1
|
Ladokhin AS, Kyrychenko A, Rodnin MV, Vasquez-Montes V. Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain. Methods Enzymol 2021; 649:341-370. [PMID: 33712192 DOI: 10.1016/bs.mie.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diphtheria toxin is among many bacterial toxins that utilize the endosomal pathway of cellular entry, which is ensured by the bridging of the endosomal membrane by the toxin's translocation (T) domain. Endosomal acidification triggers a series of conformational changes of the T-domain, that take place first in aqueous and subsequently in membranous milieu. These rearrangements ultimately result in establishing membrane-inserted conformation(s) and translocation of the catalytic moiety of the toxin into the cytoplasm. We discuss here the strategy for combining site-selective labeling with various spectroscopic methods to characterize structural and thermodynamic aspects of protonation-dependent conformational switching and membrane insertion of the diphtheria toxin T-domain. Among the discussed methods are FRET, FCS and depth-dependent fluorescence quenching with lipid-attached bromine atoms and spin probes. The membrane-insertion pathway of the T-domain contains multiple intermediates and is governed by staggered pH-dependent transitions involving protonation of histidines and acidic residues. Presented data demonstrate that the lipid bilayer plays an active part in T-domain functioning and that the so-called Open-Channel State does not constitute the translocation pathway, but is likely to be a byproduct of the translocation. The spectroscopic approaches presented here are broadly applicable to many other systems of physiological and biomedical interest for which conformational changes can lead to membrane insertion (e.g., other bacterial toxins, host defense peptides, tumor-targeting pHLIP peptides and members of Bcl-2 family of apoptotic regulators).
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States.
| | - Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Rodnin MV, Kashipathy MM, Kyrychenko A, Battaile KP, Lovell S, Ladokhin AS. Structure of the Diphtheria Toxin at Acidic pH: Implications for the Conformational Switching of the Translocation Domain. Toxins (Basel) 2020; 12:toxins12110704. [PMID: 33171806 PMCID: PMC7695028 DOI: 10.3390/toxins12110704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Diphtheria toxin, an exotoxin secreted by Corynebacterium that causes disease in humans by inhibiting protein synthesis, enters the cell via receptor-mediated endocytosis. The subsequent endosomal acidification triggers a series of conformational changes, resulting in the refolding and membrane insertion of the translocation (T-)domain and ultimately leading to the translocation of the catalytic domain into the cytoplasm. Here, we use X-ray crystallography along with circular dichroism and fluorescence spectroscopy to gain insight into the mechanism of the early stages of pH-dependent conformational transition. For the first time, we present the high-resolution structure of the diphtheria toxin at a mildly acidic pH (5–6) and compare it to the structure at neutral pH (7). We demonstrate that neither catalytic nor receptor-binding domains change their structure upon this acidification, while the T-domain undergoes a conformational change that results in the unfolding of the TH2–3 helices. Surprisingly, the TH1 helix maintains its conformation in the crystal of the full-length toxin even at pH 5. This contrasts with the evidence from the new and previously published data, obtained by spectroscopic measurements and molecular dynamics computer simulations, which indicate the refolding of TH1 upon the acidification of the isolated T-domain. The overall results imply that the membrane interactions of the T-domain are critical in ensuring the proper conformational changes required for the preparation of the diphtheria toxin for the cellular entry.
Collapse
Affiliation(s)
- Mykola V. Rodnin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.V.R.); (A.K.)
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA; (M.M.K.); (S.L.)
| | - Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.V.R.); (A.K.)
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Kevin P. Battaile
- NYX beamline, New York Structural Biology Center, Upton, NY 11973, USA;
| | - Scott Lovell
- Protein Structure Laboratory, Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA; (M.M.K.); (S.L.)
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.V.R.); (A.K.)
- Correspondence: ; Tel.: +1-913-588-0489; Fax: +1-913-588-7440
| |
Collapse
|
3
|
Schaub C, Verdi J, Lee P, Terra N, Limon G, Raper J, Thomson R. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J Biol Chem 2020; 295:13138-13149. [PMID: 32727852 DOI: 10.1074/jbc.ra120.014201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biochemistry, The Graduate Center, CUNY, New York, USA
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biology, The Graduate Center, CUNY, New York, USA; German Cancer Research Center, Heidelberg, Germany
| | - Penny Lee
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Nada Terra
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Gina Limon
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; NYU School of Medicine, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, CUNY, New York, USA.
| |
Collapse
|
4
|
Topography of the TH5 Segment in the Diphtheria Toxin T-Domain Channel. J Membr Biol 2015; 249:181-96. [PMID: 26645703 DOI: 10.1007/s00232-015-9859-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The translocation domain (T-domain) of diphtheria toxin contains 10 α helices in the aqueous crystal structure. Upon exposure to a planar lipid bilayer under acidic conditions, it inserts to form a channel and transport the attached amino-terminal catalytic domain across the membrane. The TH5, TH8, and TH9 helices form transmembrane segments in the open-channel state, with TH1-TH4 translocated across the membrane. The TH6-TH7 segment also inserts to form a constriction that occupies only a small portion of the total channel length. Here, we have examined the TH5 segment in more detail, using the substituted-cysteine accessibility method. We constructed a series of 23 mutant T-domains with single cysteine residues at positions in and near TH5, monitored their channel formation in planar lipid bilayers, and probed for an effect of thiol-specific reagents added to the solutions on either side of the membrane. For 15 of the mutants, the reagent caused a decrease in single-channel conductance, indicating that the introduced cysteine residue was exposed within the channel lumen. We also found that reaction caused large changes in ionic selectivity for some mutant channels. We determined whether reaction occurred in the open state or in the brief flicker-closed state of the channel. Finally, we compared the reaction rates from either side of the membrane. Our experiments are consistent with the hypotheses that the TH5 helix has a transmembrane orientation and remains helical in the open-channel state; they also indicate that the middle of the helix is aligned with the constriction in the channel.
Collapse
|
5
|
Kyrychenko A. Using fluorescence for studies of biological membranes: a review. Methods Appl Fluoresc 2015; 3:042003. [DOI: 10.1088/2050-6120/3/4/042003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Kienker PK, Wu Z, Finkelstein A. Mapping the membrane topography of the TH6-TH7 segment of the diphtheria toxin T-domain channel. ACTA ACUST UNITED AC 2015; 145:107-25. [PMID: 25582482 PMCID: PMC4306713 DOI: 10.1085/jgp.201411326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine substitution accessibility analysis suggests that the TH6–TH7 segment forms a constriction in the diphtheria toxin T-domain channel. Low pH triggers the translocation domain of diphtheria toxin (T-domain), which contains 10 α helices, to insert into a planar lipid bilayer membrane, form a transmembrane channel, and translocate the attached catalytic domain across the membrane. Three T-domain helices, corresponding to TH5, TH8, and TH9 in the aqueous crystal structure, form transmembrane segments in the open-channel state; the amino-terminal region, TH1–TH4, translocates across the membrane to the trans side. Residues near either end of the TH6–TH7 segment are not translocated, remaining on the cis side of the membrane; because the intervening 25-residue sequence is too short to form a transmembrane α-helical hairpin, it was concluded that the TH6–TH7 segment resides at the cis interface. Now we have examined this segment further, using the substituted-cysteine accessibility method. We constructed a series of 18 mutant T-domains with single cysteine residues at positions in TH6–TH7, monitored their channel formation in planar lipid bilayers, and probed for an effect of thiol-specific reagents on the channel conductance. For 10 of the mutants, the reagent caused a change in the single-channel conductance, indicating that the introduced cysteine residue was exposed within the channel lumen. For several of these mutants, we verified that the reactions occurred primarily in the open state, rather than in the flicker-closed state. We also established that blocking of the channel by an amino-terminal hexahistidine tag could protect mutants from reaction. Finally, we compared the reaction rates of reagent added to the cis and trans sides to quantify the residue’s accessibility from either side. This analysis revealed abrupt changes in cis- versus trans-side accessibility, suggesting that the TH6–TH7 segment forms a constriction that occupies a small portion of the total channel length. We also determined that this constriction is located near the middle of the TH8 helix.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zhengyan Wu
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alan Finkelstein
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
7
|
TMEM16 proteins: unknown structure and confusing functions. J Mol Biol 2014; 427:94-105. [PMID: 25451786 DOI: 10.1016/j.jmb.2014.09.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022]
Abstract
The TMEM16 family of membrane proteins, also known as anoctamins, plays key roles in a variety of physiological functions that range from ion transport to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca(2+)-activated Cl(-) channels and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The roles of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7) and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca(2+)-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transports. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual-function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated.
Collapse
|
8
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Toxins (Basel) 2013; 5:1362-80. [PMID: 23925141 PMCID: PMC3760040 DOI: 10.3390/toxins5081362] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022] Open
Abstract
The translocation (T)-domain plays a key role in the action of diphtheria toxin and is responsible for transferring the catalytic domain across the endosomal membrane into the cytosol in response to acidification. Deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the T-domain, which is considered to be a paradigm for cell entry of other bacterial toxins, reveals general physicochemical principles underlying membrane protein assembly and signaling on membrane interfaces. Structure-function studies along the T-domain insertion pathway have been affected by the presence of multiple conformations at the same time, which hinders the application of high-resolution structural techniques. Here, we review recent progress in structural, functional and thermodynamic studies of the T-domain archived using a combination of site-selective fluorescence labeling with an array of spectroscopic techniques and computer simulations. We also discuss the principles of conformational switching along the insertion pathway revealed by studies of a series of T-domain mutants with substitutions of histidine residues.
Collapse
|
10
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
11
|
Capone R, Jang H, Kotler S, Kagan BL, Nussinov R, Lal R. Probing structural features of Alzheimer's amyloid-β pores in bilayers using site-specific amino acid substitutions. Biochemistry 2012; 51:776-85. [PMID: 22242635 PMCID: PMC3265145 DOI: 10.1021/bi2017427] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/29/2011] [Indexed: 11/28/2022]
Abstract
A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ(1-42) peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Bioengineering,
Department of Mechanical and Aerospace Engineering, and Material Science
Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Hyunbum Jang
- Center for Cancer Research Nanobiology
Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland 21702, United States
| | - Samuel
A. Kotler
- Department of Bioengineering,
Department of Mechanical and Aerospace Engineering, and Material Science
Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Bruce L. Kagan
- Department of Psychiatry, David
Geffen School of Medicine, Semel Institute for Neuroscience and Human
Behavior, University of California, Los
Angeles, California 90024, United States
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology
Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular
Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ratnesh Lal
- Department of Bioengineering,
Department of Mechanical and Aerospace Engineering, and Material Science
Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Lebeda FJ, Singh BR. Membrane Channel activity and Translocation of Tetanus and Botulinum Neurotoxins. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/15569549909036017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry 2009; 48:10446-56. [PMID: 19780588 DOI: 10.1021/bi9014665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The diphtheria toxin T domain helps translocate the A chain of the toxin across membranes. To gain insight into translocation, the membrane topography of key residues in T domain attached to the A chain (AT protein) was compared to that in the isolated T domain using fluorescence techniques. This study demonstrates that residues in T domain hydrophobic helices (TH5-TH9) tended to be less exposed to aqueous solution in the AT protein than in the isolated T domain. Under conditions in which the loop connecting TH5 to TH6/7 is located stably on the cis (insertion) side of the membrane in the isolated T domain, it moves between the cis and trans sides of the membrane in the AT protein. This is indicative of the formation of a dynamic, transient transmembrane hairpin topography by TH5-TH7 in the AT protein. Since TH8 and TH9 also form a transmembrane hairpin, this means that TH5-TH9 may form a cluster of transmembrane helices. These helices have a nonpolar surface likely to face the lipid bilayer in a helix cluster and a surface rich in uncharged hydrophilic residues which in a helix cluster would likely be facing inward (and perhaps be pore-lining). This uncharged hydrophilic surface could play a crucial role in translocation, interacting transiently with the translocating A chain. A similar motif can be found in, and may be important for, other protein translocation systems.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
14
|
Kienker PK, Jakes KS, Finkelstein A. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia. ACTA ACUST UNITED AC 2009; 132:693-707. [PMID: 19029376 PMCID: PMC2585860 DOI: 10.1085/jgp.200810042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colicin Ia is a bactericidal protein of 626 amino acid residues that kills its target cell by forming a channel in the inner membrane; it can also form voltage-dependent channels in planar lipid bilayer membranes. The channel-forming activity resides in the carboxy-terminal domain of ∼177 residues. In the crystal structure of the water-soluble conformation, this domain consists of a bundle of 10 α-helices, with eight mostly amphipathic helices surrounding a hydrophobic helical hairpin (helices H8-H9). We wish to know how this structure changes to form a channel in a lipid bilayer. Although there is evidence that the open channel has four transmembrane segments (H8, H9, and parts of H1 and H6-H7), their arrangement relative to the pore is largely unknown. Given the lack of a detailed structural model, it is imperative to better characterize the channel-lining protein segments. Here, we focus on a segment of 44 residues (573–616), which in the crystal structure comprises the H8-H9 hairpin and flanking regions. We mutated each of these residues to a unique cysteine, added the mutant colicins to the cis side of planar bilayers to form channels, and determined whether sulfhydryl-specific methanethiosulfonate reagents could alter the conduction of ions through the open channel. We found a pattern of reactivity consistent with parts of H8 and H9 lining the channel as α-helices, albeit rather short ones for spanning a lipid bilayer (12 residues). The effects of the reactions on channel conductance and selectivity tend to be greater for residues near the amino terminus of H8 and the carboxy terminus of H9, with particularly large effects for G577C, T581C, and G609C, suggesting that these residues may occupy a relatively constricted region near the cis end of the channel.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
15
|
Abstract
Endosomal cargo travels through a dynamic vesicle network en route to degradation by lysosomes or recycling through the Golgi apparatus back to the cell surface. Rab5 is a key determinant of the early endosomes by organizing effector proteins in specific subdomains and mediating early endosome fusion. We find that early endosome morphogenesis and maturation is disrupted by diphtheria toxin (DT). Rab5 bound endosomes increase in size and in Rab5 content due to luminal toxin exposure, whereas Rab7 positive endosomes are not detectably altered. These changes appear to be caused by an activity of the toxin entry domain (T domain) as mutations inactivating either the receptor binding (CRM107) or ADP-ribosyl transferase (CRM197) activities do not inhibit the effect of DT on endosome morphogenesis. In contrast, mutations in the T domain or diminishing the endosomal pH gradient, which prevents T domain membrane insertion, inhibit these endosome changes. The change in size appears to be due to changing the early endosome fission-fusion equilibrium. The Rab5 membrane exchange rate, assessed with photoactivatable GFP-Rab5, decreases in the presence of DT. These changes to endosomes may reflect activities of the T domain that mediate toxin entry to the cytosol. The nontoxic mutant DT, CRM197, yields a new tool to manipulate endosome dynamics in living cells.
Collapse
|
16
|
Lai B, Zhao G, London E. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry 2008; 47:4565-74. [PMID: 18355037 DOI: 10.1021/bi7025134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphtheria toxin T domain aids the membrane translocation of diphtheria toxin A chain. When the isolated T domain is deeply membrane-inserted, helices TH 8-9 form a transmembrane hairpin, while helices TH 5-7 form a deeply inserted nontransmembrane structure. Blocking deep insertion of TH 8-9 blocks deep insertion of TH 5-7 ( Zhao, G., and London, E. ( 2005) Biochemistry 44, 4488- 4498 ). We now examine the effects of blocking the deep insertion of TH 5 and TH 6/7. An A282R/V283R dual substitution in TH 5 prevented its deep insertion, significantly decreased the deep insertion of TH 9, and to a lesser degree that of TH 6/7. Blocking deep insertion of TH 6/7 with a L307R mutation had no effect on the deep insertion of TH 5, similar to its previously characterized lack of effect on the deep insertion of TH 8-9. An I364K mutation in TH 9 blocked TH 8-9 deep insertion and greatly reduced pore formation by the T domain, consistent with the role of TH 8-9 in pore formation. The A282R/V283R mutations also reduced the extent of pore formation, but to a lesser degree, suggesting either that TH 5 is part of the pore or that interactions with TH 5 affect the ability of TH 8-9 to form pores. The L307R mutation enhanced the extent of pore formation, suggesting that deeply inserted TH 6/7 may act as a "cork" that partly blocks the pore. Combined, these results indicate that TH 5, 8, and 9 combine to form a deeply inserted scaffold of more strongly associated helices.
Collapse
Affiliation(s)
- Bing Lai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
17
|
Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion. Biophys J 2007; 94:2115-27. [PMID: 18055530 DOI: 10.1529/biophysj.107.113498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin (DT) contains separate domains for receptor-specific binding, translocation, and enzymatic activity. After binding to cells, DT is taken up into endosome-like acidic compartments where the translocation domain inserts into the endosomal membrane and releases the catalytic domain into the cytosol. The process by which the catalytic domain is translocated across the endosomal membrane is known to involve pH-induced conformational changes; however, the molecular mechanisms are not yet understood, in large part due to the challenge of probing the conformation of the membrane-bound protein. In this work neutron reflection provided detailed conformational information for membrane-bound DT (CRM197) in situ. The data revealed that the bound toxin oligomerizes with increasing DT concentration and that the oligomeric form (and only the oligomeric form) undergoes a large extension into solution with decreasing pH that coincides with deep insertion of residues into the membrane. We interpret the large extension as a transition to the open form. These results thus indicate that as a function of bulk DT concentration, adsorbed DT passes from an inactive state with a monomeric dimension normal to the plane of the membrane to an active state with a dimeric dimension normal to the plane of the membrane.
Collapse
|
18
|
Wang J, Rosconi MP, London E. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry 2006; 45:8124-34. [PMID: 16800637 PMCID: PMC2519890 DOI: 10.1021/bi060587f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After low pH-triggered membrane insertion, the T domain of diphtheria toxin helps translocate the catalytic domain of the toxin across membranes. In this study, the hydrophilic N-terminal helices of the T domain (TH1-TH3) were studied. The conformation triggered by exposure to low pH and changes in topography upon membrane insertion were studied. These experiments involved bimane or BODIPY labeling of single Cys introduced at various positions, followed by the measurement of bimane emission wavelength, bimane exposure to fluorescence quenchers, and antibody binding to BODIPY groups. Upon exposure of the T domain in solution to low pH, it was found that the hydrophobic face of TH1, which is buried in the native state at neutral pH, became exposed to solution. When the T domain was added externally to lipid vesicles at low pH, the hydrophobic face of TH1 became buried within the lipid bilayer. Helices TH2 and TH3 also inserted into the bilayer after exposure to low pH. However, in contrast to helices TH5-TH9, overall TH1-TH3 insertion was shallow and there was no significant change in TH1-TH3 insertion depth when the T domain switched from the shallowly inserting (P) to deeply inserting (TM) conformation. Binding of streptavidin to biotinylated Cys residues was used to investigate whether solution-exposed residues of membrane-inserted T domain were exposed on the external or internal surface of the bilayer. These experiments showed that when the T domain is externally added to vesicles, the entire TH1-TH3 segment remains on the cis (outer) side of the bilayer. The results of this study suggest that membrane-inserted TH1-TH3 form autonomous segments that neither deeply penetrate the bilayer nor interact tightly with the translocation-promoting structure formed by the hydrophobic TH5-TH9 subdomain. Instead, TH1-TH3 may aid translocation by acting as an A-chain-attached flexible tether.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Cell Biology, State University of New York (SUNY)-Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
19
|
Wu Z, Jakes KS, Samelson-Jones BS, Lai B, Zhao G, London E, Finkelstein A. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophys J 2006; 91:3249-56. [PMID: 16905612 PMCID: PMC1614471 DOI: 10.1529/biophysj.106.085753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regions of both colicin Ia and diphtheria toxin N-terminal to the channel-forming domains can be translocated across planar phospholipid bilayer membranes. In this article we show that the translocation pathway of diphtheria toxin allows much larger molecules to be translocated than does the translocation pathway of colicin Ia. In particular, the folded A chain of diphtheria toxin is readily translocated by that toxin but is not translocated by colicin Ia. This difference cannot be attributed to specific recognition of the A chain by diphtheria toxin's translocation pathway because the translocation pathway also accommodates folded myoglobin.
Collapse
Affiliation(s)
- Zhengyan Wu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu X, Alexander C, Serrano J, Borg E, Dawson DC. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J Biol Chem 2006; 281:8275-85. [PMID: 16436375 DOI: 10.1074/jbc.m512458200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study of T338C CFTR (cystic fibrosis transmembrane conductance regulator) we found that protons and thiol-directed reagents modified channel properties in a manner consistent with the hypothesis that this residue lies within the conduction path, but the observed reactivity was not consistent with the presence of a single thiolate species in the pore. Here we report results consistent with the notion that the thiol moiety can exist in at least three chemical states, the simple thiol, and two altered states. One of the altered states displays reactivity toward thiols like dithiothreitol and 2-mercaptoethanol as well as reagents: mixed disulfides (methanethiosulfonate reagents: MTSET+, MTSES-) and an alkylating agent (iodoacetamide). The other altered state is unreactive. The phenotype associated with the reactive, altered state could be replicated by exposing oocytes expressing T338C CFTR to CuCl2, but not by glutathionylation or nitrosylation of the thiol or by oxidation with hydrogen peroxide. The results are consistent with the hypothesis that substituting a cysteine at 338 can create an adventitious metal binding site. Metal liganding alters thiol reactivity and may, in some cases, catalyze oxidation of the thiol to an unreactive form such as a sulfinic or sulfonic acid.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
21
|
Möbius K, Savitsky A, Wegener C, Plato M, Fuchs M, Schnegg A, Dubinskii AA, Grishin YA, Grigor'ev IA, Kühn M, Duché D, Zimmermann H, Steinhoff HJ. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S4-S19. [PMID: 16235212 DOI: 10.1002/mrc.1690] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the last decade, joint efforts of biologists, chemists and physicists have helped in understanding the dominant factors determining specificity and directionality of transmembrane transfer processes in proteins. In this endeavor, electron paramagnetic resonance (EPR) spectroscopy has played an important role. Characteristic examples of such determining factors are hydrogen-bonding patterns and polarity effects of the microenvironment of protein sites involved in the transfer process. These factors may undergo characteristic changes during the reaction and, thereby, control the efficiency of biological processes, e.g. light-induced electron and proton transfer across photosynthetic membranes or ion-channel formation of bacterial toxins. In case the transfer process does not involve stable or transient paramagnetic species or states, site-directed spin labeling with suitable nitroxide radicals still allows EPR techniques to be used for studying structure and conformational dynamics of the proteins in action. By combining site-directed spin labeling with high-field/high-frequency EPR, unique information on the proteins is revealed, which is complementary to that of X-ray crystallography, solid-state NMR, FRET, fast infrared and optical spectroscopic techniques. The main object of this publication is twofold: (i) to review our recent spin-label high-field EPR work on the bacteriorhodopsin light-driven proton pump from Halobacterium salinarium and the Colicin A ion-channel forming bacterial toxin produced in Escherichia coli, (ii) to report on novel high-field EPR experiments for probing site-specific pK(a) values in protein systems by means of pH-sensitive nitroxide spin labels. Taking advantage of the improved spectral and temporal resolution of high-field EPR at 95 GHz/3.4 T and 360 GHz/12.9 T, as compared to conventional X-band EPR (9.5 GHz/0.34 T), detailed information on the transient intermediates of the proteins in biological action is obtained. These intermediates can be observed and characterized while staying in their working states on biologically relevant timescales. The paper concludes with an outlook of ongoing high-field EPR experiments on site-specific protein mutants in our laboratories at FU Berlin and Osnabrück.
Collapse
Affiliation(s)
- K Möbius
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao G, London E. Behavior of Diphtheria Toxin T Domain Containing Substitutions That Block Normal Membrane Insertion at Pro345 and Leu307: Control of Deep Membrane Insertion and Coupling between Deep Insertion of Hydrophobic Subdomains. Biochemistry 2005; 44:4488-98. [PMID: 15766279 DOI: 10.1021/bi047705o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diphtheria toxin T domain aids the translocation of toxin A chain across membranes. T domain has two hydrophobic layers/subdomains that can insert deeply into membranes: helices TH8 and 9, which form a transmembrane hairpin, and helices TH5-7, which form a nonclassical, nontransmembrane structure. Substitutions were made at Pro345, a residue located near the turn between TH8 and 9. P345 is critical for toxicity and pore formation by the T domain. Fluorescence methods showed that hairpin-disrupting Gly or Glu substitutions at 345 did not insert into lipid bilayers as deeply as the wild-type protein, and consistent with previous studies, these mutations reduced pore formation activity as assayed by a novel biotin-streptavidin-based influx assay. Introducing Pro at positions 347 or 353 not only failed to compensate for substitutions at P345, but also they further disrupted deep insertion and/or pore formation. Substitution of P345 with Asn, a residue that promotes helical hairpin formation almost as well as Pro, resulted in somewhat more normal insertion and pore formation than other substitutions. Importantly, a P345E substitution disrupted deep insertion of TH5-7. This suggests that TH8 and 9 and TH5-7 undergo some sort of coordinated insertion into the lipid bilayer and/or that the membrane-inserted T domain has a distinct tertiary structure in which TH5-7 interact with TH8 and 9 instead of consisting of noninteracting hydrophobic segments. Intriguingly, a L307R substitution in TH6, which disrupted deep insertion of TH7, had only a weak effect on pore formation and deep insertion of TH8 and 9. This suggests that the TH8 and 9 region can insert independently of TH5-7 to some degree and that TH8 and 9 insertion may occur early in T-domain insertion.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
23
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Savitsky A, Kühn M, Duché D, Möbius K, Steinhoff HJ. Spontaneous Refolding of the Pore-Forming Colicin A Toxin upon Membrane Association As Studied by X-Band and W-Band High-Field Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2004. [DOI: 10.1021/jp036397l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Savitsky
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, D-14195 Berlin, Germany, Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, France
| | - Martin Kühn
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, D-14195 Berlin, Germany, Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, France
| | - Denis Duché
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, D-14195 Berlin, Germany, Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, France
| | - Klaus Möbius
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, D-14195 Berlin, Germany, Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, France
| | - Heinz-Jürgen Steinhoff
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, D-14195 Berlin, Germany, Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, France
| |
Collapse
|
25
|
Chenal A, Nizard P, Gillet D. STRUCTURE AND FUNCTION OF DIPHTHERIA TOXIN: FROM PATHOLOGY TO ENGINEERING. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014408] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Sathish HA, Cusan M, Aisenbrey C, Bechinger B. Guanidine hydrochloride induced equilibrium unfolding studies of colicin B and its channel-forming fragment. Biochemistry 2002; 41:5340-7. [PMID: 11969394 DOI: 10.1021/bi0115784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational stabilities of full-length colicin B and its isolated C-terminal domain were studied by guanidine hydrochloride induced unfolding. The unfolding/refolding was monitored by far-UV CD and intrinsic tryptophan fluorescence spectroscopies. At pH 7.4, the disruption of the secondary structure of full-length colicin B is monophasic, while changes in tertiary structure occur in two separate transitions. The intermediate species, which is well-populated around 2.2 M guanidine hydrochloride, exhibits secondary and tertiary structures distinct from both native and unfolded states. Whereas the domain structure of native full-length colicin B is reflected in its DSC profile, the folding intermediate of the same protein exhibits a single unresolved peak. These observations have led us to propose an unfolding model for full-length colicin B where the first transition between 0 and 2.5 M GuHCl with an associated free energy of 3 kcal/mol correlates with the partial unfolding of the R/T domain. The stability of full-length colicin B is weakened due to the presence of the R/T domain in both the native [Ortega, A., Lambotte, S., and Bechinger, B. (2001) J. Biol. Chem. 276 (17), 13563-13572] and the intermediate states. The second transition between 2.5 and 5 M GuHCl involves unfolding of the C-terminal domain (Delta = 7 kcal/mol). The isolated colicin B C-terminal domain consists of two subdomains, and the two parts of this protein fragment unfold sequentially through the formation of at least one intermediate. The significance of these results for membrane insertion of colicin B is discussed.
Collapse
Affiliation(s)
- H A Sathish
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
27
|
Gordon M, Finkelstein A. The number of subunits comprising the channel formed by the T domain of diphtheria toxin. J Gen Physiol 2001; 118:471-80. [PMID: 11696606 PMCID: PMC2233838 DOI: 10.1085/jgp.118.5.471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the presence of a low pH environment, the channel-forming T domain of diphtheria toxin undergoes a conformational change that allows for both its own insertion into planar lipid bilayers and the translocation of the toxin's catalytic domain across them. Given that the T domain contributes only three transmembrane segments, and the channel is permeable to ions as large as glucosamine(+) and NAD(-), it would appear that the channel must be a multimer. Yet, there is substantial circumstantial evidence that the channel may be formed from a single subunit. To test the hypothesis that the channel formed by the T domain of diphtheria toxin is monomeric, we made mixtures of two T domain constructs whose voltage-gating characteristics differ, and then observed the gating behavior of the mixture's single channels in planar lipid bilayers. One of these constructs contained an NH(2)-terminal hexahistidine (H6) tag that blocks the channel at negative voltages; the other contained a COOH-terminal H6 tag that blocks the channel at positive voltages. If the channel is constructed from multiple T domain subunits, one expects to see a population of single channels from this mixture that are blocked at both positive and negative voltages. The observed single channels were blocked at either negative or positive voltages, but never both. Therefore, we conclude that the T domain channel is monomeric.
Collapse
Affiliation(s)
- Michael Gordon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alan Finkelstein
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
28
|
Abstract
The pore-forming colicins, the first proteins that were capable of forming voltage-dependent ion channels to be sequenced, have turned out to be both less tractable and more mysterious than imagined; yet they have proved interesting at every step of their short journey from producing cell to vanquished target cell. Starting out as a remarkably extended water-soluble protein, the colicin molecule is designed to interact simultaneously with several components of the complex membrane of the target cell, transform itself into a membrane protein, and become an ion channel with inscrutable properties. Unraveling how it does all this appears to be leading us into the dark recesses of protein/protein and protein/membrane interaction, where lurk fundamental processes reluctantly waiting to be revealed.
Collapse
Affiliation(s)
- J H Lakey
- School of Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, UK
| | | |
Collapse
|
29
|
Finkelstein A, Oh KJ, Senzel L, Gordon M, Blaustein RO, Collier RJ. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers. Int J Med Microbiol 2000; 290:435-40. [PMID: 11111923 DOI: 10.1016/s1438-4221(00)80059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The T-domain of diphtheria toxin, which extends from residue 202 to 378, causes the translocation of the catalytic A fragment (residues 1-201) across endosomal membranes and also forms ion-conducting channels in planar phospholipid bilayers. The carboxy-terminal 57-amino acid segment (residues 322-378) in the T-domain is all that is required to form these channels, but its ability to do so is greatly augmented by the portion of the T-domain upstream from this. Here we show that in association with channel formation by the T-domain, its hydrophilic 63-amino acid NH2-terminal region (residues 202-264) as well as the entire catalytic A fragment (residues 1-201) cross the lipid bilayer. The phenomenon that enabled us to demonstrate this was the rapid closure of channels at cis negative voltages when a histidine tag was placed at various positions in the NH2-terminal region of the T-domain or in the A fragment; the inhibition of this effect by trans nickel established that the histidine tag was present on the trans side of the membrane. Thus, all of the machinery necessary to translocate the A fragment across membranes is built into the 114 residues at the carboxy-terminal end of the T-domain (residues 265-378), without the requirement of any proteins in the plasma membrane (e.g., toxin receptor) or of any other cellular components.
Collapse
Affiliation(s)
- A Finkelstein
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Rodrigues CG, Bhakdi S, Valeva A. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Mol Microbiol 2000; 37:1372-8. [PMID: 10998169 DOI: 10.1046/j.1365-2958.2000.02080.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal alpha-toxin forms homo-oligomeric channels in lipid bilayers and cell membranes. Here, we report that electrophysiological monitoring of single-channel function using a derivatized cysteine substitution mutant allows accurate determination of the subunit stoichiometry of the oligomer in situ. The electrophysiological phenotype of channels formed in planar lipid bilayers with the cysteine replacement mutant I7C is equal to that of the wild type. When pores were formed with I7C, alterations of several channel properties were observed upon modification with SH reagents. Decreases in conductance then occurred that were seen only as negative voltage was applied. At the level of single channels, these were manifest as stepwise changes in conductance, each step most probably reflecting modification of a single SH group within the oligomer. Because seven steps were observed, the functional channel formed by alpha-toxin in planar lipid membranes is a heptamer.
Collapse
Affiliation(s)
- O V Krasilnikov
- Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
D'Silva PR, Lala AK. Organization of diphtheria toxin in membranes. A hydrophobic photolabeling study. J Biol Chem 2000; 275:11771-7. [PMID: 10766800 DOI: 10.1074/jbc.275.16.11771] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diphtheria toxin (DT) is a disulfide linked AB-toxin consisting of a catalytic domain (C), a membrane-inserting domain (T), and a receptor-binding domain (R). It gains entry into cells by receptor-mediated endocytosis. The low pH ( approximately 5.5) inside the endosomes induces a conformational change in the toxin leading to insertion of the toxin in the membrane and subsequent translocation of the C domain into the cell, where it inactivates protein synthesis ultimately leading to cell death. We have used a highly reactive hydrophobic photoactivable reagent, DAF, to identify the segments of DT that interact with the membrane at pH 5.2. This reagent readily partitions into membranes and, on photolysis, indiscriminately inserts into lipids and membrane-inserted domains of proteins. Subsequent chemical and/or enzymatic fragmentation followed by peptide sequencing allows for identification of the modified residues. Using this approach it was observed that T domain helices, TH1, TH8, and TH9 insert into the membrane. Furthermore, the disulfide link was found on the trans side leaving part of the C domain on the trans side. This domain then comes out to the cis side via a highly hydrophobic patch corresponding to residues 134-141, originally corresponding to a beta-strand in the solution structure of DT. It appears that the three helices of the T domain could participate in the formation of a channel from a DT-oligomer, thus providing the transport route to the C domain after the disulfide reductase separates the two chains.
Collapse
Affiliation(s)
- P R D'Silva
- Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India
| | | |
Collapse
|
32
|
Senzel L, Gordon M, Blaustein RO, Oh KJ, Collier RJ, Finkelstein A. Topography of diphtheria Toxin's T domain in the open channel state. J Gen Physiol 2000; 115:421-34. [PMID: 10736310 PMCID: PMC2233753 DOI: 10.1085/jgp.115.4.421] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When diphtheria toxin encounters a low pH environment, the channel-forming T domain undergoes a poorly understood conformational change that allows for both its own membrane insertion and the translocation of the toxin's catalytic domain across the membrane. From the crystallographic structure of the water-soluble form of diphtheria toxin, a "double dagger" model was proposed in which two transmembrane helical hairpins, TH5-7 and TH8-9, anchor the T domain in the membrane. In this paper, we report the topography of the T domain in the open channel state. This topography was derived from experiments in which either a hexahistidine (H6) tag or biotin moiety was attached at residues that were mutated to cysteines. From the sign of the voltage gating induced by the H6 tag and the accessibility of the biotinylated residues to streptavidin added to the cis or trans side of the membrane, we determined which segments of the T domain are on the cis or trans side of the membrane and, consequently, which segments span the membrane. We find that there are three membrane-spanning segments. Two of them are in the channel-forming piece of the T domain, near its carboxy terminal end, and correspond to one of the proposed "daggers," TH8-9. The other membrane-spanning segment roughly corresponds to only TH5 of the TH5-7 dagger, with the rest of that region lying on or near the cis surface. We also find that, in association with channel formation, the amino terminal third of the T domain, a hydrophilic stretch of approximately 70 residues, is translocated across the membrane to the trans side.
Collapse
Affiliation(s)
- Lisa Senzel
- From the Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Michael Gordon
- From the Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Robert O. Blaustein
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | - K. Joon Oh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - R. John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Alan Finkelstein
- From the Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
- From the Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
33
|
Masson L, Tabashnik BE, Liu YB, Brousseau R, Schwartz JL. Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J Biol Chem 1999; 274:31996-2000. [PMID: 10542230 DOI: 10.1074/jbc.274.45.31996] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mode of action of Bacillus thuringiensis insecticidal proteins is not well understood. Based on analogies with other bacterial toxins and ion channels, we hypothesized that charged amino acids in helix 4 of the Cry1Aa toxin are critical for toxicity and ion channel function. Using Plutella xylostella as a model target, we analyzed responses to Cry1Aa and eight proteins with altered helix 4 residues. Toxicity was abolished in five charged residue mutants (E129K, R131Q, R131D, D136N, D136C), however, two charged (R127E and R127N) and one polar (N138C) residue mutant retained wild-type toxicity. Compared with Cry1Aa and toxic mutants, nontoxic mutants did not show greatly reduced binding to brush border membrane vesicles, but their ion channel conductance was greatly reduced in planar lipid bilayers. Substituted cysteine accessibility tests showed that in situ restoration of the negative charge of D136C restored conductance to wild-type levels. The results imply that charged amino acids on the Asp-136 side of helix 4 are essential for toxicity and passage of ions through the channel. These results also support a refined version of the umbrella model of membrane integration in which the side of helix 4 containing Asp-136 faces the aqueous lumen of the ion channel.
Collapse
Affiliation(s)
- L Masson
- National Research Council of Canada, Biotechnology Research Institute, Montreal, Quebec, Canada H4P 2R2.
| | | | | | | | | |
Collapse
|
34
|
Davis BG, Khumtaveeporn K, Bott RR, Jones JB. Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites. Bioorg Med Chem 1999; 7:2303-11. [PMID: 10632040 DOI: 10.1016/s0968-0896(99)00168-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have recently adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). We now describe the use of this strategy to introduce multiple positive charges. A series of mono-, di- and triammonium methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutants (CMM) enzymes were determined at pH 8.6. The presence of up to three positive charges in the S1, S1' and S2 subsites of SBL resulted in up to 77-fold lowered activity, possibly due to interference with the histidinium ion formed in the transition state of the hydrolytic reactions catalyzed.
Collapse
Affiliation(s)
- B G Davis
- Department of Chemistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Davis BG, Shang X, DeSantis G, Bott RR, Jones JB. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus. Bioorg Med Chem 1999; 7:2293-301. [PMID: 10632039 DOI: 10.1016/s0968-0896(99)00167-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). A series of mono-, di- and triacidic acid methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutant (CMM) enzymes were determined at pH 8.6 under conditions which ensured complete ionization of the unnatural amino acid side-chains introduced. The presence of up to three negative charges in the S1, S1' and S2 subsites of SBL resulted in up to 11-fold lowered activity, possibly due to interference with oxyanion stabilization of the transition state of the hydrolytic reactions catalyzed. Each unit increase in negative charge resulted in a raising of K(M) and a reduction of k(cat). However, no upper limit was observed for increases in K(M), whereas decreases in k(cat) reached a limiting value. Comparison with sterically similar but uncharged CMMs revealed that electrostatic effects of negative charges at positions 62, 156 and 217 are detrimental, but are beneficial at position 166. These results indicate that the ground-state binding of SBL to the standard substrate, Suc-AAPF-pNA, to SBL is reduced, but without drastic attenuation of catalytic efficiency, and show that SBL tolerates high levels of charge at single sites.
Collapse
Affiliation(s)
- B G Davis
- Department of Chemistry, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
36
|
Oh KJ, Zhan H, Cui C, Altenbach C, Hubbell WL, Collier RJ. Conformation of the diphtheria toxin T domain in membranes: a site-directed spin-labeling study of the TH8 helix and TL5 loop. Biochemistry 1999; 38:10336-43. [PMID: 10441127 DOI: 10.1021/bi990520a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolated T domain of diphtheria toxin was mutated by cysteine-scanning mutagenesis at 28 consecutive sites (residues 328-355) that comprise the TH8 helix and the TL5 interhelical loop in the native toxin. After derivatizing the mutant proteins with a sulfhydryl-selective nitroxide reagent, we examined the mobility of each nitroxide and its accessibility to polar and nonpolar paramagnetic reagents, before and after insertion into phospholipid bilayers. The data obtained with the proteins in solution at pH 8 are generally consistent with predictions from the crystal structure of the toxin. Upon membrane binding at pH 4.6, a major structural reorganization of the domain was seen, which dramatically reduced the accessibility of most residues in this region to the polar reagent nickel(II)-ethylenediaminediacetate complex (NiEDDA). Many of these residues also showed reduced accessibility to the nonpolar reagent O(2). Periodic accessibility of the nitroxide side chains along the sequence to these reagents shows that TH8 remains largely helical in the membrane-bound state, with one surface associated with protein and the other facing the hydrophobic interior of the bilayer. In addition, the TL5 loop also appears to become alpha-helical in the membrane, with one surface in contact with protein and the other in contact with the bilayer interior. These findings provide a structural framework for understanding how the T domain forms a transmembrane channel and mediates translocation of diphtheria toxin's enzymic moiety across a membrane.
Collapse
Affiliation(s)
- K J Oh
- Jules Stein Eye Institute, Department of Chemistry and Biochemistry, University of California Los Angeles 90095-7008, USA
| | | | | | | | | | | |
Collapse
|
37
|
Oh KJ, Senzel L, Collier RJ, Finkelstein A. Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci U S A 1999; 96:8467-70. [PMID: 10411898 PMCID: PMC17539 DOI: 10.1073/pnas.96.15.8467] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T domain of diphtheria toxin is known to participate in the pH-dependent translocation of the catalytic C domain of the toxin across the endosomal membrane, but how it does so, and whether cellular proteins are also required for this process, remain unknown. Here, we report results showing that the T domain alone is capable of translocating the entire C domain across model, planar phospholipid bilayers in the absence of other proteins. The T domain therefore contains the entire molecular machinery for mediating transfer of the catalytic domain of diphtheria toxin across membranes.
Collapse
Affiliation(s)
- K J Oh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
38
|
Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry 1998; 37:17915-22. [PMID: 9922159 DOI: 10.1021/bi981230h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane insertion and translocation of diphtheria toxin, which is induced in vivo by low pH, is thought to be directed by the hydrophobic alpha-helices of its transmembrane (T) domain. In this study the structure of membrane-associated T domain was examined. Site-directed mutants of the T domain with single Trp residues were prepared at the two naturally occurring positions, 206 (near the N-terminal end of helix TH1) and 281 (within helix TH5), as well as at three residues in helix TH9, in which the substitutions F355W (near the N-terminal end of TH9), I364W (close to the center of TH9), and Y375W (near the C-terminal end of TH9) were made. All these mutants were found to undergo the low-pH-induced conformational change observed with wild-type T domain and insert into model membranes at low pH. The location of Trp residues relative to the lipid bilayer was characterized in model membrane vesicles by fluorescence emission and by quenching with nitroxide-labeled phospholipids. In TH9, residue 375 was shallowly inserted, residue 364 deeply inserted, and residue 355 located at an intermediate depth. Residues 206 and 281 exhibited moderately deep insertion. It was also found, in agreement with our previous study using bimane-labeled protein (Wang et al. (1997) J. Biol. Chem. 272, 25091-25098), that TH9 switches from a relatively shallowly inserted state to a more deeply inserted state when the concentration of the T domain in the membrane is increased or the thickness of the membrane bilayer is decreased. In particular, the depth of residue 355 was found to increase under the conditions giving deeper insertion. In contrast, residue 375 remained shallowly located in both states, as predicted from its location on the polar C-terminus of TH9. It is concluded that TH1 and TH5 insert into the lipid bilayer in both T domain conformations. In addition, Trp depths suggest that even in the shallowly inserted state there is a significant degree of insertion of TH9. These results suggest regions of the T domain in addition to the hydrophobic TH8/TH9 hairpin insert into membranes. Models for the structure of the membrane-inserted T domain are discussed.
Collapse
Affiliation(s)
- S E Malenbaum
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | | | |
Collapse
|
39
|
Abstract
The mechanism by which a soluble protein converts into a protein that spans a membrane remains a central question in understanding the molecular mechanism of toxicity of bacterial protein toxins. Using crystallographic structures of soluble toxins as templates, the past year has seen a number of experiments that are designed to probe the membrane state using other structural methods. In addition, crystallographic information concerning the clostridial neurotoxins has emerged, suggesting a novel mechanism of pore formation and new relationships between toxin binding domains.
Collapse
Affiliation(s)
- D B Lacy
- Department of Chemistry University of California at Berkeley Berkeley CA 94720 USA.
| | | |
Collapse
|
40
|
Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ. Characterization of membrane translocation by anthrax protective antigen. Biochemistry 1998; 37:15737-46. [PMID: 9843379 DOI: 10.1021/bi981436i] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solving the crystallographic structure of the ring-shaped heptamer formed by protective antigen (PA), the B moiety of anthrax toxin, has focused attention on understanding how this oligomer mediates membrane translocation of the toxin's A moieties. We have developed an assay for translocation in which radiolabeled ligands are bound to proteolytically activated PA (PA63) at the surface of CHO or L6 cells, and translocation across the plasma membrane is induced by lowering the pH. The cells are then treated with Pronase E to degrade residual surface-bound material, and protected ligands are quantified after fractionation by SDS-PAGE. Translocation was most efficient (35%-50%) with LFN, the N-terminal PA binding domain of the anthrax lethal factor (LF). Intact LF, edema factor (EF), or fusion proteins containing LFN fused to certain heterologous proteins [the diphtheria toxin A chain (DTA) or dihydrofolate reductase (DHFR)] were less efficiently translocated (15%-20%); and LFN fusions to several other proteins were not translocated at all. LFN with different N-terminal residues was found to be degraded according to the N-end rule by the proteasome, and translocation of LFN fused to a mutant form of DHFR with a low affinity for methotrexate (MTX) protected cells from the effects of MTX. Both results are consistent with a cytosolic location of protected proteins. Evidence that a protein must unfold to be translocated was obtained in experiments showing that (i) translocation of LFNDTA was blocked by introduction of an artificial disulfide into the DTA moiety, and (ii) translocation of LFNDHFR and LFNDTA was blocked by their ligands (MTX and adenine, respectively). These results demonstrate that the acid-induced translocation by anthrax toxin closely resembles that of diphtheria toxin, despite the fact that these two toxins are unrelated and form pores by different mechanisms.
Collapse
Affiliation(s)
- J Wesche
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Minn AJ, Swain RE, Ma A, Thompson CB. Recent progress on the regulation of apoptosis by Bcl-2 family members. Adv Immunol 1998; 70:245-79. [PMID: 9755339 DOI: 10.1016/s0065-2776(08)60388-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- A J Minn
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
42
|
Kachel K, Ren J, Collier RJ, London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. J Biol Chem 1998; 273:22950-6. [PMID: 9722516 DOI: 10.1074/jbc.273.36.22950] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topography of proteins that convert between soluble and membrane-inserted states has proven a challenging problem. In particular, it has been difficult to define both whether a transmembrane orientation is achieved and what are the boundaries of membrane-inserted segments. In this report the fluorescence of bimane-labeled Cys residues and the binding of anti-BODIPY antibodies to BODIPY-labeled Cys residues are combined to define these features for helices TH8 and TH9 of the T domain of diphtheria toxin. Using a series of labeled residues the topography of these helices was examined in both conformations of membrane-inserted T domain identified previously (Wang, Y., Malenbaum, S. E., Kachel, K., Zhan, H., Collier, R. J., and London, E. (1997) J. Biol. Chem. 272, 25091-25098). In the shallowly inserted conformation these helices are found to be aligned close to the cis surface of the bilayer all along their sequences. In contrast, in the more deeply inserted conformation most TH8 and TH9 residues examined located in a non-polar environment, with the boundaries of the membrane-inserted sequences close to residues 324 and 372-374 on the cis (insertion) side of the bilayer. It was also found that residues 348 and 349, which are in the loop connecting TH8 and TH9, reached the opposite trans side of the bilayer, but did not protrude fully into the aqueous environment. These boundaries suggest the membrane-inserted segments of TH8 and TH9 form transmembrane helices about 25 residues in length, and suggest that they are connected by a tight turn. It is concluded that this combination of fluorescent techniques can be combined to obtain transmembrane helix topography.
Collapse
Affiliation(s)
- K Kachel
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
43
|
Senzel L, Huynh PD, Jakes KS, Collier RJ, Finkelstein A. The diphtheria toxin channel-forming T domain translocates its own NH2-terminal region across planar bilayers. J Gen Physiol 1998; 112:317-24. [PMID: 9725891 PMCID: PMC2229418 DOI: 10.1085/jgp.112.3.317] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1998] [Accepted: 06/25/1998] [Indexed: 11/21/2022] Open
Abstract
The T domain of diphtheria toxin, which extends from residue 202 to 378, causes the translocation of the catalytic A fragment (residues 1-201) across endosomal membranes and also forms ion-conducting channels in planar phospholipid bilayers. The carboxy terminal 57-amino acid segment (322-378) in the T domain is all that is required to form these channels, but its ability to do so is greatly augmented by the portion of the T domain upstream from this. In this work, we show that in association with channel formation by the T domain, its NH2 terminus, as well as some or all of the adjacent hydrophilic 63 amino acid segment, cross the lipid bilayer. The phenomenon that enabled us to demonstrate that the NH2-terminal region of the T domain was translocated across the membrane was the rapid closure of channels at cis negative voltages when the T domain contained a histidine tag at its NH2 terminus. The inhibition of this effect by trans nickel, and by trans streptavidin when the histidine tag sequence was biotinylated, clearly established that the histidine tag was present on the trans side of the membrane. Furthermore, the inhibition of rapid channel closure by trans trypsin, combined with mutagenesis to localize the trypsin site, indicated that some portion of the 63 amino acid NH2-terminal segment of the T domain was also translocated to the trans side of the membrane. If the NH2 terminus was forced to remain on the cis side, by streptavidin binding to the biotinylated histidine tag sequence, channel formation was severely disrupted. Thus, normal channel formation by the T domain requires that its NH2 terminus be translocated across the membrane from the cis to the trans side, even though the NH2 terminus is >100 residues removed from the channel-forming part of the molecule.
Collapse
Affiliation(s)
- L Senzel
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
44
|
Benson EL, Huynh PD, Finkelstein A, Collier RJ. Identification of residues lining the anthrax protective antigen channel. Biochemistry 1998; 37:3941-8. [PMID: 9521715 DOI: 10.1021/bi972657b] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In its activated 63 kDa form, the protective antigen (PA) component of anthrax toxin forms a heptameric prepore, which converts to a pore (channel) in endosomal membranes at low pH and mediates translocation of the toxin's enzymic moieties to the cytosol. It has been proposed that the prepore-to-pore conversion involves a conformational rearrangement of a disordered amphipathic loop (D2L2; residues 302-325), in which loops from the 7 protomers combine to form a transmembrane 14-stranded beta barrel. To test this model, we generated Cys substitutions in 24 consecutive residues of the D2L2 loop, formed channels in artificial bilayers with each mutant, and examined changes in channel conductance after adding the thiol-reactive, bilayer-impermeant reagent methanethiosulfonate ethyltrimethylammonium (MTS-ET) to the trans compartment. The rationale for these experiments is that reaction of MTS-ET with a Cys residue adds a positively charged group and therefore would likely reduce channel conductance if the residue were in the ion-conducting pathway. We found alternating reduction and absence of reduction of conductance in consecutive residues over two stretches (residues 302-311 and 316-325). This pattern is consistent with alternating polar and apolar residues of the two stretches projecting into the pore lumen and into the bilayer, respectively. Residues connecting these two stretches (residues 312-315) were responsive to MTS-ET, consistent with their being in a turn region. Single channels formed by selected mutants (H304C and N306C) showed multiple conductance step changes in response to MTS-ET, consistent with an oligomeric pore. We also found that the binding site for the channel-blocking tetraalkylammonium ions is located cis relative to the inserted D2L2 loops. These findings constitute strong evidence in favor of the model of conversion of the prepore to a 14-stranded beta barrel pore and solidify the foundation for studies to understand the mechanism of translocation by anthrax toxin.
Collapse
Affiliation(s)
- E L Benson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|