1
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
2
|
Torcasso MS, Ai J, Casella G, Cao T, Chang A, Halper-Stromberg A, Jabri B, Clark MR, Giger ML. Pseudo-spectral angle mapping for pixel and cell classification in highly multiplexed immunofluorescence images. J Med Imaging (Bellingham) 2024; 11:067502. [PMID: 39664650 PMCID: PMC11629784 DOI: 10.1117/1.jmi.11.6.067502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose The rapid development of highly multiplexed microscopy has enabled the study of cells embedded within their native tissue. The rich spatial data provided by these techniques have yielded exciting insights into the spatial features of human disease. However, computational methods for analyzing these high-content images are still emerging; there is a need for more robust and generalizable tools for evaluating the cellular constituents and stroma captured by high-plex imaging. To address this need, we have adapted spectral angle mapping-an algorithm developed for hyperspectral image analysis-to compress the channel dimension of high-plex immunofluorescence (IF) images. Approach Here, we present pseudo-spectral angle mapping (pSAM), a robust and flexible method for determining the most likely class of each pixel in a high-plex image. The class maps calculated through pSAM yield pixel classifications which can be combined with instance segmentation algorithms to classify individual cells. Results In a dataset of colon biopsies imaged with a 13-plex staining panel, 16 pSAM class maps were computed to generate pixel classifications. Instance segmentations of cells with Cellpose2.0 ( F 1 -score of 0.83 ± 0.13 ) were combined with these class maps to provide cell class predictions for 13 cell classes. In addition, in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining panel, pSAM plus Cellpose2.0 ( F 1 -score of 0.86 ± 0.11 ) detected a diverse set of 38 classes of structural and immune cells. Conclusions In summary, pSAM is a powerful and generalizable tool for evaluating high-plex IF image data and classifying cells in these high-dimensional images.
Collapse
Affiliation(s)
- Madeleine S. Torcasso
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Junting Ai
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Gabriel Casella
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Thao Cao
- The University of Chicago, Pritzker School of Molecular Engineering, Chicago, Illinois, United States
| | - Anthony Chang
- The University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Ariel Halper-Stromberg
- The University of Chicago, Department of Medicine, Section on Gastroenterology, Hepatology and Nutrition, Chicago, Illinois, United States
| | - Bana Jabri
- The University of Chicago, Department of Medicine, Section on Gastroenterology, Hepatology and Nutrition, Chicago, Illinois, United States
| | - Marcus R. Clark
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Maryellen L. Giger
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
3
|
Wu Q, Sun B, Hou J, Hui X, Wang C, Wang W, Ying W, Liu L, Zhu L, Wang Y, Li Q, Yu M, Zhou W, Chen Y, Wu B, Sun J, Zhou Q, Qian F, Wang X. Novel Compound Heterozygous Variants in the FAS Gene Lead to Fetal Onset of Autoimmune Lymphoproliferative Syndrome (ALPS). J Clin Immunol 2024; 45:23. [PMID: 39384643 DOI: 10.1007/s10875-024-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/21/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE FAS gene defects lead to autoimmune lymphoproliferative syndrome (ALPS), which is often inherited in an autosomal dominant and rarely in an autosomal recessive manner. We report a case of a newborn girl with novel compound heterozygous variants in FAS and reveal the underlying mechanism. METHODS Whole-exome sequencing (WES) was used to identify pathogenic variants. Multiparametric flow cytometry analysis, phosflow analysis, and FAS-induced apoptosis assays were used to explore the effects of the variants on FAS expression, apoptosis, and immunophenotype. The HEK293T cells were used to assess the impact of the variants on protein expression and FAS-induced apoptosis. RESULTS The patient was born with hepatosplenomegaly, anemia, and thrombocytopenia. She also experienced COVID-19, rotavirus infection, herpes simplex virus infection, and severe pneumonia. The proportion of double-negative T cells (DNTs) was significantly elevated. Novel FAS compound heterozygous variants c.310T > A (p.C104S) and c.702_704del (p.T235del) were identified. The apoptotic ability of T cells was defective, and FAS expression on the surface of T cells was deficient. The T235del variant decreased FAS expression, and the C104S protein remained in the endoplasmic reticulum (ER) and could not translocate to the cell surface. Both mutations resulted in loss-of-function in terms of FAS-induced apoptosis in HEK293T cells. The DNTs were mainly terminally differentiated T (TEMRA) and CD45RA+HLA-DR+, with high expression of CD85j, PD-1, and CD57. The percentage of Th1, Tfh, and autoreactive B cells were significantly increased in the patient. The abnormal immunophenotyping was partially attenuated by sirolimus treatment. CONCLUSIONS We identified two variants that significantly affect FAS expression or localization, leading to early disease onset of in the fetus. Abnormalities in the mTOR pathway are associated with a favorable response to sirolimus.
Collapse
Affiliation(s)
- Qi Wu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Bijun Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Hou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoying Hui
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Luyao Liu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Zhu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Qifan Li
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Weitao Zhou
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Chen
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
| |
Collapse
|
4
|
Xu X, Denton J, Wu Y, Liu J, Guan Q, Dawson DB, Bleesing J, Zhang W. Genetic Testing in Patients with Autoimmune Lymphoproliferative Syndrome: Experience of 802 Patients at Cincinnati Children's Hospital Medical Center. J Clin Immunol 2024; 44:166. [PMID: 39060684 PMCID: PMC11282156 DOI: 10.1007/s10875-024-01772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.
Collapse
Affiliation(s)
- Xinxiu Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James Denton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yaning Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiaoning Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - D Brian Dawson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Bleesing
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Chen R, Tao Q, Wu F, Zhai Z, Jiang Y, Xu C, Wang H. DNT cells mediate resistance to CAR-T cells therapy in a pediatric patient with relapsed and refractory B-ALL. Ann Hematol 2024; 103:2551-2556. [PMID: 38724656 DOI: 10.1007/s00277-024-05790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/04/2024] [Indexed: 07/06/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells therapy is a milestone achievement in the immunotherapy of relapsed and refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL). However, some patients treated with CAR-T cells do not achieve complete remission, the mechanisms of which have not been elucidated. In the present study, we report a 9-year-old pediatric patient with refractory B-ALL received a triple infusion of autologous CD19 CAR-T cells therapy after the second relapse. CAR-T cells expanded in the peripheral blood and bone marrow. However, the patient did not achieve complete remission, indicating a lack of response to CAR-T cells therapy. Analysis of etiological factors revealed that the number of CD4 and CD8 double-negative T (DNT) cells was significantly upregulated in the peripheral blood, bone marrow, and autologous CAR-T cells products. In conclusiont, these findings indicate that DNT cells mediated resistance to CAR-T cells therapy in this pediatric patient with R/R B-ALL.
Collapse
Affiliation(s)
- Ruotong Chen
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Wu
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Jiang
- Department of Biotechnology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
7
|
Zhang D, Alip M, Chen H, Wu D, Zhu H, Han Y, Yuan X, Feng X, Sun L, Wang D. Immune profiling analysis of double-negative T cells in patients with systemic sclerosis. Clin Rheumatol 2024; 43:1623-1634. [PMID: 38436769 DOI: 10.1007/s10067-024-06920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE To construct a molecular immune map of patients with systemic sclerosis (SSc) by mass flow cytometry, and compare the number and molecular expression of double-negative T (DNT) cell subsets between patients and healthy controls (HC). METHODS Peripheral blood mononuclear cells (PBMCs) were extracted from the peripheral blood of 17 SSc patients and 9 HC. A 42-channel panel was set up to perform mass cytometry by time of flight (CyTOF) analysis for DNT subgroups. Flow cytometry was used to validate subpopulation functions. The clinical data of patients were collected for correlation analysis. RESULTS Compared with HC, the number of total DNT cells decreased in SSc patients. Six DNT subsets were obtained from CyTOF analysis, in which the proportion of cluster1 increased, while the proportion of cluster3 decreased. Further analysis revealed that cluster1 was characterized by high expression of CD28 and CCR7, and cluster3 was characterized by high expression of CD28 and CCR5. After in vitro stimulation, cluster1 secreted more IL-4 and cluster3 secreted more IL-10 in SSc patients compared to HC. Clinical correlation analysis suggested that cluster1 may play a pathogenic role while cluster3 may play a protective role in SSc. ROC curve analysis further revealed that cluster3 may be a potential indicator for determining disease activity in SSc patients. CONCLUSION We found a new CCR5+CD28+ DNT cell subset, which played a protective role in the pathogenesis of SSc. Key Points • The number of DNT cells decreased in SSc patients' peripheral blood. • DNT cells do not infiltrate in the skin but secrete cytokines to participate in the pathogenesis of SSc. • A CCR5+CD28+ DNT cell population may play a protective role in SSc.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Mihribangvl Alip
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Hongzhen Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China
| | - Dan Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Huimin Zhu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Yichen Han
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xinran Yuan
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
| | - Dandan Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
8
|
Hägele P, Staus P, Scheible R, Uhlmann A, Heeg M, Klemann C, Maccari ME, Ritterbusch H, Armstrong M, Cutcutache I, Elliott KS, von Bernuth H, Leahy TR, Leyh J, Holzinger D, Lehmberg K, Svec P, Masjosthusmann K, Hambleton S, Jakob M, Sparber-Sauer M, Kager L, Puzik A, Wolkewitz M, Lorenz MR, Schwarz K, Speckmann C, Rensing-Ehl A, Ehl S. Diagnostic evaluation of paediatric autoimmune lymphoproliferative immunodeficiencies (ALPID): a prospective cohort study. Lancet Haematol 2024; 11:e114-e126. [PMID: 38302222 DOI: 10.1016/s2352-3026(23)00362-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Lymphoproliferation and autoimmune cytopenias characterise autoimmune lymphoproliferative syndrome. Other conditions sharing these manifestations have been termed autoimmune lymphoproliferative syndrome-like diseases, although they are frequently more severe. The aim of this study was to define the genetic, clinical, and immunological features of these disorders to improve their diagnostic classification. METHODS In this prospective cohort study, patients were referred to the Center for Chronic Immunodeficiency in Freiburg, Germany, between Jan 1, 2008 and March 5, 2022. We enrolled patients younger than 18 years with lymphoproliferation and autoimmune cytopenia, lymphoproliferation and at least one additional sign of an inborn error of immunity (SoIEI), bilineage autoimmune cytopenia, or autoimmune cytopenia and at least one additional SoIEI. Autoimmune lymphoproliferative syndrome biomarkers were determined in all patients. Sanger sequencing followed by in-depth genetic studies were recommended for patients with biomarkers indicative of autoimmune lymphoproliferative syndrome, while IEI panels, exome sequencing, or genome sequencing were recommended for patients without such biomarkers. Genetic analyses were done as decided by the treating physician. The study was registered on the German Clinical Trials Register, DRKS00011383, and is ongoing. FINDINGS We recruited 431 children referred for autoimmune lymphoproliferative syndrome evaluation, of whom 236 (55%) were included on the basis of lymphoproliferation and autoimmune cytopenia, 148 (34%) on the basis of lymphoproliferation and another SoIEI, 33 (8%) on the basis of autoimmune bicytopenia, and 14 (3%) on the basis of autoimmune cytopenia and another SoIEI. Median age at diagnostic evaluation was 9·8 years (IQR 5·5-13·8), and the cohort comprised 279 (65%) boys and 152 (35%) girls. After biomarker and genetic assessments, autoimmune lymphoproliferative syndrome was diagnosed in 71 (16%) patients. Among the remaining 360 patients, 54 (15%) had mostly autosomal-dominant autoimmune lymphoproliferative immunodeficiencies (AD-ALPID), most commonly affecting JAK-STAT (26 patients), CTLA4-LRBA (14), PI3K (six), RAS (five), or NFκB (three) signalling. 19 (5%) patients had other IEIs, 17 (5%) had non-IEI diagnoses, 79 (22%) were unresolved despite extended genetics (ALPID-U), and 191 (53%) had insufficient genetic workup for diagnosis. 16 (10%) of 161 patients with a final diagnosis had somatic mutations. Alternative classification of patients fulfilling common variable immunodeficiency or Evans syndrome criteria did not increase the proportion of genetic diagnoses. INTERPRETATION The ALPID phenotype defined in this study is enriched for patients with genetic diseases treatable with targeted therapies. The term ALPID might be useful to focus diagnostic and therapeutic efforts by triggering extended genetic analysis and consideration of targeted therapies, including in some children currently classified as having common variable immunodeficiency or Evans syndrome. FUNDING Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy. TRANSLATION For the German translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Pauline Hägele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Staus
- Institute of Medical Biometry and Statistics, Division Methods in Clinical Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Raphael Scheible
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for AI and Informatics in Medicine, University Hospital rechts der Isar, Technical University Munich, Munich, Germany
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Klemann
- Department for Pediatric Immunology, Rheumatology and Infectiology, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Ritterbusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Labor Berlin Charité-Vivantes, Department of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology, CHI at Crumlin, Dublin, Ireland; Trinity College, University of Dublin, Dublin, Ireland
| | - Jörg Leyh
- Clinic for Children and Adolescents, Department of Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center, Eppendorf, Hamburg, Germany
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Bratislava, Slovakia; Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marcus Jakob
- Department of Pediatric Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Monika Sparber-Sauer
- Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5, Klinikum Stuttgart, Stuttgart, Germany
| | - Leo Kager
- Department of Pediatrics, St Anna Children's Hospital, Medical University Vienna, Vienna, Austria; St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Division Methods in Clinical Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Abstract
Apoptosis, necroptosis, and pyroptosis are genetically programmed cell death mechanisms that eliminate obsolete, damaged, infected, and self-reactive cells. Apoptosis fragments cells in a manner that limits immune cell activation, whereas the lytic death programs of necroptosis and pyroptosis release proinflammatory intracellular contents. Apoptosis fine-tunes tissue architecture during mammalian development, promotes tissue homeostasis, and is crucial for averting cancer and autoimmunity. All three cell death mechanisms are deployed to thwart the spread of pathogens. Disabling regulators of cell death signaling in mice has revealed how excessive cell death can fuel acute or chronic inflammation. Here we review strategies for modulating cell death in the context of disease. For example, BCL-2 inhibitor venetoclax, an inducer of apoptosis, is approved for the treatment of certain hematologic malignancies. By contrast, inhibition of RIPK1, NLRP3, GSDMD, or NINJ1 to limit proinflammatory cell death and/or the release of large proinflammatory molecules from dying cells may benefit patients with inflammatory diseases.
Collapse
Affiliation(s)
- Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| | - Joshua D Webster
- Pathology Department, Genentech, South San Francisco, California, USA
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| |
Collapse
|
10
|
Staniek J, Kalina T, Andrieux G, Boerries M, Janowska I, Fuentes M, Díez P, Bakardjieva M, Stancikova J, Raabe J, Neumann J, Schwenk S, Arpesella L, Stuchly J, Benes V, García Valiente R, Fernández García J, Carsetti R, Piano Mortari E, Catala A, de la Calle O, Sogkas G, Neven B, Rieux-Laucat F, Magerus A, Neth O, Olbrich P, Voll RE, Alsina L, Allende LM, Gonzalez-Granado LI, Böhler C, Thiel J, Venhoff N, Lorenzetti R, Warnatz K, Unger S, Seidl M, Mielenz D, Schneider P, Ehl S, Rensing-Ehl A, Smulski CR, Rizzi M. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells. Sci Immunol 2024; 9:eadj5948. [PMID: 38215192 DOI: 10.1126/sciimmunol.adj5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stancikova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Raabe
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schwenk
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonardo Arpesella
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo García Valiente
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Jonatan Fernández García
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Albert Catala
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Oscar de la Calle
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, University Hospital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Peter Olbrich
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laia Alsina
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Department of Pediatric Allergy and Clinical Immunology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Chiara Böhler
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Zentrum, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Durkee MS, Ai J, Casella G, Cao T, Chang A, Halper-Stromberg A, Jabri B, Clark MR, Giger ML. Pseudo-spectral angle mapping for automated pixel-level analysis of highly multiplexed tissue image data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574920. [PMID: 38260318 PMCID: PMC10802447 DOI: 10.1101/2024.01.09.574920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rapid development of highly multiplexed microscopy systems has enabled the study of cells embedded within their native tissue, which is providing exciting insights into the spatial features of human disease [1]. However, computational methods for analyzing these high-content images are still emerging, and there is a need for more robust and generalizable tools for evaluating the cellular constituents and underlying stroma captured by high-plex imaging [2]. To address this need, we have adapted spectral angle mapping - an algorithm used widely in hyperspectral image analysis - to compress the channel dimension of high-plex immunofluorescence images. As many high-plex immunofluorescence imaging experiments probe unique sets of protein markers, existing cell and pixel classification models do not typically generalize well. Pseudospectral angle mapping (pSAM) uses reference pseudospectra - or pixel vectors - to assign each pixel in an image a similarity score to several cell class reference vectors, which are defined by each unique staining panel. Here, we demonstrate that the class maps provided by pSAM can directly provide insight into the prevalence of each class defined by reference pseudospectra. In a dataset of high-plex images of colon biopsies from patients with gut autoimmune conditions, sixteen pSAM class representation maps were combined with instance segmentation of cells to provide cell class predictions. Finally, pSAM detected a diverse set of structure and immune cells when applied to a novel dataset of kidney biopsies imaged with a 43-marker panel. In summary, pSAM provides a powerful and readily generalizable method for evaluating high-plex immunofluorescence image data.
Collapse
Affiliation(s)
| | - Junting Ai
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Gabriel Casella
- Department of Radiology, The University of Chicago, Chicago, IL, USA, 60637
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Thao Cao
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA, 60637
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, USA, 60637
| | - Ariel Halper-Stromberg
- Department of Medicine, Section on Gastroenterology, Hepatology & Nutrition, The University of Chicago, Chicago, IL, USA, 60637
| | - Bana Jabri
- Department of Medicine, Section on Gastroenterology, Hepatology & Nutrition, The University of Chicago, Chicago, IL, USA, 60637
| | - Marcus R. Clark
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Maryellen L. Giger
- Department of Radiology, The University of Chicago, Chicago, IL, USA, 60637
| |
Collapse
|
12
|
Rensing-Ehl A, Lorenz MR, Führer M, Willenbacher W, Willenbacher E, Sopper S, Abinun M, Maccari ME, König C, Haegele P, Fuchs S, Castro C, Kury P, Pelle O, Klemann C, Heeg M, Thalhammer J, Wegehaupt O, Fischer M, Goldacker S, Schulte B, Biskup S, Chatelain P, Schuster V, Warnatz K, Grimbacher B, Meinhardt A, Holzinger D, Oommen PT, Hinze T, Hebart H, Seeger K, Lehmberg K, Leahy TR, Claviez A, Vieth S, Schilling FH, Fuchs I, Groß M, Rieux-Laucat F, Magerus A, Speckmann C, Schwarz K, Ehl S. Abnormal biomarkers predict complex FAS or FADD defects missed by exome sequencing. J Allergy Clin Immunol 2024; 153:297-308.e12. [PMID: 37979702 DOI: 10.1016/j.jaci.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Elevated TCRαβ+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.
Collapse
Affiliation(s)
- Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Wolfgang Willenbacher
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria; Syndena GmbH, Connect to cure, Innsbruck, Austria
| | - Ella Willenbacher
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Clinic for Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Mario Abinun
- Paediatric Immunology, Great North Children's Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - Pauline Haegele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carla Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivier Pelle
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Thalhammer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Paediatric Immunology, Great North Children's Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Oliver Wegehaupt
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Sigune Goldacker
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn Schulte
- Center for Human Genetics, Paul-Ehrlich-Str. 23, Tuebingen, Germany
| | - Saskia Biskup
- Center for Human Genetics, Paul-Ehrlich-Str. 23, Tuebingen, Germany
| | | | - Volker Schuster
- Children's Hospital, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic for Rheumatolgy and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinic for Rheumatolgy and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Oncology, Hematology and Immunodeficiencies, University Hospital Giessen, Giessen, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany; Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Hinze
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Holger Hebart
- Department of Internal Medicine, Kliniken Ostalb, Stauferklinikum, Mutlangen, Germany
| | - Karlheinz Seeger
- Charité Universitätsmedizin Berlin, Department of Pediatric Oncology/Hematology, Augustenburger Pl. 1, Berlin, Germany
| | - Kai Lehmberg
- Department of Paediatric Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology/ID, Children's Health Ireland (CHI) at Crumlin, Dublin; University of Dublin, Trinity College, Dublin, Ireland
| | - Alexander Claviez
- Department of Pediatrics, University Medical Center, UKSH Campus Kiel, Kiel, Germany
| | - Simon Vieth
- Department of Pediatrics, University Medical Center, UKSH Campus Kiel, Kiel, Germany
| | - Freimut H Schilling
- Department of Pediatric Oncology-Hematology-Immunology, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Aude Magerus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Leiding JW, Vogel TP, Santarlas VGJ, Mhaskar R, Smith MR, Carisey A, Vargas-Hernández A, Silva-Carmona M, Heeg M, Rensing-Ehl A, Neven B, Hadjadj J, Hambleton S, Ronan Leahy T, Meesilpavikai K, Cunningham-Rundles C, Dutmer CM, Sharapova SO, Taskinen M, Chua I, Hague R, Klemann C, Kostyuchenko L, Morio T, Thatayatikom A, Ozen A, Scherbina A, Bauer CS, Flanagan SE, Gambineri E, Giovannini-Chami L, Heimall J, Sullivan KE, Allenspach E, Romberg N, Deane SG, Prince BT, Rose MJ, Bohnsack J, Mousallem T, Jesudas R, Santos Vilela MMD, O'Sullivan M, Pachlopnik Schmid J, Průhová Š, Klocperk A, Rees M, Su H, Bahna S, Baris S, Bartnikas LM, Chang Berger A, Briggs TA, Brothers S, Bundy V, Chan AY, Chandrakasan S, Christiansen M, Cole T, Cook MC, Desai MM, Fischer U, Fulcher DA, Gallo S, Gauthier A, Gennery AR, Gonçalo Marques J, Gottrand F, Grimbacher B, Grunebaum E, Haapaniemi E, Hämäläinen S, Heiskanen K, Heiskanen-Kosma T, Hoffman HM, Gonzalez-Granado LI, Guerrerio AL, Kainulainen L, Kumar A, Lawrence MG, Levin C, Martelius T, Neth O, Olbrich P, Palma A, Patel NC, Pozos T, Preece K, Lugo Reyes SO, Russell MA, Schejter Y, Seroogy C, Sinclair J, Skevofilax E, Suan D, Suez D, Szabolcs P, Velasco H, Warnatz K, Walkovich K, Worth A, Seppänen MRJ, Torgerson TR, Sogkas G, Ehl S, Tangye SG, Cooper MA, Milner JD, Forbes Satter LR. Monogenic early-onset lymphoproliferation and autoimmunity: Natural history of STAT3 gain-of-function syndrome. J Allergy Clin Immunol 2023; 151:1081-1095. [PMID: 36228738 PMCID: PMC10081938 DOI: 10.1016/j.jaci.2022.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In 2014, germline signal transducer and activator of transcription (STAT) 3 gain-of-function (GOF) mutations were first described to cause a novel multisystem disease of early-onset lymphoproliferation and autoimmunity. OBJECTIVE This pivotal cohort study defines the scope, natural history, treatment, and overall survival of a large global cohort of patients with pathogenic STAT3 GOF variants. METHODS We identified 191 patients from 33 countries with 72 unique mutations. Inclusion criteria included symptoms of immune dysregulation and a biochemically confirmed germline heterozygous GOF variant in STAT3. RESULTS Overall survival was 88%, median age at onset of symptoms was 2.3 years, and median age at diagnosis was 12 years. Immune dysregulatory features were present in all patients: lymphoproliferation was the most common manifestation (73%); increased frequencies of double-negative (CD4-CD8-) T cells were found in 83% of patients tested. Autoimmune cytopenias were the second most common clinical manifestation (67%), followed by growth delay, enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, neurologic disease, vasculopathy, renal disease, and malignancy. Infections were reported in 72% of the cohort. A cellular and humoral immunodeficiency was observed in 37% and 51% of patients, respectively. Clinical symptoms dramatically improved in patients treated with JAK inhibitors, while a variety of other immunomodulatory treatment modalities were less efficacious. Thus far, 23 patients have undergone bone marrow transplantation, with a 62% survival rate. CONCLUSION STAT3 GOF patients present with a wide array of immune-mediated disease including lymphoproliferation, autoimmune cytopenias, and multisystem autoimmunity. Patient care tends to be siloed, without a clear treatment strategy. Thus, early identification and prompt treatment implementation are lifesaving for STAT3 GOF syndrome.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore; Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St Petersburg.
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | | | - Rahul Mhaskar
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Madison R Smith
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Alexandre Carisey
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Manuel Silva-Carmona
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | | | - Kornvalee Meesilpavikai
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Cullen M Dutmer
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk
| | - Mervi Taskinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | - Ignatius Chua
- Department of Rheumatology, Immunology and Allergy, Christchurch Hospital, Christchurch; Clinical Immunogenomics Research Consortium of Australasia (CIRCA)
| | | | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo
| | - Akaluck Thatayatikom
- Division of Pediatric Allergy/Immunology/Rheumatology, Shands Children's Hospital, University of Florida, Gainesville
| | - Ahmet Ozen
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Anna Scherbina
- Dmitry Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow
| | - Cindy S Bauer
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter
| | - Eleonora Gambineri
- Department of NEUROFARBA, Section of Children's Health, University of Florence, Anna Meyer Children's Hospital, Florence
| | | | - Jennifer Heimall
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Kathleen E Sullivan
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Eric Allenspach
- Pediatric Immunology/Rheumatology, University of Washington, Seattle; Seattle Children's Hospital, Seattle
| | - Neil Romberg
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Sean G Deane
- Department of Allergy, The Permanente Medical Group, Sacramento, and the Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, School of Medicine, Sacramento
| | - Benjamin T Prince
- Nationwide Children's Hospital Department of Allergy and Immunology, Columbus; College of Medicine, The Ohio State University, Columbus
| | - Melissa J Rose
- College of Medicine, The Ohio State University, Columbus; Division of Pediatric Hematology-Oncology, Nationwide Children's Hospital, Columbus
| | - John Bohnsack
- Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Rohith Jesudas
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Maria Marluce Dos Santos Vilela
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics, Faculty of Medical Sciences, State University of Campinas-Unicamp, São Paulo
| | - Michael O'Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Immunology Department, Perth Children's Hospital, Nedlands
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Children's Research Center (CRC), Zurich
| | - Štěpánka Průhová
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine and University Hospital Motol, Charles University in Prague, Prague
| | - Matthew Rees
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Helen Su
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Sami Bahna
- Allergy and Immunology Section, Louisiana State University Health Sciences Center, Shreveport
| | - Safa Baris
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston
| | - Amy Chang Berger
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester; NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester
| | - Shannon Brothers
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Vanessa Bundy
- Allergy and Immunology, University of California, Los Angeles
| | - Alice Y Chan
- Department of Medicine, University of California, San Francisco
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | | | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne
| | - Matthew C Cook
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | | | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - David A Fulcher
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | - Silvanna Gallo
- Department of Pediatrics, Immunology and Rheumatology Section, Puerto Montt Hospital, Puerto Montt
| | - Amelie Gauthier
- Department of Allergy and Immunology, CHU de Québec-CHUL, Laval University Hospital Center, Laval University, Quebec City
| | - Andrew R Gennery
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | - José Gonçalo Marques
- Infectious Diseases and Immunodeficiencies Unit, Department of Pediatrics, Hospital de Santa Maria-CHULN and Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway, Oslo; Department of Pediatric Research, Oslo
| | | | - Kaarina Heiskanen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | | | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla; Rady Children's Hospital San Diego, Division of Pediatric Allergy, Immunology, and Rheumatology, San Diego
| | - Luis Ignacio Gonzalez-Granado
- Pediatrics Department, University Hospital 12 de Octubre, Research Institute Hospital, School of Medicine Complutense University, Madrid
| | - Anthony L Guerrerio
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore
| | - Leena Kainulainen
- Department of Pediatrics and Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Ashish Kumar
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati
| | | | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Centre, Afula, and the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | - Timi Martelius
- Adult Immunodeficiency Unit, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Alejandro Palma
- Servicio de Immunología y Reumatología, Hospital Nacional de Pediatría Prof Dr Juan P. Garrahan, Buenos Aires
| | - Niraj C Patel
- Division of Allergy and Immunology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | - Tamara Pozos
- Department of Clinical Immunology, Children's Minnesota, Minneapolis
| | - Kahn Preece
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Department of Paediatric Immunology, John Hunter Children's Hospital, Newcastle (Australia)
| | | | | | - Yael Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Ein-Kerem Medical Center and Faculty of Medicine, Hebrew University, Jerusalem
| | - Christine Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Jan Sinclair
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Effie Skevofilax
- Department of Pediatric Hematology-Oncology (TAO) and First Department of Pediatrics, Aghia Sophia Children's Hospital, Athens
| | - Daniel Suan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; Westmead Clinical School, University of Sydney, Westmead
| | - Daniel Suez
- Allergy, Asthma & Immunology Clinic, PA, Irving
| | - Paul Szabolcs
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh
| | - Helena Velasco
- Division of Allergy and Clinical Immunology, Moinhos de Vento Hospital, Porto Alegre
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Kelly Walkovich
- Department of Pediatrics, C. S. Mott Children's Hospital, Michigan Medicine, Ann Arbor
| | - Austen Worth
- Great Ormond Street Hospital for Children, London
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki
| | | | - Georgios Sogkas
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hanover
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology and Immunology, Washington University School of Medicine, St Louis
| | - Joshua D Milner
- Department of Pediatrics, Division of Allergy and Immunology, Columbia University, New York Presbyterian Hospital, New York
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston.
| |
Collapse
|
15
|
McColl LF, Chen X, Solga MD, Schlegel K, Haughey SP, Lobo PI, Fread K, Zunder E, Cha R, Park S, Christophel JJ, Cui Q, Dighe AS. BMP-6 promotes type 2 immune response during enhancement of rat mandibular bone defect healing. Front Immunol 2023; 14:1064238. [PMID: 36845161 PMCID: PMC9950738 DOI: 10.3389/fimmu.2023.1064238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are used as key therapeutic agents for the treatment of difficult fractures. While their effects on osteoprogenitors are known, little is known about their effects on the immune system. Methods We used permutations of BMP-6 (B), vascular endothelial growth factor (V), and Hedgehog signaling pathway activator smoothened agonist (S), to treat a rat mandibular defect and investigated healing outcomes at week 8, in correlation with the cellular landscape of the immune cells in the fracture callus at week 2. Results Maximum recruitment of immune cells to the fracture callus is known to occur at week 2. While the control, S, V, and VS groups remained as nonunions at week 8; all BMP-6 containing groups - B, BV, BS and BVS, showed near-complete to complete healing. This healing pattern was strongly associated with significantly higher ratios of CD4 T (CD45+CD3+CD4+) to putative CD8 T cells (CD45+CD3+CD4-), in groups treated with any permutation of BMP-6. Although, the numbers of putative M1 macrophages (CD45+CD3-CD11b/c+CD38high) were significantly lower in BMP-6 containing groups in comparison with S and VS groups, percentages of putative - Th1 cells or M1 macrophages (CD45+CD4+IFN-γ+) and putative - NK, NKT or cytotoxic CD8T cells (CD45+CD4-IFN-γ+) were similar in control and all treatment groups. Further interrogation revealed that the BMP-6 treatment promoted type 2 immune response by significantly increasing the numbers of CD45+CD3-CD11b/c+CD38low putative M2 macrophages, putative - Th2 cells or M2 macrophages (CD45+CD4+IL-4+) cells and putative - mast cells, eosinophils or basophils (CD45+CD4-IL-4+ cells). CD45- non-haematopoietic fractions of cells which encompass all known osteoprogenitor stem cells populations, were similar in control and treatment groups. Discussion This study uncovers previously unidentified regulatory functions of BMP-6 and shows that BMP-6 enhances fracture healing by not only acting on osteoprogenitor stem cells but also by promoting type 2 immune response.
Collapse
Affiliation(s)
- Logan F. McColl
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Xizhao Chen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, United States
| | - Kailo Schlegel
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean P. Haughey
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Peter I. Lobo
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kristen Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eli Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ryan Cha
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Stephen Park
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - J. Jared Christophel
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Quanjun Cui
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Abhijit S. Dighe
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States,*Correspondence: Abhijit S. Dighe,
| |
Collapse
|
16
|
Maccari ME, Schneider P, Smulski CR, Meinhardt A, Pinto F, Gonzalez-Granado LI, Schuetz C, Sica MP, Gross M, Fuchs I, Kury P, Heeg M, Vocat T, Willen L, Thomas C, Hühn R, Magerus A, Lorenz M, Schwarz K, Rieux-Laucat F, Ehl S, Rensing-Ehl A. Revisiting autoimmune lymphoproliferative syndrome caused by Fas ligand mutations. J Allergy Clin Immunol 2023; 151:1391-1401.e7. [PMID: 36621650 DOI: 10.1016/j.jaci.2022.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fas ligand (FasL) is expressed by activated T cells and induces death in target cells upon binding to Fas. Loss-of-function FAS or FASLG mutations cause autoimmune-lymphoproliferative syndrome (ALPS) characterized by expanded double-negative T cells (DNT) and elevated serum biomarkers. While most ALPS patients carry heterozygous FAS mutations, FASLG mutations are rare and usually biallelic. Only 2 heterozygous variants were reported, associated with an atypical clinical phenotype. OBJECTIVE We revisited the significance of heterozygous FASLG mutations as a cause of ALPS. METHODS Clinical features and biomarkers were analyzed in 24 individuals with homozygous or heterozygous FASLG variants predicted to be deleterious. Cytotoxicity assays were performed with patient T cells and biochemical assays with recombinant FasL. RESULTS Homozygous FASLG variants abrogated cytotoxicity and resulted in early-onset severe ALPS with elevated DNT, raised vitamin B12, and usually no soluble FasL. In contrast, heterozygous variants affected FasL function by reducing expression, impairing trimerization, or preventing Fas binding. However, they were not associated with elevated DNT and vitamin B12, and they did not affect FasL-mediated cytotoxicity. The dominant-negative effects of previously published variants could not be confirmed. Even Y166C, causing loss of Fas binding with a dominant-negative effect in biochemical assays, did not impair cellular cytotoxicity or cause vitamin B12 and DNT elevation. CONCLUSION Heterozygous loss-of-function mutations are better tolerated for FASLG than for FAS, which may explain the low frequency of ALPS-FASLG.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Cristian Roberto Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Fernando Pinto
- Department of Haematology, Royal Hospital for Children Glasgow, Glasgow, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 octubre, Madrid, France; Instituto de Investigation Hospital 12 octubre (imas12), Madrid, France; School of Medicine, Complutense University, Madrid, France
| | - Catharina Schuetz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Mauricio Pablo Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Miriam Gross
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilka Fuchs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tatjana Vocat
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Laure Willen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caroline Thomas
- Department of Pediatric Oncology and Hematology, University Hospital of Nantes, Nantes, France
| | - Regina Hühn
- Clinic for Paediatrics and Adolescent Medicine, University Hospital Halle (Saale), Halle, Germany
| | - Aude Magerus
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg, Hessen, Ulm, Germany
| | - Frederic Rieux-Laucat
- Université Paris-Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Ogishi M, Yang R, Rodriguez R, Golec DP, Martin E, Philippot Q, Bohlen J, Pelham SJ, Arias AA, Khan T, Ata M, Al Ali F, Rozenberg F, Kong XF, Chrabieh M, Laine C, Lei WT, Han JE, Seeleuthner Y, Kaul Z, Jouanguy E, Béziat V, Youssefian L, Vahidnezhad H, Rao VK, Neven B, Fieschi C, Mansouri D, Shahrooei M, Pekcan S, Alkan G, Emiroğlu M, Tokgöz H, Uitto J, Hauck F, Bustamante J, Abel L, Keles S, Parvaneh N, Marr N, Schwartzberg PL, Latour S, Casanova JL, Boisson-Dupuis S. Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis. J Exp Med 2023; 220:213662. [PMID: 36326697 PMCID: PMC9641312 DOI: 10.1084/jem.20220484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αβ T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αβ and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αβ T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αβ T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,The David Rockefeller Graduate Program, Rockefeller University, New York, NY
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Quentin Philippot
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Jonathan Bohlen
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia.,School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Taushif Khan
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manar Ata
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Maya Chrabieh
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Candice Laine
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Yoann Seeleuthner
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Zenia Kaul
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Vivien Béziat
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bénédicte Neven
- Pediatric Immunology and Hematology Department, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP Université de Paris, Paris, France.,INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Gulsum Alkan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Melike Emiroğlu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Fabian Hauck
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France.,Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| |
Collapse
|
18
|
Hsieh LE, Song J, Grifoni A, Shimizu C, Tremoulet AH, Dummer KB, Burns JC, Sette A, Franco A. T Cells in Multisystem Inflammatory Syndrome in Children (MIS-C) Have a Predominant CD4+ T Helper Response to SARS-CoV-2 Peptides and Numerous Virus-Specific CD4- CD8- Double-Negative T Cells. Int J Mol Sci 2022; 23:7219. [PMID: 35806225 PMCID: PMC9266459 DOI: 10.3390/ijms23137219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/07/2023] Open
Abstract
We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4- CD8- double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65-25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vβ21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vβ21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6-14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6-14 months' follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.
Collapse
Affiliation(s)
- Li-En Hsieh
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
| | - Jaeyoon Song
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (A.G.); (A.S.)
| | - Chisato Shimizu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
| | - Adriana H. Tremoulet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
- Rady Children’s Hospital, 3020 Children’s Way, San Diego, CA 92123, USA
| | - Kirsten B. Dummer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
- Rady Children’s Hospital, 3020 Children’s Way, San Diego, CA 92123, USA
| | - Jane C. Burns
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
- Rady Children’s Hospital, 3020 Children’s Way, San Diego, CA 92123, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (A.G.); (A.S.)
- Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (L.-E.H.); (J.S.); (C.S.); (A.H.T.); (K.B.D.); (J.C.B.)
| |
Collapse
|
19
|
Lei H, Tian M, Zhang X, Liu X, Wang B, Wu R, Lv Y. Expansion of Double-Negative T Cells in Patients before Liver Transplantation Correlates with Post-Transplant Infections. J Clin Med 2022; 11:jcm11123502. [PMID: 35743569 PMCID: PMC9225480 DOI: 10.3390/jcm11123502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Liver transplantation (LTx) is currently the only effective therapy for patients with end-stage liver diseases, but post-transplant infection is a key issue for morbidity and mortality. In this study, we found that pre-transplant patients with an expansion of double-negative T (DNT) cells (CD3+CD4−CD8− T cells) had an increased incidence of infections within the first 6 months after LTx. These DNT cells also negatively correlated with their CD4/CD8 ratio. Compared to patients who had no infections after LTx, these DNT cells expressed more CD25, especially in the memory compartment. The receiver operating characteristic (ROC) analysis showed that the threshold area under the ROC curve of DNT cells which could be used to distinguish LTx patients with post-transplant infections from patients without infections after LTx was 0.8353 (95% CI: 0.6591–1.000). The cut-off for the pre-LTx DNT cell level was 11.35%. Although patients with post-transplant infections had decreased levels of CD4/CD8 T cells, CD8+ T cells in these patients were more exhausted, with higher PD-1 expression and lower IFNγ secretion. The increased levels of DNT cells in patients with post-transplant infections were still observed 2 weeks after LTx, with higher proportions of memory DNT cells. In conclusion, increased levels of DNT cells in pre-LTx patients may be valuable for the prognosis of post-transplant infections, especially within the first 6 months after LTx.
Collapse
Affiliation(s)
- Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an 710003, China;
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Min Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
- Correspondence:
| |
Collapse
|
20
|
Minguet S, Nyström A, Kiritsi D, Rizzi M. Inborn errors of immunity and immunodeficiencies: antibody-mediated pathology and autoimmunity as a consequence of impaired immune reactions. Eur J Immunol 2022; 52:1396-1405. [PMID: 35443081 DOI: 10.1002/eji.202149529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
B cell tolerance to self-antigen is an active process that requires the temporal and spatial integration of signals of defined intensity. In common variable immune deficiency disorders (CVID), CTLA-4 deficiency, autoimmune lymphoproliferative syndrome (ALPS), or in collagen VII deficiency, genetic defects in molecules regulating development, activation, maturation and extracellular matrix composition alter the generation of B cells, resulting in immunodeficiency. Paradoxically, at the same time, the defective immune processes favor autoantibody production and immunopathology through impaired establishment of tolerance. The development of systemic autoimmunity in the framework of defective BCR signaling is relatively unusual in genetic mouse models. In sharp contrast, such reduced signaling in humans is clearly linked to pathological autoimmunity. The molecular mechanisms by which tolerance is broken in these settings are only starting to be explored resulting in novel therapeutic interventions. For instance, in CTLA-4 deficiency, homeostasis can be restored by CTLA-4 Ig treatment. Following this example, the identification of the molecular targets causing the reduced signals and their restoration is a visionary way to reestablish tolerance and develop novel therapeutic avenues for immunopathologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University, of, Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg
| | - Alexander Nyström
- Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg.,Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University, of, Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, Wang S, Zhang D, Sun G. The Critical and Diverse Roles of CD4 -CD8 - Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1805-1827. [PMID: 35247631 PMCID: PMC9059101 DOI: 10.1016/j.jcmgh.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic inflammation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Double negative T (DNT) cells are a unique subset of T lymphocytes that do not express CD4, CD8, or natural killer cell markers, and studies have suggested that DNT cells play critical and diverse roles in the immune system. However, the role of intrahepatic DNT cells in NAFLD is largely unknown. METHODS The proportions and RNA transcription profiling of intrahepatic DNT cells were compared between C57BL/6 mice fed with control diet or methionine-choline-deficient diet for 5 weeks. The functions of DNT cells were tested in vitro and in vivo. RESULTS The proportion of intrahepatic DNT cells was significantly increased in mice with diet-induced NAFLD. In NAFLD mice, the proportion of intrahepatic TCRγδ+ DNT cells was increased along with elevated interleukin (IL) 17A; in contrast, the percentage of TCRαβ+ DNT cells was decreased, accompanied by reduced granzyme B (GZMB). TCRγδ+ DNT cell depletion resulted in lowered liver IL17A levels and significantly alleviated NAFLD. Adoptive transfer of intrahepatic TCRαβ+ DNT cells from control mice increased intrahepatic CD4 and CD8 T cell apoptosis and inhibited NAFLD progression. Furthermore, we revealed that adrenic acid and arachidonic acid, harmful fatty acids that were enriched in the liver of the mice with NAFLD, could induce apoptosis of TCRαβ+ DNT cells and inhibit their immunosuppressive function and nuclear factor kappa B (NF-κB) or AKT signaling pathway activity. However, arachidonic acid facilitated IL17A secretion by TCRγδ+ DNT cells, and the NF-κB signaling pathway was involved. Finally, we also confirmed the variation of intrahepatic TCRαβ+ DNT cells and TCRγδ+ DNT cells in humans. CONCLUSIONS During NAFLD progression, TCRγδ+ DNT cells enhance IL17A secretion and aggravate liver inflammation, whereas TCRαβ+ DNT cells decrease GZMB production and lead to weakened immunoregulatory function. Shifting of balance from TCRγδ+ DNT cell response to one that favors TCRαβ+ DNT regulation would be beneficial for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaonan Du
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Yunxiong Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Yaning Wang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaotong Han
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Dong Zhang, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China.
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Correspondence Address correspondence to: Guangyong Sun, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China. fax: (8610)63139421.
| |
Collapse
|
22
|
Budd RC, Scharer CD, Barrantes-Reynolds R, Legunn S, Fortner KA. T Cell Homeostatic Proliferation Promotes a Redox State That Drives Metabolic and Epigenetic Upregulation of Inflammatory Pathways in Lupus. Antioxid Redox Signal 2022; 36:410-422. [PMID: 34328790 PMCID: PMC8982120 DOI: 10.1089/ars.2021.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Numerous abnormalities in T cells have been described in patients with systemic lupus erythematosus (SLE), including lymphopenia, DNA demethylation, expression of endogenous retroviruses (ERVs), increased cell death, enlarged mitochondria, production of reactive oxygen species (ROS), and the appearance of unusual CD4-CD8- T cells. Our studies propose a model in which accelerated homeostatic proliferation of T cells promotes an epigenetic and metabolic program, leading to this cluster of abnormalities. Recent Advances: Growing knowledge of the innate immune disorders in SLE has included increased mitochondrial size and ROS production that induces oligomerization of the mitochondrial antiviral signaling (MAVS) protein and type I interferon production, as well as DNA demethylation, upregulation of inflammatory genes, and expression of certain ERVs in SLE peripheral blood mononuclear cells. All these events are part of the cellular program that occurs during homeostatic proliferation of T cells. Evidence from a murine model of SLE as well as in human SLE reveals that increased T cell homeostatic proliferation may be a driving factor in these processes. Critical Issues: Despite extensive knowledge of the myriad autoantibodies in SLE and other immune abnormalities, a cogent model has been lacking to link the numerous and seemingly disparate immune aberrations. This may partly explain the general lack of new drugs specifically for SLE in over 50 years. A more coherent model of SLE would not only unify the variety of immune abnormalities is SLE but would also suggest new therapies. Future Directions: The model of augmented homeostatic proliferation leading to increased mitochondrial mass, ROS, DNA demethylation, and upregulation of inflammatory genes suggests strategic new targets for SLE, including antioxidants and certain inhibitors of metabolism. Antioxid. Redox Signal. 36, 410-422.
Collapse
Affiliation(s)
- Ralph C Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Scott Legunn
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Karen A Fortner
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
23
|
You X, Yang Q, Yan K, Wang SR, Huang RR, Wang SQ, Gao CY, Li L, Lian ZX. Multi-Omics Profiling Identifies Pathways Associated With CD8 + T-Cell Activation in Severe Aplastic Anemia. Front Genet 2022; 12:790990. [PMID: 35058969 PMCID: PMC8764265 DOI: 10.3389/fgene.2021.790990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Severe aplastic anemia (SAA) is an autoimmune disease characterized by immune-mediated destruction of hematopoietic stem and progenitor cells. Autoreactive CD8+ T cells have been reported as the effector cells; however, the mechanisms regulating their cell activation in SAA remain largely unknown. Here, we performed proteomics and metabolomics analyses of plasma and bone marrow supernatant, together with transcriptional analysis of CD8+ T cells from SAA patients and healthy donors, to find key pathways that are involved in pathogenic CD8+ T-cell activation. We identified 21 differential proteins and 50 differential metabolites in SAA patients that were mainly involved in energy metabolism, complement and coagulation cascades, and HIF-1α signaling pathways. Interestingly, we found that these pathways are also enriched in T cells from SAA patients by analyzing available single-cell RNA sequencing data. Moreover, CD8+ T cells from SAA patients contain a highly activated CD38+ subset, which was increased in the bone marrow of SAA patients and a murine model of SAA. This subset presented enriched genes associated with the glycolysis or gluconeogenesis pathway, HIF-1α signaling pathway, and complement associated pathways, all of which were of importance in T-cell activation. In conclusion, our study reveals new pathways that may regulate CD8+ T-cell activation in SAA patients and provides potential therapeutic targets for SAA treatment.
Collapse
Affiliation(s)
- Xing You
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Qiong Yang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Song-Rong Wang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rong-Rong Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shun-Qing Wang
- Department of Hematology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Cai-Yue Gao
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Zhe-Xiong Lian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Gu H, Chen Z, Ma J, Ma J, Fu L, Zhang R, Wang T, Wu R. Case report: Effectiveness of sirolimus in a de novo FAS mutation leading to autoimmune lymphoproliferative syndrome-FAS and elevated DNT/Treg ratio. Front Pediatr 2022; 10:868193. [PMID: 35967554 PMCID: PMC9366043 DOI: 10.3389/fped.2022.868193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The autoimmune lymphoproliferative syndrome (ALPS) is a rare disease characterized by defective function of the FAS death receptor, which results in chronic, non-malignant lymphoproliferation and autoimmunity accompanied by elevated numbers of double-negative (DN) T cells (T-cell receptor α/β + CD4-CD8-) and an increased risk of developing malignancies later in life. CASE DESCRIPTION Here, we report a patient with a de novo FAS mutation with a severe phenotype of ALPS-FAS. The FAS gene identified as a novel spontaneous germline heterozygous missense mutation (c.857G > A, p.G286E) in exon 9, causing an amino acid exchange and difference in hydrogen bond formation. Consequently, the treatment with sirolimus was initiated. Subsequently, the patient's clinical condition improved rapidly. Moreover, DNT ratio continuously decreased during sirolimus application. CONCLUSION We described a novel germline FAS mutation (c.857G > A, p.G286E) associated with a severe clinical phenotype of ALPS-FAS. Sirolimus effectively improved the patient clinical manifestations with obvious reduction of the DNT ratio.
Collapse
Affiliation(s)
- Hao Gu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhenping Chen
- Hematology Center, Hematologic Disease Laboratory, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Jie Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jingyao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lingling Fu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianyou Wang
- Hematology Center, Hematologic Disease Laboratory, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Du Y, Khera T, Strunz B, Deterding K, Todt D, Woller N, Engelskircher SA, Hardtke S, Port K, Ponzetta A, Steinmann E, Cornberg M, Hengst J, Björkström NK, Wedemeyer H. Imprint of unconventional T-cell response in acute hepatitis C persists despite successful early antiviral treatment. Eur J Immunol 2021; 52:472-483. [PMID: 34843107 DOI: 10.1002/eji.202149457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022]
Abstract
Unconventional T cells (UTCs) are a heterogeneous group of T cells that typically exhibit rapid responses toward specific antigens from pathogens. Chronic hepatitis C virus (HCV) infection causes dysfunction of several subsets of UTCs. This altered phenotype and function of UTCs can persist over time even after direct-acting antiviral (DAA)-mediated clearance of chronic HCV. However, it is less clear if and how UTCs respond in acute, symptomatic HCV infection, a rare clinical condition, and if rapid DAA treatment of such patients reverses the caused perturbations within UTCs. Here, we comprehensively analyzed the phenotype and reinvigoration capacity of three major UTC populations, mucosal-associated invariant T (MAIT) cells, γδ T cells, and CD4 and CD8 double-negative αβ T cells (DNT cells) before, during, and after DAA-mediated clearance of acute symptomatic HCV infection. Furthermore, MAIT cell functionality was systematically studied. We observed a reduced frequency of MAIT cells. However, remaining cells presented with a near-to-normal phenotype in acute infection, which contrasted with a significant dysfunction upon stimulation that was not restored after viral clearance. Notably, DNT and γδ T cells displayed a strong activation ex-vivo in acute HCV infection, which subsequently normalized during the treatment. In addition, DNT cell activation was specifically associated with liver inflammation and inflammatory cytokines. Altogether, these data provide evidence that UTCs respond in a cell type-specific manner during symptomatic HCV infection. However, even if early treatment is initiated, long-lasting imprints within UTCs remain over time.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanvi Khera
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Deterding
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Svenja Hardtke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany.,Center for Individualized Infection Medicine (CIIM), Hannover, Germany.,Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST: EXC), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | -
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Dell'Orso G, Grossi A, Penco F, Caorsi R, Palmisani E, Terranova P, Schena F, Lupia M, Ricci E, Montalto S, Pierri F, Ceccherini I, Fioredda F, Dufour C, Gattorno M, Miano M. Case Report: Deficiency of Adenosine Deaminase 2 Presenting With Overlapping Features of Autoimmune Lymphoproliferative Syndrome and Bone Marrow Failure. Front Immunol 2021; 12:754029. [PMID: 34721429 PMCID: PMC8552009 DOI: 10.3389/fimmu.2021.754029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, such as vasculitis, inflammation, and hematologic manifestations. Some associations of clinical features can mimic autoimmune lymphoproliferative syndrome (ALPS). We report a case of a female patient who fulfilled the 2009 National Institute of Health revised criteria for ALPS and received a delayed diagnosis of DADA2. During her childhood, she suffered from autoimmune hemolytic anemia, immune thrombocytopenia, and chronic lymphoproliferation, which partially responded to multiple lines of treatments and were followed, at 25 years of age, by pulmonary embolism, septic shock, and bone marrow failure with myelodysplastic evolution. The patient died from the progression of pulmonary disease and multiorgan failure. Two previously unreported variants of gene ADA2/CECR1 were found through next-generation sequencing analysis, and a pathogenic role was demonstrated through a functional study. A single somatic STAT3 mutation was also found. Clinical phenotypes encompassing immune dysregulation and marrow failure should be evaluated at the early stage of diagnostic work-up with an extended molecular evaluation. A correct genetic diagnosis may lead to a precision medicine approach consisting of the use of targeted treatments or early hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Gianluca Dell'Orso
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Elena Palmisani
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Schena
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Erica Ricci
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Shana Montalto
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Fioredda
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Clinica Pediatrica e Reumatologia e Centro Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
27
|
Lambert MP. Presentation and diagnosis of autoimmune lymphoproliferative syndrome (ALPS). Expert Rev Clin Immunol 2021; 17:1163-1173. [PMID: 34503378 DOI: 10.1080/1744666x.2021.1978842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autoimmune lymphoproliferative syndrome (ALPS) is a rare disorder of immune dysregulation characterized by derangements in first apoptosis signal-mediated apoptosis and elevations in CD3+TCRαβ+CD4-CD8- 'double negative' T cells. As our understanding of this pleomorphic disorder expands, the importance of molecular diagnosis is ever more apparent due to the growing number of disorders that may present with overlapping initial symptoms, but for which there is an ever-increasing list of therapeutic options. AREAS COVERED This review will cover the current understanding of the molecular biology and pathophysiology of ALPS as well as describe some of the overlapping syndromes in order to better demonstrate the importance of establishing the correct diagnosis. EXPERT OPINION Going forward, international, multicenter collaboration to fully characterize ALPS and the ALPS-like disorders, including with particular focus on defining the defects for those patients with undefined ALPS, is important to both continue to improve our understanding of this disorder and to drive patient care forward to provide the best outcomes. Additionally, it is probably time to re-convene an international expert panel to re-define diagnostic criteria taking into consideration the most recent available data in order to optimize patient care.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Brar N, Spinner MA, Baker MC, Advani RH, Natkunam Y, Lewis DB, Silva O. Increased double-negative αβ+ T-cells reveal adult-onset autoimmune lymphoproliferative syndrome in a patient with IgG4-related disease. Haematologica 2021; 107:347-350. [PMID: 34474549 PMCID: PMC8719087 DOI: 10.3324/haematol.2021.279297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Nivaz Brar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Michael A Spinner
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Department of Medicine Stanford University School of Medicine, Stanford, CA
| | - Ranjana H Advani
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
29
|
Flores-Mendoza G, Rodríguez-Rodríguez N, Rubio RM, Madera-Salcedo IK, Rosetti F, Crispín JC. Fas/FasL Signaling Regulates CD8 Expression During Exposure to Self-Antigens. Front Immunol 2021; 12:635862. [PMID: 33841416 PMCID: PMC8024570 DOI: 10.3389/fimmu.2021.635862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Activation of self-reactive CD8+ T cells induces a peripheral tolerance mechanism that involves loss of CD8 expression. Because genetic deficiency of Fas and Fasl causes the accumulation of double-negative (DN; CD3+ TCR-αβ+ CD4- CD8-) T cells that have been proposed to derive from CD8+ cells, we decided to explore the role of Fas and FasL in self-antigen-induced CD8 downregulation. To this end, we quantified Fas and FasL induction by different stimuli and analyzed the effects of Fas/FasL deficiency during a protective immune response and after exposure to self-antigens. Our data describes how Fas and FasL upregulation differs depending on the setting of CD8 T cell activation and demonstrates that Fas/FasL signaling maintains CD8 expression during repetitive antigen stimulation and following self-antigen encounter. Together, our results reveal an unexpected role of Fas/FasL signaling and offer a new insight into the role of these molecules in the regulation of immune tolerance.
Collapse
Affiliation(s)
- Giovanna Flores-Mendoza
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Noé Rodríguez-Rodríguez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosa M. Rubio
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iris K. Madera-Salcedo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C. Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|