1
|
Pizarro G, Olivera JF. The dynamics of Ca 2+ within the sarcoplasmic reticulum of frog skeletal muscle. A simulation study. J Theor Biol 2020; 504:110371. [PMID: 32533961 DOI: 10.1016/j.jtbi.2020.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
In skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) triggers contraction. In this study we develop a two compartment model to account for the Ca2+ dynamics in frog skeletal muscle fibers. The two compartments in the model correspond to the SR and the cytoplasm, where the myofibrils are placed. We use a detailed model for the several Ca2+ binding proteins in the cytoplasm in line with previous models. As a new feature, Ca2+ binding sites within the SR, attributed to calsequestrin, are modeled based on experimentally obtained properties. The intra SR Ca2+ buffer shows cooperativity, well represented by a Hill equation with parameters that depend on the initial [Ca2+] in the SR ([Ca2+]SR). The number of total sites as well as the [Ca2+]SR of half saturation are reduced as the resting [Ca2+]SR is reduced, on the other hand the Hill number is not changed. The buffer power remained roughly constant. The release process is activated by a voltage dependent mechanism that increases the Ca2+ permeability of the SR. We use the permeability time course and amplitude experimentally obtained during a voltage clamp pulse to drive the simulations. This model successfully reproduces the SR and cytoplasmic transients observed. Additionally, we simulate [Ca2+] SR transients in the case of high concentration of extrinsic Ca2+ buffers added to the cytoplasm to explore what properties of the permeability are necessary to account for the experimentally observed [Ca2+]SR transients. The main novelty of the model, the intra SR Ca2+ buffer, is crucial for reproducing the experimental observations and it would be of use in future theoretical studies of excitation contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Gonzalo Pizarro
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Gral. Flores 2125, Montevideo, CP11800, Uruguay.
| | - J Fernando Olivera
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Gral. Flores 2125, Montevideo, CP11800, Uruguay.
| |
Collapse
|
2
|
Ca 2+-induced sarcoplasmic reticulum Ca 2+ release in myotubularin-deficient muscle fibers. Cell Calcium 2019; 80:91-100. [PMID: 30999217 DOI: 10.1016/j.ceca.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
Abstract
Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca2+ release through ryanodine receptors. In the present study we aimed at further understanding how Ca2+ release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca2+ release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca2+ release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca2+ channel activity. In addition, the diseased muscle fibers at rest exhibit spontaneous elementary Ca2+ release events at a frequency 30 times greater than that of control fibers. Eighty percent of the events have spatiotemporal properties of archetypal Ca2+ sparks while the rest take either the form of lower amplitude, longer duration Ca2+ release events or of a combination thereof. The events occur at preferred locations in the fibers, indicating spatially uneven distribution of the parameters determining spontaneous ryanodine receptor 1 opening. Spatially large Ca2+ release sources were obviously involved in some of these events, suggesting that opening of ryanodine receptors in one cluster can activate opening of ryanodine receptors in a neighboring one. Overall results demonstrate that opening of Ca2+-activated ryanodine receptors is promoted both at rest and during excitation-contraction coupling in MTM1-deficient muscle fibers. Because access to this activation mode is denied to ryanodine receptors in healthy skeletal muscle, this may play an important role in the associated disease situation.
Collapse
|
3
|
A study of the mechanisms of excitation–contraction coupling in frog skeletal muscle based on measurements of [Ca2+] transients inside the sarcoplasmic reticulum. J Muscle Res Cell Motil 2018; 39:41-60. [DOI: 10.1007/s10974-018-9497-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
4
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
5
|
Fénelon K, Lamboley CRH, Carrier N, Pape PC. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle. ACTA ACUST UNITED AC 2013; 140:403-19. [PMID: 23008434 PMCID: PMC3457687 DOI: 10.1085/jgp.201110730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments were performed to characterize the properties of the intrinsic Ca2+ buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([CaT]SR and [Ca2+]SR) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca2+ indicator). Results indicate SR Ca2+ buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca2+. Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca2+]SR and [CaT]SR are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca2+ permeability of the SR, namely d[CaT]SR/dt ÷ [Ca2+]SR (denoted release permeability), in experiments in which only [CaT]SR or [Ca2+]SR is measured. In response to a voltage-clamp step to −20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ∼50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca2+ release of 2.3 SR Ca2+ release channels neighboring each channel activated by its associated voltage sensor. Release permeability at −60 mV increases as [CaT]SR decreases from its resting physiological level to ∼0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca2+]SR inhibits release when [CaT]SR declines to a low level.
Collapse
Affiliation(s)
- Karine Fénelon
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | | | | | | |
Collapse
|
6
|
Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:134-44. [PMID: 21029746 DOI: 10.1016/j.pbiomolbio.2010.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
The ryanodine receptor (RyR) is a Ca(2+) release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation-contraction (E-C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca(2+) release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2+) release (DICR) and Ca(2+)-induced Ca(2+) release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca(2+) release during E-C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca(2+) release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca(2+) release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E-C coupling and other processes in nonmammalian vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
7
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
8
|
Jiménez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 2008; 94:3178-88. [PMID: 18178643 PMCID: PMC2275691 DOI: 10.1529/biophysj.107.118786] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022] Open
Abstract
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca(2+) release and maximal SR-releasable Ca(2+) contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca(2+) in response to 4-CmC did not differ significantly. SR Ca(2+) release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca(2+) indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(alpha-aminoethyl ether)-N,N,N'N'-tetraacetic acid (20 mM). Maximal SR Ca(2+) release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca(2+) release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca(2+) release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca(2+), account for the age-dependent decline in intracellular Ca(2+) mobilization and specific force.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion.
Collapse
Affiliation(s)
- Stephen M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6085, USA.
| |
Collapse
|
10
|
Zhou J, Launikonis BS, Ríos E, Brum G. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling? ACTA ACUST UNITED AC 2005; 124:409-28. [PMID: 15452201 PMCID: PMC2233900 DOI: 10.1085/jgp.200409105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 μM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4–40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10−7 in the frog or 10−8 in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.
Collapse
Affiliation(s)
- Jingsong Zhou
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
11
|
Pizarro G, Ríos E. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. ACTA ACUST UNITED AC 2005; 124:239-58. [PMID: 15337820 PMCID: PMC2233888 DOI: 10.1085/jgp.200409071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In skeletal muscle, the waveform of Ca2+ release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca2+ sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca2+ content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca2+ release and a way to reliably modify the SR content, we combined in the same cells the “EGTA/phenol red” method (Pape et al., 1995) to evaluate Ca2+ release, with the “removal” method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Δ[H+] and Δ[Ca2+] from which the amount of released Ca2+ and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (CaSR). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as CaSR was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting CaSR (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low CaSR. The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca2+ release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca2+ on the activity of Ca2+ release channels.
Collapse
Affiliation(s)
- Gonzalo Pizarro
- Dept. of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St., Suite 1279JS, Chicago, IL 60612, USA
| | | |
Collapse
|
12
|
Schuhmeier RP, Gouadon E, Ursu D, Kasielke N, Flucher BE, Grabner M, Melzer W. Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes. Biophys J 2004; 88:1765-77. [PMID: 15626717 PMCID: PMC1305232 DOI: 10.1529/biophysj.104.051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The L-type Ca(2+) channels Ca(V)1.1 (alpha(1S)) and Ca(V)1.2 (alpha(1C)) share properties of targeting but differ by their mode of coupling to ryanodine receptors in muscle cells. The brain isoform Ca(V)2.1 (alpha(1A)) lacks ryanodine receptor targeting. We studied these three isoforms in myotubes of the alpha(1S)-deficient skeletal muscle cell line GLT under voltage-clamp conditions and estimated the flux of Ca(2+) (Ca(2+) input flux) resulting from Ca(2+) entry and release. Surprisingly, amplitude and kinetics of the input flux were similar for alpha(1C) and alpha(1A) despite a previously reported strong difference in responsiveness to extracellular stimulation. The kinetic flux characteristics of alpha(1C) and alpha(1A) resembled those in alpha(1S)-expressing cells but the contribution of Ca(2+) entry was much larger. alpha(1C) but not alpha(1A)-expressing cells revealed a distinct transient flux component sensitive to sarcoplasmic reticulum depletion by 30 microM cyclopiazonic acid and 10 mM caffeine. This component likely results from synchronized Ca(2+)-induced Ca(2+) release that is absent in alpha(1A)-expressing myotubes. In cells expressing an alpha(1A)-derivative (alpha(1)Aas(1592-clip)) containing the putative targeting sequence of alpha(1S), a similar transient component was noticeable. Yet, it was considerably smaller than in alpha(1C), indicating that the local Ca(2+) entry produced by the chimera is less effective in triggering Ca(2+) release despite similar global Ca(2+) inward current density.
Collapse
Affiliation(s)
- Ralph Peter Schuhmeier
- Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Ursu D, Schuhmeier RP, Melzer W. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse. J Physiol 2004; 562:347-65. [PMID: 15528246 PMCID: PMC1665514 DOI: 10.1113/jphysiol.2004.073882] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The voltage-activated fluxes of Ca(2+) from the sarcoplasmic reticulum (SR) and from the extracellular space were studied in skeletal muscle fibres of adult mice. Single fibres of the interosseus muscle were enzymatically isolated and voltage clamped using a two-electrode technique. The fibres were perfused from the current-passing micropipette with a solution containing 15 mm EGTA and 0.2 mm of either fura-2 or the faster, lower affinity indicator fura-FF. Electrical recordings in parallel with the fluorescence measurements allowed the estimation of intramembrane gating charge movements and transmembrane Ca(2+) inward current exhibiting half-maximal activation at -7.60 +/- 1.29 and 3.0 +/- 1.44 mV, respectively. The rate of Ca(2+) release from the SR was calculated after fitting the relaxation phases of fluorescence ratio signals with a kinetic model to quantify overall Ca(2+) removal. Results obtained with the two indicators were similar. Ca(2+) release was 2-3 orders of magnitude larger than the flux carried by the L-type Ca(2+) current. At maximal depolarization (+50 mV), release flux peaked at about 3 ms after the onset of the voltage pulse and then decayed in two distinct phases. The slower phase, most likely resulting from SR depletion, indicated a decrease in lumenal Ca(2+) content by about 80% within 100 ms. Unlike in frog fibres, the kinetics of the rapid phase of decay showed no dependence on the filling state of the SR and the results provide little evidence for a substantial increase of SR permeability on depletion. The approach described here promises insight into excitation-contraction coupling in future studies of genetically altered mice.
Collapse
Affiliation(s)
- D Ursu
- University of Ulm, Department of Applied Physiology, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | |
Collapse
|
14
|
Schuhmeier RP, Melzer W. Voltage-dependent Ca2+ fluxes in skeletal myotubes determined using a removal model analysis. J Gen Physiol 2004; 123:33-51. [PMID: 14676283 PMCID: PMC2217416 DOI: 10.1085/jgp.200308908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 11/19/2003] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to quantify the Ca2+ fluxes underlying Ca2+ transients and their voltage dependence in myotubes by using the "removal model fit" approach. Myotubes obtained from the mouse C2C12 muscle cell line were voltage-clamped and loaded with a solution containing the fluorescent indicator dye fura-2 (200 microM) and a high concentration of EGTA (15 mM). Ca2+ inward currents and intracellular ratiometric fluorescence transients were recorded in parallel. The decaying phases of Ca2+-dependent fluorescence signals after repolarization were fitted by theoretical curves obtained from a model that included the indicator dye, a slow Ca2+ buffer (to represent EGTA), and a sequestration mechanism as Ca2+ removal components. For each cell, the rate constants of slow buffer and transport and the off rate constant of fura-2 were determined in the fit. The resulting characterization of the removal properties was used to extract the Ca2+ input fluxes from the measured Ca2+ transients during depolarizing pulses. In most experiments, intracellular Ca2+ release dominated the Ca2+ input flux. In these experiments, the Ca2+ flux was characterized by an initial peak followed by a lower tonic phase. The voltage dependence of peak and tonic phase could be described by sigmoidal curves that reached half-maximal activation at -16 and -20 mV, respectively, compared with -2 mV for the activation of Ca2+ conductance. The ratio of the peak to tonic phase (flux ratio) showed a gradual increase with voltage as in rat muscle fibers indicating the similarity to EC coupling in mature mammalian muscle. In a subgroup of myotubes exhibiting small fluorescence signals and in cells treated with 30 microM of the SERCA pump inhibitor cyclopiazonic acid (CPA) and 10 mM caffeine, the calculated Ca2+ input flux closely resembled the L-type Ca2+ current, consistent with the absence of SR Ca2+ release under these conditions and in support of a valid determination of the time course of myoplasmic Ca2+ input flux based on the optical indicator measurements.
Collapse
Affiliation(s)
- R P Schuhmeier
- Universität Ulm, Abteilung für Angewandte Physiologie Albert-Einstein-Allee 11, Germany
| | | |
Collapse
|
15
|
Brum G, Piriz N, DeArmas R, Rios E, Stern M, Pizarro G. Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle. Biophys J 2003; 85:245-54. [PMID: 12829480 PMCID: PMC1303081 DOI: 10.1016/s0006-3495(03)74470-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In voltage-clamped frog skeletal muscle fibers, Ca(2+) release rises rapidly to a peak, then decays to a nearly steady state. The voltage dependence of the ratio of amplitudes of these two phases (p/s) shows a maximum at low voltages and declines with further depolarization. The peak phase has been attributed to a component of Ca(2+) release induced by Ca(2+), which is proportionally greater at low voltages. We compared the effects of two interventions that inhibit Ca(2+) release: inactivation of voltage sensors, and local anesthetics reputed to block Ca(2+) release induced by Ca(2+). Holding the cells partially depolarized strongly reduced the peak and steady levels of Ca(2+) release elicited by a test pulse and suppressed the maximum of the p/s ratio at low voltages. The p/s ratio increased monotonically with test voltage, eventually reaching a value similar to the maximum found in noninactivated fibers. This implies that the marked peak of Ca(2+) release is a property of a cooperating collection of voltage sensors rather than individual ones. Local anesthetics reduced the peak of release flux at every test voltage, and the steady phase to a lesser degree. At variance with sustained depolarization, they made p/s low at all voltages. These observations were well-reproduced by the "couplon" model of dual control, which assumes that depolarization and anesthetics respectively, and selectively, disable its Ca(2+)-dependent or its voltage-operated channels. This duality of effects and their simulation under such hypotheses are consistent with the operation of a dual, two-stage control of Ca(2+) release in muscle, whereby Ca(2+) released through multiple directly voltage-activated channels builds up at junctions to secondarily open Ca(2+)-operated channels.
Collapse
Affiliation(s)
- Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
16
|
Schuhmeier RP, Dietze B, Ursu D, Lehmann-Horn F, Melzer W. Voltage-activated calcium signals in myotubes loaded with high concentrations of EGTA. Biophys J 2003; 84:1065-78. [PMID: 12547788 PMCID: PMC1302684 DOI: 10.1016/s0006-3495(03)74923-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 10/16/2002] [Indexed: 10/21/2022] Open
Abstract
In the present study we describe the analysis of optically recorded whole cell Ca(2+) transients elicited by depolarization in cultured skeletal myotubes. Myotubes were obtained from the mouse muscle-derived cell line C2C12 and from mouse satellite cells. The cells were voltage-clamped and perfused with an artificial intracellular solution containing 15 mM EGTA to ensure that the bulk of the Ca(2+) mobilized by depolarization is bound to this extrinsic buffer. The apparent on- and off-rate constants of EGTA and the dissociation rate constant of fura-2 in the cell were estimated by investigating the Ca(2+)-dependence of kinetic components of the fluorescence decay after repolarization. These parameters were used to calculate the time course of the total voltage-controlled flux of Ca(2+) to the myoplasmic space (Ca(2+) input flux). The validity of the procedure was confirmed by model simulations using artificial Ca(2+) input fluxes. Both C2C12 and primary-cultured myotubes showed a very similar phasic-tonic time course of the Ca(2+) input flux. In most measurements, the input flux was considerably larger and showed a different time course than the estimated Ca(2+) flux carried by the L-type Ca(2+) channels, indicating that it consists mainly of voltage-controlled Ca(2+) release from the sarcoplasmic reticulum. In cells with extremely small fluorescence transients, the calculated input fluxes matched the kinetic characteristics of the Ca(2+) inward current, indicating that Ca(2+) release was absent. These measurements served as a control for the fidelity of the fluorimetric flux analysis. The procedures promise a deeper insight into alterations of Ca(2+) release gating in studies employing myotube expression systems for mutant or chimeric protein components of excitation-contraction coupling.
Collapse
Affiliation(s)
- R P Schuhmeier
- Universität Ulm, Abteilung für Angewandte Physiologie, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
17
|
Abstract
Ryanodine receptor (RyR) is a Ca(2)(+) release channel in the sarcoplasmic reticulum and plays an important role in excitation-contraction coupling in skeletal muscle. The Ca(2)(+) release through the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2)(+) release (DICR) and Ca(2)(+)-induced Ca(2)(+) release (CICR). Two different RyR isoforms, RyR1 (or alpha-RyR) and RyR3 (or beta-RyR), have been found to be expressed in skeletal muscle. Most adult mammalian muscles express primarily RyR1, whereas almost equal amounts of the two RyR isoforms exist in many nonmammalian vertebrate muscles. RyR1 is believed to be responsible for both DICR and CICR, whereas RyR3 may function as the CICR channel. Recent findings demonstrate that alpha-RyR is selectively and markedly suppressed in CICR activity in frog skeletal muscle. This selective suppression of RyR1, although to a lesser extent, also was found to occur in mammalian skeletal muscle. This short review describes the biological meanings of this selective suppression and discusses physiological roles and significance of the two RyR isoforms in vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
18
|
Caputo C. Calcium release in skeletal muscle: from K+ contractures to Ca2+ sparks. J Muscle Res Cell Motil 2002; 22:485-504. [PMID: 12038583 DOI: 10.1023/a:1015062914947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C Caputo
- Labortorio Biofísica del Músculo, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| |
Collapse
|
19
|
Ward CW, Protasi F, Castillo D, Wang Y, Chen SR, Pessah IN, Allen PD, Schneider MF. Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. Biophys J 2001; 81:3216-30. [PMID: 11720987 PMCID: PMC1301781 DOI: 10.1016/s0006-3495(01)75957-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this investigation we use a "dyspedic" myogenic cell line, which does not express any ryanodine receptor (RyR) isoform, to examine the local Ca(2+) release behavior of RyR3 and RyR1 in a homologous cellular system. Expression of RyR3 restored caffeine-sensitive, global Ca(2+) release and causes the appearance of relatively frequent, spontaneous, spatially localized elevations of [Ca(2+)], as well as occasional spontaneous, propagating Ca(2+) release, in both intact and saponin-permeabilized myotubes. Intact myotubes expressing RyR3 did not, however, respond to K(+) depolarization. Expression of RyR1 restored depolarization-induced global Ca(2+) release in intact myotubes and caffeine-induced global release in both intact and permeabilized myotubes. Both intact and permeabilized RyR1-expressing myotubes exhibited relatively infrequent spontaneous Ca(2+) release events. In intact myotubes, the frequency of occurrence and properties of these RyR1-induced events were not altered by partial K(+) depolarization or by application of nifedipine, suggesting that these RyR1 events are independent of the voltage sensor. The events seen in RyR1-expressing myotubes were spatially more extensive than those seen in RyR3-expressing myotubes; however, when analysis was limited to spatially restricted "Ca(2+) spark"-like events, events in RyR3-expressing myotubes were larger in amplitude and duration compared with those in RyR1. Thus, in this skeletal muscle context, differences exist in the spatiotemporal properties and frequency of occurrence of spontaneous release events generated by RyR1 and RyR3. These differences underscore functional differences between the Ca(2+) release behavior of RyR1 and RyR3 in this homologous expression system.
Collapse
Affiliation(s)
- C W Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Szentesi P, Collet C, Sárközi S, Szegedi C, Jona I, Jacquemond V, Kovács L, Csernoch L. Effects of dantrolene on steps of excitation-contraction coupling in mammalian skeletal muscle fibers. J Gen Physiol 2001; 118:355-75. [PMID: 11585849 PMCID: PMC2233700 DOI: 10.1085/jgp.118.4.355] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of the muscle relaxant dantrolene on steps of excitation-contraction coupling were studied on fast twitch muscles of rodents. To identify the site of action of the drug, single fibers for voltage-clamp measurements, heavy SR vesicles for calcium efflux studies and solubilized SR calcium release channels/RYRs for lipid bilayer studies were isolated. Using the double Vaseline-gap or the silicone-clamp technique, dantrolene was found to suppress the depolarization-induced elevation in intracellular calcium concentration ([Ca2+]i) by inhibiting the release of calcium from the SR. The suppression of [Ca2+]i was dose-dependent, with no effect at or below 1 microM and a 53 +/- 8% (mean +/- SEM, n = 9, cut fibers) attenuation at 0 mV with 25 microM of extracellularly applied dantrolene. The drug was not found to be more effective if injected than if applied extracellularly. Calculating the SR calcium release revealed an equal suppression of the steady (53 +/- 8%) and of the early peak component (46 +/- 6%). The drug did not interfere with the activation of the voltage sensor in as much as the voltage dependence of both intramembrane charge movements and the L-type calcium currents (I(Ca)) were left, essentially, unaltered. However, the inactivation of I(Ca) was slowed fourfold, and the conductance was reduced from 200 +/- 16 to 143 +/- 8 SF(-1) (n = 10). Dantrolene was found to inhibit thymol-stimulated calcium efflux from heavy SR vesicles by 44 +/- 10% (n = 3) at 12 microM. On the other hand, dantrolene failed to affect the isolated RYR incorporated into lipid bilayers. The channel displayed a constant open probability for as long as 30-50 min after the application of the drug. These data locate the binding site for dantrolene to be on the SR membrane, but be distinct from the purified RYR itself.
Collapse
Affiliation(s)
- Péter Szentesi
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Claude Collet
- Laboratoire de Physiologie des Elémentes Excitables, Université Claude Bernard Lyon 1, ERS CNRS 2019, F69622, Villeurbanne, France
| | - Sándor Sárközi
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Csaba Szegedi
- Cell Physiology Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary, H-4012
| | - István Jona
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Vincent Jacquemond
- Laboratoire de Physiologie des Elémentes Excitables, Université Claude Bernard Lyon 1, ERS CNRS 2019, F69622, Villeurbanne, France
| | - László Kovács
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - László Csernoch
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| |
Collapse
|
21
|
Huang CL. Charge movements in intact amphibian skeletal muscle fibres in the presence of cardiac glycosides. J Physiol 2001; 532:509-23. [PMID: 11306668 PMCID: PMC2278556 DOI: 10.1111/j.1469-7793.2001.0509f.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Intramembrane charge movements were examined in intact voltage-clamped amphibian muscle fibres following treatment with cardiac glycosides in the hypertonic gluconate-containing solutions hitherto reported to emphasise the features of q(gamma) at the expense of q(beta) charge. 2. The application of chlormadinone acetate (CMA) at concentrations known selectively to block Na(+)-K(+)-ATPase conserved the steady-state voltage dependence of intramembrane charge, contributions from delayed (q(gamma)) charging transients, and their inactivation characteristics brought about by shifts in holding potential. 3. The addition of either ouabain (125, 250 or 500 nM) or digoxin (5 nM) at concentrations previously reported additionally to influence excitation-contraction coupling similarly conserved the steady-state charge-voltage relationships, Q(V), in fully polarised fibres to give values of maximum charge, Q(max), transition voltage, V*, and steepness factor, k, that were consistent with a persistent q component as reported on earlier occasions (Q(max) approximately = 25-27 nC F-1, V* approximately = -45 to -50 mV, k approximately = 7-9 mV). 4. In both cases shifts in holding potential from -90 to -50 mV produced a partial inactivation that separated steeply and more gradually voltage-dependent charge components in agreement with previous characterisations. 5. However, charge movements that were observed in the presence of either digoxin or ouabain were monotonic decays in which delayed (q(gamma)) transients could not be distinguished from the early charging records. These features persisted despite the further addition of chlormadinone acetate over a 10-fold concentration range (5-50 microM) known to displace ouabain from the Na(+)-K(+)-ATPase. 6. Ouabain (500 nM) restored the steady-state charge movement that was previously abolished by the addition of 2.0 mM tetracaine in common with previous results of using ryanodine receptor (RyR)-specific agents. 7. Perchlorate (8.0 mM) restored the delayed 'on' relaxations and increased the prominence of the 'off' decays produced by q(gamma) charge following treatment with cardiac glycosides. This was accompanied by a negative (approximately 10-15 mV) shift in the steady-state charge-voltage relationship but an otherwise conserved maximum charge, Q(max), and steepness factor, k, in parallel with previously reported effects of perchlorate following treatments with RyR-specific agents. 8. The features of cardiac glycoside action thus parallel those of other agents that act on RyR-Ca(2+) release channels yet influence the kinetics but spare the steady-state properties of intramembrane charge.
Collapse
Affiliation(s)
- C L Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
22
|
Melzer W, Dietze B. Malignant hyperthermia and excitation-contraction coupling. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 171:367-78. [PMID: 11412150 DOI: 10.1046/j.1365-201x.2001.00840.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant hyperthermia (MH) is a state of elevated skeletal muscle metabolism that may occur during general anaesthesia in genetically pre-disposed individuals. Malignant hyperthermia results from altered control of sarcoplasmic reticulum (SR) Ca2+ release. Mutations have been identified in MH-susceptible (MHS) individuals in two key proteins of excitation-contraction (EC) coupling, the Ca2+ release channel of the SR, ryanodine receptor type 1 (RyR1) and the alpha1-subunit of the dihydropyridine receptor (DHPR, L-type Ca2+ channel). During EC coupling, the DHPR senses the plasma membrane depolarization and transmits the information to the ryanodine receptor (RyR). As a consequence, Ca2+ is released from the terminal cisternae of the SR. One of the human MH-mutations of RyR1 (Arg614Cys) is also found at the homologous location in the RyR of swine (Arg615Cys). This animal model permits the investigation of physiological consequences of the homozygously expressed mutant release channel. Of particular interest is the question of whether voltage-controlled release of Ca2+ is altered by MH-mutations in the absence of MH-triggering substances. This question has recently been addressed in this laboratory by studying Ca2+ release under voltage clamp conditions in both isolated human skeletal muscle fibres and porcine myotubes.
Collapse
Affiliation(s)
- W Melzer
- Department of Applied Physiology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
23
|
Murayama T, Kurebayashi N, Ogawa Y. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys J 2000; 78:1810-24. [PMID: 10733962 PMCID: PMC1300776 DOI: 10.1016/s0006-3495(00)76731-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mg(2+) serves as a competitive antagonist against Ca(2+) in the high-affinity Ca(2+) activation site (A-site) and as an agonist of Ca(2+) in the low-affinity Ca(2+) inactivation site (I-site) of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). This paper presents the quantitative determination of the affinities for Ca(2+) and Mg(2+) of A- and I-sites of RyR in frog skeletal muscles by measuring [(3)H]ryanodine binding to purified alpha- and beta-RyRs and CICR activity in skinned fibers. There was only a minor difference in affinity at most between alpha- and beta-RyRs. The A-site favored Ca(2+) 20- to 30-fold over Mg(2+), whereas the I-site was nonselective between the two cations. The RyR in situ showed fivefold higher affinities for Ca(2+) and Mg(2+) of both sites than the purified alpha- and beta-RyRs with unchanged cation selectivity. Adenine nucleotides, whose stimulating effect was found to be indistinguishable between free and complexed forms, did not alter the affinities for cations in either site, except for the increased maximum activity of RyR. Caffeine increased not only the affinity of the A-site for Ca(2+) alone, but also the maximum activity of RyR with otherwise minor changes. The results presented here suggest that the rate of CICR in frog skeletal muscles appears to be too low to explain the physiological Ca(2+) release, even though Mg(2+) inhibition disappears.
Collapse
Affiliation(s)
- T Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | |
Collapse
|
24
|
Csernoch L, Szentesi P, Kovács L. Differential effects of caffeine and perchlorate on excitation-contraction coupling in mammalian skeletal muscle. J Physiol 1999; 520 Pt 1:217-30. [PMID: 10517813 PMCID: PMC2269578 DOI: 10.1111/j.1469-7793.1999.00217.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Enzymatically dissociated single muscle fibres of the rat were studied under voltage clamp conditions in a double Vaseline gap experimental chamber. Intramembrane charge movement and changes in intracellular calcium concentration ([Ca2+]i) were measured and the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) was calculated. This enabled the determination of SR permeability and thus the estimation of the transfer function between intramembrane charge movement and SR permeability. 2. Perchlorate (3 mM) shifted the membrane potential dependence of intramembrane charge movement to more negative voltages without any effect on the steepness or on the maximal available charge. The drug increased SR permeability at every membrane potential but did not alter the peak-to-steady level ratio. It also increased the slope of the transfer function, indicating a more efficient coupling between the voltage sensors and the ryanodine receptors. 3. Caffeine (1 mM), on the other hand, increased SR permeability without altering the voltage dependence of intramembrane charge movement. It neither prolonged the depolarization-induced increase in [Ca2+]i at short pulse durations nor altered the time to peak of Rrel. The augmentation of SR permeability by the drug was more pronounced during the peak caffeine response than during its steady level. This was manifested in a leftward shift of the transfer function rather than an increase in its slope. 4. These observations indicate that perchlorate and caffeine alter the coupling between the voltage sensors and SR calcium release channels in mammalian skeletal muscle. They do not, however, share a common mechanism for enhancing the depolarization-induced release of calcium from the SR.
Collapse
Affiliation(s)
- L Csernoch
- Department of Physiology, University Medical School Debrecen and Cell Physiology Research Group of the Hungarian Academy of Sciences, Hungary.
| | | | | |
Collapse
|
25
|
Abstract
Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.
Collapse
Affiliation(s)
- E Niggli
- Department of Physiology, University of Bern, Switzerland.
| |
Collapse
|
26
|
Csernoch L, Szentesi P, Sárközi S, Szegedi C, Jona I, Kovács L. Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres. J Physiol 1999; 515 ( Pt 3):843-57. [PMID: 10066909 PMCID: PMC2269186 DOI: 10.1111/j.1469-7793.1999.843ab.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. Single muscle fibres were dissociated enzymatically from the extensor digitorum communis muscle of rats. The fibres were mounted into a double Vaseline gap experimental chamber and the events in excitation-contraction coupling were studied under voltage clamp conditions in the presence and absence of the local anaesthetic tetracaine. 2. Changes in intracellular calcium concentration ([Ca2+]i) were monitored using the calcium sensitive dyes antipyrylazo III and fura-2 and the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) was calculated. Tetracaine decreased the maximal attained [Ca2+]i and suppressed, in a dose-dependent manner, both the early peak and the steady level of Rrel in the voltage range examined. 3. The concentration dependence of the effects on the two kinetic components of Rrel were almost identical with a half-effective concentration (K50) of 70 and 71 microM and a Hill coefficient (nH) of 2.7 and 2.3 for the peak and the steady level, respectively. Furthermore, the drug did not alter the peak to steady level ratio up to a concentration (50 microM) that caused a 35 +/- 5 % reduction in calcium release. Higher concentrations did suppress the ratio but the degree of suppression was voltage independent. 4. Tetracaine (50 microM) neither influenced the total available intramembrane charge nor altered its membrane potential dependence. It shifted the transfer function, the normalized SR permeability versus normalized charge to the right, indicating that similar charge transfer caused a smaller increase in SR permeability. 5. To explore the site of action of tetracaine further the ryanodine receptor (RyR) calcium release channel of the SR was purified and reconstituted into planar lipid bilayers. The reconstituted channel had a conductance of 511 +/- 14 pS (n = 8) in symmetric 250 mM KCl that was not affected by tetracaine. Tetracaine decreased the open probability of the channel in a concentration-dependent manner with K50 = 68 microM and nH = 1.5. 6. These experiments show that tetracaine suppresses SR calcium release in enzymatic isolated mammalian skeletal muscle fibres. This effect is due, presumably, to the decreased open probability of the RyR in the presence of the drug. Since both the inactivating peak and the steady level of Rrel were equally affected by tetracaine, our observations suggest that there is a tight coupling between these kinetic components of SR calcium release in mammalian skeletal muscle.
Collapse
Affiliation(s)
- L Csernoch
- Department of Physiology, University Medical School Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
27
|
Struk A, Melzer W. Modification of excitation-contraction coupling by 4-chloro-m-cresol in voltage-clamped cut muscle fibres of the frog (R. pipiens). J Physiol 1999; 515 ( Pt 1):221-31. [PMID: 9925891 PMCID: PMC2269131 DOI: 10.1111/j.1469-7793.1999.221ad.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The effect of 5 microM 4-chloro-m-cresol (4-CmC) on voltage-controlled Ca2+ release was studied in cut muscle fibres of the frog loaded with internal solutions containing 15 mM EGTA. Fibres were voltage clamped using a double Vaseline gap system, and Ca2+ signals were recorded with the fluorescent indicator dye fura-2 2. Resting intracellular free Ca2+ concentration increased from 61 to 100 nM upon application of 4-CmC. 3. Both peak rate of release of intracellularly stored Ca2+ and the steady level attained after 50 ms of depolarization increased, but the potentiation of the latter was more pronounced (by a factor of 1.7 versus 1.3). The voltage of half-maximal activation remained unchanged. 4. Non-linear intramembranous charge movements showed no significant change in voltage dependence while the maximal charge displaced by depolarization increased by 25 %. 5. The dependence of peak release flux on total intramembranous charge was not different in 4-CmC, but for the steady level of release the steepness of the relation increased by a factor of 1.3. 6. The stimulating effect of 5 microM 4-CmC on depolarization-induced Ca2+ release resembled the potentiation by 0.5 mM caffeine. However, 0.5 mM caffeine increased the peak and steady levels of the release rate by a similar factor and caused no increase in the resting free calcium concentration, indicating different modes of action of the two substances. 7. Neither 5 microM 4-CmC nor 0.5 mM caffeine led to a loss of voltage control of Ca2+ release during repolarization after short depolarizations, as has been reported previously for caffeine. Potentiated Ca2+ release could be terminated by repolarization as fast as under control conditions both with 15 mM and 0.1 mM internal EGTA. 8. The effects of 4-CmC may result from a direct opening of the release channel combined with an enhancement of the transduction mechanism that couples channel opening to displacement of voltage sensor charges.
Collapse
Affiliation(s)
- A Struk
- Department of Applied Physiology, University of Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
28
|
De Armas R, González S, Brum G, Pizarro G. Effects of 2,3-butanedione monoxime on excitation-contraction coupling in frog twitch fibres. J Muscle Res Cell Motil 1998; 19:961-77. [PMID: 10047995 DOI: 10.1023/a:1005409121660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
10 and 30 mM 2,3-butanedione monoxime (BDM) applied extracellularly to voltage-clamped frog skeletal muscle twitch fibres suppressed both Ca2+ release flux and intramembranous charge movement. Both effects could be clearly separated. The early peak of the Ca2+ release flux was suppressed at every test voltage. The steady level attained at the end of a 100 ms clamp depolarization was relatively spared for lower depolarizing pulses, but was as suppressed as the peak at voltages above -20 mV. The intramembranous charge movement was affected mainly in the I gamma component. The drug had a distinct effect on the kinetics of the intramembranous charge movement current around the threshold for Ca2+ release. The three kinetic components of I gamma were simultaneously affected. For more positive depolarizations where the kinetic effect was not evident, the oxime had no significant effect on the charge moved. Under conditions in which I gamma was absent (i.e. stretched fibres, intracellular solutions containing 6 to 10 mM BAPTA), treatment with 10 mM BDM had a small, not significant suppressive effect on the maximum charge moved (Qmax), while it affected Ca2+ release significantly. When 10 mM BDM was applied in the presence of 0.2 mM tetracaine, the local anaesthetic-resistant Ca2+ release flux was not further suppressed by the oxime.
Collapse
Affiliation(s)
- R De Armas
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
29
|
Struk A, Lehmann-Horn F, Melzer W. Voltage-dependent calcium release in human malignant hyperthermia muscle fibers. Biophys J 1998; 75:2402-10. [PMID: 9788935 PMCID: PMC1299914 DOI: 10.1016/s0006-3495(98)77684-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.
Collapse
Affiliation(s)
- A Struk
- Abteilung für Angewandte Physiologie, Universität Ulm, D-89069 Ulm, Germany
| | | | | |
Collapse
|
30
|
Pape PC, Jong DS, Chandler WK. Effects of partial sarcoplasmic reticulum calcium depletion on calcium release in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 1998; 112:263-95. [PMID: 9725889 PMCID: PMC2229420 DOI: 10.1085/jgp.112.3.263] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 07/15/1998] [Indexed: 01/06/2023] Open
Abstract
Resting sarcoplasmic reticulum (SR) Ca content ([CaSR]R) was varied in cut fibers equilibrated with an internal solution that contained 20 mM EGTA and 0-1.76 mM Ca. SR Ca release and [CaSR]R were measured with the EGTA-phenol red method (. J. Gen. Physiol. 106:259-336). After an action potential, the fractional amount of Ca released from the SR increased from 0.17 to 0.50 when [CaSR]R was reduced from 1, 200 to 140 microM. This increase was associated with a prolongation of release (final time constant, from 1-2 to 10-15 ms) and of the action potential (by 1-2 ms). Similar changes in release were observed with brief stimulations to -20 mV in voltage-clamped fibers, in which charge movement (Qcm) could be measured. The peak values of Qcm and the fractional rate of SR Ca release, as well as their ON time courses, were little affected by reducing [CaSR]R from 1,200 to 140 microM. After repolarization, however, the OFF time courses of Qcm and the rate of SR Ca release were slowed by factors of 1.5-1.7 and 6.5, respectively. These and other results suggest that, after action potential stimulation of fibers in normal physiological condition, the increase in myoplasmic free [Ca] that accompanies SR Ca release exerts three negative feedback effects that tend to reduce additional release: (a) the action potential is shortened by current through Ca-activated potassium channels in the surface and/or tubular membranes; (b) the OFF kinetics of Qcm is accelerated; and (c) Ca inactivation of Ca release is increased. Some of these effects of Ca on an SR Ca channel or its voltage sensor appear to be regulated by the value of [Ca] within 22 nm of the mouth of the channel.
Collapse
Affiliation(s)
- P C Pape
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510-8026, USA
| | | | | |
Collapse
|
31
|
Szentesi P, Zaremba R, Stienen GJ. Calcium handling by the sarcoplasmic reticulum during oscillatory contractions of skinned skeletal muscle fibres. J Muscle Res Cell Motil 1998; 19:675-87. [PMID: 9742451 DOI: 10.1023/a:1005385232010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Isometric ATP consumption and force were investigated in mechanically skinned fibres from iliofibularis muscle of Xenopus laevis. Measurements were performed at different [Ca2+], in the presence and absence of caffeine (5 nM). In weakly Ca2+-buffered solutions without caffeine, spontaneous oscillations in force and ATPase activity occurred. The repetition frequency was [Ca2+]-and temperature-dependent. The Ca2+ threshold (+/- SEM) for the oscillations corresponded to a pCa of 6.5 +/- 0.1. The maximum ATP consumption associated with calcium uptake by the sarcoplasmic reticulum (SR) reached during the oscillations was similar to the activity under steady-state conditions at saturating calcium concentrations in the presence of caffeine. Maximum activity was reached when the force relaxation was almost complete. The calculated amount of Ca2+ taken up by the SR during a complete cycle corresponded to 5.4 +/ 0.4 mmol per litre cell volume. In strongly Ca2+-buffered solutions, caffeine enhanced the calcium sensitivity of the contractile apparatus and, at low calcium concentrations, SR Ca uptake. These results suggest that when the SR is heavily loaded by net Ca uptake, there is a massive calcium-induced calcium release. Subsequent net Ca uptake by the SR then gives rise to the periodic nature of the calcium transient.
Collapse
Affiliation(s)
- P Szentesi
- Department of Physiology, University Medical School of Debrecen, Hungary
| | | | | |
Collapse
|
32
|
Struk A, Szücs G, Kemmer H, Melzer W. Fura-2 calcium signals in skeletal muscle fibres loaded with high concentrations of EGTA. Cell Calcium 1998; 23:23-32. [PMID: 9570007 DOI: 10.1016/s0143-4160(98)90071-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fura-2 is one of the most frequently used fluorescent Ca indicator dyes; yet it has limitations in tracking large intracellular Ca transients due to its high affinity for Ca. Since high affinity is of advantage when small Ca changes are to be detected, we tried the application of Fura-2 in skeletal muscle fibres which had been loaded with 15 mM internal EGTA to eliminate contractile artifacts. Under these conditions, the free Ca transients are considerably reduced in amplitude and strong saturation of Fura-2 is avoided. Cut segments of isolated muscle fibres were voltage-clamped in a double vaseline gap set-up. In the presence of high internal EGTA, free Ca (as measured with the rapid metallochromic indicator antipyrylazo III) drops rapidly from one value to a lower quasi steady-state value at the end of a depolarizing voltage pulse. This property allowed inspection of the dissociation kinetics of Ca from Fura-2 in the myoplasmic environment. The dissociation rate constant koff in the fibre was determined from the time constant of the exponential decay of the Fura-2 signal as a function of the final level of free Ca. We obtained a value of 26 s-1 at the experimental temperature of 12 degrees C. Knowledge of koff in the cell is essential for reconstructing the time course of free Ca from indicator bound Ca and for estimating the time course of the rate of release from the sarcoplasmic reticulum. The described combination of high EGTA buffering with Fura-2 fluorescence recording may be particularly useful for the determination of Ca release in small muscle cells.
Collapse
Affiliation(s)
- A Struk
- Department of Applied Physiology, University of Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Szentesi P, Jacquemond V, Kovács L, Csernoch L. Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres. J Physiol 1997; 505 ( Pt 2):371-84. [PMID: 9423180 PMCID: PMC1160071 DOI: 10.1111/j.1469-7793.1997.371bb.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Single muscle fibres were dissociated enzymatically from the extensor digitorum longus and communis muscles of rats and guinea-pigs. The fibres were mounted into a double Vaseline gap experimental chamber and the events in excitation-contraction coupling were studied under voltage clamp conditions. 2. The voltage dependence of intramembrane charge movement followed a two-state Boltzmann distribution with maximal available charge of 26.1 +/- 1.5 and 26.1 +/- 1.3 nC microF-1, mid-point voltage of -35.1 +/- 5.0 and -42.2 +/- 1.2 mV and steepness of 16.7 +/- 2.2 and 17.0 +/- 1.9 mV (means +/- S.E.M., n = 7 and 4) in rats and guinea-pigs, respectively. 3. Intracellular calcium concentration ([Ca2+]i) was monitored using the calcium-sensitive dyes antipyrylazo III, fura-2 and mag-fura-5. Resting [Ca2+]i was similar in rats and guinea-pigs with 125 +/- 18 and 115 +/- 8 nM (n = 10 and 9), respectively, while the maximal increase for a 100 ms depolarization to 0 mV was larger in rats (6.3 +/- 1.0 microM; n = 7), than in guinea-pigs (2.8 +/- 0.3; n = 4). 4. The rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) displayed an early peak followed by a fast and a slow decline to a quasi maintained steady level. After normalizing Rrel to the estimated SR calcium content (1.2 +/- 0.1 and 0.9 +/- 0.1 mM in rats and guinea-pigs, respectively) and correcting for depletion of calcium in the SR the peak and steady levels at 0 mV, respectively, were found to be 2.50 +/- 0.08 and 0.81 +/- 0.06% ms-1 in rats and 2.43 +/- 0.25 and 0.88 +/- 0.01% ms-1 in guinea-pigs. The voltage dependence was essentially the same in both species, but different from that in amphibians. 5. These experiments show that enzymatic isolation yields functionally intact mammalian skeletal muscle fibres for Vaseline gap experiments. The data also suggest a close connection in the regulation of the different kinetic components of SR calcium release in mammalian skeletal muscle.
Collapse
Affiliation(s)
- P Szentesi
- Department of Physiology, University Medical School of Debrecen, Hungary
| | | | | | | |
Collapse
|
34
|
Szentesi P, Papp Z, Szücs G, Kovács L, Csernoch L. Kinetics of contractile activation in voltage clamped frog skeletal muscle fibers. Biophys J 1997; 73:1999-2011. [PMID: 9336195 PMCID: PMC1181100 DOI: 10.1016/s0006-3495(97)78230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Excitation-contraction coupling events leading to the onset of contraction were studied in single skeletal frog muscle fibers. This entailed the simultaneous measurement of the changes in intracellular calcium concentration using antipyrylazo III and fura-2, isometric force, and clamp voltage in a modified single vaseline gap chamber for the first time. The calcium transients were incorporated into an analysis of calcium binding to regulatory sites of troponin C (TnC) that permitted both a linear and a cooperative interaction. The analysis assumed that the onset of mechanical activation corresponds with a particular TnC saturation with calcium setting constraints for the calcium binding parameters of the regulatory sites. Using a simple model that successfully reproduced both the time course and the relative amplitudes of the measured isometric force transients over a wide membrane potential range, k(off) of TnC was calculated to be 78 s(-1) for the cooperative model at 10 degrees C. Together with the above constraints this gave a dissociation constant of 8.8 +/- 2.5 microM and a relative TnC saturation at the threshold (Sth) that would cause just detectable movement of 0.17 +/- 0.03 (n = 13; mean +/- SE). The predictions were found to be independent of the history of calcium binding to the regulatory sites. The observed delay between reaching Sth and the onset of fiber movement (8.7 +/- 1.0 ms; mean +/- SE, n = 37; from seven fibers) was independent of the membrane potential giving an upper estimate for the delay in myofilament activation. We thus emerge with quantitative values for the calcium binding to the regulatory sites on TnC under maintained structural conditions close to those in vivo.
Collapse
Affiliation(s)
- P Szentesi
- Department of Physiology, University Medical School Debrecen, Hungary
| | | | | | | | | |
Collapse
|
35
|
Abstract
This is a quantitative model of control of Ca release from the sarcoplasmic reticulum in skeletal muscle, based on dual control of release channels (ryanodine receptors), primarily by voltage, secondarily by Ca (Ríos, E., and G. Pizarro. 1988. 3:223-227). Channels are positioned in a double row array of between 10 and 60 channels, where exactly half face voltage sensors (dihydropyridine receptors) in the transverse (t) tubule membrane (Block, B.A., T. Imagawa, K.P. Campbell, and C. Franzini-Armstrong. 1988. 107:2587-2600). We calculate the flux of Ca release upon different patterns of pulsed t-tubule depolarization by explicit stochastic simulation of the states of all channels in the array. Channels are initially opened by voltage sensors, according to an allosteric prescription (Ríos, E., M. Karhanek, J. Ma, A. González. 1993. 102:449-482). Ca permeating the open channels, diffusing in the junctional gap space, and interacting with fixed and mobile buffers produces defined and changing distributions of Ca concentration. These concentrations interact with activating and inactivating channel sites to determine the propagation of activation and inactivation within the array. The model satisfactorily simulates several whole-cell observations, including kinetics and voltage dependence of release flux, the "paradox of control," whereby Ca-activated release remains under voltage control, and, most surprisingly, the "quantal" aspects of activation and inactivation (Pizarro, G., N. Shirokova, A. Tsugorka, and E. Ríos. 1997. 501:289-303). Additionally, the model produces discrete events of activation that resemble Ca sparks (Cheng, H., M.B. Cannell, and W.J. Lederer. 1993. 262:740-744). All these properties result from the intersection of stochastic channel properties, control by local Ca, and, most importantly, the one dimensional geometry of the array and its mesoscopic scale. Our calculations support the concept that the release channels associated with one face of one junctional t-tubule segment, with its voltage sensor, constitute a functional unit, termed the "couplon." This unit is fundamental: the whole cell behavior can be synthesized as that of a set of couplons, rather than a set of independent channels.
Collapse
Affiliation(s)
- M D Stern
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21214, USA.
| | | | | |
Collapse
|
36
|
Abstract
1. The effects of graded concentrations of tetracaine on the steady-state and kinetic properties of intramembrane charge were examined in intact voltage-clamped amphibian muscle fibres. 2. The micromolar tetracaine concentrations that were hitherto reported to abolish Ca2+ transients in skeletal muscle failed to affect significantly the steady-state charge. Maximal reductions of such intramembrane charge required relatively high, 1-2 mM, concentrations of tetracaine. 3. The plots of maximum charge against tetracaine concentration suggested a saturable 1:1 drug binding that spared a fixed amount of tetracaine-resistant (q beta) charge but inhibited a discrete fraction of susceptible (q gamma) charge with a KD between 0.1 and 0.2 mM. 4. The q beta charge thus isolated by 2 mM tetracaine was conserved through a wide range of applied test voltages and pulse durations and regardless of whether the imposed transition from the holding potential (-90 mV) to the test potential took place in one or more steps. 5. Similarly, 'on' and 'off' q beta currents that were elicited by voltage steps from fixed conditioning to varying test levels mapped onto non-linear phase-plane trajectories that nevertheless depended uniquely upon voltage. In contrast, the currents that followed voltage steps made from varying prepulse levels to fixed -90 or -20 mV test potentials mapped onto identical q beta phase-plane trajectories that were independent of the prepulse history. 6. The charge movements that followed strong depolarizing voltage clamp steps to test potentials in the range -50 to 0 mV approximated simple monotonic decays that could empirically be described by a single time constant. Nevertheless, a complete inhibition of a tetracaine-sensitive (q gamma) charge movement by 2 mM tetracaine that left only q beta charge, sharply altered both the magnitude and the voltage dependence of these time constants. This establishes a distinct contribution of the q gamma species to overall charge kinetics even at such test voltages. 7. Under such a criterion for the voltage dependence of charging kinetics, even the micromolar (0.05-0.2 mM) tetracaine concentrations that failed to markedly alter the steady-state charge consistently increased the charging time constants yet did not influence their voltage sensitivity. 8. These findings demonstrate the existence of separate kinetic and steady-state effects of tetracaine on intramembrane charge movements, at micromolar and millimolar anaesthetic concentrations, respectively. These parallel earlier effects of tetracaine that have been reported upon the transient and sustained components of sarcoplasmic reticular Ca2+ release. They also establish that maximally effective concentrations of tetracaine isolate a single distinct species of conserved (q beta) intramembrane charge.
Collapse
Affiliation(s)
- C L Huang
- Physiological Laboratory, Cambridge, UK.
| |
Collapse
|
37
|
Sárközi S, Szentesi P, Cseri J, Kovács L, Csernoch L. Concentration-dependent effects of tetracaine on excitation-contraction coupling in frog skeletal muscle fibres. J Muscle Res Cell Motil 1996; 17:647-56. [PMID: 8994084 DOI: 10.1007/bf00154059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of low (10-100 microM) concentrations of tetracaine on intermembrane charge movement and on the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) were studied in cut skeletal muscle fibres of the frog using the voltage clamp technique. The fibres were mounted in a single or double vaseline gap chamber to study the events near the contraction threshold or in a wide membrane potential range. Although the 'hump' component of charge movement (Q gamma) was suppressed to some extent, the voltage dependence and the parameters of the Boltzmann distribution were not modified significantly at tetracaine concentrations below 50 microM. At 50 and 100 microM of tetracaine the midpoint voltage of the Boltzmann distribution was shifted to higher membrane potentials and the steepness was decreased. The total available charge remained the same at all concentrations tested. Using fura-2 to measure calcium transients at 100 microM tetracaine the threshold for calcium release was found to be significantly shifted to more positive membrane potentials. Tetracaine reversibly suppressed both the early inactivating peak and the steady-level of Rrel but the concentration dependence of the effects was markedly different. The inactivation component of calcium release was decreased with a Hill coefficient of approximately 1 and half effective concentration of 11.8 microM while the steady-level was decreased with a Hill coefficient of greater than 2 and a half effective concentration of 47.0 microM. These results favour two sites of action where tetracaine would suppress the calcium release from the SR.
Collapse
Affiliation(s)
- S Sárközi
- Department of Physiology, University Medical School Debrecen, Hungary
| | | | | | | | | |
Collapse
|
38
|
Sárközi S, Szentesi P, Jona I, Csernoch L. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres. J Physiol 1996; 495 ( Pt 3):611-26. [PMID: 8887770 PMCID: PMC1160769 DOI: 10.1113/jphysiol.1996.sp021620] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of digoxin and ouabain on the calcium release flux from the sarcoplasmic reticulum (SR), isometric tension and intramembrane charge movement were studied in voltage clamped skeletal muscle fibres of the frog. 2. Both cardiac glycosides increased both calcium transients and simultaneously recorded tension at all membrane potentials, showing different effects on the peak and on the steady components of the calcium release flux. These effects were attained at an extracellular digoxin concentration of 5 nM and an estimated intracellular ouabain concentration of 1-2 nM. Digoxin and ouabain thus exerted their effects at the same concentration on calcium release in skeletal muscle as previously observed in isolated cardiac-type ryanodine receptor (RyR) calcium release channels. 3. The peak of SR calcium release increased at all voltages, with the largest potentiation at intermediate membrane potentials. This increase in calcium release flux was attained despite an unchanged SR calcium content. The attenuated release rate therefore reflected an increased number of open RyR channels rather than increased SR loading. 4. These effects could be attributed to an increase in calcium release activation and not a decrease in the rate of inactivation. Rather, the rate of inactivation was enhanced at all voltages as expected from the increased calcium concentration in the triadic junction. 5. In contrast, CMA (17 alpha-acetoxy-6-chloro-4, 6-pregnadiene-3,20-dione; 5 microM), a Na(+)-K(+)-ATPase inhibitor with no positive inotropic effects on the heart, neither influenced SR calcium release nor antagonized the effects of ouabain. 6. Both digoxin and ouabain preserved total intramembrane charge apart from a small negative shift in the mid-point voltage and increase in slope factor. 7. Both digoxin and ouabain induced calcium release from heavy SR vesicles at rates comparable to that induced by ryanodine or caffeine. 8. It is concluded that at least part of the inactivating component of SR calcium release involves distinct RyR calcium release channels that resemble the cardiac RyR isoform in its specific sensitivity to cardiac glycosides.
Collapse
Affiliation(s)
- S Sárközi
- Department of Physiology, University Medical School Debrecen, Hungary
| | | | | | | |
Collapse
|
39
|
Shirokova N, Ríos E. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle. J Physiol 1996; 493 ( Pt 2):317-39. [PMID: 8782099 PMCID: PMC1158920 DOI: 10.1113/jphysiol.1996.sp021386] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Using a fast flow, computer-controlled, two-Vaseline-gap chamber, single muscle fibres were subjected to 'pulses' of caffeine at Ca2+ releasing concentrations, combined with voltage-clamp depolarizations, while monitoring intracellular [Ca2+]. 2. Ca2+ release flux elicited by caffeine reached 2.5 mM s-1, or less, after 3 s of exposure, then decayed to zero. The caffeine-releasable pool of sarcoplasmic reticulum (SR) Ca2+ was 2.9 +/- 0.4 mM (mean +/- S.E.M., n = 10). 3. In parallel with release induced by caffeine, release induced by voltage pulses applied during a caffeine exposure increased in the first second of exposure, then decreased, to abolition after 5 s. 4. The amount of Ca2+ releasable by depolarizing pulses was always equal to the amount of Ca2+ in the caffeine-releasable pool. Therefore, there is a single releasable Ca2+ pool. This pool is well stirred-it takes much more time to lose its Ca2+ by release than to diffusionally homogenize its [Ca2+]. Its depletion explains quantitatively the decay of release induced by caffeine or voltage during an exposure to caffeine. 5. A 1.5 s pulse to 10 mV, applied during exposure to caffeine, resulted in large Ca2+ release and, upon repolarization, termination of the caffeine-induced release. This is similar to repolarization-induced stop of caffeine contracture (RISC) in embryonic murine myoballs. The permeability elicited by caffeine (ratio of flux to calcium in the releasable pool) was not affected by depolarizing pulses. Therefore, the mechanism of the RISC-like effect was Ca2+ depletion. 6. Caffeine-induced release did not depend on the holding potential. 7. Whether caffeine was present or not, release activated by voltage remained always under voltage control, ending rapidly upon repolarization. A depolarizing pulse induced a release permeability with an early peak, followed by decay to a steady level. Caffeine (10 mM) shifted the mid-activation voltage of both peak and steady components by -15 mV and increased the steepness of their voltage dependence by 15%. The maximum permeability increased by 30% for the peak and 25% for the steady component (n = 5). These results neither support nor disprove the hypothesis that the peak of Ca2+ release is activated by Ca2+. 8. The similar potentiation by caffeine of both components of release, the continued ability of voltage to control release in the presence of caffeine, and its failure to alter caffeine-induced permeability indicate that caffeine and the voltage sensor enhance independently the channel's tendency to open.
Collapse
Affiliation(s)
- N Shirokova
- Department of Molecular Biophysics and Physiology, Rush University, School of Medicine, Chicago, IL 60612, USA. N.Shirokova:
| | | |
Collapse
|
40
|
Yano M, el-Hayek R, Ikemoto N. Role of calcium feedback in excitation-contraction coupling in isolated triads. J Biol Chem 1995; 270:19936-42. [PMID: 7650009 DOI: 10.1074/jbc.270.34.19936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is a considerable controversy in the literature concerning the effects of higher concentrations of calcium chelators (e.g. BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) or fura-2) on the intracellular Ca2+ transients in muscle. We induced calcium release from sarcoplasmic reticulum (SR) in the triad preparation by chemical depolarization of the T-tubule in the presence of various concentrations of BAPTA-calcium buffer ([Ca2+] = 0.1 microM) and investigated the effects of the BAPTA concentration on the time courses of conformational changes in the junctional foot protein (JFP) and calcium release from SR. Upon stimulation, the JFP underwent biphasic conformational changes, as determined by stopped-flow fluorometry of the JFP-bound conformational probe. The first phase of protein conformational change, which preceded calcium release from SR, was virtually unaffected by the BAPTA concentration. However, the magnitude of the second phase increased in an inversely proportional fashion to the BAPTA concentration. An abrupt increase in [Ca2+] from 0.1 microM up to 1.0 microM (delta Ca2+), concurrently with T-tubule depolarization, produced biphasic protein conformational changes: a delta Ca(2+)-independent first phase and a delta Ca(2+)-dependent second phase. Similar Ca2+ jump experiments under non-depolarizing conditions produced a slow monophasic conformational change equivalent to the second phase described above. These results suggest that the first phase of protein conformational change represents the activation of JFP by T-tubule depolarization to induce calcium release, and the second phase the secondary activation by the released Ca2+. Activation of the JFP by the released Ca2+ resulted in an acceleration of both (i) the rate of initial calcium release, and (ii) the subsequent attenuation of calcium release. The acceleration of both was suppressed by higher concentrations of BAPTA. These results provide a reasonable explanation for both of the apparently contradictory views in the literature; high concentrations of calcium buffer (a) suppress the initial activation and (b) prevent the subsequent attenuation of calcium release.
Collapse
Affiliation(s)
- M Yano
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | |
Collapse
|
41
|
García J, Schneider MF. Suppression of calcium release by calcium or procaine in voltage clamped rat skeletal muscle fibres. J Physiol 1995; 485 ( Pt 2):437-45. [PMID: 7666366 PMCID: PMC1158003 DOI: 10.1113/jphysiol.1995.sp020740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Calcium transients were measured in fast-twitch rat skeletal muscle fibres stretched to 3.7-4.0 microns per sarcomere, and voltage clamped at a holding potential of -80 mV using the double-seal Vaseline gap technique. Resting calcium was monitored with fura-2 and the calcium transients were measured with antipyrylazo III. The rate of release of calcium from the sarcoplasmic reticulum was calculated from the calcium transient records. The temperature was 14-17 degrees C. 2. The steady-state calcium dependence of inactivation of release was studied with a two-pulse protocol in which 200 ms prepulses of different amplitudes elevated the internal calcium concentration to various levels. The inactivation of release was then measured in the test pulse that followed the prepulses. The calcium concentration at which the inactivation of release are half-maximal was approximately 0.22 microM, the average number of bound calcium ions needed to cause inactivation was about three per release channel and the amount of release that could be inactivated was, on average, 2.48 times the steady level of release during the test pulses. 3. Procaine (0.3mM) reversibly decreased the amplitude and the rate of rise of the calcium transient. Both the peak and the steady level of release were decreased by about 50%. The shape of the release waveform was not modified.
Collapse
Affiliation(s)
- J García
- Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
42
|
Melzer W, Herrmann-Frank A, Lüttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:59-116. [PMID: 7742348 DOI: 10.1016/0304-4157(94)00014-5] [Citation(s) in RCA: 406] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Melzer
- Department of Cell Physiology, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
43
|
Anderson K, Meissner G. T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca(2+)-dependent mechanisms in cell homogenates from rabbit skeletal muscle. J Gen Physiol 1995; 105:363-83. [PMID: 7769380 PMCID: PMC2216947 DOI: 10.1085/jgp.105.3.363] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release channel. In this study, differential T-tubule and SR membrane monovalent ion permeabilities were exploited with the use of an ion-replacement protocol to study T-tubule depolarization-induced SR 45Ca2+ release from rabbit skeletal muscle whole-cell homogenates. Specificity of Ca2+ release was ascertained with the use of the DHPR antagonists D888, nifedipine and PN200-110. In the presence of the "slow" complexing Ca2+ buffer EGTA, homogenates exhibited T-tubule depolarization-induced Ca2+ release comprised of an initial rapid phase followed by a slower release phase. During the rapid phase, approximately 20% of the total sequestered Ca2+ (approximately 30 nmol 45Ca2+/mg protein), corresponding to 100% of the caffeine-sensitive Ca2+ pool, was released within 50 ms. Rapid release could be inhibited fourfold by D888. Addition to release media of the "fast" complexing Ca2+ buffer BAPTA, at concentrations > or = 4 mM, nearly abolished rapid Ca2+ release, suggesting that most was Ca2+ dependent. Addition of millimolar concentrations of either Ca2+ or Mg2+ also greatly reduced rapid Ca2+ release. These results show that T-tubule depolarization-induced SR Ca2+ release from rabbit skeletal muscle homogenates is controlled by T-tubule membrane potential- and by Ca(2+)-dependent mechanisms.
Collapse
Affiliation(s)
- K Anderson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | |
Collapse
|
44
|
O'Brien J, Valdivia HH, Block BA. Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle. Biophys J 1995; 68:471-82. [PMID: 7696500 PMCID: PMC1281711 DOI: 10.1016/s0006-3495(95)80208-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two isoforms of the sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor or RYR) are expressed together in the skeletal muscles of most vertebrates. We have studied physiological properties of the two isoforms (alpha and beta) by comparing SR preparations from specialized fish muscles that express the alpha isoform alone to preparations from muscles containing both alpha and beta. Regulation of channel activity was assessed through [3H]ryanodine binding and reconstitution into planar lipid bilayers. Distinct differences were observed in the calcium-activation and -inactivation properties of the two isoforms. The fish alpha isoform, expressed alone in extraocular muscles, closely resembled the rabbit skeletal muscle RYR. Maximum [3H]ryanodine binding and maximum open probability (Po) of the alpha RYR were achieved from 1 to 10 microM free Ca2+. Millimolar Ca2+ reduced [3H]ryanodine binding and Po close to zero. The beta isoform more closely resembled the fish cardiac RYR in Ca2+ activation of [3H]ryanodine binding. The most prominent difference of the beta and cardiac isoforms from the alpha isoform was the lack of inactivation of [3H]ryanodine binding and Po by millimolar free Ca2+. Differences in activation of [3H]ryanodine binding by adenine nucleotides and inhibition by Mg2+ suggest that the beta and cardiac RYRs are not identical, however. [3H]ryanodine binding by the alpha RYR was selectively inhibited by 100 microM tetracaine, whereas cardiac and beta RYRs were much less affected. Tetracaine can thus be used to separate the properties of the alpha and beta RYRs in preparations in which both are present. The distinct physiological properties of the alpha and beta RYRs that are present together in most vertebrate muscles support models of EC coupling incorporating both directly coupled and Ca(2+)-coupled channels within a single triad junction.
Collapse
Affiliation(s)
- J O'Brien
- Department of Organismal Biology and Anatomy, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
45
|
Abstract
1. Whole-cell voltage clamp was used in conjunction with the fluorescent Ca2+ indicator indo-1 to measure extracellular Ca2+ entry and intracellular Ca2+ concentrations ([Ca2+]i) in rat gonadotrophs identified with the reverse haemolytic plaque assay. 2. Depolarizations to potentials more positive than -40 mV elicited inward Ca2+ current (ICa) and transient elevations of [Ca2+]i. 3. The relationship between [Ca2+]i elevations and Ca2+ entry with different Ca2+ buffer concentrations in the pipette showed that endogenous Ca2+ buffers normally bind approximately 99% of the Ca2+ entering the cell. 4. With [Ca2+]i elevations less than 500 nM, decay of [Ca2+]i could be approximated by an exponential whose time constant increased with the concentration of exogenous Ca2+ buffers. 5. Inhibitors of intracellular Ca(2+)-ATPases, thapsigargin, cyclopiazonic acid (CPA) and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), caused [Ca2+]i to rise. Application of BHQ during [Ca2+]i oscillations induced by gonadotrophin-releasing hormone (GnRH) terminated the oscillation in a slowly decaying elevation. BHQ slowed the decay of depolarization-induced [Ca2+]i elevations about 3-fold. 6. Taking into account the Ca2+ buffering properties of the cytoplasm permitted estimation of the fluxes and rate constants for Ca2+ movements in gonadotrophs. The intracellular store is a major determinant of Ca2+ homeostasis in gonadotrophs.
Collapse
Affiliation(s)
- A Tse
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | |
Collapse
|