1
|
Rebeck ON, Wallace MJ, Prusa J, Ning J, Evbuomwan EM, Rengarajan S, Habimana-Griffin L, Kwak S, Zahrah D, Tung J, Liao J, Mahmud B, Fishbein SRS, Ramirez Tovar ES, Mehta R, Wang B, Gorelik MG, Helmink BA, Dantas G. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem Biol 2025; 32:98-110.e7. [PMID: 39571582 PMCID: PMC11741927 DOI: 10.1016/j.chembiol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete "miniature" antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Esse M Evbuomwan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | - LeMoyne Habimana-Griffin
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suryang Kwak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Zahrah
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Tung
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erick S Ramirez Tovar
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rehan Mehta
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark G Gorelik
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth A Helmink
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Belaid A, Roméo B, Rignol G, Benzaquen J, Audoin T, Vouret-Craviari V, Brest P, Varraso R, von Bergen M, Hugo Marquette C, Leroy S, Mograbi B, Hofman P. Impact of the Lung Microbiota on Development and Progression of Lung Cancer. Cancers (Basel) 2024; 16:3342. [PMID: 39409962 PMCID: PMC11605235 DOI: 10.3390/cancers16193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 12/01/2024] Open
Abstract
The past several years have provided a more profound understanding of the role of microbial species in the lung. The respiratory tract is a delicate ecosystem of bacteria, fungi, parasites, and viruses. Detecting microbial DNA, pathogen-associated molecular patterns (PAMPs), and metabolites in sputum is poised to revolutionize the early diagnosis of lung cancer. The longitudinal monitoring of the lung microbiome holds the potential to predict treatment response and side effects, enabling more personalized and effective treatment options. However, most studies into the lung microbiota have been observational and have not adequately considered the impact of dietary intake and air pollutants. This gap makes it challenging to establish a direct causal relationship between environmental exposure, changes in the composition of the microbiota, lung carcinogenesis, and tumor progression. A holistic understanding of the lung microbiota that considers both diet and air pollutants may pave the way to improved prevention and management strategies for lung cancer.
Collapse
Affiliation(s)
- Amine Belaid
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Barnabé Roméo
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Guylène Rignol
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Jonathan Benzaquen
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Tanguy Audoin
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Valérie Vouret-Craviari
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, INSERM, 94800 Villejuif, France;
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Molecular Systems Biology, Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04109 Leipzig, Germany;
| | - Charles Hugo Marquette
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Sylvie Leroy
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| |
Collapse
|
3
|
Casadei B, Conti G, Barone M, Turroni S, Guadagnuolo S, Broccoli A, Brigidi P, Argnani L, Zinzani PL. Role of gut microbiome in the outcome of lymphoma patients treated with checkpoint inhibitors-The MicroLinf Study. Hematol Oncol 2024; 42:e3301. [PMID: 39104142 DOI: 10.1002/hon.3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include PD-L1 expression and other environmental factors, among which the gut microbiome (GM) is gaining increasing interest especially in lymphomas. To explore the potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma (Hodgkin and primary mediastinal B-cell lymphoma) patients undergoing ICIs were collected from start to end of treatment (EoT). GM was profiled through Illumina, that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics pipeline. The overall response rate to ICIs was 30.5%, with no association between patients clinical characteristics and response/survival outcomes. Regarding GM, responder patients showed a peculiar significant enrichment of Lachnospira, while non-responder ones showed higher presence of Enterobacteriaceae (at baseline and maintained till EoT). Recognizing patient-related factors that may influence response to ICIs is becoming critical to optimize the treatment pathway of heavily pretreated, young patients with a potentially long-life expectancy. These preliminary results indicate potential early GM signatures of ICIs response in lymphoma, which could pave the way for future research to improve patients prognosis with new adjuvant strategies.
Collapse
Affiliation(s)
- Beatrice Casadei
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Serafina Guadagnuolo
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Broccoli
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lisa Argnani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Townsend MJ, Benque IJ, Li M, Grover S. Review article: Contemporary management of gastrointestinal, pancreatic and hepatic toxicities of immune checkpoint inhibitors. Aliment Pharmacol Ther 2024; 59:1350-1365. [PMID: 38590108 DOI: 10.1111/apt.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are effective oncologic agents which frequently cause immune-related adverse events (irAEs) which can impact multiple organ systems. Onco-Gastroenterology is a novel and emerging subspecialty within gastroenterology focused on cancer treatment-related complications. Gastroenterologists must be prepared to identify and manage diverse immune-mediated toxicities including enterocolitis, hepatitis, pancreatitis and other ICI-induced toxicities. AIM To provide a narrative review of the epidemiology, diagnostic evaluation and management of checkpoint inhibitor-induced gastrointestinal and hepatic toxicities. METHODS We searched Cochrane and PubMed databases for articles published through August 2023. RESULTS Gastrointestinal and hepatic irAEs include most commonly enterocolitis and hepatitis, but also pancreatitis, oesophagitis, gastritis, motility disorders (gastroparesis) and other rarer toxicities. Guidelines from the National Comprehensive Cancer Network, American Society of Clinical Oncology and European Society for Medical Oncology, in combination with emerging cohort and clinical trial data, offer strategies for management of ICI toxicities. Evaluation of irAEs severity by formal classification and clinical stability, and a thorough workup for alternative etiologies which may clinically mimic irAEs underlie initial management. Treatments include corticosteroids, biologics and other immunosuppressive agents plus supportive care; decisions on dosing, timing and choice of steroid adjuncts and potential for subsequent checkpoint inhibitor dosing are nuanced and toxicity-specific. CONCLUSIONS Expanding clinical trial and cohort data have clarified the epidemiology and clinical characteristics of gastrointestinal, pancreatic and hepatic toxicities of ICIs. Guidelines, though valuable, remain based principally on retrospective cohort data. Quality prospective, controlled studies may refine algorithms for treatment and potential immunotherapy rechallenge.
Collapse
Affiliation(s)
- Matthew J Townsend
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Isaac J Benque
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael Li
- University of California San Francisco School of Medicine, San Francisco, California, USA
- Division of Gastroenterology, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Shilpa Grover
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
7
|
Liang Y, Maeda O, Ando Y. Biomarkers for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Jpn J Clin Oncol 2024; 54:365-375. [PMID: 38183211 PMCID: PMC11771318 DOI: 10.1093/jjco/hyad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Although immune checkpoint inhibitors have greatly improved cancer therapy, they also cause immune-related adverse events, including a wide range of inflammatory side effects resulting from excessive immune activation. Types of immune-related adverse events are diverse and can occur in almost any organ, with different frequencies and severities. Furthermore, immune-related adverse events may occur within the first few weeks after treatment or even several months after treatment discontinuation. Predictive biomarkers include blood cell counts and cell surface markers, serum proteins, autoantibodies, cytokines/chemokines, germline genetic variations and gene expression profiles, human leukocyte antigen genotype, microRNAs and the gut microbiome. Given the inconsistencies in research results and limited practical utility, there is to date no established biomarker that can be used in routine clinical practice, and additional investigations are essential to demonstrate efficacy and subsequently facilitate integration into routine clinical use.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Liu B, Liu Z, Jiang T, Gu X, Yin X, Cai Z, Zou X, Dai L, Zhang B. Univariable and multivariable Mendelian randomization study identified the key role of gut microbiota in immunotherapeutic toxicity. Eur J Med Res 2024; 29:161. [PMID: 38475836 DOI: 10.1186/s40001-024-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.
Collapse
Affiliation(s)
- Baike Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiangshuai Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoqiao Zou
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Elkrief A, Waters NR, Smith N, Dai A, Slingerland J, Aleynick N, Febles B, Gogia P, Socci ND, Lumish M, Giardina PA, Chaft JE, Eng J, Motzer RJ, Mendelsohn RB, Markey KA, Zhuang M, Li Y, Yang Z, Hollmann TJ, Rudin CM, van den Brink MR, Shia J, DeWolf S, Schoenfeld AJ, Hellmann MD, Babady NE, Faleck DM, Peled JU. Immune-Related Colitis Is Associated with Fecal Microbial Dysbiosis and Can Be Mitigated by Fecal Microbiota Transplantation. Cancer Immunol Res 2024; 12:308-321. [PMID: 38108398 PMCID: PMC10932930 DOI: 10.1158/2326-6066.cir-23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas R. Waters
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natalie Smith
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angel Dai
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Binita Febles
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pooja Gogia
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Lumish
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A. Giardina
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie E. Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Juliana Eng
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robert J. Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robin B. Mendelsohn
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Kate A. Markey
- Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Mingqiang Zhuang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhifan Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Marcel R.M. van den Brink
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Matthew D. Hellmann
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine and the Infectious Disease Service, Department of Medicine Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jonathan U. Peled
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
10
|
Hu M, Lin X, Sun T, Shao X, Huang X, Du W, Guo M, Zhu X, Zhou Y, Tong T, Guo F, Han T, Wu X, Shi Y, Xiao X, Zhang Y, Hong J, Chen H. Gut microbiome for predicting immune checkpoint blockade-associated adverse events. Genome Med 2024; 16:16. [PMID: 38243343 PMCID: PMC10799412 DOI: 10.1186/s13073-024-01285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The impact of the gut microbiome on the initiation and intensity of immune-related adverse events (irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency in the gut microbial associations with irAEs reported across various studies. METHODS We performed a comprehensive analysis leveraging a dataset that included published microbiome data (n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115). We utilized a machine learning-based approach, specifically the Random Forest (RF) algorithm, to construct a microbiome-based classifier capable of distinguishing between non-irAEs and irAEs. Additionally, we conducted a comprehensive analysis, integrating transcriptome and metagenome profiling, to explore potential underlying mechanisms. RESULTS We identified specific microbial species capable of distinguishing between patients experiencing irAEs and non-irAEs. The RF classifier, developed using 14 microbial features, demonstrated robust discriminatory power between non-irAEs and irAEs (AUC = 0.88). Moreover, the predictive score from our classifier exhibited significant discriminative capability for identifying non-irAEs in two independent cohorts. Our functional analysis revealed that the altered microbiome in non-irAEs was characterized by an increased menaquinone biosynthesis, accompanied by elevated expression of rate-limiting enzymes menH and menC. Targeted metabolomics analysis further highlighted a notably higher abundance of menaquinone in the serum of patients who did not develop irAEs compared to the irAEs group. CONCLUSIONS Our study underscores the potential of microbial biomarkers for predicting the onset of irAEs and highlights menaquinone, a metabolite derived from the microbiome community, as a possible selective therapeutic agent for modulating the occurrence of irAEs.
Collapse
Affiliation(s)
- Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Xiaolin Lin
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tiantian Sun
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Xiaoyan Shao
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Weiwei Du
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Fangfang Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ting Han
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiuqi Wu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009, China.
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China.
| |
Collapse
|
11
|
Gao Y, Xu P, Sun D, Jiang Y, Lin XL, Han T, Yu J, Sheng C, Chen H, Hong J, Chen Y, Xiao XY, Fang JY. Faecalibacterium prausnitzii Abrogates Intestinal Toxicity and Promotes Tumor Immunity to Increase the Efficacy of Dual CTLA4 and PD-1 Checkpoint Blockade. Cancer Res 2023; 83:3710-3725. [PMID: 37602831 DOI: 10.1158/0008-5472.can-23-0605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.
Collapse
Affiliation(s)
- Yaqi Gao
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingping Xu
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Sun
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lin Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Han
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxuan Chen
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Ying Xiao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Guillot N, Roméo B, Manesh SS, Milano G, Brest P, Zitvogel L, Hofman P, Mograbi B. Manipulating the gut and tumor microbiota for immune checkpoint inhibitor therapy: from dream to reality. Trends Mol Med 2023; 29:897-911. [PMID: 37704493 DOI: 10.1016/j.molmed.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
The past decade has witnessed a revolution in cancer treatment by shifting from conventional therapies to immune checkpoint inhibitors (ICIs). These immunotherapies unleash the host immune system against the tumor and have achieved unprecedented durable remission. However, 80% of patients do not respond. This review discusses how bacteria are unexpected drivers that reprogram tumor immunity. Manipulating the microbiota impacts on tumor development and reprograms the tumor microenvironment (TME) of mice on immunotherapy. We anticipate that harnessing commensals and the tumor microbiome holds promise to identify patients who will benefit from immunotherapy and guide the choice of new ICI combinations to advance treatment efficacy.
Collapse
Affiliation(s)
- Nicolas Guillot
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Barnabé Roméo
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Shima Sepehri Manesh
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Service de Valorisation Scientifique, Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France; Equipe Labellisée par la Ligue Contre le Cancer, INSERM Unité 1015, Villejuif, France; Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France; University Côte d'Azur, IHU RespirERA, FHU OncoAge, CHU of Nice, Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS, INSERM, IRCAN, IHU RespirERA, FHU OncoAge, Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
13
|
ZHANG J, CHEN X, MA S. [Advances in Predictive Research of Immune Checkpoint Inhibitors-related
Adverse Events]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:789-794. [PMID: 37989342 PMCID: PMC10663778 DOI: 10.3779/j.issn.1009-3419.2023.106.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/23/2023]
Abstract
The era of tumor treatment has been revolutionized by the advent of immune checkpoint inhibitors. However, while immunotherapy benefits patients, it can also lead to immune-related adverse events that may affect multiple organs and systems throughout the body, potentially even posing a life-threatening risk. The diverse clinical manifestations and onset times of these adverse events further complicate their prediction and diagnosis. The purpose of this paper is to review the clinical characteristics and predicted biomarkers of adverse events related to inhibitors at immune checkpoints, in order to help clinicians evaluate drug risks and early warn adverse events.
.
Collapse
|
14
|
Uğraklı M, Koçak MZ, Dinç G, Genç TB, Çağlayan M, Uğraklı S, Hendem E, Er MM, Çağlayan D, Eryılmaz MK, Araz M, Geredeli Ç, Tatlı AM, Eren OÖ, Artaç M. The effect of concomitant proton pump inhibitor use on survival outcomes of Nivolumab-treated renal cell carcinoma patients: a multicenter study. J Cancer Res Clin Oncol 2023; 149:9183-9189. [PMID: 37184681 DOI: 10.1007/s00432-023-04844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
AIM We aimed to evaluate the effect of concomitant proton pump inhibitors (PPI) use with nivolumab on survival outcomes in metastatic renal cell carcinoma (mRCC) in second-line setting. METHODS The study was designed as a multicenter and retrospective involving patients with metastatic renal cell carcinoma receiving second-line nivolumab therapy. One hundred and nine patients with mRCC were divided into two groups based on whether they use PPI concomitantly with nivolumab: concomitant PPI users and non-users. Overall survival (OS) and progression-free survival (PFS) were compared between the groups with and without concurrent PPIs. RESULTS Of 109 patients in our study, 59 were not using PPI concomitantly with nivolumab and 50 were using PPI concomitantly. The median PFS was 6.37 (5.2-7.5) months in the concomitant PPI group and 9.7 (4.5-15) months in the non-users (p = 0.03). The median OS was 14.6 (7.1-22.1) months in patients on PPI concurrently with nivolumab and 29.9 (17.1-42.7) months in the non-users (p = 0.01). Accordingly, PPI use for PFS (Non-use vs. Use = HR: 0.44, 95%Cl 0.28-0.96, p = 0.014) and PPI use for OS (Non-use vs. Use = HR: 0.68, 95%Cl 0.22-0.88, p = 0.01) were found to be as independent risk factors. CONCLUSIONS Concomitant use of PPIs is associated with worse survival outcomes in patients with mRCC treated with nivolumab. Clinicians should carefully consider the concomitant use of PPIs in such patients.
Collapse
Affiliation(s)
- Muzaffer Uğraklı
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey.
| | - Mehmet Zahid Koçak
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Gülhan Dinç
- Department of Medical Oncology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | | | - Melek Çağlayan
- Department of Medical Oncology, Selçuk University, Konya, Turkey
| | - Selin Uğraklı
- Department of Medical Microbiology, Necmettin Erbakan University, Konya, Turkey
| | - Engin Hendem
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Muhammed Muhiddin Er
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Dilek Çağlayan
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Melek Karakurt Eryılmaz
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Murat Araz
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Çağlayan Geredeli
- Department of Medical Oncology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Ali Murat Tatlı
- Department of Medical Oncology, Akdeniz University, Antalya, Turkey
| | - Orhan Önder Eren
- Department of Medical Oncology, Selçuk University, Konya, Turkey
| | - Mehmet Artaç
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| |
Collapse
|
15
|
Park JS, Gazzaniga FS, Kasper DL, Sharpe AH. Microbiota-dependent regulation of costimulatory and coinhibitory pathways via innate immune sensors and implications for immunotherapy. Exp Mol Med 2023; 55:1913-1921. [PMID: 37696895 PMCID: PMC10545783 DOI: 10.1038/s12276-023-01075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Our bodies are inhabited by trillions of microorganisms. The host immune system constantly interacts with the microbiota in barrier organs, including the intestines. Over decades, numerous studies have shown that our mucosal immune system is dynamically shaped by a variety of microbiota-derived signals. Elucidating the mediators of these interactions is an important step for understanding how the microbiota is linked to mucosal immune homeostasis and gut-associated diseases. Interestingly, the efficacy of cancer immunotherapies that manipulate costimulatory and coinhibitory pathways has been correlated with the gut microbiota. Moreover, adverse effects of these therapies in the gut are linked to dysregulation of the intestinal immune system. These findings suggest that costimulatory pathways in the immune system might serve as a bridge between the host immune system and the gut microbiota. Here, we review mechanisms by which commensal microorganisms signal immune cells and their potential impact on costimulation. We highlight how costimulatory pathways modulate the mucosal immune system through not only classical antigen-presenting cells but also innate lymphocytes, which are highly enriched in barrier organs. Finally, we discuss the adverse effects of immune checkpoint inhibitors in the gut and the possible relationship with the gut microbiota.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca S Gazzaniga
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Gong J, Neilan TG, Zlotoff DA. Mediators and mechanisms of immune checkpoint inhibitor-associated myocarditis: Insights from mouse and human. Immunol Rev 2023; 318:70-80. [PMID: 37449556 PMCID: PMC10528547 DOI: 10.1111/imr.13240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The broad application of immune checkpoint inhibitors (ICIs) has led to significant gains in cancer outcomes. By abrogating inhibitory signals, ICIs promote T cell targeting of cancer cells but can frequently trigger autoimmune manifestations, termed immune-related adverse events (irAEs), affecting essentially any organ system. Among cardiovascular irAEs, immune-related myocarditis (irMyocarditis) is the most described and carries the highest morbidity. The currently recommended treatment for irMyocarditis is potent immunosuppression with corticosteroids and other agents, but this has limited evidence basis. The cellular pathophysiology of irMyocarditis remains poorly understood, though mouse models and human data have both implicated effector CD8+ T cells, some of which are specific for the cardiomyocyte protein α-myosin. While the driving molecular signals and transcriptional programs are not well defined, the involvement of chemokine receptors such as CCR5 and CXCR3 has been proposed. Fundamental questions regarding why only approximately 1% of ICI recipients develop irMyocarditis and why irMyocarditis carries a much worse prognosis than other forms of lymphocytic myocarditis remain unanswered. Further work in both murine systems and with human samples are needed to identify better tools for diagnosis, risk-stratification, and treatment.
Collapse
Affiliation(s)
- Jingyi Gong
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Daniel A. Zlotoff
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
17
|
Jalil AT, Thabit SN, Hanan ZK, Alasheqi MQ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromol Res 2023; 31:739-752. [DOI: 10.1007/s13233-023-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 01/03/2025]
|
18
|
Verhoef JI, Klont E, van Overveld FJ, Rijkers GT. The long and winding road of faecal microbiota transplants to targeted intervention for improvement of immune checkpoint inhibition therapy. Expert Rev Anticancer Ther 2023; 23:1179-1191. [PMID: 37746903 DOI: 10.1080/14737140.2023.2262765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) therapy has revolutionized the treatment of cancer. Inhibitory molecules, either on the tumor or on cells of the immune system, are blocked, allowing the immune system of the patient to attack and eradicate the tumor. Not all patients respond to ICI therapy, and response or non-response has been associated with composition of gut microbiota. AREA COVERED Fecal microbiota transplantation (FMT) is used as adjunctive therapy in order to improve the outcome of ICI. ClinicalTrials.gov, and other databases were searched (October 2022) for studies dealing with gut microbiota modification and the outcome of ICI. EXPERT OPINION There is ample evidence for the beneficial effect of FMT on the outcome of ICI therapy for cancer, especially melanoma. Progress is being made in the unraveling of the mechanisms by which microbiota and their metabolites (butyrate and the tryptophan metabolite indole-3-aldehyde) interact with the mucosal immune system of the host. A better understanding of the mechanisms involved will allow the identification of key bacterial species which mediate the effect of FMT. Promising species are Faecalibacterium prausnitzii, Eubacterium rectale, Bifidobacterium adolescentis, B. bifidum, and B. longum, because they are important direct and indirect butyrate producers.
Collapse
Affiliation(s)
- Jasmijn I Verhoef
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| | - Ediz Klont
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| | | | - Ger T Rijkers
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| |
Collapse
|
19
|
Bouferraa Y, Fares C, Bou Zerdan M, Boyce Kennedy L. Microbial Influences on Immune Checkpoint Inhibitor Response in Melanoma: The Interplay between Skin and Gut Microbiota. Int J Mol Sci 2023; 24:ijms24119702. [PMID: 37298653 DOI: 10.3390/ijms24119702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of melanoma, but its limitations due to resistance and variable patient responses have become apparent. The microbiota, which refers to the complex ecosystem of microorganisms that inhabit the human body, has emerged as a promising area of research for its potential role in melanoma development and treatment response. Recent studies have highlighted the role of microbiota in influencing the immune system and its response to melanoma, as well as its influence on the development of immune-related adverse events associated with immunotherapy. In this article, we discuss the complex multifactorial mechanisms through which skin and gut microbiota can affect the development of melanoma including microbial metabolites, intra-tumor microbes, UV light, and the immune system. In addition, we will discuss the pre-clinical and clinical studies that have demonstrated the influence of different microbial profiles on response to immunotherapy. Additionally, we will explore the role of microbiota in the development of immune-mediated adverse events.
Collapse
Affiliation(s)
- Youssef Bouferraa
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Callie Fares
- Faculty of Medicine, American University of Beirut, Beirut 2020, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, New York, NY 13205, USA
| | - Lucy Boyce Kennedy
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|