1
|
Krenger PS, Roques M, Vogt ACS, Pardini A, Rothen DA, Balke I, Schnider ST, Mohsen MO, Heussler VT, Zeltins A, Bachmann MF. Probing novel epitopes on the Plasmodium falciparum circumsporozoite protein for vaccine development. NPJ Vaccines 2024; 9:225. [PMID: 39557901 PMCID: PMC11574195 DOI: 10.1038/s41541-024-01006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
RTS,S and R21 are the only vaccines recommended by the WHO to protect children from Plasmodium falciparum (Pf) clinical malaria. Both vaccines target the Pf sporozoite surface protein circumsporozoite protein (CSP). Recent studies showed that human antibodies neutralize Pf sporozoites most efficiently when simultaneously binding to the PfCSP NANP repeat and the NPDP junction domain. However, neither RTS,S nor R21 targets this junction domain. To test the potential of the NPDP junction domain and other sites of PfCSP as innovative vaccine targets, we developed multiple vaccine candidates based on cucumber mosaic virus-like particles (CuMVTT-VLPs). These candidates vary in several aspects: the number of targeted NANP repeats, the presence or absence of the junction domain, the cleavage site, and up to three NVDP repeats within the target sequence. Immunogenicity and efficacy studies were conducted in BALB/c mice, utilizing chimeric Plasmodium berghei (Pb) sporozoites, in which the endogenous CSP has been replaced by PfCSP (Pb/PfCSP). We observed a positive association between the number of targeted NANP repeats and the induction of specific IgM/IgG antibodies. Elevated humoral responses led to enhanced protection against parasitemia after Pb/PfCSP sporozoite challenge. Especially high-avidity/affinity antibody formation and vaccine protection were NANP repeat-dependent. Intriguingly, vaccine efficacy was not enhanced by targeting sites on PfCSP other than the NANP repeats. Our data emphasize the dominant role of the NANP repeat region for induction of protective antibodies. Furthermore, we present here novel malaria vaccine candidates with an excellent immunogenic profile that confer sterile protection in mice, even in absence of adjuvants.
Collapse
Affiliation(s)
- Pascal S Krenger
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland.
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anne-Cathrine S Vogt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Alessandro Pardini
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Dominik A Rothen
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Sophie T Schnider
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
| | - Mona O Mohsen
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland
| | | | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Saiba AG, Pfäffikon, Switzerland
| | - Martin F Bachmann
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- Department for Rheumatology and Immunology, University Hospital of Bern, Bern, Switzerland.
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Plieskatt J, Ofori EA, Naghizadeh M, Miura K, Flores-Garcia Y, Borbye-Lorenzen N, Tiono AB, Skogstrand K, Sagara I, Zavala F, Theisen M. ProC6C, a novel multi-stage malaria vaccine, elicits functional antibodies against the minor and central repeats of the Circumsporozoite Protein in human adults. Front Immunol 2024; 15:1481829. [PMID: 39555079 PMCID: PMC11563800 DOI: 10.3389/fimmu.2024.1481829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction ProC6C is a multi-stage malaria vaccine which includes Plasmodium falciparum Circumsporozoite Protein (PfCSP), Pfs48/45 and Pfs230 sequences, designed to elicit functional antibodies that prevent sporozoite invasion of human hepatocytes (PfCSP) and parasite development in mosquitoes (Pfs48/45 and Pfs230). ProC6C formulated on Alhydrogel was evaluated in combination with Matrix-M in a Phase 1 trial in Burkina Faso. The PfCSP antibody responses were assessed for magnitude, specificity, avidity and functionality. These results compliment the prior reported safety and tolerability of ProC6C as well as the transmission reducing activity of ProC6C. Methods The PfCSP response of ProC6C in Burkinabes in the Phase 1 trial (PACTR202201848463189) was profiled through the three vaccine administrations of 100 µg protein on Alhydrogel® alone (AlOH) or combined with 50 µg Matrix-M™ adjuvant (AlOH/Matrix-M). Serology was completed against full-length PfCSP and major/minor repeat peptides using antibody equivalence to PfCSP monoclonal antibodies (mAb 311, mAb 317 and mAb L9). Comparison of the ProC6C responses were made to those that received RTS,S/AS01 in a study conducted in Thailand. Bio-Layer Interferometry was further used to determine antibody avidity. The human IgG was subsequently purified, pooled, and evaluated in a mouse sporozoite challenge model to determine functionality. Results A single administration of ProC6C-AlOH/Matrix-M seroconverted 19 of 20 volunteers against PfCSP and significantly enhanced antibody titers to major and minor repeats (and present through D180). At D70, ProC6C-AlOH/Matrix-M PfCSP antibodies were found to be similar to responder pools generated from Thai adults receiving RTS,S/AS01. Additionally, ProC6C antibodies were found to be competitive to established PfCSP antibodies such as mAb 317 and mAb L9. The purified and pooled IgG from human volunteers, used in a passive transfer mouse sporozoite challenge model, showed a median of 50% inhibition (P=0.0058). ProC6C PfCSP antibodies were functional in this in vivo assessment and consistent with inhibition seen by other Circumsporozoite vaccines in this model. Discussion This analysis supports continued investigation of the antibody responses elicited by the ProC6C multi-stage malaria vaccine. This Phase 1 clinical trial demonstrated the short PfCSP sequence included in ProC6C can induce significant PfCSP antibodies in humans, which importantly were determined to be functional.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nis Borbye-Lorenzen
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Kristin Skogstrand
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Issaka Sagara
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Amen A, Yoo R, Fabra-García A, Bolscher J, Stone WJR, Bally I, Dergan-Dylon S, Kucharska I, de Jong RM, de Bruijni M, Bousema T, Richter King C, MacGill RS, Sauerwein RW, Julien JP, Poignard P, Jore MM. Target-agnostic identification of human antibodies to Plasmodium falciparum sexual forms reveals cross stage recognition of glutamate-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565335. [PMID: 37961136 PMCID: PMC10635103 DOI: 10.1101/2023.11.03.565335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies (Abs) can efficiently block parasite transmission. In search for naturally acquired Ab targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gamete and gametocyte extract. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for PfCSP, extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf . Impact Statement A naturally acquired human monoclonal antibody recognizes proteins expressed at different stages of the Plasmodium falciparum lifecycle through affinity-matured homotypic interactions with glutamate-rich repeats.
Collapse
|
5
|
Dobbs KR, Atieli HE, Valim C, Beeson JG. Previous Malaria Exposures and Immune Dysregulation: Developing Strategies To Improve Malaria Vaccine Efficacy in Young Children. Am J Trop Med Hyg 2024; 110:627-630. [PMID: 38442424 PMCID: PMC10993830 DOI: 10.4269/ajtmh.23-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 03/07/2024] Open
Abstract
After several decades in development, two malaria vaccines based on the same antigen and with very similar constructs and adjuvants, RTS,S/AS01 (RTS,S) and R21/Matrix-M (R21), were recommended by the WHO for widespread vaccination of children. These vaccines are much-needed additions to malaria control programs that, when used in conjunction with other control measures, will help to accelerate reductions in malaria morbidity and mortality. Although R21 is not yet available, RTS,S is currently being integrated into routine vaccine schedules in some areas. However, the efficacy of RTS,S is partial, short-lived, and varies widely according to age and geographic location. It is not clear why RTS,S induces protection in some individuals and not others, what the immune mechanisms are that favor protective immunity with RTS,S, and how immune mechanisms are influenced by host and environmental factors. Several studies suggest that higher levels of previous malaria exposure negatively impact RTS,S clinical efficacy. In this article, we summarize data suggesting that previous malaria exposures negatively impact the efficacy of RTS,S and other malaria vaccine candidates. We highlight recent evidence suggesting that increasing malaria exposure impairs the generation of functional antibody responses to RTS,S. Finally, we discuss how investigation of clinical and immune factors associated with suboptimal responses to RTS,S can be used to develop strategies to optimize RTS,S, which will remain relevant to R21 and next-generation vaccines.
Collapse
Affiliation(s)
| | | | - Clarissa Valim
- Boston University School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
6
|
Locke E, Flores-Garcia Y, Mayer BT, MacGill RS, Borate B, Salgado-Jimenez B, Gerber MW, Mathis-Torres S, Shapiro S, King CR, Zavala F. Establishing RTS,S/AS01 as a benchmark for comparison to next-generation malaria vaccines in a mouse model. NPJ Vaccines 2024; 9:29. [PMID: 38341502 DOI: 10.1038/s41541-024-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
New strategies are needed to reduce the incidence of malaria, and promising approaches include vaccines targeting the circumsporozoite protein (CSP). To improve upon the malaria vaccine, RTS,S/AS01, it is essential to standardize preclinical assays to measure the potency of next-generation vaccines against this benchmark. We focus on RTS,S/AS01-induced antibody responses and functional activity in conjunction with robust statistical analyses. Transgenic Plasmodium berghei sporozoites containing full-length P. falciparum CSP (tgPb-PfCSP) allow two assessments of efficacy: quantitative reduction in liver infection following intravenous challenge, and sterile protection from mosquito bite challenge. Two or three doses of RTS,S/AS01 were given intramuscularly at 3-week intervals, with challenge 2-weeks after the last vaccination. Minimal inter- and intra-assay variability indicates the reproducibility of the methods. Importantly, the range of this model is suitable for screening more potent vaccines. Levels of induced anti-CSP antibody 2A10 equivalency were also associated with activity: 105 μg/mL (95% CI: 68.8, 141) reduced liver infection by 50%, whereas 285 μg/mL (95% CI: 166, 404) is required for 50% sterile protection from mosquito bite challenge. Additionally, the liver burden model was able to differentiate between protected and non-protected human plasma samples from a controlled human malaria infection study, supporting these models' relevance and predictive capability. Comparison in animal models of CSP-based vaccine candidates to RTS,S/AS01 is now possible under well controlled conditions. Assessment of the quality of induced antibodies, likely a determinant of durability of protection in humans, should be possible using these methods.
Collapse
Affiliation(s)
- Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah Shapiro
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Hayashi CTH, Cao Y, Zavala F, Simonyan H, Young CN, Kumar N. Antibodies elicited by Plasmodium falciparum circumsporozoite proteins lacking sequentially deleted C-terminal amino acids reveal mouse strain and epitopes specific differences. Vaccine 2023; 41:6824-6833. [PMID: 37827967 PMCID: PMC11004087 DOI: 10.1016/j.vaccine.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Malaria affects ∼ ¼ billion people globally and requires the development of additional tools to aid in elimination efforts. The recently approved RTS,S/AS01 vaccine represents a positive step, however, the moderate efficacy necessitates the development of more efficacious vaccines. PfCSP is a key target antigen for pre-erythrocytic vaccines aimed at preventing Plasmodium falciparum malaria infections. Epitopes within the central repeat region and at the junction of the repeat and N-terminal domain are well documented as major protective B cell epitopes. On the other hand, a majority of antibodies against the epitopes in the C-terminal domain, have been shown to be non-protective against sporozoite challenge. The C-terminal domain, however, contains CD4+ and CD8+ T cell epitopes previously shown to be important for regulating immune responses. The present study was designed to further explore the immunomodulatory potential of the C-terminal domain using DNA vaccines encoding PfCSP with sequential C-terminal truncations following known T cell epitopes. Five DNA vaccines encoding different truncations of PfCSP within the C-terminal domain were administered via intramuscular route and in vivo electroporation for effective immunogenicity. Protection in mice was evaluated by challenge with transgenic P. berghei expressing PfCSP. In Balb/c mice, antibody responses and protective efficacy were both affected progressively with sequential deletion of C-terminal amino acid residues. Similar studies in C57Bl/6 mice revealed that immunizations with plasmids encoding truncated PfCSP showed partial protection from sporozoite challenge with no significant differences in antibody titers observed compared to full-length PfCSP DNA immunized mice. Further analysis revealed murine strain-specific differences in the recognition of specific epitopes.
Collapse
MESH Headings
- Animals
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Mice
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Antibodies, Protozoan/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/immunology
- Mice, Inbred BALB C
- Female
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes/immunology
- Epitopes/genetics
- Sporozoites/immunology
Collapse
Affiliation(s)
- Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21215, USA
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA.
| |
Collapse
|
8
|
Hammond EM, Olsen KJ, Ram S, Tran GVV, Hall LS, Bradley JE, Lund FE, Samuels DS, Baumgarth N. Antigen-Specific CD4 T Cell and B Cell Responses to Borrelia burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:994-1005. [PMID: 37556156 PMCID: PMC10530202 DOI: 10.4049/jimmunol.2200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Long-lived T-dependent B cell responses fail to develop during persistent infection of mice with Borrelia burgdorferi, the causative agent of Lyme disease, raising questions about the induction and/or functionality of anti-B. burgdorferi adaptive immune responses. Yet, a lack of reagents has limited investigations into B. burgdorferi-specific T and B cells. We attempted two approaches to track B. burgdorferi-induced CD4 T cells. First, a B. burgdorferi mutant was generated with an influenza hemagglutinin (HA) peptide, HA111-119, inserted into the B. burgdorferi arthritis-related protein (Arp) locus. Although this B. burgdorferi arp::HA strain remained infectious, peptide-specific TCR transgenic CD4 T cells in vitro, or adoptively transferred into B. burgdorferi arp::HA-infected BALB/c mice, did not clonally expand above those of recipients infected with the parental B. burgdorferi strain or a B. burgdorferi mutant containing an irrelevant peptide. Some expansion, however, occurred in B. burgdorferi arp::HA-infected BALB/c SCID mice. Second, a (to our knowledge) newly identified I-Ab-restricted CD4 T cell epitope, Arp152-166, was used to generate Arp MHC class II tetramers. Flow cytometry showed small numbers of Arp-specific CD4 T cells emerging in mice infected with B. burgdorferi but not with Arp-deficient Borrelia afzelii. Although up to 30% of Arp-specific CD4 T cells were ICOS+PD-1+CXCR5+BCL6+ T follicular helper cells, their numbers declined after day 12, before germinal centers (GCs) are prominent. Although some Arp-specific B cells, identified using fluorochrome-labeled rArp proteins, had the phenotype of GC B cells, their frequencies did not correlate with anti-Arp serum IgG. The data suggest a failure not in the induction, but in the maintenance of GC T follicular helper and/or B cells to B. burgdorferi.
Collapse
Affiliation(s)
- Elizabeth M. Hammond
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Kimberly J. Olsen
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Shivneel Ram
- Center for Immunology and Infectious Diseases, University of California Davis
| | - Giang Vu Vi Tran
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana
| | - John E. Bradley
- Department of Microbiology, University of Alabama, Birmingham
| | - Frances E. Lund
- Department of Microbiology, University of Alabama, Birmingham
| | | | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis
- Center for Immunology and Infectious Diseases, University of California Davis
- Department of Pathology, Microbiology, and Immunology, University of California Davis
- Department of Molecular Microbiology and Immunology and Department of Molecular and Comparative Pathobiology, Johns Hopkins University
| |
Collapse
|
9
|
Martin GM, Torres JL, Pholcharee T, Oyen D, Flores-Garcia Y, Gibson G, Moskovitz R, Beutler N, Jung DD, Copps J, Lee WH, Gonzalez-Paez G, Emerling D, MacGill RS, Locke E, King CR, Zavala F, Wilson IA, Ward AB. Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection. Nat Commun 2023; 14:4546. [PMID: 37507365 PMCID: PMC10382551 DOI: 10.1038/s41467-023-40151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33 antibodies and highlight key features underlying the potent protection of this antibody family.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Biochemistry, University of Oxford, Oxford, OX1 3DR, UK
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Pfizer Inc, San Diego, CA, 92121, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Grace Gibson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Re'em Moskovitz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Diana D Jung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gonzalo Gonzalez-Paez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Ngulube P. Humoral Immune Responses to P. falciparum Circumsporozoite Protein (Pfcsp) Induced by the RTS, S Vaccine - Current Update. Infect Drug Resist 2023; 16:2147-2157. [PMID: 37077252 PMCID: PMC10106824 DOI: 10.2147/idr.s401247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.
Collapse
Affiliation(s)
- Peter Ngulube
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
- Correspondence: Peter Ngulube, Email
| |
Collapse
|