kidneys, while damaged renal function is the most important predictor of morbidity and mortality in SLE. All these suggest the potential effects of NCTD in SLE treatment. In this study we investigated whether NCTD exerted therapeutic effects in a mouse SLE model. Lupus prone female MRL/lpr mice were treated with NCTD (1, 2 mg·kg-1·d-1, ip) for 8 weeks. We showed that NCTD administration significantly decreased mortality rate, diminished the expression of anti-dsDNA IgG antibody, a diagnostic marker for SLE, as well as restored renal structure and function in MRL/lpr mice. Moreover, NCTD administration dose-dependently inhibited lymphoproliferation and T cell accumulation in the spleens of MRL/lpr mice. We further revealed that NCTD specifically inhibited DN T cell proliferation and Th17 cell differentiation both via blocking activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the other hand, NCTD did not affect T cell apoptosis in MRL/lpr mice. Taken together, our data suggest that NCTD may be as a promising therapeutic drug through targeting T cells for the treatment of SLE.
Collapse
Affiliation(s)
- Li-jun Du
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yu-xiang Feng
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhi-xing He
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Lin Huang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Qiao Wang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Cheng-ping Wen
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yun Zhang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
22
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
23
|
Zhang L, Zhang Y, Shen D, Chen Y, Feng J, Wang X, Ma L, Liao Y, Tang L. RNA Binding Motif Protein 3 Promotes Cell Metastasis and Epithelial–Mesenchymal Transition Through STAT3 Signaling Pathway in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:405-422. [PMID: 35592242 PMCID: PMC9112182 DOI: 10.2147/jhc.s351886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose RNA binding motif protein 3 (RBM3) has been reported to be dysregulated in various cancers and associated with tumor aggressiveness. Epithelial–mesenchymal transition (EMT) is an important biological process by which tumor cells acquire metastatic abilities. This study aimed to explore the regulatory and molecular mechanisms of RBM3 in EMT process. Methods Western blotting, IHC, and qRT-PCR were performed to evaluate the expression of target genes. Transwell assay was used to investigate the migration and invasion. RNA immunoprecipitation and luciferase reporter assay were performed to explore the correlation of RBM3 with STAT3 or microRNA-383. Animal HCC models were used to explore the role of RBM3 in metastasis in vivo. Results RBM3 was highly expressed in HCC tissues compared to healthy tissues, and its level was negatively correlated with the prognosis of HCC patients. RBM3 overexpression accelerated migration and invasion, promoted EMT process, and activated STAT3 signaling. EMT induced by RBM3 was not only attenuated by inhibiting pSTAT3 via S3I-201 but also abolished by suppressing STAT3 expression via siRNAs. Mechanistically, RBM3 increased STAT3 expression by stabilizing STAT3 mRNA via binding to its mRNA. As an upstream target of RBM3, microRNA-383 inhibited RBM3 expression by binding to its 3ʹUTR and resulted in the inhibition of the EMT process. Inhibition of RBM3 in HCC animal models prolonged survival and ameliorated malignant phenotypes in mice. Conclusion Our findings support that RBM3 promotes HCC metastasis by activating STAT3 signaling.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Dongliang Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Jianguo Feng
- Southwest Medical University, Department Anesthesiology, Affiliated Hospital, Luzhou, 646000, People’s Republic of China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, People’s Republic of China
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- Correspondence: Liling Tang; Yi Liao, Tel +86 139 9605 1730; +86 139 9656 6993, Fax +86-23-65111901; +86-23-68763333, Email ;
| |
Collapse
|
24
|
Kubo S, Fritz JM, Raquer-McKay HM, Kataria R, Vujkovic-Cvijin I, Al-Shaibi A, Yao Y, Zheng L, Zou J, Waldman AD, Jing X, Farley TK, Park AY, Oler AJ, Charles AK, Makhlouf M, AbouMoussa EH, Hasnah R, Saraiva LR, Ganesan S, Al-Subaiey AA, Matthews H, Flano E, Lee HH, Freeman AF, Sefer AP, Sayar E, Çakır E, Karakoc-Aydiner E, Baris S, Belkaid Y, Ozen A, Lo B, Lenardo MJ. Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nat Immunol 2022; 23:75-85. [PMID: 34937930 PMCID: PMC11060421 DOI: 10.1038/s41590-021-01093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.
Collapse
Affiliation(s)
- Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Cooley, LLP in Washington, Washington, DC, USA
| | - Hayley M Raquer-McKay
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rhea Kataria
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xinyi Jing
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Reem Hasnah
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- Monell Chemical Senses Center, Philadelphia, PA, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emilio Flano
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Hyun Hee Lee
- Discovery Oncology and Immunology, Merck & Co., Inc., Boston, MA, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Asena Pınar Sefer
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ersin Sayar
- Department of Pediatric Gastroenterology, Altinbas University Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Erkan Çakır
- Division of Pediatric Pulmonology, Department of Pediatrics, Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Saw PE, Xu X, Kim S, Jon S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc Chem Res 2021; 54:3576-3592. [PMID: 34406761 DOI: 10.1021/acs.accounts.1c00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"-from the Latin word "aptus" meaning "to fit" and "peptide"-and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology (KICET), Cheongju-si 28160, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
| |
Collapse
|
26
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
27
|
Canaria DA, Yan B, Clare MG, Zhang Z, Taylor GA, Boone DL, Kazemian M, Olson MR. STAT5 Represses a STAT3-Independent Th17-like Program during Th9 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1265-1274. [PMID: 34348976 DOI: 10.4049/jimmunol.2100165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
IL-9-producing Th cells, termed Th9 cells, contribute to immunity against parasites and cancers but have detrimental roles in allergic disease and colitis. Th9 cells differentiate in response to IL-4 and TGF-β, but these signals are insufficient to drive Th9 differentiation in the absence of IL-2. IL-2-induced STAT5 activation is required for chromatin accessibility within Il9 enhancer and promoter regions and directly transactivates the Il9 locus. STAT5 also suppresses gene expression during Th9 cell development, but these roles are less well defined. In this study, we demonstrate that human allergy-associated Th9 cells exhibited a signature of STAT5-mediated gene repression that is associated with the silencing of a Th17-like transcriptional signature. In murine Th9 cell differentiation, blockade of IL-2/STAT5 signaling induced the expression of IL-17 and the Th17-associated transcription factor Rorγt. However, IL-2-deprived Th9 cells did not exhibit a significant Th17- or STAT3-associated transcriptional signature. Consistent with these observations, differentiation of IL-17-producing cells under these conditions was STAT3-independent but did require Rorγt and BATF. Furthermore, ectopic expression of Rorγt and BATF partially rescued IL-17 production in STAT3-deficient Th17 cells, highlighting the importance of these factors in this process. Although STAT3 was not required for the differentiation of IL-17-producing cells under IL-2-deprived Th9 conditions, their prolonged survival was STAT3-dependent, potentially explaining why STAT3-independent IL-17 production is not commonly observed in vivo. Together, our data suggest that IL-2/STAT5 signaling plays an important role in controlling the balance of a Th9 versus a Th17-like differentiation program in vitro and in allergic disease.
Collapse
Affiliation(s)
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN
| | - Maia G Clare
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Zonghao Zhang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN
| | - Grace A Taylor
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN; and
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN.,Department of Computer Science, Purdue University, West Lafayette, IN
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN;
| |
Collapse
|
28
|
Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res 2021; 70:753-764. [PMID: 34212215 DOI: 10.1007/s00011-021-01482-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Janus kinase/signal transduction and transcriptional activator (JAK/STAT) signaling pathway is a transport hub for cytokine secretion and exerts its effects. The activation of JAK/STAT signaling pathway is essential for the regulation of inflammatory responses. Inappropriate activation or deletion of JAK/STAT signaling pathway is the initiator of the inflammatory response. JAK/STAT signaling pathway has been demonstrated to be involved in the process of innate and adaptive immune response to inflammatory bowel disease (IBD). In this review, we discuss the role of the JAK/STAT signaling pathway in the regulation of different cells in IBD, as well as new findings on the involvement of the JAK/STAT signaling pathway in the regulation of the intestinal immune response. The current status of JAK inhibitors in the treatment of IBD is summarized as well. This review highlights natural remedies that can serve as potential JAK inhibitors. These phytochemicals may be useful in the identification of precursor compounds in the process of designing and developing novel JAK inhibitors.
Collapse
|
29
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
30
|
Abstract
The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| |
Collapse
|
31
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|